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Abstract. Real world applications make heavy use of composite keys to
reference entities. Indices over multiple columns are therefore mandatory
to achieve response time goals of applications. We describe and evaluate
the Composite Group-Key Index for fast tuple retrieval via composite
keys from the compressed partition of in-memory column-stores with a
main/delta architecture. Composite Group-Keys work directly on the
dictionary-encoded columns. Multiple values are encoded in a native
integer and extended by an inverted index. The proposed index offers
similar lookup performance as alternative approaches, but reduces the
storage requirements significantly. For our analyzed dataset of an enter-
prise application the index can reduce the storage footprint compared to
B+Trees by 70 percent. We give a detailed study of the lookup perfor-
mance for a variable number of attributes and show that the index can
be created efficiently by working directly on the dictionary-compressed
data.

1 Introduction

Today’s hardware is available in configurations and at price points that make
in-memory database systems a viable choice for many applications in enterprise
computing. We focus on columnar in-memory storage with a write-optimized
delta partition and a larger read-optimized main partition. This architecture
supports high performance analytical queries [12, 2], while still allowing for suf-
ficient transactional performance [5]. The results from an analysis of all primary
keys of a large enterprise resource planning (ERP) system installation provide
the input for the evaluation of different indexing techniques. The Composite
Group-Key index is built on top of multiple dictionary-encoded columns by stor-
ing compact key-identifiers derived from the encoded representation of the key’s
fields. The key-identifiers maintain the sort order of the tuples and therefore,
the index supports range lookups, which have a significant share in enterprise
workloads [5].

Applications use composite keys to model entities according to their real
world counterpart and the relationships between them. Redesigning database
schemata to avoid the usage of composite keys is cumbersome and often contrary



to the goal of achieving a good abstraction of entities. To avoid the high costs
of composite keys, database designs might use surrogate keys. However, the
introduction of surrogate keys brings new problems, such as a disassociation of
the key and the actual data and problems of uniquely referencing entities, among
others. This is also visible in industry benchmarks like the TPC-C: of the nine
tables in the TPC-C schema, seven have a composite key, two thereof have
additional, secondary composite indices. TPC-H’s largest table lineitems has a
composite key as well. Consequently, nearly all row-based relational database
systems support composite indices. Looking at the internal record based storage
scheme of row stores, the support for composite indices is a straightforward
extension of the single attribute index. The primary key is often automatically
set as the cluster key of of the table, e.g. it establishes the sort order of a table
on disk.

In-memory column stores with a main/delta architecture like Hyrise [4] and
SAP HANA [12] keep the majority of the data in highly compressed, read-
only partitions. Therefore, an additional index on record-level on such partitions
can impose a significant part of the overall storage consumption of a table. To
maintain a high query performance, the main and delta partition is combined
into a new compressed main partition whenever the delta partition grows too
large. To keep this merge process simple and fast and the compression scheme
flexible, we do not consider the tables to be kept in the sort order of the primary
key [5]. Consequently, a separate index structure is needed to enforce uniqueness
constraints and fast single tuple access.

In the following sections, we describe the Composite Group-Key Index and
benchmark it against alternative indexing schemes for the dictionary-compressed
main partition of in-memory column stores with regard to their storage con-
sumption and applicability in a real world enterprise application. We show that
the lookup performance of Composite Group-Keys can keep up with alternative
implementations while imposing a significantly smaller space overhead. A de-
tailed analysis of a large enterprise application with several thousand tables and
billions of records shows its applicability and limitations.

2 Real World Enterprise Application: SAP ERP

An Enterprise Resource Planning (ERP) application is the central planning soft-
ware for large companies. It typically stores all invoices, sales orders, deliveries,
and general ledger documents, and the connections between them, among other
relevant data. We had the opportunity to obtain a complete system copy from
a large, productive installation of the SAP ERP application from a Fortune 500
company. Although the analysis of a single instance of the product does not cover
the entire ERP market, we believe that the findings are valuable and applicable
to a larger scope of enterprise applications. The SAP ERP software has about
25 percent market share in the global ERP market and is used by more than
half of the Fortune 500 companies. We verified the results from selected tables
in a second instance of the application that is used in a different industry. The
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Fig. 1: Analysis of the data in a ERP system from a Fortune 500 company.
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Fig. 2: Number of attributes in primary keys of large tables.

analyzed ERP system’s size is about 5 TB in uncompressed format, it stores 10
billion records in 23886 tables. Each table has a primary key, which is usually
a composite key. As an example, the general ledger accounting header’s key is
composed of the tenant-id, a company code, the document number and the fis-
cal year. Figure 1 shows number of tables in our database system grouped by
the number of attributes in their key, in Figure 2 a detailed view of the tables
with more than 100,000 records is presented. Only 2350 of the 23886 non-empty
tables have a primary key of only one attribute, 6789 with two attributes and
14747 have composite keys of three or more attributes. If only the tables with
more than 100,000 records are taken into account, 96 percent have a composite
key, 81 percent with three or more fields.

