DAM' N

Panel discussion

Peter Boncz (CWI)

Architecture-Conscious Databases:
sub-optimization or the next big leap?

s/Buffer Cache/L2/g
s/Page Fault/Cache Miss/g
s/Disk Block/Cache Line/g

m The final benefits are only a few
percentage points

" DAM)N
Sub-Optimization or Big Leap?

m Optimizing { cache use, IPC, ..}
use can make a huge difference

m Future even more interesting:

e.g. after hitting the memory wall, we now
hit a CPU frequency wall.

“Computer architectures will fundamentally change™
=» need strong help from software (e.g. multicore)

" JE DAM jN
Questions

m what will computer architectures look like in 5 years?

m do computer architecture trends/changes force us to re-
think the classical DBMS architecture?

m to what extent are CPU manufacturers willing to listen to
DBMS people?

= what architecture-conscious HYPEWORD data-
management challenges/opportunities do you see in the
next 5 years?

HYPEWORD in { XML, stream, mobile/ubiquitous,
sensor, data mining, multimedia, biological }

The panelists

| . .
4
o 8
)

m Doug Carmean (Intel)

m Bradley Kuszmaul (MIT)

m Jignesh Patel (Univ. Michigan)
m Babak Falsafi (CMU)

m Kenneth Ross (Columbia Univ.)

m Doug Carmean (Intel)

m Bradley Kuszmaul (MIT)

m Jignesh Patel (Univ. Michigan)
m Babak Falsafi (CMU)
m Kenneth Ross (Columbia Univ.)

Cache-Oblivious Data Structures for Databases
Bradley C. Kuszmaul
MIT CSAIL

The cache hierarchy is where the performance goes.

The Memory Hierarchy

Processor

Ins latency, 64-byte lines. 32KB

Cache ($)

L2% 3ns latency, 256B lines, 4MB total
L3%
Memory 60ns latency, 4KB blocks, 16GB total

Remote Memory| 10.000ns latency, 1TB total

Disk 107ns latency, 100MB/s, Petabyte scale

(complex latency)

Disk Systems Are Complex

¢ Rotational latency Sms,

e long seek 8ms,

e short seek 1ms.

e Outer tracks contain twice as
much data as inner tracks, with
the same transfer time (1 rota-
tion).

e Caching in the disk controller.

Half-power point is size at which half your cost is latency,

B-Tree Block Size

e B-trees choose the node de-
gree so that each node fits in

7N a block.
,js.f:f" — — e \What block size to use?
=7 =" -64B (cache lines),
s k — 4KB (page size),

— 1/3MB (random seek half-
power point)

Small blocks make poor use of disk. Big blocks make poor
use of cache (and may be expensive for insertions.)

A Static Cache-Oblivious B-tree

—

17
4 19
3 13
| g | 11 | 14 0 3 26 | g |
6 0 10 (12 13 {15 16 122 iha 7 28 |3 1
'\-.-."'-'-'
S'_ 15]
| __
Bl 23 4[5 6 7|8 0 10|[1112 3 2021 22][23 24 25|[26 27 2829 30 3
| - — - 1 3 4[56 7|8 1213|[1415 16 12 19][20 21 42326 ang‘l

First lay out the tree into blocks of size V' N. Then lay
out those blocks into blocks of size N1/%. (And those into

blocks of size N1/8,)

Cache-Oblivious B-trees Optimize for All Block Sizes
Simultaneously

Actual block size (unknown)

Largest N'/? block that fits.
Two blocks of size \/B give the same fanout as one block of size B. — At most 2X

more block transfers than optimal.

(Potentially another 2X due to alignment. But small blocks, which pay the first factor
of two, are unlikely to cross the actual block boundary.)

This analysis applies to all block sizes at the same time.

Some Performance measurements

Random searches:
Data structure

Average time per search
small-machine big-machine

CO Btree

Btree: 4KB Blocks:
16KB blocks:
32KB blocks:
64KB blocks:
128KB blocks:
256KB blocks:
512KB blocks:

Range queries run 100 times faster.

Conclusion: Must optimize for the cache heirarchy. Can

12.3ms
17.2ms
13.9ms
11.9ms
12.9ms
13.2ms
18.5ms

13.8ms
22.4ms
22.1ms
17.4ms
17.6ms
16.5ms
14 .4ms
16.7ms

do so in an architecturally independent way.

The panelists

g

e
\\\ : 5
- - il
".. - -
e B
0 xo-
- v T
- ' 'l'_ »
(. -
e |
= i
"

2

m Doug Carmean (Intel)
m Bradley Kuszmaul (MIT)

m Jighesh Patel (Univ. Michigan)

m Babak Falsafi (CMU)
m Kenneth Ross (Columbia Univ.)

Architecture-Conscious Databases:
Sub-optimization or the Next Big Leap?

