

ISSN 1213-6972 Volume 14, Number 1-3, 2006

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, human interaction and virtual reality, animation,
multimedia systems and applications in parallel, distributed and mobile
environment.

EDITOR – IN - CHIEF

Václav Skala
University of West Bohemia

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala UNION Agency
 Na Mazinach 9
 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972 ISBN 80-86943-09-7
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

WSCG 2006

International Programme Committee

Bartz,D. (Germany)

Bekaert,P. (Belgium)

Benes,B. (United States)

Bengtsson,E. (Sweden)

Bouatouch,K. (France)

Brunnet,G. (Germany)

Chen,M. (United Kingdom)

Chrysanthou,Y. (Cyprus)

Cohen-Or,D. (Israel)

Coquillart,S. (France)

Debelov,V. (Russia)

Deussen,O. (Germany)

du Buf,H. (Portugal)

Ertl,T. (Germany)

Ferguson,S. (United Kingdom)

Groeller,E. (Austria)

Hauser,H. (Austria)

Hege,H. (Germany)

Jansen,F. (Netherlands)

Jorge,J. (Portugal)

Kalra,P. (India)

Klein,R. (Germany)

Klosowski,J. (United States)

Kobbelt,L. (Germany)

Kruijff,E. (Germany)

Lars,K. (Sweden)

Magnor,M. (Germany)

Moccozet,L. (Switzerland)

Mudur,S. (Canada)

Mueller,K. (United States)

Muller,H. (Germany)

Myszkowski,K. (Germany)

OSullivan,C. (Ireland)

Pasko,A. (Japan)

Peroche,B. (France)

Post,F. (Netherlands)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Rauterberg,M. (Netherlands)

Rheingans,P. (United States)

Rokita,P. (Poland)

Rossignac,J. (United States)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Sbert,M. (Spain)

Schaller,N. (United States)

Schilling,A. (Germany)

Schneider,B. (United States)

Schumann,H. (Germany)

Shamir,A. (Israel)

Slusallek,P. (Germany)

Sochor,J. (Czech Republic)

Sumanta,P. (United States)

Szirmay-Kalos,L. (Hungary)

Taubin,G. (United States)

Teschner,M. (Germany)

Velho,L. (Brazil)

Veltkamp,R. (Netherlands)

Weiskopf,D. (Canada)

Westermann,R. (Germany)

Wu,S. (Brazil)

Wuethrich,C. (Germany)

Yamaguchi,F. (Japan)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

WSCG 2006 Board of Reviewers

Adamo-Villani,N. (United States)

Adzhiev,V. (United Kingdom)

Ammon,L. (Switzerland)

Andreadis,I. (Greece)

Aran,M. (Turkey)

Araujo,B. (Portugal)

Aspragathos,N. (Greece)

Bartz,D. (Germany)

Batagelo,H. (Brazil)

Battiato,S. (Italy)

Bekaert,P. (Belgium)

Benes,B. (United States)

Bengtsson,E. (Sweden)

Beyer,J. (Austria)

Biber,P. (Germany)

Bieri,H. (Switzerland)

Bilbao,J. (Spain)

Biri,V. (France)

Bischoff,S. (Germany)

Borchani,M. (France)

Bottino,A. (Italy)

Bouatouch,K. (France)

Brodlie,K. (United Kingdom)

Brunnet,G. (Germany)

Buehler,K. (Austria)

Cohen-Or,D. (Israel)

Coleman,S. (United Kingdom)

Coquillart,S. (France)

Daniel,M. (France)

Danovaro,E. (Italy)

de Aguiar,E. (Germany)

De Decker,B. (Belgium)

Debelov,V. (Russia)

Del Rio,A. (Germany)

Deussen,O. (Germany)

Di Fiore,F. (Belgium)

Diaz,M. (Mexico)

du Buf,H. (Portugal)

Duce,D. (United Kingdom)

Erbacher,R. (United States)

Ertl,T. (Germany)

Feito,F. (Spain)

Felkel,P. (Czech Republic)

Ferguson,S. (United Kingdom)

Fernandes,A. (Portugal)

Flaquer,J. (Spain)

Fleck,S. (Germany)

Francken,Y. (Belgium)

Gagalowicz,A. (France)

Galo,M. (Brazil)

Geraud,T. (France)

Giachetti,A. (Italy)

Giegel,J. (United States)

Groeller,E. (Austria)

Gudukbay,U. (Turkey)

Guerreiro,T. (Portugal)

Habbecke,M. (Germany)

Haber,T. (Belgium)

Hanak,I. (Czech Republic)

Hast,A. (Sweden)

Hauser,H. (Austria)

Havran,V. (Germany)

Hege,H. (Germany)

Hernandez,B. (Mexico)

Herzog,R. (Germany)

Hirschbach,H. (Germany)

Hornung,A. (Germany)

Chen,M. (United Kingdom)

Chrysanthou,Y. (Cyprus)

Isgro,F. (Italy)

Jaillet,F. (France)

Janda,M. (Czech Republic)

Jansen,F. (Netherlands)

Jeschke,S. (Austria)

Jorge,J. (Portugal)

Jota,R. (Portugal)

Kalra,P. (India)

Kavan,L. (Czech Republic)

Keller,K. (United States)

Kipfer,P. (Germany)

Klein,K. (Germany)

Klosowski,J. (United States)

Kobbelt,L. (Germany)

Kolcun,A. (Czech Republic)

Krüger,J. (Germany)

Kruijff,E. (Germany)

Lanquetin,S. (France)

Lars,K. (Sweden)

Leon,A. (Spain)

Leopoldseder,S. (Austria)

Levy,B. (France)

Lintu,A. (Germany)

Linz,C. (Germany)

Lipus,B. (Slovenia)

Magalhaes,L. (Brazil)

Magillo,P. (Italy)

Magnor,M. (Germany)

Mantler,S. (Austria)

McMenemy,K. (United Kingdom)

Millan,E. (Mexico)

Moccozet,L. (Switzerland)

Moltedo,L. (Italy)

Montrucchio,B. (Italy)

Mudur,S. (Canada)

Mueller,K. (United States)

Muller,H. (Germany)

Multon,F. (France)

Myszkowski,K. (Germany)

Nielsen,F. (Japan)

Novotny,M. (Austria)

O'Sullivan,C. (Ireland)

Pasko,A. (Japan)

Patel,D. (Austria)

Patera,J. (Czech Republic)

Pedrini,H. (Brazil)

Perales,F. (Spain)

Peroche,B. (France)

Platis,N. (Greece)

Plemenos,D. (France)

Porcu,M. (Italy)

Post,F. (Netherlands)

Pratikakis,I. (Greece)

Prikryl,J. (Czech Republic)

Puig,A. (Spain)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Rauterberg,M. (Netherlands)

Reaz,M. (Malaysia)

Reina,G. (Germany)

Renaud,C. (France)

Revelles,J. (Spain)

Ribelles,J. (Spain)

Rodeiro,J. (Spain)

Rojas-Sola,J. (Spain)

Rokita,P. (Poland)

Rose,D. (Germany)

Rossignac,J. (United States)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Sanna,A. (Italy)

Sbert,M. (Spain)

Scateni,R. (Italy)

Segura,R. (Spain)

Shah,M. (United States)

Shamir,A. (Israel)

Schafhitzel,T. (Germany)

Schaller,N. (United States)

Scherzer,D. (Austria)

Schilling,A. (Germany)

Schneider,B. (United States)

Schneider,J. (Germany)

Scholz,V. (Germany)

Schumann,H. (Germany)

Sips,M. (Germany)

Sitte,R. (Australia)

Slusallek,P. (Germany)

Snoeyink,J. (United States)

Snoeyink,J. (United States)

Sochor,J. (Czech Republic)

Sojka,E. (Czech Republic)

Solis,A. (Mexico)

Sondershaus,R. (Germany)

Sporka,A. (Czech Republic)

Stephane,R. (France)

Stich,T. (Germany)

Strengert,M. (Germany)

Stroud,I. (Switzerland)

Stylianou,G. (Cyprus)

Sumanta,P. (United States)

Szekely,G. (Switzerland)

Szirmay-Kalos,L. (Hungary)

Tang,W. (United Kingdom)

Taubin,G. (United States)

Teschner,M. (Germany)

Theußl,T. (Austria)

Torres,J. (Spain)

Ulbricht,C. (Austria)

Van Laerhoven,T. (Belgium)

Vanecek,P. (Czech Republic)

Velho,L. (Brazil)

Veltkamp,R. (Netherlands)

Vergeest,J. (Netherlands)

Viola,I. (Austria)

VOLLRATH,J. (Germany)

Vuorimaa,P. (Finland)

Wan,T. (United Kingdom)

Weidlich,A. (Austria)

Weiskopf,D. (Canada)

Westermann,R. (Germany)

Wood,J. (United Kingdom)

Wu,S. (Brazil)

Wuethrich,C. (Germany)

Yilmaz,T. (Turkey)

Zach,C. (Austria)

Zachmann,G. (Germany)

Zalik,B. (Slovenia)

Zambal,S. (Austria)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Journal of WSCG

Vol.14, No.1-3

ISSN 1213-6972

Contents

(Additional files available on CD ROM version, only)

Paper
Code

Paper Title Page

A17
Guthe,M., Balázs,Á., Klein,R.: GPU-based Appearance Preserving Trimmed NURBS
Rendering (Germany) Additional file: A17-1.avi (3,6MB)

1

C23
Ruijters,D., Vilanova,A.: Optimizing GPU Volume Rendering (Netherlands) Additional
file: C23-1.zip (14,5MB)

9

F73
Raabe,A., Hochgürtel,S., Zachmann,G., Anlauf,J.K.: Hardware-Accelerated Collision
Detection using Bounded-Error Fixed-Point Arithmetic (Germany)

17

F13 Banisch,S., Wüthrich,C.A.: Making Grass and Fur Move (Germany) 25

A41
Stylianou,S., Chrysanthou,Y.: Crowd Self Organization, Streaming and Short Path
Smoothing (Cyprus)

33

B47
Wögerbauer,M., Fuhrmann,A.L.: Wheelie - Using a Scroll-Wheel Pen in Complex
Virtual Environment Applications (Austria)

41

C11
Schneider,J., Westermann,R.: GPU-Friendly High-Quality Terrain Rendering (Germany)
Additional files: C11-1.zip (7,6MB), C11-2.zip (9,4MB)

49

G02
Yaguchi,S., Saito,H.: Improving Quality of Free-Viewpoint Image by Mesh Based 3D
Shape Deformation (Japan)

57

C05
Biri,V., Arques,D., Michelin,S.: Real Time Rendering of Atmospheric Lighting and
Volumetric Shadows (France) Additional file: C05-1.zip (5,2MB)

65

C07
Ropinski,T., Steinicke,F., Hinrichs,K.: Visual Exploration of Seismic Volume Datasets
(Germany)

73

C43
Walton,S.J., Jones,M.W.: Volume Wires : A Framework for Empirical Nonlinear
Deformation of Volumetric Datasets (United Kingdom)

81

E43 Bendels,G.H., Schnabel,R., Klein,R.: Detecting Holes in Point Set Surfaces (Germany) 89