Since the application is designed as a multi-tenant system with the tenant-
id as the first key in all transactional tables, two keys are the norm. However,
even if multi tenancy is implemented on a different layer, there are many more
composite keys of higher order. The important finding of the analysis is, that
more than 90 percent of the tables have a composite primary key.



Symbol ‘ Symbol

Table Length n Position List P
Key-Identifier List K Concatenated Key c
Attribute Vector of Column x AV, | Dictionary of Column x D,
Column x Cy Key-identifier kiq

Table 1: Symbols

3 Composite Group-Key

The Composite Group-Key is our proposal for indexing the main partition of
in-memory column stores with dictionary compression. Table 1 summarizes the
used symbols.

The dictionary compression on the main partition uses sorted dictionaries
(D) and bit-packed attribute vectors (AV). We refer to the compressed represen-
tation of a value, its bit-packed index into the dictionary, as value-id. Because
all dictionaries of the main partition are sorted, the value-ids follow the same
sort order as the original values and the value-ids of one column can be directly
compared to evaluate the order between values. Therefore, range queries can also
be evaluated directly on the compressed format.

The composite Group-Key contains two data structures: a key-identifier list
K and a position list P. The key-identifier list contains integer keys k;4 which are
composed of the concatenated value-ids of the respective composite key’s values.
The bit-wise representation of k;q equals the concatenation of the value-ids of
the keys fields, as illustrated in Figure 3(b). The creation of key-identifiers can
be implemented efficiently through bit shifts.

The key-identifiers are similar to BLINK’s data banks, but as they are com-
posed of fixed-length values, they are binary-comparable across the complete
main partition [9]. In the successor, DB2 BLU [8] indices are only used to en-
force uniqueness constraints. Best practice guides advice to disable constraint
checking, as the B+Tree organized indices consume space and introduce pro-
cessing overhead 1.

Storage Requirements The Composite Group-Key maintains two data struc-
tures, the key-identifier list K with either 8,16,32 or 64 bits per indexed key and
a bit-packed position list P. K is always composed of native integer datatypes,
to avoid costly bit un-packing during the binary search. P is only accessed to re-
trieve the respective row-id, hence it is stored with [log, n] bits to save memory
space.

! Rockwood et al.: Best practices: Optimizing analytic workloads using DB2 10.5 with
BLU Acceleration May 2014 on IBM.com
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Fig. 3: Composite Group-Key creation: (a) schematic overview, (b) k;q creation.
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Key Lookups The first step of the lookup with the Composite Group-Key
Index consists of the translation of all key attributes of the predicate to their
respective value-id, using binary search on each key attribute’s dictionary. The
complexity of each dictionary lookup is O((log |Dict|) * k;), with k; being the
length of the respective key attribute. Afterwards the key-identifier is created
by concatenating the value-ids through bit shifts. The search key is used for a
binary search on the key-identifier list, which is within O(logn). The results, the
matching row-id, can be read directly from the offset in P.

Index Creation The process of creating the index is shown schematically in
Figure 3 and by example in Figure 4.

In the first step, value-ids from all columns of the composite key are com-
bined to a vector of key-identifiers (K, ). This intermediate data structure is
extended by an ascending list of row-ids (P,). Afterwards both structures are
sorted according to the key-identifiers to obtain K and P.

The appropriate native integer type for the key-identifier list is calculated by
adding up the length of the value-ids of all indexed attributes and rounding up
to the next power of two.

4 Alternative Index Implementations

This section briefly introduces two alternatives for secondary indexing of multi-
ple columns. Both allow the efficient execution of single key and range queries.
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Fig.4: Composite Group-Key creation: Example with 8 bit integer key-identifier.

However, they index the full composite key, instead of a shorter integer rep-
resentation. Our goal is to show, that it is viable to transform the key into
its compressed representation, although a binary search on each dictionary is
necessary before searching for the actual key-identifier.

4.1 Tuple-Based B+tree

A classic implementation of an index stores pairs of the actual composite key
and a row-id in a tree structure. Since the tree stores the uncompressed keys,
no additional dictionary lookups have to be performed upfront, and the search
takes place directly on the tree. The drawback of this approach is the need for
expensive comparisons of the actual composite key while traversing the tree and
its higher storage requirements (roughly 2x the data [11]) for internal pointers.
Newer trie-based structures, such as the Generalized Prefix Trees proposed by
Boehm et al. [1] and further developed in the Adaptive Radix Tree (ART) by
Leis et al. [6] address some of the problems that classic B4+Trees have. However,
also tries require the replication of keys in the index and additional space for
auxiliary structures.