Jignesh M. Patel
University of Michigan

®

Those who cannot remember the
past are condemned to repeat It.

- George Santayana

© Jignesh M. Patel, 2005

History (from a DB perspective)

o« 1970s, 80s: Birth of RDBMS

» Disk I/O are expensive: buffer management, prefer sequential 10s.
» Customized hardware for DBMS?

Customized hardware is not cost-effective or portable, Detter to use smart
somw
o 1980s, 90s: High performance and scalable DBMS
> Parallellsr@BMS are very amenable to parallehs)

» Shared-nothing - essentiaty appticatiorr fevel-parallelism.

» Need to worry about startup, interference, and skew.

%DBMS functionalityJ®bject*, external functions, rules, ...
« 1990s, century: Ubiquitous DBMS

Expanding DBMS applications: Streams, scientific, semi-structured,
person ent, ...

» Architecture-conscious RDBMS:
» Memory Wall: Design cache-aware methods, prefetching, ...
» Exploit new processor features: SIMD, co-processors (GPU), ...

© Jignesh M. Patel, 2005

Future Computer Architecture and
impact on DBMS

« SMP on a chip

» Shared-nothing parallel DBMS will be the
default installation.

o Memory hierarchy will continue

» But processor clock speeds are not increasing
rapidly

© Jignesh M. Patel, 2005

CPU extensions for DBMSs

No compelling reason to ado
extensions

DBMS-specific

Recall the database machine’s era
» DBMS has smart and efficient software-based techniques
What is the payoff for the hardware vendor?

» Servers: Application servers (Java + DB), file servers, ...
» Clients: Entertainment, Virus/spyware scanners, personal

data management, ...

DBMS part of a complex suite of software even on

server machines

» Lots of time is spent in external function and (Java)

application code.

© Jignesh M. Patel, 2005

Rethink traditional DBMS Architecture?

o We already have shared-nothing parallelism.

o Memory hierarchy fundamentally remains the same:
smaller and faster memory is closer to the processor

» For shared-nothi IS chronization may be
cheaper with sha memory

« Coprocessors for gPekations

» There will be less pressure to use coprocessors.

» Not clear if this approach has a significant performance
advantage when compared to the best current methods on
regular processors.

» End-to-end application performance?
» RDBMS query processing will be a shrinking component.

» Speed is only a small factor. Portability is important.

© Jignesh M. Patel, 2005

New Challenges

The role of DBMS is expanding!

Efficient fuzzy matching algorithms on text,
personal digital records, multimedia, graphs.

Data mining will be more common as data volume
continues to explode and complexity of analysis
Increases. Relatively little work on parallel
algorithms here.

Scientific workloads: Lots of very computationally
expensive data analysis. Needs massively parallel
methods. Data volume Is exploding.

But need clean programming interfaces.

© Jignesh M. Patel, 2005

The panelists

m Doug Carmean (Intel)
m Bradley Kuszmaul (MIT)
m Jignesh Patel (Univ. Michigan)

m Babak Falsafi (CMU)

m Kenneth Ross (Columbia Univ.)

DaMoN 2005 panel on

Architecture-Conscious
Databases:
sub-optimization or the next big
leap?

Babak Falsafi

Computer Architecture Lab

Carnegie Mellon
http://www.ece.cmu.edu/CALCM

Technology Scaling Trends

Good news:
— 100B trans/chip by 2015
— Tens of cores

Bad news:

— Heterogeneous, smoking and
unreliable cores

— Faster but constrained clocks

— Off-chip latency/bw bottlenecks
continue

2015 Multi-core Chip

Scaling Implications for DB Servers

Lots of cores & on-chip memory:

— Parallelism galore: intra-transaction
— Sea of memory, not hierarchies

Heterogeneous resources:
— ILP, TLP, and DLP (vector)?
— Both HW-/SW-managed caches

Unreliable HW:

— Fine-grain transaction semantics

Need tight HW/SW collaboration!

One Solution:
Staged Server Architecture

Componentize server into operators
Operator-level pipelining

— Map operators to cores

— HW/SW data streaming

o, & s
ISCAN
Y L
optimizer &

[&

A
onnect [—] parser
L

[Courtesy Harizopoulos]

FSCAN'™

_— T ey

m Doug Carmean (Intel)

m Bradley Kuszmaul (MIT)

m Jignesh Patel (Univ. Michigan)
m Babak Falsafi (CMU)

m Kenneth Ross (Columbia Univ.)

Architecture-Conscious
Databases Panel

DaMoN 2005

Ken Ross

Charles Darwin

Survival of the Fittest

Small genetic changes make the entity
fitter, and are selected by the
environment — Evolution

Small # Unimportant
Most changes not visible

Changes to the environment create
new optimization criteria for natural
selection.