G61
Méndez-Feliu,A., Sbert,M., Szirmay-Kalos,L.: Reusing Frames in Camera Animation
(Spain) Additional file: G61-1.zip (2,5MB)

97

F43
Novotny,M., Hauser,H.: Similarity Brushing for Exploring Multidimensional Relations
(Slovakia)

105

C37
Hildebrand,K., Magnor,M., Froehlich,B.: 3D Reconstruction and Visualization of Spiral
Galaxies (Germany) Additional file: C37-1.avi (2,3MB)

113

C19
Nozick,V., Michelin,S., Arques,D.: Real-time Plane-sweep with Local Strategy (France)
Additional files: C19-1.avi (232KB), C19-2.avi (358KB)

121

D71
Sondershaus,R., Strasser,W.: View-dependent Tetrahedral Meshing and Rendering
using Arbitrary Segments (Germany)

129

GPU-based Appearance Preserving Trimmed NURBS
Rendering

Michael Guthe

guthe@cs.uni-bonn.de

Ákos Balázs
Universität Bonn

Institute of Computer Science II
Computer Graphics
Römerstraße 164

53117 Bonn, Germany

edhellon@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT

Trimmed NURBS are the standard surface representation used in CAD/CAM systems and accurate visualization
of trimmed NURBS models at interactive frame rates is of great interest for industry. To support modification
and/or animation of such surfaces, a GPU-based trimming and tessellation algorithm has been developed recently.
First, the NURBS is approximated with a bi-cubic hierarchy of Bézier patches on the CPU and then these are
tessellated on the GPU. Since this approach only took the geometric error of an approximation into account, the
various illumination artifacts introduced by the chosen bi-cubic approximation and the subsequent tessellation were
neglected. Although this problem could be solved partially by calculating exact per-pixel normals on the GPU, the
shading error introduced due to the bi-cubic approximation would remain. Furthermore, the long fragment shader
required for per-pixel normals would lead to unacceptably low performance.
In this paper we present a novel bi-cubic approximation algorithm that takes the normal approximation error into
account. In addition, we also define a new error measure to calculate the required grid resolution for the bi-linear
approximation. In combination, this allows GPU-based NURBS tessellation with guaranteed visual fidelity. Our
new method is also capable of high quality visualization of further attributes like curvature, temperature, etc. on
surfaces with little or no modification.

Keywords GPU-based algorithms, NURBS tessellation, appearance preservation

1 INTRODUCTION
CAD/CAM systems used in industry for the design
of models for prototyping and production are usu-
ally based on trimmed NURBS surfaces, since they
have the ability to describe almost every shape con-
veniently. Additionally, the NURBS representation is
also used more and more frequently to generate ani-
mations in movies or even for computer games.
Especially in CAD, but also in the growing field of vir-
tual prototyping the accurate, real-time visualization

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.14, ISSN 1213-6972
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

Figure 1: Difference between geometric (left) and
appearance preserving (right) GPU-based tessella-
tion.

of these NURBS models together with additional in-
formation – like reflection lines visualizing the qual-
ity of the model – becomes more and more important.
However, recently developed techniques for real-time
trimming and tessellation on commodity GPUs like
[GBK05] do not take the appearance of the surface
into account and only control the geometric error (see
Figure 1). Such negligence of the normals required for
correct shading can lead to severe visual artifacts.

Journal of WSCG 1 ISBN 1213-6972 ISBN 80-86943-09-7

In this paper we present a novel GPU-based rendering
algorithm that also takes shading artifacts into account,
but requires only a slight overhead compared to the
original GPU-based tessellation algorithm [GBK05].
Even though the introduced error measures were orig-
inally developed for the approximation of surface nor-
mals, they are also well suited for high quality visual-
ization of various other surface properties or attributes,
such as curvature, temperature distribution, or basi-
cally any surface information that can be represented
using scalar values or vectors.

2 PREVIOUS WORK
As our new method exploits ideas of appearance pre-
serving tessellation and GPU-based tessellation, we
give a short overview of both fields. Since higher or-
der surfaces cannot be evaluated on GPUs efficiently,
GPU-based methods are restricted to bicubic surfaces
and, as a result, have to use degree reduction methods.
Therefore, we also review prior work in this field. Fi-
nally, we give a brief survey of the state of the art in
the field of surface property visualization.

2.1 Appearance Preserving Tessellation

An approach for view-dependent refinement of mul-
tiresolution meshes was developed by Klein et al.
[KSS98] which could theoretically also be used for
the tessellation of trimmed NURBS models. However,
since their error measure is highly dependent on the
position of the highlight and derivatives are calculated
in screen space, the exact position and orientation of
the surface on the screen to be known. This makes a
complete retessellation of the model necessary in each
frame. Since only a small portion of the surfaces can
be retessellated on the CPU per frame, this approach
was modified by Guthe et al. [GBK04] to become
view-independent. However, this method still suffers
from the high latency and inflexibility of CPU-based
tessellation.

2.2 GPU-based Tessellation

Abi-Ezzi et al. [AES94] and B́oo et al. [BAD+01]
proposed an additional adaptive tessellation unit at
the front of the rendering pipeline for NURBS and
subdivision surfaces respectively. However, neither of
these were built into commodity graphics hardware.
Bolz and Schr̈oder [BS03] developed an algorithm to
evaluate Catmull-Clark subdivision surfaces on pro-
grammable graphics hardware. After the transmission
of the tessellation textures to the GPU, only control
points instead of triangles need to be send and thus
the fragment shader can be saturated with marginal

bus bandwidth consumption. With different tessella-
tion textures this approach can also be used for bi-
cubic B-Spline surfaces since they are equivalent to
this subdivision scheme on a regular quad mesh. The
algorithm generates an adaptive tessellation on a per-
patch basis, which is rendered into an offscreen buffer
– a so called pixel buffer or p-buffer – and then used
as input for a second rendering pass. This method can
achieve up to 30 million vertices per second on recent
GPUs, but trimming of the surfaces is not possible.
Based on this work, Kanai and Yasui [KY04] devel-
oped an algorithm to calculate accurate per-pixel nor-
mals on a tessellated subdivision surface. Although the
produced images are very convincing, it is too slow for
real time rendering at reasonable resolutions.
Recently a GPU-based trimming and tessellation al-
gorithm for NURBS [GBK05] was developed. This
method however, only takes the geometric error and
not the shading error introduced due to incorrectly in-
terpolated normals into account, which can lead to vi-
sual artifacts.

2.3 Degree Reduction

The idea of approximating high degree Bézier curves
using degree reduction already came up more than 30
years ago [For72]. As shown by Park and Choi [PC95],
the error can be reduced drastically by subdividing the
curve before degree reduction. With a standard degree
reduction algorithms, the degree of continuity between
the composite curves cannot be controlled directly. Ei-
ther, the continuity is preserved up to the maximum
possible for the current curve degree (e.g. [For72]),
or completely lost (e.g. [Eck93]). Therefore, Zheng
and Wang [ZW03] developed a method to explicitly
control the continuity classes of the curve at its end-
points. In [GBK05] a degree reduction method to pre-
serve geometric continuity only has been presented.
In contrast to all existing algorithms, which only con-
sider the geometric error introduced by the degree re-
duction, the error measure proposed in this paper also
takes the introduced shading error into account.

2.4 Surface Property Visualization

The rendering of surface properties is an important
topic for surface interrogation and scientific visual-
ization. Hagen et al. [HHS+92] give an overview of
different surface interrogation methods, like ortho-
nomics, reflection lines and focal surfaces. In the con-
text of our work we only concentrate on reflection
lines, since they can be visualized on the surface. In
addition to these properties, the visualization of the
curvature and curvature regions [EC93a, EC93b] also
delivers valuable information for surface design. For
visualization so called property surfaces are generated

Journal of WSCG 2 ISBN 1213-6972 ISBN 80-86943-09-7

in this approach. Since the calculation of these prop-
erty surfaces is often computationally expensive, this
method is not suited for complex or dynamic models.

3 GPU-BASED TESSELLATION
The overall workflow of the GPU-based trimming and
tessellation algorithm [GBK05] is shown in Figure 2.
First, the trimming curves are sampled with sufficient
accuracy and evaluated on the GPU (2). Then the re-
sulting polygons are rendered into a texture of appro-
priate size using a p-buffer (3). In the second render-
ing pass, the patch is sampled using a regular grid
of sufficient resolution, such that a given geometric
screen space error is guaranteed. For this purpose, pre-
defined grids of different resolutions are stored on the
graphics card in advance. At runtime, the grid index
is calculated on the CPU and then sent to the GPU.
Then the patch is evaluated at all grid vertices on the
GPU (6). For the trimming, the trim-texture is simply
bound and all pixels outside the trimming region are
removed in the fragment stage by a lookup into this
trim-texture (7).

→

1cubic
approximation

trim-texture
generation

bi-cubic
approximation

culling &
LOD selection evaluation trimming

sampling
grid

CPU GPUgraphics bus 1st pass

2nd pass

evaluation

vertex shader fragment shader

4

2 3

5 6 7

bi-cubic
hierarchy

NURBS,
T-Spline

trimming
curves

1

2
3

1 2

3

0t =

1t =

3t =

4t =

1t∆ = 2t∆ =

1t∆ =

1
3

s =

3
4

s =

Figure 2: Main workflow of the GPU-based trim-
ming and tessellation algorithm [GBK05].

As data dependent loops are only supported by very re-
cent GPUs, a conversion from NURBS or T-Spline to
piecewise rational B́ezier representation is necessary,
since the current knot spans, needed to calculate the
sample points, differ. For cards not having texture ac-
cess in the vertex shader, the amount of input data for
a vertex program is limited to 16 vertex attributes and
8 program matrices and thus only low degree Bézier
patches can be evaluated. To work with any graphics
card supporting at least vertex shader1.0, only 12 tem-
porary registers can be used, which limits the maxi-
mum degree to bi-cubic. Therefore, the overall algo-
rithm first approximates each NURBS or T-Spline sur-
face and its trimming curves with a coarse hierarchy
of rational bi-cubic B́ezier patches, or cubic rational
Bézier curves respectively, on the CPU (1+4). Dur-
ing rendering this hierarchy is traversed and patches
with sufficient accuracy are selected to guarantee a
given geometric screen space error (5). If the traver-

sal reaches a leaf node, additional bi-cubic patches are
generated. Then the control points of each patch are
sent to the GPU before selecting a grid of appropriate
resolution for evaluation.
An appearance – i.e. normal – preserving tessellation,
based on this method, needs to preserve the normal in
both approximation steps of the surface, namely the bi-
cubic approximation on the CPU and the tessellation
of the bi-cubic patch on the GPU. The remaining part
of the algorithm however does not need to be changed.
Therefore, the following two Sections describe only
the modifications of the GPU-based NURBS render-
ing method necessary to preserve the appearance of
the surfaces.

