
Panel discussion

Peter Boncz (CWI)

Architecture-Conscious Databases:
sub-optimization or the next big leap?

Sub-Optimization or Big Leap?

� The same stuff all over again..

s/Buffer Cache/L2/g
s/Page Fault/Cache Miss/g
s/Disk Block/Cache Line/g

� The final benefits are only a few
percentage points

Sub-Optimization or Big Leap?

� Optimizing { cache use, IPC, .. }
use can make a huge difference

� Future even more interesting:
e.g. after hitting the memory wall, we now
hit a CPU frequency wall.

“Computer architectures will fundamentally change””
� need strong help from software (e.g. multicore)

Questions

� what will computer architectures look like in 5 years?

� do computer architecture trends/changes force us to re-
think the classical DBMS architecture?

� to what extent are CPU manufacturers willing to listen to
DBMS people?

� what architecture-conscious HYPEWORD data-
management challenges/opportunities do you see in the
next 5 years?

HYPEWORD in { XML, stream, mobile/ubiquitous,
sensor, data mining, multimedia, biological }

The panelists

� Doug Carmean (Intel)
� Bradley Kuszmaul (MIT)
� Jignesh Patel (Univ. Michigan)
� Babak Falsafi (CMU)
� Kenneth Ross (Columbia Univ.)

� ?

The panelists

� Doug Carmean (Intel)

� Bradley Kuszmaul (MIT)
� Jignesh Patel (Univ. Michigan)
� Babak Falsafi (CMU)
� Kenneth Ross (Columbia Univ.)

� ?

The panelists

� Doug Carmean (Intel)
� Bradley Kuszmaul (MIT)

� Jignesh Patel (Univ. Michigan)
� Babak Falsafi (CMU)
� Kenneth Ross (Columbia Univ.)

� ?

Architecture-Conscious Databases:
Sub-optimization or the Next Big Leap?

Jignesh M. Patel
University of Michigan

© Jignesh M. Patel, 2005

Those who cannot remember the
past are condemned to repeat it.

- George Santayana

© Jignesh M. Patel, 2005

� 1970s, 80s: Birth of RDBMS ► Disk I/O are expensive: buffer management, prefer sequential IOs.► Customized hardware for DBMS?► Customized hardware is not cost-effective or portable, better to use smart
software-based solutions for query processing.

� 1980s, 90s: High performance and scalable DBMS► Parallelism: RDBMS are very amenable to parallelism.► Shared-nothing - essentially application level-parallelism.► Need to worry about startup, interference, and skew.► Expanding DBMS functionality: Object*, external functions, rules, …
� 1990s, 21st century: Ubiquitous DBMS► Expanding DBMS applications: streams, scientific, semi-structured,

personal data management, …► Architecture-conscious RDBMS: ► Memory Wall: Design cache-aware methods, prefetching, …► Exploit new processor features: SIMD, co-processors (GPU), …

History (from a DB perspective)

© Jignesh M. Patel, 2005

Future Computer Architecture and
impact on DBMS

� SMP on a chip

Shared-nothing parallel DBMS will be the
default installation.

� Memory hierarchy will continue

But processor clock speeds are not increasing
rapidly

© Jignesh M. Patel, 2005

CPU extensions for DBMSs
� No compelling reason to add DBMS-specific

extensions
� Recall the database machine’s era

DBMS has smart and efficient software-based techniques

� What is the payoff for the hardware vendor?
Servers: Application servers (Java + DB), file servers, ...
Clients: Entertainment, Virus/spyware scanners, personal
data management, ...

� DBMS part of a complex suite of software even on
server machines

Lots of time is spent in external function and (Java)
application code.

© Jignesh M. Patel, 2005

NO!

Rethink traditional DBMS Architecture?

� We already have shared-nothing parallelism.
� Memory hierarchy fundamentally remains the same:

smaller and faster memory is closer to the processor
For shared-nothing parallelism, synchronization may be
cheaper with shared on-chip memory

� Coprocessors for RDBMS operations
There will be less pressure to use coprocessors.
Not clear if this approach has a significant performance
advantage when compared to the best current methods on
regular processors.
End-to-end application performance? ► RDBMS query processing will be a shrinking component.

Speed is only a small factor. Portability is important.

© Jignesh M. Patel, 2005

New Challenges

� Efficient fuzzy matching algorithms on text,
personal digital records, multimedia, graphs.