Survival of the Fittest DB

Small implementation changes make the
DB faster, and are selected by the
marketplace — Evolution

Small # Unimportant

Most changes not visible to users or
developers (and shouldn'’t be!)

Changes to the technology environment
create new optimization criteria for DB
Implementation.

“Sub-Optimization” or
“The Next Big Thing”?

e Sub-optimization, of course!

e But many small changes can radically alter
the overall structure

The Old Days

FirstC>s Oracle Query Analyser (INREGISTERED)
Bie Edt Quy Yew Wndow Heb

Blele v xne 5

DB Implementor

E Y]
ﬂ UL FEI @ shonfieats @ Stowtwwctinpion [og =] ecoslme [0
5 useR rLusTeRs FE [ercrer = reon vstr_ave_taenes]
[T USER CLUSTER HASH EXPRESSIO o
[UsER_cLu_CoDmis 51
I useR _cou_rvees -
[F] USER_COL_COMMENTS 1
] usER_CoL_prvs o
[T] USER_COL_PAIVS_MADE =
USER COL PR AECD |5 | [
] USER_CONSTRANTS | | SELECT STATEMERT sptmemeciDOSE
O W ar e IS it cons coums W it L TBLES
[5] USER_DE_LINKS P UNION-ALL
[USER_CEFENDENCIES L 1 NESTED LOOPS
[F] USER_DMENSIONS a S1E0 LOOPS(OUTER)
[F] USER_DM_ATTRIEUTES NESTED LOOFSIUTERI
] USER_DM_CHILD_DF i NESTED LOOPS DUTEF)
[7] USER DM FERARCHIES £TED LOOFSI0LTEF)
55 usER oMLam sEv 3 WESTED LOOPS
[USER DM LEVELS o TAELE ACCESSIBT INDEX ADWID) o D8N
[UsER DM LEvEL, a INDEXRANGE SCAN)of 1. OBZ UNIDLE]
[usen_ERRDRS o THELE ACCESSICLUSTER o TAEY
] usen ExTenTs - INDEALUNIDUE SCAN] of ORI NON U0UED
I UsER FREE_SPACE i TABLE ACCESSIBY IDEX FOWID] of DEJF'
] usER NDEES I INDEXUNIOUE SCAN1 011 DRIT
[USER INDEXTYFES TABLE ALCESSIEY INDEX ROWID] o DRIF'
[USERINDEXTVPE_DFERATORS L INDEXUNIIUE SCAN) 41 0BT UNIGUEL
[USER IND_COLUNAS TABLE AL TER) o USERS
[F] USERIND_EXFRESSIONS INDEGUIGUE S X
[USERIND _FaRTITIONS TABLE ACCESE[CLUSTER) of
ER_IND_SUEPARTITIONS o e

[E] USERINTERNAL_TRAGEERS TABLE ACCESSICLUSTER)of T5¥
] wser_ies INDEAUNGUE SCAN) e 1_T S HOMUNIGUE)

[] USER_UBRARIES NESTED LOOPS

[Z] USER_LOBS S1E0L00PS

[USER_LOR_PARTITIONS WESTED npS

[F] USERLOB_SUBPARTITIONS T Fesus | Messages | {1 Staiies. E§ Enmcution Fan

| LIJ Gy bt comples Tns Ho ecatezneion W

CHAISBLT

Disk block size,

Physical layout, ...

As disks got better, there was little need for fundamental change.

DB Implementor

N NPU
OW Broadcast, ... ; |
NETWORK PROcESSORS _
, !53

Associative DB software
access, ... -

SIMD,
Parallelism, ...

Streaming,
geometry, ...

More functionality in
the disk system
Programmable Br_anchd_ _
mispredictions,
Storage Cache miss SMT effects, ...
Subsyste penalty, ...
RAM

Instruction
set, ...

Challenges

 Too much is visible to the DB implementor!
» Abstractions, modularity
e Interactions: many competing “small’ changes

 Management

" DAM jN
Summary

[carmean] CPU future = Cell done right

[carmean] Hardware companies are willing to listen, also on APIs

[kuszmaul] Not cache-conscious =»cache-oblivious (will also do disk!)

[patel] Focus on extensibility, RDBMS query processing a shrinking component
optimize/parallelize: fuzzy matching, graph algorithms, data mining, scientific
[patel] RDBMS architecture is fine; will handle massive multiprocessors well
[patel] limitations of coprocessors will prevent adoption

[falsafi] heterogeneous CPUs, sea of programmable memory (no hierarch. cache)
[falsafi] bottomline: need for tight hardware/software collaboration

[falsafi] solution: staged servers architecture (operator-level pipelining)

[ross] survival of the fittest database: small changes lead evolution

[ross] database implementor is confused (from disk alone to many arch. factors)
challenge=> abstraction