4 NORMAL PRESERVATION
When a B́ezier surfaceS is approximated with a sur-
face S̃, the visual approximation error on each point
of the approximating surfacẽS(p), with the parame-
ter valuep = (u, v), is the distance to the closest
point on the original surface with the same color after
shading, i.e. with the same normaln = (nx ny nz)T

when fragment based shading (e.g. Blinn-Phong or en-
vironment mapping) is used. This leads to the problem
of finding a pointS(q) in the vicinity of S̃(p), with
n(q) = ñ(p). Since we assume thatS is smooth we
can use a Taylor expansion ofn around the parameter
valuep:

n(p+∆p) = n(p)+


∂nx(p)

∂u
∂nx(p)

∂v
∂ny(p)

∂u
∂ny(p)

∂v
∂nz(p)

∂u
∂nz(p)

∂v

 ∆p+O(‖∆p‖2)

Assuming‖∆p‖ to be small, a singular value decom-
position could be used to find the smallest∆p and
then‖S(p + ∆p) − S̃(p)‖ is an upper bound for the
visual error in object space. However, as shown in
[GBK04], it is much more efficient to interpret the
visual approximation errorε as the orthogonal com-
bination of the geometric distanceεgeom of the point
S̃(p) on the approximating surface to the pointS(p)
on the original surface and the distanceεnorm of S(p)
to the closest pointS(p + ∆p) with the same normal
n(p + ∆p) = ñ(p). As shown in Figure 3, these two
distances can be combined by:

ε(p)2 = εgeom(p)2 + εnorm(p)2.

In this case we are able to exploit the fact that the esti-
mation of the geometric approximation error remains
the same as for the non-appearance preserving tessel-
lation. Thus the shading error can be estimated with-
out actually calculating the position of the closest cor-
rectly shaded point in Euclidean space, using the ap-
proximate error measures deduced in the following.

Journal of WSCG 3 ISBN 1213-6972 ISBN 80-86943-09-7

approximated point

geometric error

 normal error combined error

Figure 3: Combination of error measures.

4.1 Bi-cubic Approximation

When evaluating a B́ezier surface, the normal is cal-
culated as the cross-product of the first derivatives in
u- andv-direction. This implies, that the normal on an
approximating surfacẽS at parameterp equals that of
the original surfaceS at parameterq, if

∂S̃(p)
∂u

=
∂S(q)

∂u
and

∂S̃(p)
∂v

=
∂S(q)

∂v
.

Since the bi-cubic approximation of the arbitrary de-
gree B́ezier surfaceS with a bi-cubic B́ezier surfacẽS
is performed first in theu- and then in thev-direction,
preserving the normal can be achieved by preserving
the first derivative of each iso-parametric curve. The
derivative approximation errorεd when approximating
a curveC with C̃ is then

εd(t) = ‖C ′(t)− C̃ ′(t)‖.

Since this error is defined in the space of the first deriv-
ative, it needs to be projected into object-space. This
projection needs to map a distanceδd in derivative
space to a distanceδo in object-space. Again we ap-
proximate the distances on the curves using a Taylor
expansion aroundt:

δo(t + ∆t) = ∆tC ′(t) + O(‖∆t‖2)
δd(t + ∆t) = ∆tC ′′(t) + O(‖∆t‖2)

For a small ∆t, we can approximate the
projection with δo(t + ∆t) ≈ ∆tC ′(t) and
δd(t + ∆t) ≈ ∆tC ′′(t) such that the object-space
derivative errorεder(t) between the two curves at
parametert is then

εder(t) ≈
(
‖C ′(t)− C̃ ′(t)‖ ‖C

′(t)‖
‖C ′′(t)‖

)
.

The object-space derivative deviation errorεder be-
tween the original and approximating curve is now de-
fined as the maximum ofεder(t) along the curve:

εder ≈ sup
0≤t≤1

(
‖C ′(t)− C̃ ′(t)‖ ‖C

′(t)‖
‖C ′′(t)‖

)
.

Arguing similarly to [GBK04], we can assume that the
maximum derivative deviation error on a curve will

probably occur at the point, where‖C ′′(t)‖ has its
maximum and therefore the following approximation
can be used without loss of visual fidelity:

εder ≈ sup
0≤t≤1

‖C ′(t)− C̃ ′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

4.2 Sampling

To generate less rendering primitives (e.g. for sur-
faces of revolution), the sampling resolution in
u- and v-direction is separated as in [GBK05].
According to Filip et al. [FMM86], the errorε
when approximating aC2-continuous surface with
a regular triangle mesh, where each pair of trian-
gles spans the bilinear parameter space rectangle
D = [(ui, vj), (ui+1, vj+1)] with the constant sizes
∆u = ui+1 − ui and∆v = vj+1 − vj is bounded by

ε ≤ 1
8
(∆u2Mu + 2∆u∆vMuv + ∆v2Mv),

with

Mu = supp∈D

∥∥∥∂2S
∂u2

∥∥∥ , Muv = supp∈D

∥∥∥ ∂2S
∂u∂v

∥∥∥ ,

andMv = supp∈D

∥∥∥∂2S
∂v2

∥∥∥ .

The sampling densities are then separated by exploit-
ing the fact thatab ≤ 1

2 (a2 + b2) and thus the approx-
imation error is bound by

ε ≤ 1
8

(
∆u2(Mu + Muv) + ∆v2(Mv + Muv)

)
,

which is a simple addition of the two approximation
errors inu- andv-directions. This means, thatε is an
upper bound for the approximation error, if the error
in both directions is not greater thanε2 . This can fur-
ther be simplified to calculating the piecewise linear
approximation error ofn + m curves.
Following the estimations proposed in Section 4.1, we
again assume that the maximum derivative error oc-
curs at the point where‖C ′′(t)‖ has its maximum,
which leads to the following approximate derivative
deviation error:

εder(t) ≈ ‖C ′(t)− C̃ ′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

Sinceεder(t) is C2 continuous, ifC is C3 continuous,
which is the case for cubic B́ezier curves, the theorem
of Filip et al. [FMM86] gives an approximate upper
boundεder of a piecewise linear approximation with a
constant step sized of

εder ≈
1
8
d2 sup

0≤t≤1
‖C ′′′(t)‖

sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

Journal of WSCG 4 ISBN 1213-6972 ISBN 80-86943-09-7

The number of required samplesn to achieve a maxi-
mum given deviation ofε is then:

n =


√√√√√

E2
geom + E2

der

8ε

 ,

with

Egeom = sup
0≤t≤1

‖C ′′(t)‖

Eder = sup
0≤t≤1

‖C ′′′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

C ′′′(t) can be written as a rational Bézier curve with
a degree nine nominatořP (t) =

∑9
i=0 P̌iB

9
i (t) and

a degree twelve denominatorw̌(t) =
∑12

i=0 w̌iB
12
i (t).

Since allwi are positive by construction, alľwi are also
positive. Therefore, an upper bound of the norm of the
third derivative is given by:

sup
0≤t≤1

‖C ′′′(t)‖ ≤ max(‖P̌0‖, . . . , ‖P̌9‖)
min(w̌0, . . . , w̌12)

.

The upper bounds for‖C ′′(t)‖ and‖C ′(t)‖ are cal-
culated as in [GBK05], i.e.‖C ′′(t)‖ from a degree
seven/nine and‖C ′(t)‖ from a degree five/six ratio-
nal polynomial curve. Since the calculation of these
upper bounds is only required when extending the bi-
cubic hierarchy, the additional computation time can
be expected to be marginal for static models.

5 OTHER ATTRIBUTES
The appearance preserving error measure derived in
Section 4 is not limited to normals – which are pre-
served when preserving the first derivatives – but can
easily be extended to higher derivatives or arbitrary at-
tributes. IfA(u, v) is a general attribute defined as a
tensor product, we can again reduce the problem into
a piecewise curve representation and project the ap-
proximation error from attribute- to object-space with

εA(t) = ‖CA(t)− C̃A(t)‖ ‖C
′(t)‖

‖C ′
A(t)‖

.

Starting from this definition, the approximation error
required for the bi-cubic approximation and the regu-
lar tessellation can be derived using the same assump-
tions and estimations as in Section 4. For the bi-cubic
approximation, we then have

εA ≈ sup
0≤t≤1

‖CA(t)− C̃A(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′

A(t)‖
,

and for the sampling resolution

εA ≈
1

8d2
sup

0≤t≤1
‖C ′′

A(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′

A(t)‖
.

Finally, the approximation errors of all attributes are
combined with the geometric approximation error as
an orthogonal combination of partial errors.

6 RESULTS
To evaluate the efficiency of our method, we first com-
pare its performance with the previous GPU-based tes-
sellation method, that only guarantees a geometric er-
ror. Then we examine the image quality improvements
provided by our new method and finally we test its ap-
plicability in the field of surface property visualization,
especially in comparison with the previous method.

6.1 Performance

All benchmarks were performed on an
Athlon 64 3200+ with1.5 GByte memory and a
GeForce 7800 GTX at a resolution of1280 × 1024
(unless noted otherwise) with0.5 pixel screen space
error.
First, we compare the tessellation performance of our
method with the performance of the previous GPU-
based algorithm using a single bi-cubic trimmed and
untrimmed patch (see Figure 4). To analyze the tes-
sellation performance we render this patches at differ-
ent screen-sizes, where a larger screen-size implies a
lower object-space error and a higher sampling rate.

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 1 M 2 M 3 M
pixel

ms

trimmed
untrimmed
trimmed
untrimmed

Figure 4: Tessellation performance in dependance
of screen size for geometric (dashed) and appear-
ance preserving GPU-based tessellation.

As shown by these graphs, the number of additional
vertices and thus the additional rendering time for
the untrimmed surface is approximately 50%. How-
ever, when the surface is very small on screen (a few
pixel), the additional number of vertices and the per-
formance loss is approaching zero. It can also be ob-
served, that the trimming overhead remains constant,
since the trimming itself does not alter the appearance
of the surface and remained unchanged.
As second example, we compare the performance of
the bi-cubic approximation for surfaces of different de-
grees with that of the original GPU-based tessellation.

Journal of WSCG 5 ISBN 1213-6972 ISBN 80-86943-09-7

In Figure 5 the performance of both methods is shown
for a single animated trimmed NURBS surface with
100 control points and degrees of 3×3, 5×5, and 7×7
respectively.

0
1
2
3
4
5
6
7
8

0 1 M 2 M 3 M
pixel

ms

 3 x 3
 5 x 5
 7 x 7
 3 x 3
 5 x 5
 7 x 7

Figure 5: Total rendering performance of a sin-
gle animated trimmed NURBS surface with 100
control points and of different degrees using geo-
metric (dashed) and appearance preserving GPU-
based tessellation.

For large surfaces of higher degree, where a bi-cubic
approximation is required, the total rendering time in-
creases by up to 93%. This performance drop is mainly
due to the computationally more expensive error mea-
sure for the bi-cubic approximation, as the percentage
of additional bi-cubic patches and rendered vertices
is significantly lower than this. Since the bi-cubic ap-
proximation error measure needs to be calculated only
when a surface is modified, the impact on static mod-
els will be significantly lower.
To evaluate the performance on more complex static
models, resembling a real application setting, we
render the industrial CAD models shown in the
Figures 6-8.

Figure 6: Mini model: 629 trimmed surfaces.