For a basic performance comparison, we use the STX B+Tree library?, a
drop in STL map replacement, which is optimized for modern CPUs and more
storage efficient than the GNU STL red-black trees. C++ tuples of char-arrays
are used to store the key. The number of attributes in the key is a template
parameter, i.e. there is no additional runtime overhead to determine the number
of keys.

Storage Requirements For our comparison we ignore the internal overhead of
the B+Tree’s structures, and only assume that the indexed keys are replicated
once into the tree structure, and an additional 8 bytes for the row-id pointer
are stored. The resulting value is a lower-bound for any indexing scheme that
replicates the keys into the index structure without further compression of the

2 http://panthema.net /2007 /stx-btree/



keys or row-id pointers.

Memorypirree =(c+ 8) * n bytes (4)

Key Lookups To find the corresponding row-ids for a predicate on the com-
posite key, the key’s attributes are concatenated to a single search key. In our
implementation a fixed-length byte-array is indexed. To search the index for
matches, the byte-array has to be created from the query predicates. Then, a
search on the tree is performed and the row-id is read from the leaf. Let k be
the length of the composite key, e.g. the sum of the length of all attributes that
form the key. The complexity of building the key is within O(k) and the actual
search on the index within O(log(n) * k), since the key comparison is in itself a
O(k) operation.

4.2 Concatenated Attribute with Inverted Index

An alternative implementation to index composite primary keys adds an addi-
tional column to the table. The additional column holds concatenated values
of all key attributes. It is extended by an inverted index to allow for fast tu-
ple retrieval through the concatenated key. This essentially creates a clustered
in-memory row store for the vertical partition of the composite key, and allows
other database operations, like joins and aggregations, to work on the single
concatenated column instead of handling multiple columns. Its integration into
existing analytical column store engines without indices promises to be feasible
with less effort than the introduction of new data structures and operators. If the
key is composed of fixed length fields, the concatenated values follow the same
sort order as the original values, otherwise a specialized encoding scheme has to
be employed to support range queries. If a primary key is indexed, the resulting
column has 100 percent distinct values and the the dictionary is essentially an
uncompressed representation of the Composite Group-Keys key-identifier list.

Storage Requirements The concatenated key column consists of a sorted
dictionary of string-keys (D), the attribute vector (AV) and a bit-packed position
list (P). For primary keys the resulting key column has 100 percent distinct
values, therefore we avoid adding a level of indirection [3] to cope with differently
sized position lists, and instead store the positions directly in P. The differences
to the B+Tree lower-bound stem from the bit-packed row-ids, an optimization
that is only possible, if row-ids are stored consecutively. The resulting size is
dominated by the dictionary, which is further compressed in practice. Mueller et
al. [7] inspect the compression of the dictionary, and report compression factors
between two and eight [7]. We show the results of the uncompressed column, as
well as with a dictionary compression factor four.
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Fig. 5: Large tables from the ERP system by their respective Composite Group-Key
class.
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Key Lookups A predicate on the key columns is translated to the concatenated
version of the composite key by the query processor, similar to query processing
with B+Trees. Next, a binary search for the concatenated key is performed on
the concatenated column’s dictionary. The respective row-id is obtained from
the inverted index through a direct offset lookup in constant time. The lookup
complexity is equal to the B+Tree lookup.

5 Evaluation

We compare the different indices with regard to the storage requirements, lookup
performance, and index rebuild costs.

5.1 Storage Requirements of ERP Primary Keys

We use the insights from the ERP dataset analysis to compare the expected
storage footprints of the Composite Group-Key Index and the presented alter-
natives.
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Fig. 6: Calculated index sizes grouped by attributes in key for the 23800 tables of the
analyzed ERP system where the Composite Group-Key is applicable.

To evaluate the applicability of our proposed Composite Group-Key index
we calculate the size of the key-identifier for all tables: Figure 5(a) shows the
aggregated counts of the tables that are found in the system and have more
than one million rows, and Figure 5(b) the indexed tuples within these tables.
It highlights the importance of the 32 bit and 64 bit index cases, however, 86
tables of the analyzed dataset would need a 128 or 256 bit key-identifier, if
the Composite Group-Key is applied. We focus on the configurations in which
an native integer type is sufficient and leave the other cases for future work.
Nevertheless, tables that use the Composite Group-Key can still grow at runtime,
without leading to problems: as the size of the key-identifier is known at merge-
time, the decision to use the Composite Group-Key can be safely made for each
table. The limitations cannot be hit during normal query processing, i.e. during
insertions or updates, but only when a re-encode of the main partition occurs
during the merge process.