� Data mining will be more common as data volume
continues to explode and complexity of analysis
increases. Relatively little work on parallel
algorithms here.

� Scientific workloads: Lots of very computationally
expensive data analysis. Needs massively parallel
methods. Data volume is exploding.

� But need clean programming interfaces.

The role of DBMS is expanding!

The panelists

� Doug Carmean (Intel)
� Bradley Kuszmaul (MIT)
� Jignesh Patel (Univ. Michigan)

� Babak Falsafi (CMU)
� Kenneth Ross (Columbia Univ.)

� ?

DaMoNDaMoN 2005 panel on2005 panel on

ArchitectureArchitecture--Conscious Conscious
Databases: Databases:

subsub--optimization or theoptimization or the next big next big
leapleap??

Babak FalsafiBabak Falsafi
Computer Architecture Lab
Carnegie Mellon
http://www.ece.cmu.edu/CALCM

Technology Scaling Trends

Good news:
– 100B trans/chip by 2015
– Tens of cores

Bad news:
– Heterogeneous, smoking and

unreliable cores
– Faster but constrained clocks
– Off-chip latency/bw bottlenecks

continue

data

2015 Multi-core Chip

Scaling Implications for DB Servers
Lots of cores & on-chip memory:

– Parallelism galore: intra-transaction
– Sea of memory, not hierarchies

Heterogeneous resources:
– ILP, TLP, and DLP (vector)?
– Both HW-/SW-managed caches

Unreliable HW:
– Fine-grain transaction semantics

Need tight HW/SW collaboration!

One Solution:
Staged Server Architecture

Componentize server into operators
Operator-level pipelining

– Map operators to cores
– HW/SW data streaming

IN OUT

connect parser optimizer send
results

FSCAN

JOIN

UPDATE

SORTISCAN

[Courtesy Harizopoulos]

The panelists

� Doug Carmean (Intel)
� Bradley Kuszmaul (MIT)
� Jignesh Patel (Univ. Michigan)
� Babak Falsafi (CMU)

� Kenneth Ross (Columbia Univ.)

� ?

Architecture-Conscious
Databases Panel

DaMoN 2005

Ken Ross

Charles Darwin

Survival of the Fittest

• Small genetic changes make the entity
fitter, and are selected by the
environment Evolution

• Small Unimportant
• Most changes not visible
• Changes to the environment create

new optimization criteria for natural
selection.

Survival of the Fittest DB

• Small implementation changes make the
DB faster, and are selected by the
marketplace Evolution

• Small Unimportant
• Most changes not visible to users or

developers (and shouldn’t be!)
• Changes to the technology environment

create new optimization criteria for DB
implementation.

“Sub-Optimization” or
“The Next Big Thing”?

• Sub-optimization, of course!
• But many small changes can radically alter

the overall structure

The Old Days
DB Implementor

Disk

DB software

Disk block size,

Physical layout, …

Sequential access,
…

As disks got better, there was little need for fundamental change.

Now
DB Implementor

Programmable
Storage
Subsystem

DB software

More functionality in
the disk system

RAM

Cache miss
penalty, …

CPU

Branch
mispredictions,
SMT effects, …

Compiler

SIMD,
Parallelism, …

Instruction
set, …

GPU

Streaming,
geometry, …

NPU
Broadcast, …

CAM

Associative
access, …

!

Challenges
• Too much is visible to the DB implementor!

• Abstractions, modularity

• Interactions: many competing “small” changes

• Management

Summary
� [carmean] CPU future = Cell done right

� [carmean] Hardware companies are willing to listen, also on APIs
� [kuszmaul] Not cache-conscious �cache-oblivious (will also do disk!)
� [patel] Focus on extensibility, RDBMS query processing a shrinking component

optimize/parallelize: fuzzy matching, graph algorithms, data mining, scientific
� [patel] RDBMS architecture is fine; will handle massive multiprocessors well
� [patel] limitations of coprocessors will prevent adoption

� [falsafi] heterogeneous CPUs, sea of programmable memory (no hierarch. cache)
� [falsafi] bottomline: need for tight hardware/software collaboration
� [falsafi] solution: staged servers architecture (operator-level pipelining)

� [ross] survival of the fittest database: small changes lead evolution
� [ross] database implementor is confused (from disk alone to many arch. factors)

challenge=> abstraction