Detailed statistics on the number of NURBS and un-
derlying B́ezier surfaces, as well as the number of non-
trivially trimmed NURBS surfaces, of these models
are given in Table 1.
Table 2 compares the average number of rendered bi-
cubic B́ezier patches, the average number of generated

Figure 7: Golf model: 8,138 trimmed surfaces.

Figure 8: C-Class model: 67,571 trimmed surfaces.

Mini Golf C-Class
NURBS surfaces 629 8,138 67,571

non-trivially trimmed 203 1,486 35,230
Bézier patches 25,648 17,936 396,535

Table 1: Details of the models used for evaluation.

vertices and the frame-rate of the unmodified GPU-
based trimming and tessellation algorithm [GBK05]
with the appearance preserving method presented in
this paper.

Mini Golf C-Class
geometric only approximation

bi-cubic patches 11,683 8,008 105,442
vertices 210,529 239,221 2,216,352
frame-rate 12.8 fps 9.1 fps 1.3 fps

appearance preserving approximation
bi-cubic patches 11,685 8,017 159,176
vertices 283,333 280,400 2,538,128
frame-rate 11.0 fps 7.9 fps 1.2 fps

Table 2: Performance comparison between geomet-
ric and appearance preserving approximation.

Even though the number of bi-cubic patches has in-
creased by 21% to 51% and the number of vertices
increased by 14% to 39%, the frame-rate difference is
only between 8% and 14%. The very loose coupling
between the number of vertices and the rendering per-
formance is mainly due to the massively parallel archi-
tecture of modern GPUs. Withn parallel vertex units,

Journal of WSCG 6 ISBN 1213-6972 ISBN 80-86943-09-7

the evaluation and transformation timet of each bi-
cubic B́ezier patch withv vertices is

t = c
⌈ v

n

⌉
,

wherec depends on the GPU performance. Note, that
for these models, the average number of vertices per
Bézier patch (16 to 30) is in the same order of mag-
nitude as the number of parallel vertex units in current
GPUs, even for the appearance preserving tessellation.
In addition to this, each B́ezier patch requires a con-
stant time for initialization of the vertex array, upload-
ing of the control points for evaluation, and setting the
domain interval for trimming, regardless of the size of
the regular grid used for evaluation. Furthermore, the
time required for trimming remains constant as well.

6.2 Image Quality

In order to compare with the previous, purely geomet-
ric approach, we perform a pixel by pixel comparison
of the interpolated normals with the real normals from
the NURBS model obtained via sub-pixel subdivision.
The visual difference between the real and interpolated
normals (shown in Figure 9) can be extracted using
simple image processing. To estimate the normal devi-
ation in screen space, the surrounding pixels are used
to calculate the normal derivatives. Note, that this is
only correct on a closed surface but not along contours.

≥ 1.0

≤ 0.5
≥ 1.0

≤ 0.5

Figure 9: Normal deviation error in pixels for a
closeup of the Golf model using GPU-based tessel-
lation without (top) and with normal preserving er-
ror measure (bottom).

It is clearly visible that the normal approximation is
much better when using the appearance preserving tes-
sellation. Note, that the remaining pixels along con-
tours, where the normal error exceeds the0.5 pixel
threshold are – as already mentioned – due to the nor-
mal undersampling in the image processing step and
not a shortcoming of the appearance preserving tessel-
lation algorithm.

In addition to the visual comparison, Table 3 compares
the average normal deviation of our approach with the
previous GPU-based tessellation algorithm that con-
trols the geometric error only.

angle pixel exceeded
geometric only 0.930◦ 0.117 2.409%
normal preserving 0.752◦ 0.074 1.238%

Table 3: Average normal approximation error per
foreground pixel and percentage of foreground pix-
els where desired error is exceeded.

Here again, the remaining pixels where the screen
space error threshold is exceeded are located along
contours and are therefore the results of aliasing ar-
tifacts and not due to incorrect normals.

6.3 Surface Properties

The main goal of surface property visualization in in-
dustry, especially in design, is to ensure the continu-
ity of reflections on the surface. For this purpose, so-
called reflection lines are mainly used. Figure 10 com-
pares the reflections lines rendered with a grid environ-
ment on a closeup of the Golf fender using geometric
and appearance preserving tessellation.

Figure 10: Reflection lines using geometric (top)
and appearance preserving (bottom) tessellation.
In the top image, the real discontinuity (green) is
indistinguishable from tessellation related (blue).

Journal of WSCG 7 ISBN 1213-6972 ISBN 80-86943-09-7

To identify discontinuities in the shading, which occur
at ridges or ravines of the model, the tessellation needs
to produce meshes with correct normal interpolation.
Even a slight normal deviation of a few degree can
lead to visual artifacts that are indistinguishable from
real surface discontinuities. Using the appearance pre-
serving bi-cubic approximation and tessellation pre-
sented in this paper, the normals are correct within a
given screen space error and thus shading discontinu-
ities only occur when they are present in the model.

7 CONCLUSION
In this work, we presented a novel method for
GPU-based appearance preserving tessellation of
NURBS surfaces. We demonstrated the problems of
the previous algorithm in dealing with various illu-
mination/shading artifacts introduced by the bi-cubic
approximation and the following tessellation. We
also demonstrated that our algorithm only requires a
relatively low number of additional bi-cubic patches
and vertices to produce accurate interpolated normals.
It achieves almost the same performance as the
original method, but nevertheless provides a much
higher visual fidelity. Our new method also has the
capability to visualize surface properties such as
degree of continuity or discontinuities using reflection
lines. Due to the real-time trimming and tessellation
on the GPU, it is also suitable for the visualization of
deformable models and to have immediate feedback
during the design and virtual prototyping process.

8 ACKNOWLEDGEMENTS
We would like to thank SGI, DaimlerChrysler AG,
and Volkswagen AG for providing for the trimmed
NURBS models used in this paper. This work was par-
tially funded by the European Union under the project
of “Real Reflect” (IST-2001-34744).

References
[AES94] S. S. Abi-Ezzi and S. Subramanian. Fast

dynamic tessellation of trimmed NURBS
surfaces.Computer Graphics Forum, No.13(3),
pp.107–126, 1994.

[BAD+01] M. Bóo, M. Amor, M. Doggett, J. Hirche, and
W. Straßer. Hardware support for adaptive
subdivision surface rendering. InProceedings
of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pp.33–40,
2001.

[BS03] J. Bolz and P. Schröder. Evaluation of
subdivision surfaces on programmable graphics
hardware, 2003.

[EC93a] G. Elber and E. Cohen. Hybrid symbolic and
numeric operators as tools for analysis of
freeform surfaces. InWorking Conference on
Geometric Modeling in Computer Graphics,
pp.275–286, 1993.

[EC93b] G. Elber and E. Cohen. Second-order surface
analysis using hybrid symbolic and numeric
operators.ACM Transactions on Graphics,
No.12(2), pp.160–178, 1993.

[Eck93] M. Eck. Degree reduction of B́ezier curves.
Computer Aided Geometric Design,
No.10(3-4), pp.237–252, 1993.

[FMM86] D. Filip, R. Magedson, and R. Markot. Surface
algorithms using bounds on derivatives.
Computer Aided Geometric Design, No.3(4),
pp.295–311, 1986.

[For72] A. Forrest. Interactive interpolation and
approximation by B́ezier polynomials.The
Computer Journal, No.15(1), pp.71–79, 1972.

[GBK04] M. Guthe,Á. Balázs, and R. Klein. Interactive
High Quality Trimmed NURBS Visualization
Using Appearance Preserving Tessellation. In
Data Visualization 2004 (Proceedings of TCVG
Symposium on Visualization), pp.211–220 +
348. EUROGRAPHICS - IEEE, May 2004.

[GBK05] M. Guthe,Á. Balázs, and R. Klein. GPU-based
trimming and tessellation of NURBS and
T-Spline surfaces.ACM Transactions on
Graphics, No.24(3), pp.1016–1023, 2005.

[HHS+92] H. Hagen, S. Hahmann, T. Schreiber,
Y. Nakajima, B. Ẅordenweber, and
P. Hollemann-Grundstedt. Surface
interrogation algorithms. InIEEE Visualization
and Computer Graphics, pp.53–60, 1992.

[KSS98] R. Klein, A. Schilling, and W. Straßer.
Illumination dependent refinement of
multiresolution meshes. InProceedings of
Computer Graphics International (CGI ’98),
pp.680–687, Los Alamitos, CA, 1998. IEEE
Computer Society Press.

[KY04] T. Kanai and Y. Yasui. Per-pixel evaluation of
parametric surfaces on GPU. InACM
Workshop on General Purpose Computing
Using Graphics Processors (also at
SIGGRAPH 2004 poster session), August
2004.

[PC95] Y. Park and U J. Choi. Degree reduction of
Bézier curves and its error analysis.J. Austral.
Math. Soc. Ser. B, No.36, pp.399–413, 1995.

[ZW03] J. Zheng and G. Wang. Perturbing Bézier
coefficients for best constrained degree
reduction in theL2-norm. Graphical Models,
No.65, pp.351–368, 2003.

Journal of WSCG 8 ISBN 1213-6972 ISBN 80-86943-09-7

Optimizing GPU Volume Rendering

Daniel Ruijters
Philips Medical Systems

Veenpluis 6
 5680DA Best, the Netherlands

danny.ruijters@philips.com

Anna Vilanova
Technische Universiteit Eindhoven

Den Dolech 2
5600MB Eindhoven, the Netherlands

a.vilanova@tue.nl

ABSTRACT
Volume Rendering methods employing the GPU capabilities offer high performance on off-the-shelf hardware.
In this article, we discuss the various bottlenecks found in the graphics hardware when performing GPU-based
Volume Rendering. The specific properties of each bottleneck and the trade-offs between them are described.
Further we present a novel strategy to balance the load on the identified bottlenecks, without compromising the
image quality. Our strategy introduces a two-staged space-skipping, whereby the first stage applies bricking on a
semi-regular grid, and the second stage uses octrees to reach a finer granularity. Additionally we apply early ray
termination to the bricks. We demonstrate how the two stages address the individual bottlenecks, and how they
can be tuned for a specific hardware pipeline. The described method takes into account that the rendered volume
may exceed the available texture memory. Our approach further allows fast run-time changes of the transfer
function.

Keywords
Volume Visualization, Direct Volume Rendering, Texture Slicing, Hierarchical Rendering, GPU.

1. INTRODUCTION
New developments in medical imaging modalities,
numerical simulations, geological measurements, etc.
lead to ever increasing sizes in volumetric data. The
ability to visualize and manipulate the 3D data
interactively is of great importance in the analysis and
interpretation of the data. The interactive
visualization of such data is a challenge, since the
frame rate is heavily depending on the amount of data
to be visualized. Inherently, the demand for faster
visualization methods is always existing, in spite of
hardware innovations.

An established method for interactive volume
rendering on consumer hardware is GPU-based
texture slicing [Ake93, CCF94, CN93, EE02,
EKE01, MGS02, RGW+03, KW03]. Although this
approach performs very well compared to CPU-based
algorithms, since it benefits from the parallelism

available in the GPU pipeline, it can be accelerated
significantly by taking into account the various
bottlenecks that are encountered in the graphics
hardware. Every individual bottleneck has a different
optimal data chunk size and data throughput. In this
article, we present a novel approach to accelerate
GPU-based volume rendering that allows to tailor
and balance the load on the individual bottlenecks to
reach an optimal exploitation of the graphics
hardware power.