The total memory footprint of all primary keys in the ERP dataset is 287 GB
for the calculated B+Tree lower-bound, 278 GB for the concatenated attribute,
108 GB for the estimate of compressed concatenated column, and 79 GB for
the Composite Group-Key Index. The Composite Group-Key has a memory
footprint advantage of about 70 percent less than the lower-bound of B+Trees
and the uncompressed concatenated attribute. Even with an assumed compres-
sion factor of 4 for the dictionary of the concatenated attribute, the Composite
Group-Key still leads to a 30 percent reduction. The storage footprint of the
concatenated column and the Composite Group-Key are equal at an assumed
compression factor of eight for all concatenated dictionaries.

In Figure 6, we compare the resulting index sizes of the Composite Group-
Key Index and the other indexing schemes grouped by the number of fields in
the composite key. It shows the storage savings of the Composite Group-Key
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Fig.7: Uncached Performance of Lookups. The CPU cache has been cleared between
each access.

compared to the presented alternatives. It highlights that most savings in the
ERP system can be made in keys with 4 and 5 attributes.

5.2 Lookup Performance

We benchmark the performance of key selects via the index. For each of the
introduced indices we randomly pick 100 keys and report the average access
time in CPU cycles. The benchmarks include the complete predicate-to-result
translation, e.g. in case of the concatenated attribute the predicates are copied
to create the char-array search key. For the Group-Key Index a binary search on
each dictionary is performed. All measurements were performed on an Intel Core
i5-3470 3.2GHz CPU with 8 GB RAM running Ubuntu 13.10 and using the GCC
4.8.1 compiler. The results are plotted for three to five attributes in the key in
Figures 7 and 8. In Figure 7, the lookup performance of a single, uncached access
to the index is reported. The three index types show a similar performance,
with a minimal penalty for the B+Tree. Figure 8 reports the results for 100
consecutive index accesses to different values without any forced CPU cache
invalidation. Here, the smaller size of the Composite Group-Key is beneficial
for cache locality, and it outperforms the alternatives consistently. We conclude
that the Composite Group-Key’s performance is on-par with other established
indexing schemes.

5.3 Index Creation and Maintenance

To keep the delta partition small and fast, its contents are merged from time to
time into the main partition [5]. Only at merge time, the main partition index
has to be maintained, as all other write operations during runtime are handled
by the delta partition and a special invalidation vector of the main partition.
During the merge process, the delta and main partition are combined to a
new main partition, thereby potentially changing the value-ids of every value in
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Fig. 8: Cached Performance of Lookups. Same experiment as in Figure 7 but without
invalidation of the CPU cache between runs.

the former main store [5]. Additionally, the merge process handles a column at a
time, making in difficult to handle composite keys, as multiple columns have to
be considered. The merge process runs concurrently to transactions, hence, the
current index cannot be modified in-place. Therefore, after the merge process
created a new main partition, a new index is built from scratch.

This works for all index types, but as Figure 9 shows, the costs vary. The
high costs for the concatenated attribute are due to the expensive byte-wise
operations on all values, especially the sorting to create the inverted index. The
B+Tree shows better performance due to the better cache locality during the
sort. The Composite Group-Key outperforms the two alternative, since it does
not work on byte-arrays, but native integers. Since K is a vector of integers, the
sorting operation is much faster than the respective sorting of char-arrays.

6 Conclusion and Future Work

We showed the importance of composite keys and proposed a novel index struc-
ture tailored towards dictionary encoded column-stores with a main/delta archi-
tecture. The Composite Group-Key’s lookup performance is on par with other
established indexing schemes while significantly reducing the storage footprint
for a variety of real world tables. Its implementation leverages the encoding of
the primary data by encoding value-ids instead of values. It can therefore avoid
costly byte-wise comparisons and perform the comparison of multiple parts of
the key in a single integer comparison. Although the Composite Group-Key’s
lookup complexity suggests that a lookup operation is more costly than in the
other cases, its actual performance on modern CPUs keeps up with the alter-
natives. It is a viable choice to use the compressed representation of a key to
perform fast single-tuple lookups in in-memory column-stores with a main/delta
architecture.
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Fig. 9: Index creation performance for different main partition sizes

In future work we plan to evaluate how additional optimizations, such as
storing the key-identifier list as a CSS tree [10] or trie compare in this setting.
Bit-packing row-ids in tree leaf nodes is another option to reduce the memory
footprint of tree structures. Additionally, clustered indices can be applied to our
columnar in-memory storage engine. The binary search on the sorted compressed
columns is similar to the Composite Group-Key lookup, since the predicate needs
to be translated to the compressed representation as well, before the search on
the partition can be performed. Nevertheless, additional index structures could
improve search performance on the sorted table.
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