In section 2, we present an overview of related work.
Section 3 discusses the main bottlenecks that come
into play when performing GPU-based volume
rendering. Then an outline of the proposed approach
is drawn in section 4. Sections 5, 6 and 7 deal with
the details of our approach. In section 8, the results
are presented and discussed, and in section 9 we
summarize our conclusions.

2. RELATED WORK
The first rendering methods using the 3D texture
capabilities of the graphics hardware were proposed
by Cullip and Neumann [CN93], Akeley [Ake93] and
Cabral et al. [CCF94]. Essentially these techniques
consist of drawing polygons, which slice the volume
in a back to front order. The data set is mapped as
texture information on the polygons using tri-linear
interpolation. The successive polygons are blended
into the existing image.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 9 ISBN 1213-6972 ISBN 80-86943-09-7

Bricking is a technique to divide the volume data set
into chunks, called bricks [Eck98, WWE04]. It can
be employed to deal with data sets exceeding the
available texture memory. The bricks have then a size
that is equal to or smaller than the size of the texture
memory, and are loaded sequentially from main
memory into the texture memory while rendering.
However, this leads to significantly lower frame rates,
since the bus architecture, connecting the graphics
hardware to the main memory and CPU, proves to be
a major bottleneck. Tong et al. [TWTT99] propose a
bricking technique that allows skipping empty
regions. Their method, however, requires new
textures to be generated for every change of the
transfer function, which is time consuming for very
large data sets.

Texture compression can help to fit the entire volume
in the main memory, and to alleviate the bus
bottleneck. However, all presently available
compression methods supported by graphics
hardware (S3TC, FXT1, DXT1, VTC, etc) are
limited to lossy 8-bit RGB(α) compression, which
make them unsuitable for the compression of the
(often 12- or 16-bit) scalar values found in medical
data, and therefore we do not use them. Further,
Meissner et al. [MGS02] show that the lossy
compression algorithms severely reduce the image
quality. Wavelet compression, as proposed by Guthe
et al. [GWGS02] is a promising technique, but there,
not all parts of the volume are rendered at the highest
resolution.

Not rendering all parts of the volume in the highest
resolution possible is a way to reach higher frame
rates, as demonstrated by LaMar et al. [LHJ99],
Weiler et al. [WWH+00], Boada et al. [BNS01] and
Guthe et al. [GWGS02]. This is particularly suited to
increase the render speed for perspective projections
in a small view port, focusing on a detail of the
volume. However, orthogonal projections of the
entire volume in high resolution view ports, as is
common in medical applications, can only profit from
this technique at the cost of the image quality.

Space-skipping and space-leaping are techniques to
accelerate volume rendering, that origin from ray-
casting methods, see e.g. Levoy [Lev90], Zuiderveld
et al. [ZKV92] and Yagel and Shi [YS93]. It is based
on skipping empty parts of the volume. The idea of
space-skipping can be applied to texture-mapping
volume rendering as has been shown by Westermann
and Sevenich [WS01].

Octree is an established multi-level data structure
when dealing with voxel volumes, which has been
used in numerous different applications. E.g.
Srinivasan et al. [SFH97] apply an octree structure in
volume rendering. Orchard and Möller [OM01]

demonstrated the benefits of using adjacency
information in splatting volume rendering.

Parker et al. have combined bricking and multi-level
data structures to accelerate CPU-based iso-surface
ray-tracing of volume data sets on multi-processor
platforms and clusters [PSL+99, DPH+03]. Grimm et
al have applied a two-staged space skipping, based on
bricking and octrees, combined with gradient
caching, to CPU-based ray-casting [GBKG04].

Roettger et al. [RGW+03] describe a GPU-based pre-
integrated texture-slicing including advanced
lighting. The authors also describe a GPU-based ray-
tracing approach with early ray termination. Krüger
and Westermann [KW03] propose a method to
accelerate volume rendering based on early ray
termination and space-skipping in a GPU-based ray-
casting approach. The space-skipping addresses the
rasterization bottleneck, using a single octree level
only.

We have combined some of the techniques cited
above, to accelerate GPU volume rendering on a
single workstation, using off-the-shelf hardware.
Often we found that acceleration of volume rendering
has been treated as a singular problem to solve. We
rather focus on the individual bottlenecks that are
encountered while performing volume rendering, and
tailor the different techniques to address specifically
those bottlenecks.

3. BOTTLENECKS
Figure 1 illustrates the graphics pipeline, employed
for GPU-based volume rendering [Zel02]. Here we
discuss the most important points in the pipeline that
result in a bottleneck.

on - chip cache memory video memory

system
memory

frame buffer

commands

pre - TnL
cache

texture
cache

triangle
throughput

limited

fragment
shader
limited

CPU
limited

texture cache size
limited

frame buffer limited

rasterization
limited

bus
limited

CPU

textures

geometry

rasterization

vertex
shading

(T&L)

triangle setup

fragment
shading

and
raster

operations

post - TnL cache

Figure 1: The graphics hardware pipeline and its
bottlenecks [Zel02], light grey: memory units,
dark grey: data structures, blue: processing units,
red: bottlenecks.

The bus - The volume data has to be transferred
over the bus from the system memory into the

Journal of WSCG 10 ISBN 1213-6972 ISBN 80-86943-09-7

graphics card memory. Since this is the slowest part
of the entire pipeline, these transfers have to be as
few as possible.

Triangle throughput - The triangle throughput
is mainly limited by the vertex shading and triangle
setup phase. A straight forward implementation of
texture-mapping volume rendering would involve
only few triangles, but techniques for space-skipping
may increase the amount of triangles considerably. If
the triangle count becomes too high, this will become
a limiting factor for the frame rate.

Rasterization - When performing volume
rendering based on texture slicing, the vast majority
of the pixels on the screen are accessed multiple
times. Space-skipping techniques may be used to
reduce the amount of pixels to be accessed, but this
also increases the triangle count.

Texture cache size - Texture lookup is one of
the more time consuming operations performed
during the rasterization step. When the texture fits in
the cache, these lookup operations will be faster.

Fragment shader - Fragment shader programs
impact the duration of the rasterization step. Simple
fragment programs, such as applying a lookup table,
generally do not limit the frame rate, however more
complex operations, such as specular lighting
[MGS02, RGW+03], multi-dimensional transfer
functions [KKH01] or pre-integrated rendering
[EE02, EKE01, RGW+03], can form a bottleneck.
Especially fragment programs that perform multiple
texture lookups (e.g. on-the-fly gradient calculation
for specular lighting) are relatively slow.

4. OUR APPROACH
When performing volume rendering usually only a
fraction of all voxels actually contribute to the final
image, since a relatively small amount of voxels are
of interest and another amount of them are occluded.
In 3D medical data sets (obtained by e.g. ultrasound,
CT, MR or rotational angiography [KodBA98,

vdB03]) the anatomical structures of interest
encapsulated in the data sets occupy only a part of the
total data. Typically 5% to 40% of all voxels contain
visible data, and even highly filled CT or MR data
sets rarely exceed 55%. Especially vascular data sets
can be marked as sparse data sets, since vessels, due
to their tubular form, occupy only a small percentage
of the volume (1% to 8%).

In this article, we seek to reach the maximum benefit
in exploiting skipping void parts of the volume
(space-skipping). The novelty we introduce lies in
dividing the space-skipping in two stages; a course
division using bricking (figure 2a) and a finer one
using octrees (figure 2b). These steps are based on an
analysis of the bottlenecks encountered in the
graphics pipeline when performing texture-mapping
volume rendering. The first stage, bricking, is
chopping the volume in so called texture bricks. The
bricks are loaded into the video memory, to serve as
data for the volume rendering algorithm, which is
executed by the GPU. The bricks address the bus-
and texture cache size-bottleneck. To further alleviate
the load on the fragment shaders, we additionally
perform early ray termination to each brick. This
benefits especially highly-filled data sets. The second
stage is employing an octree within each brick. The
octrees address the rasterization bottleneck. As we
demonstrate, the two stages have to be balanced,
because lifting one bottleneck may overload another
bottleneck (e.g. rasterization bottleneck versus
triangle throughput bottleneck).

The role of the transfer function in volume rendering
is to map the scalar voxel information to optical
properties (e.g. color and opacity) [KKH01]. The
above described approach is implemented such that
the flexibility to change the transfer function at run-
time is preserved. This offers the possibility to focus
on different scalar ranges in the volume, without
lengthy calculations. To accomplish this, the
unmodified scalar voxel values are stored in the brick
textures, and a fragment shader program is used, to
lookup the RGBα values post-interpolatively.

(a)

(b)

(c)

Figure 2: The same volume fragment, rendered with (a) bricking cubes visible, (b) octree cubes visible
(note the various cube sizes) and (c) both bricking and octree cubes visible

Journal of WSCG 11 ISBN 1213-6972 ISBN 80-86943-09-7

5. BRICKING
As mentioned in section 2, the voxel volume can be
divided into chunks, called bricks, in order to cope
with voxel data sets sizes exceeding the size of the
texture memory of the graphics hardware. Note that
our bricks contain the original scalar values of the
voxel volume, thus the values before applying the
transfer function. This enables us to change the
transfer function on the fly, since a transfer function
change does not require creating new textures.

To obtain a correct interpolation at the bricks'
boundaries it is necessary that the data held by
adjacent bricks overlap. The overlap depends on the
convolution kernel used for interpolation [ML94],
and should correspond to (kernelsize - 1). For nearest
neighbor interpolation that means that no overlap is
needed, since the width of the kernel is one. For tri-
linear interpolation the overlap should be one voxel
in every direction (for other kernels the overlap may
even be larger). Pre-integrated rendering [EE02,
EKE01, RGW+03] or the on-the-fly calculation of
gradients require the overlap to be increased by
another voxel in every direction. For bricks of b3
voxels and an overlap of n voxels, the memory
overhead is approximately (3n/b)·100%.

The bricks are loaded into the video memory as 3D
textures. Many graphics cards require 3D texture
sizes to be a power of 2 in every direction. If the
volume dimensions do not divide evenly into brick
dimensions, either an additional layer of partially
empty bricks should be added in each direction, or
smaller rest-bricks should be used.

When the amount of data in the textures exceeds the
available texture memory, textures are swapped
between the main memory and the texture memory. If
a requested brick is not resident in the texture
memory, it is loaded from the main memory,
replacing resident textures [SWND03]. In most
OpenGL implementations resident textures are
swapped out on a Least Recently Used (LRU) base.

Traditionally bricking in texture based rendering is
used to be able to render data sets which exceed the
size of the texture memory of the graphics hardware.
The bricks are then chosen to be as large as possible,
and they are sequentially loaded from the main
memory into the texture memory. Which implies that
for each frame the entire volume data is transferred
over the bus.

In our approach, however, we choose brick sizes
which are considerably smaller. The smaller the brick
size is, the bigger is the chance of bricks being
completely void after applying the transfer function,
and void bricks do not need to be drawn. Therefore,
once they are swapped out of the texture memory,
they are never reloaded into the texture memory, and
thus the bus bottleneck is alleviated.

We even apply bricking to volumes which completely
fit into the texture memory to improve data locality,
which will result in less cache trashing on the
graphics card [HG97, CBS98, IEP98]. On the other
hand smaller bricks could introduce a larger overhead
due to the overlap needed for interpolation. Thus the
optimal brick size needs to be defined depending on
the available texture memory, optimal texture size
(see section 3), nature of the data set, overhead due to
overlap, and the constraints posed by the graphics
hardware.

6. EARLY RAY TERMINATION
To be able to perform early ray termination at all, the
volume has to be traversed in a front-to-back order.
This can be done by evaluating the volume rendering
integral in discrete steps, using the under operator:

Ci+1 = (1 - Ai) · αi · ci + Ci

Ai+1 = (1 - Ai) · αi + Ai

Whereby C, A denote the color, respectively the
opacity value of the current ray, c, α the color and
opacity value given by applying the transfer function
to the current sample in the volume, and i denotes the

(a)

(b)

(c)

Figure 3: Test volumes: (a) 5123 volume, used for testing early ray termination, (b) vascular 5123 volume,
(c) gigabyte volume of 642 · 642 · 1284 voxels, generated by duplicating a large 3D-RA volume.

Journal of WSCG 12 ISBN 1213-6972 ISBN 80-86943-09-7

sample index. A ray is then saturated when Ai
approximates 1.

Before a brick is rendered, early ray termination is
applied to its destination pixels. This is tested by
executing a fragment shader program, while drawing
a solid bounding box around the brick with back face
culling switched on. The fragment shader program
writes the maximal value in the depth buffer for
saturated rays [KW03, RGW+03]. When slicing the
brick texture the early z-test will prevent any
fragment operations to be executed for those rays,
reducing the load on the rasterization and fragment
shader bottlenecks. Early ray termination is only
performed once per brick, and not more often (e.g.
for every octree node or every sample) because the
overhead involved (changing fragment shaders,
performing the test) would otherwise annihilate the
benefits.

7. OCTREE
By not rendering the void bricks, the load on the
rasterization bottleneck is already reduced. We seek
to reduce it further by applying octrees. Every brick
possesses its own octree. Every octree node
corresponds to a cuboid part of the voxel volume,
which can be divided into eight parts, corresponding
to the child nodes (see figure 4). Our octree is kept in
main memory. It only describes the geometry of the
visible data. The actual voxel data is to be found in
the brick textures.
For tri-linear interpolation, let a cell be defined as a
cube, whose eight corners adjacent voxel values are
assigned. For every position within the cell an
intensity value is defined as the tri-linear
interpolation of the corner values. Therefore a cell
can only be completely void if its eight corner values
are completely transparent (α = 0) after applying the
transfer function. This definition can easily be
extended to any given interpolation kernel, by setting
the size of a cell to (kernelsize - 1) 3.

level 0

level 1

level 2

Figure 4: An octree division and its tree.
Every octree node carries a variable describing the
ratio r of visible data to total data within its cube. At
the final level of the octree, every node represents
uniquely one cell, and is considered either completely
filled (r = 1) or void (r = 0). Every higher octree level

nodes ratio can be calculated by averaging the ratios
of its children. This calculation only needs to be
performed when the transfer function has changed.
Rendering an image means that the bricks have to be
processed in a front to back order. For each brick the
respective octree is traversed, starting with its parent
node. Depending on its ratio r there are three ways to
process a node:
r = 0: The node is completely void. It is not drawn at
all, and is not traversed any further.
0 < r < threshold: The nodes children will be
traversed, and to each child node this strategy will be
applied recursively.
r ≥ threshold: The node is drawn completely. It is not
traversed any further.
If the threshold is set to 1, exactly all filled cells will
be drawn, and no void cells. However, that would
lead to a lot of tiny cubes at the boundaries of the
visible data structures, and thus the load on the
triangle throughput bottleneck becomes too high.
Therefore the threshold should be chosen in such a
way that some degree of void data is allowed to be
drawn. A further strategy we use to prevent too much
overhead is setting an octree level at which nodes,
lower in the hierarchy, are not traversed any further.
At this level, any node that is not void, will be drawn
completely.
When traversing a node, its children have to be sorted
in a front to back order. Since there are eight
children, it would seem that there are 8! = 40320
ways to arrange the children. But since the
arrangement along the three perpendicular axes is the
same for all children, there remain 23 = 8 possible
orders. When a node is to be drawn, the cuboid box
corresponding to this node is sliced, and the slices are
rasterized and blended into the previously drawn
slices. The slices can be axis-aligned or viewport-
aligned. For the most straight-forward form of
volume rendering, the brick texture is interpolated on
every slice, taking its position in the brick into
account, and after interpolation the transfer function
is applied. However, it is also possible to perform
more sophisticated forms of volume rendering on the
slices, like pre-integrated volume rendering or
include specular lighting [MGS02, RGW+03].
The octree is generated and traversed on the CPU. Its
purpose is to lower the workload on the graphics
pipeline, and thus the GPU. The octree reduces the
time that the GPU spends on processing data which
never contribute to the final image. The actual
volume rendering algorithm, as well as interpolation,
the post-interpolative transfer function, and
optionally, specular lighting, is being performed by
the GPU.

Journal of WSCG 13 ISBN 1213-6972 ISBN 80-86943-09-7

8. RESULTS
The described approaches have been tested with
several different graphics cards: the nVidia
QuadroFX 3400 (256MB on board memory), the ATi
FireGL X1 (128MB), and the 3DLabsWildcat 7110
(256MB). With each card the volume in figure 3b has
been rendered, using the same lookup table settings.
The volume data concerned the iliac vein, acquired
through 3D rotational angiography. Since contrast
media was injected into the vein, the vein could easily
be classified using the transfer function. Only 3% of
the voxels in this volume contain visible data. All
results have been obtained, using a view port of 8002
pixels and the sample rate for the volume rendering
equation was set to 1.5 samples per voxel.
Since the optimal brick size is mainly determined by
the properties of the texture memory (see section 5)
and the optimal octree limit is primarily used to
balance the rasterization load and the triangle
throughput (see sections 3 and 7) they can be
considered to be fairly orthogonal variables.
Therefore their optimum can be found by varying one
variable, while keeping the other one constant.
On each graphics card the test volume was rendered
with different brick sizes, see figure 5, while the
octree limit was set to 83 voxels.

0 20 40 60 80 100

Wildcat 7110

FireGL X1, non xy
aligned

FireGL X1, xy
aligned

QuadroFX 3400

16³
32³
64³
128³
256³
512³

fps

brick
sizes

Figure 5: Performance using different brick sizes.

The ATi FireGL X1 and the 3DLabs Wildcat 7110
clearly show that their optimal brick size is
considerably smaller than their largest possible brick
size. The nVidia QuadroFX 3400 does not benefit
from the bricking for the 256MB test volume.
However, also this card clearly profits from the

bricking for the sparse 1GB volume in figure 3c: the
optimal brick size is then 643 voxels, with an average
frame rate of 37 fps, while for 2563 bricks only a
mere 3.1 fps is reached.
The performance of the ATi FireGL X1 depends
heavily on the sampling direction of the bricks,
because the ATi card treats the 3D textures as a stack
of 2D slices. When the bricks are traversed in the x or
y direction, the slices are accessed rather linear, and
the performance is much better than when they are
traversed in the z direction. It is inevitable to traverse
in the z direction, when the viewing direction and the
z-axis of the textures differ more than 45°. This effect
can be reduced by alternating the orientation of the
textures for each consecutive brick [WWE04].
Especially striking is the fact that the optimal brick
size and octree limit is different for each sampling
direction. When sampled in the xy-plane direction
larger bricks benefit from linear traversal, while in
other directions smaller bricks benefit from less cache
trashing. In figures 5 and 6 this fact is illustrated by
the performance measurement when sampling aligned
to the xy-plane, and when not.

0 20 40 60 80

Wildcat 7110

FireGL X1, non xy
aligned

FireGL X1, xy
aligned

QuadroFX 3400

2³
4³
8³
16³
32³
64³

octree
limits

fps

Figure 6: Performance using different octree
limits.

Further the volume was rendered with a fixed brick
size of 643 voxels and variable octree limits (the
octree limit is the smallest octree cube allowed). Not
every octree branch reaches this limit, see section 7.
Figure 6 unsurprisingly shows that there is an
optimum octree size for every graphics card. Smaller
octree limits lead to too much CPU overhead and
triangle count, and larger octrees to too much
rasterization overhead. The 643 octree level

Graphics card (a) Optimized (b) Non-optimized (a) / (b)

nVidia QuadroFX 3400 73.5 fps 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362
ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119
3Dlabs Wildcat 7110 21.3 fps 0.38 fps 56.1

Table 1: Average frame rates reached when using (a) best combination of bricking and octrees, (b) GPU
rendering without bricking or octrees.

Journal of WSCG 14 ISBN 1213-6972 ISBN 80-86943-09-7

corresponds to not using any octrees at all, only
bricking.
Table 1 shows the acceleration achieved, using the
volume in figure 3b, with an optimal combination of
brick size and octree depth for each particular
graphics card versus the same GPU volume rendering
routines applied without any bricking or octrees at
all. Since early ray termination does not provide any
performance gain for sparse data sets, it was not used
on this volume.
Early ray termination was tested on the QuadroFX
3400 using the volume in figure 3a. GPU volume
rendering without optimizations yielded 2.2 fps, using
643 bricks and 83 octree limits 5.2 fps were reached,
and with additionally early ray termination switched
on, the average frame rate was 16.1 fps.
Since the rendering primarily depends on the graphics
card, replacing e.g. a Xeon 3.0GHz by a Xeon
1.7GHz delivered approximately the same
performance figures. The only part which is bounded
by the CPU and main memory performance is
building a new octree after the transfer function has
been changed. For a volume consisting of 5123 voxels
(16 bit per voxel, 256MB for the entire volume),
rendered with a brick size of 643 voxels and an octree
limit of 83 voxels, building all new octrees for the
entire 5123 volume took 6.5 milliseconds on the Xeon
1.7GHz and 3.5 milliseconds on the Xeon 3.0GHz
machine.

9. CONCLUSIONS
In this paper, we presented an approach to accelerate
GPU-based volume rendering. The approach
consisted of a two staged space-skipping and early
ray termination, and was tailored to lift the various
bottlenecks encountered in the graphics pipeline.
In the first stage, the entire volume is chopped into
bricks, and from these bricks 3D textures are created.
Empty bricks are never drawn, nor kept in the video
memory, and therefore the bus bottleneck is relieved.
The optimal brick size depends on the nature of the
data (there should be a reasonable chance that there
are bricks which are completely void), the available
texture memory, the texture cache size and the
overhead introduced by brick overlap. Since the brick
textures’ content does not depend on the transfer
function, they need to be created only once for static
data.
The octrees, which form the second stage, focus on
skipping data that is not visible after applying the
transfer function. In this way the rasterization
bottleneck is addressed. To prevent too much
overhead to be introduced, a certain amount of void
data per octree box is allowed, and there is a limit to
the granularity of the octree boxes. The optimal

octree parameters are determined by the weight of the
rasterization phase (i.e. are there complex fragment
shader programs involved, etc.) and the trade-off
between less rasterization operations and more
triangles (triangle throughput bottleneck). Since the
octree depends on the transfer function, it has to be
recalculated when the transfer function changes.
In this article it has been shown how the individual
bottlenecks have been addressed by a two-folded
approach. First the bus bottleneck and texture cache
size has been addressed by bricking, and
consequently the rasterization bottleneck has been
addressed by the octrees. The rasterization and
fragment shader bottleneck were further lifted by
employing early ray termination. The results show
that the parameters can be optimized for different
graphics cards. Since the transfer function only leads
to recalculating the octrees, and not reloading the
bricks, it can also be changed quickly and
interactively.
The graphics industry are introducing more powerful
hardware at an impressive pace. However
developments in medical imaging modalities are
equally impressive, resulting in larger volume data
sets. Which means that in the foreseeable future the
techniques that were presented here will preserve
their benefits.

10. REFERENCES
[Ake93] K. Akeley. Reality Engine Graphics. In Proc.

SIGGRAPH'93, volume 27, pp. 109-116, 1993.
[BNS01] I. Boada, I. Navazo, and R. Scopigno.

Multiresolution Volume Visualization with a Texture-
based Octree. The Visual Computer, (17), pp. 185-197,
2001.

[CBS98] M. Cox, N. Bhandri, and M. Shantz. Multi-Level
Texture Caching for 3D Graphics Hardware. In ISCA
'98, pp. 86-97, 1998.

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated
Volume Rendering and Tomographic Reconstruction
using Texture Mapping Hardware. Proc. of the 1994
symposium on Volume visualization, pp. 91-98, 1994.

[CN93] T. Cullip and U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Hardware. Technical
Report TR93-027, 1993.

[DPH+03] D. E. DeMarle, S. Parker, M. Hartner,
C. Gribble, C. Hansen. Distributed Interactive Ray
Tracing for Large Volume Visualization. In Proc. 2003
IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, pp. 87-94, 2003.

[Eck98] G. Eckel. OpenGL Volumizer Programmer's
Guide. Silicon Graphics, Inc, 1998.

[EE02] K. Engel and T. Ertl. Interactive High-Quality
Volume Rendering with Flexible Consumer Graphics
Hardware. In Eurographics '02 - State of the Art
Report, 2002.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality
Pre-integrated Volume Rendering using Hardware-
Accelerated Pixel Shading. Proc. of the 2001

Journal of WSCG 15 ISBN 1213-6972 ISBN 80-86943-09-7

Eurographics workshop on Graphics hardware,
pp. 9-16, 2001.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar and
E. Gröller. Memory Efficient Acceleration Structures
and Techniques for CPU-based Volume Raycasting of
Large Data. IEEE Symposium on Volume
Visualization and Graphics, pp. 1-8, 2004.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and
W. Strasser. Interactive Rendering of Large Volume
Data Sets. Proc. IEEE Visualization 2002, pp. 53-60,
2002.

[HG97] Z. S. Hakura and A. Gupta. The Design and
Analysis of a Cache Architecture for Texture Mapping.
In ISCA '97: Proc. of the 24th annual international
symposium on Computer architecture, pp. 108-120,
1997.

[IEP98] H. Igehy, M. Eldridge, and K. Proudfoot.
Prefetching in a Texture Cache Architecture. In Proc.
of the 1998 Eurographics Workshop on Graphics
Hardware, pp. 133-142, 1998.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen.
Interactive Volume Rendering using Multi-
Dimensional Transfer Functions and Direct
Manipulation Widgets. Proc. IEEE Visualization 2001,
pp. 255-262, 2001.

[KodBA98] R. Kemkers, J. op de Beek, and H. Aerts.
3D-Rotational Angiography: First Clinical
Applications. Proc. in Computer Assisted Radiology
and Surgery, pp. 182-187, 1998.

[KW03] J. Krüger and R. Westermann. Acceleration
Techniques for GPU-based Volume Rendering. In
Proc. IEEE Visualization 2003, pp. 287-292, 2003.

[Lev90] M. Levoy. Effcient Ray Tracing of Volume Data.
ACM Transactions on Graphics 9(3), pp. 245-261,
1990.

[LHJ99] E. LaMar, B. Hamann, and K. I. Joy.
Multiresolution Techniques for Interactive Texture-
Based Volume Visualization. In Proc. IEEE
Visualization '99, pp. 355-361, 1999.

[MGS02] M. Meissner, S. Guthe, and W. Strasser.
Interactive Lighting Models and Pre-Integration for
Volume Rendering on PC Graphics Accelerators. In
Graphics Interface 2002, pp. 209-218, 2002.

[ML94] S. R. Marschner and R. J. Lobb. An Evaluation of
Reconstruction Filters for Volume Rendering. Proc.
IEEE Visualization '94, pp. 100-107, 1994.

[OM01] J. Orchard and T. Möller. Accelerated Splatting
using a 3D Adjacency Data Structure. In Graphics
interface 2001, pp. 191-200, 2001.

[PSL+99] S. Parker, P. Shirley, Y. Livnat, C. Hansen,
P.-P. Sloan, M. Parker. Interacting with Gigabyte
Volume Datasets on the Origin 2000. The 41st Annual
Cray User's Group Conference , 1999.

[RGW+03] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,
and W. Strasser. Smart Hardware-Accelerated Volume
Rendering. In VisSym'03: Proc. of the symposium on
Data Visualisation 2003, pp. 231-238, 2003.

[SFH97] R. Srinivasan, S. Fang, and S. Huang. Rendering
by Template-based Octree Projection. Proc. of the 8th
Eurographics Workshop on Visualization in Scientific
Computing, pp. 155-163. Eurographics, 1997.

[SWND03] D. Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL Programming Guide: The Offcial Guide to
Learning OpenGL (red book). Addison-Wesley Pub
Co, 4 edition, 2003.

[TWTT99] X. Tong, W. Wang, W. Tsang, and Z. Tang.
Efficiently Rendering Large Volume Data Using
Texture Mapping Hardware. In Joint Eurographics -
IEEE TCVG Symposium on Visualization (VisSym),
pp. 121-132, 1999.

[vdB03] J. C. van den Berg. Three-Dimensional Rotational
Angiography. Endovascular Today, (March 2003),
2003.

[WS01] R. Westermann and B. Sevenich. Accelerated
Volume Ray-Casting using Texture Mapping. Proc.
IEEE Visualization 2001, pp. 271-278, 2001.

[WWH+00] M. Weiler, R. Westermann, C. Hansen,
K. Zimmerman, and T. Ertl. Level-Of-Detail Volume
Rendering via 3D Textures. In Proc. Volume
Visualization and Graphics Symposium 2000, pp. 7-13,
2000.

[WWE04] D. Weiskopf, M. Weiler, T. Ertl. Maintaining
Constant Frame Rates in 3D Texture-Based Volume
Rendering. Computer Graphics International 2004
(CGI'04), pp. 604-607, 2004.

[YS93] R. Yagel and Z. Shi. Accelerating Volume
Animation by Space-Leaping. Proc. IEEE
Visualization '93, pp. 62-69, 1993.

[Zel02] C. Zeller. Balancing the Graphics Pipeline for
Optimal Performance, Graphics Developer Conference
2002, http://developer.nvidia.com/, 2002.

[ZKV92] K. J. Zuiderveld, A. H. J. Koning, and
M. A. Viergever. Accelaration of Ray-Casting Using
3D Distance Transform. Proc. of Visualization in
Biomedical Computing II, pp. 324-335, 1992.

Journal of WSCG 16 ISBN 1213-6972 ISBN 80-86943-09-7

Hardware-Accelerated Collision Detection
using Bounded-Error Fixed-Point Arithmetic

Andreas Raabe,1 Stefan Hochgürtel,1 Joachim K. Anlauf,1 Gabriel Zachmann 2
1Technical Computer Science

Bonn University, Germany
{raabe, hochguer, anlauf}@cs.uni-bonn.de

2Computer Graphics
Clausthal University, Germany

zach@in.tu-clausthal.de

ABSTRACT

A novel approach for highly space-efficient hardware-accelerated collision detection is presented. This paper focuses on the
architecture to traverse bounding volume hierarchies in hardware. It is based on a novel algorithm for testing discretely oriented
polytopes (DOPs) for overlap, utilizing only fixed-point (i.e., integer) arithmetic. We derive a bound on the deviation from the
mathematically correct result and give formal proof that no false negatives are produced.
Simulation results show that real-time collision detection of complex objects at rates required by force-feedback and physically-
based simulations can be obtained. In addition, synthesis results prove the architecture to be highly space efficient. We compare
our FPGA-optimized design with a fully parallelized ASIC-targeted architecture and a software implementation.

1 INTRODUCTION
Detecting collisions between a pair of graphical objects
is a fundamental task in many areas such as physically-
based simulation, automatic path finding, or tolerance
checking. Applications are in games, animation sys-
tems, and virtual reality, e.g., virtual assembly simula-
tion, or medical training and planning systems.

In most of the applications in these areas, the goal
is to avoid collisions, or to enable real-time physically-
based simulation. Most approaches today are reactive,
i.e., they first place objects at a new trial position, check
for collisions, and then compute new forces or posi-
tions, based on physical laws, so as to remove any col-
lisions.

This approach demands very efficient collision detec-
tion, because it must perform many collision checks
per simulation cycle. An emerging application area
is the mobile devices market (smart phones, portable
games devices). Here, the challenges, besides speed,
are size and energy consumption. Another particularly
demanding application is force-feedback, where up-
dates of about 1000Hz must be done in order to achieve
stable force computations.

Since collision detection is such a fundamental yet
challenging task, it is highly desirable to have hardware
acceleration available just like 3D graphics accelera-
tors. The benefit is two-fold: a) the system can process

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

objects with higher polygon counts, and b) the system’s
CPU can be freed from computing collisions.

In this paper, we present a novel, efficient architec-
ture for hierarchical collision detection of two rigid ob-
jects. It is based on a novel algorithm for testing a
pair of bounding volumes for overlap, which can even
be implemented on fixed-point arithmetic. We derive
a tight bound on the deviation between overlap testing
on fixed-point vs. floating-point arithmetic; this ensures
that no false negatives are obtained while producing
very few false positives.

We also present an implementation on FPGA hard-
ware along with simulation results concerning its speed
and synthesis results concerning its size. Finally, we
compare these results with an earlier, parallelized ASIC-
targeted architecture, and with a software implementa-
tion.

2 RELATED WORK
Considerable work has been done on hierarchical col-
lision detection in software [3, 4, 8, 14, 15]. Some of
the bounding volumes (BVs) utilized are spheres, axis-
aligned bounding boxes (AABB), oriented bounding
boxes (OBB), and discretely oriented polytopes (DOP).

The first work on dedicated hardware for collision de-
tection was presented in [16, 17]. However, they pre-
sented only a functional simulation, while we present
a RT level implementation along with synthesis results.
[12] presented a design that was targeted on ASICs, and
was optimized for speed only, and, thus, utilize a to-
tal of over 4 million gates and a 756 bits wide bus to
a DDR2-RAM. Recently, a commerical hardware was
announced that supposedly can do collision detection,
among other things [1]. However, no details have been
published, in particular, no performance results.

Most other hardware-related research has tried to uti-
lize existing graphics accelerator boards (GPU) [2, 5,

Journal of WSCG 17 ISBN 1213-6972 ISBN 80-86943-09-7

6, 10, 11]. While earlier approaches, such as [11], can
basically handle only convex objects, later algorithms,
such as [2, 10], have extended these to more general
cases such as unions of convex objects or closed ob-
jects. The general class of “polygon soups” can be han-
dled by [5], but they use a hybrid approach where the
graphics hardware only identifies potentially colliding
sets.

All of the approaches using graphics hardware have
the disadvantage that they either compete with the ren-
dering process for the same hardware resource, or an
additional graphics board must be spent for collision
detection. The former slows down the overall frame
rate considerably, while the latter would be a tremen-
dous waste, since most of the resources of the hardware
would not be utilized at all. Furthermore, most of these
approaches work in image space, which reduces preci-
sion significantly.

3 BASICS

3.1 Hierarchical Collision Detection with
k-DOPs

In this section, we give a short outline of the algorithm
of hierarchical collision detection in conjunction with
a special kind of bounding volumes, thek-DOP. Addi-
tionally, we will quickly recap the separating axis theo-
rem and one of its application, the Separating Axis Test
(SAT).

In this paper hierarchical collision detection is uti-
lized to avoid checking every triangle of an object O
for intersection with all triangles of object Q. The ac-
celeration data structure is a so-calledbounding volume
hierarchy (BVH), where each leave corresponds to one
triangle and inner nodes correspond to groups of trian-
gles. Each node has a bounding volume (BV) attached
that bounds all triangles associated with it. In order to
achieve a feasible hardware design, we use a binary tree
here.

If two objects are checked for overlap, both hierar-
chies are traversed simultaneously. If their BVs inter-
sect, the next level of BVs is checked. Since two ob-
jects will usually intersect only in a very small num-
ber of primitives, this yields a significant speed-up in
the average case. In practical cases, the complexity is
in O(logn) (n = number of primitives) because only a
small diagonal “slice” of constant width down the BVH
needs to be visited [9].

In this work, we usek-DOPs as BVs because they
were proven to yield very fast collision queries by ex-
tensive benchmarking in software [15], and performed
very well in our hardware studies [12], too.

k-DOPs are defined over a fixed orientation matrix
D =

(
D1, . . . ,Dk/2,Dk/2+1, . . . ,Dk

)
of vectors inR3.

Each vectorDi is antiparallel toDi+k/2.

An individualk-DOP is defined byk distancesdi , one
along each vectorDi , thus defining a half-space. These
DOP coefficients(d1, . . . ,dk) are the distances of the
associated halfspaces to the origin.1 The k/2 pairs of
DOP coefficients(di ,di+k/2) form a so-calledslab [15].

The intersection of these slabs forms the BV:

DOP=
⋂

i=1,...,k

Hi , Hi : Dix−di ≤ 0 (1)

The orientation matrixD, consisting of all the vectors
Di , is fixed and equal for all objects. This yields very
memory-efficient description for everyk-DOP: only the
k coefficientsdi need to be stored.

3.2 Separating Axis Test (SAT)
In this paper we use the so called Separating Axis Test
(SAT) introduced by [4,14].

[4] have shown that two convex polytopes are dis-
joint if and only if there exists a separating axis orthog-
onal to a face of either polytope or orthogonal to an
edge from each polytope (Separating Axis Theorem).

If only a subset of these axes are tested, false posi-
tives might occur, i.e., the polytopes are disjoint while
the (incomplete) test yields an intersection. The com-
plete SAT is always correct.

To perform the test, both polytopes must be projected
onto each of the candidate separating axes. For each
axis, a pair of intervals on that axis results. If one of
these pairs is disjoint, then the polytopes must be dis-
joint (see Fig. 1).

4 EFFICIENT SAT FOR K-DOPS
In this section, we will derive an efficient Separating
Axis Test fork-DOPs. Additionally, we will show how
the resulting overlap test can be done in fixed-point
arithmetic such that no false negatives occur. Finally,
we will derive a bound on the deviation of the projec-
tion of the fixed-point DOP with respect to the mathe-
matically correct image.

4.1 Precomputation
Since with DOPs the set of vectors{D1, . . . ,Dk} is
fixed, we can exploit that all possible face orientations
of the DOPs within a DOP-tree are the same.

Assume objectO is placed relatively to objectQ by
rotationM and translationT. Let DT(O) and DT(Q)
denote the DOP-trees of these objects. As described in
Section 3.1, let(A1, . . . ,Ak) be the orientations of the
DOPs’ faces shared by all DOPs in DT(O) after apply-
ing rotationM . Analogously, let(a1, . . . ,ak) denote the
DOP coefficients for DOPs in DT(O), let (B1, . . . ,Bk)
denote the vectors shared by all DOPs in DT(Q), and let
(b1, . . . ,bk) denote the corresponding DOP coefficients.

1 Note that the origin is not necessarily the center of the DOP nor even
contained in it.

Journal of WSCG 18 ISBN 1213-6972 ISBN 80-86943-09-7

origin A
origin B

V
max

B

V
min

A

bmin

bmax

amax
amin

p

a
j0

a
j1

b
j0

Li

diff

+k/2

b
j
1
+k/2

Figure 1: Two DOPs are projected onto test axis Li .
Since their images do not intersect Li is a separating
axis.

Note that everything independent of(a1, . . . ,ak) and
(b1, . . . ,bk) is constant throughout the whole DOP-trees.
Hence it can be precalculated at startup to initialize the
algorithm (and, later-on, the hardware). Precomputing
as much as possible significantly reduces the resulting
hardware costs. Since this is done only once per pair of
DOP-trees, it is not time-critical.

First, we can precompute then test axesL i . All of
the following is done for eachL i , so for the sake of
simplicity we omit the indexi from now on.

Second, the projectionp = L ·T is precomputed.
Third, for eachL a DOP has two verticesvmin

A and
vmax

A whose projections ontoL have maximum dis-
tance. Each of those vertices is formed by the inter-
section of three faces of the DOP. The correspondences
(jA,0, jA,1, jA,2) of the orientations whose faces meet in
vmin

A are calculated.
Fourth, and most importantly, in the actual projection

amin = vmin
A ·L

=
(
a jA,0 a jA,1 a jA,2

)
·
(
A jA,0 A jA,1 A jA,2

)−1 ·L

we can precompute the last dot product

PA :=
(
A jA,0 A jA,1 A jA,2

)−1 ·L (2)

PB can be precomputed analogously. The mapping
vectors forvmax

A and vmax
B are−PA and−PB respec-

tively. This exploits thatk/2 pairs of DOP orientations
are anti-parallel. Note that this is an estimate to the
correct solution, since not all possible combinations of
DOP-coefficients share all maximum vertices. But it is
impossible for any vertex made-up of the intersection
of three faces to be inside the DOP, hence only false
positives can result.

4.2 Intersection Testing
Using these precomputations, we can project onto the
test axes very efficiently:

amin =
(
a jA,0 a jA,1 a jA,2

)
·PA

amax =
(
a jA,0+k/2 a jA,1+k/2 a jA,2+k/2

)
· (−PA)

(3)

origin A

a
j1

a'
j1

a
j0

a'
j0

a'max

a'min

e
rro

r c
a

u
se

d

b
y ro

u
n
d

in
g

 PA

projection by P

projection by P'

fix
e
d

-p
o
in

t
g

rid

fixed-point DOP
original DOP

Figure 2: A DOP and its enclosing fixed-point equiva-
lent. Both rounding the DOP to fixed-point numbers
and projecting it with P′ instead of P increases the
DOP’s image. When checked for intersection false
positives can occur.

This is done forbmin andbmax analogously.
The condition for separation is straight-forward now.

Let

diff1 := (amin + p)−bmax

diff2 := bmin− (amax+ p)
(4)

diff := max(diff1,diff2) (5)

then the intervals[amin,amax] and [bmin,bmax] are dis-
joint if and only if diff > 0. And from the Separating
Axis Theorem we know that

(diff > 0)⇒ separation. (6)

Eqs. (3)–(6) show the computations that need to be done
for each DOP test (and hence cannot be precomputed).

4.3 Fixed-Point Arithmetic
In hardware floating-point arithmetic is very expensive
with respect to circuit size and depth. Unfortunately,
simply rounding DOP coefficients to fixed-point num-
bers would result in false negatives, because the inter-
vals on the test axes could become smaller than the pro-
jection of the enclosed object. These false negatives are
inacceptable, because we might miss collisions. Naïve
rounding of the mapping vectorsPA andPB would lead
to even more false negatives since distance of the im-
ages could be overestimated. Hence we need to round
in a manner such that each fixed-point DOP image con-
tains the according floating-point image (see Fig. 2).

First, we need to handle the smaller scale of fixed-
point numbers by dividing all DOP coefficients of all
DOPs by the largest absolute value of the DOP coeffi-
cients in the scenario. This way, 16 bit accuracy still
allows for having DOPs the size of a skyscraper and of

Journal of WSCG 19 ISBN 1213-6972 ISBN 80-86943-09-7

a 6mm screw. 36 bit even allow for DOPs the size of
the sun and of a screw.

Let rounding of the DOP coefficients tob bits after
the point towards+∞ be denoted bya′i = daie. Clearly,
the rounded (i.e., fixed-point) DOP contains the original
one. Then,εi = a′i −ai is the resulting rounding error,
with 0≤ εi < 2−b.

By ensuring that the dihedral angle between all pairs
of neighboring faces of a DOP is larger thanπ/2, all
PA,i are in the interval[−1,0] [7].2

RoundingPA,i towards−∞ to c bit accuracy results
in a rounding error 0≤ ηi = PA,i −P′

A,i < 2−c.
By simply truncatingPA,i , the resulting image would

become too small in case of negative DOP coefficients,
whereas always rounding up would create the same
problem with positive coefficients. Fortunately, we can
solve this during calculation simply by adding 2−c to
bPA,ic before multiplication with negative DOP coeffi-
cients.

Let a′ := (a′jA,0
,a′jA,1

,a′jA,2
) anda′k := (a′jA,0+k/2,

a′jA,1+k/2,a
′
jA,2+k/2). Let sn(x) be the sum of allxi < 0.

Then, correct rounding of the images amounts to:

a′min = P′
A ·a′+2−csn(a′)

a′max =−(P′
A ·a′k +2−csn(a′k))

(7)

Finally, when computing diff1, we can simply trun-
catep to z bits (p′ = bpc). This can create only false
positives, because a smallerp′ only decreases the ap-
parent distance between the two DOP images. For diff2

we need to roundp up todpe, which, again, can be done
efficiently by adding 2−z to bpc.

Overall, calculating the distances of the fixed-point
DOP images amounts to

diff ′1 = (a′min + p′)−b′max

diff ′2 = b′min− (a′max+(p′+2−z))
(8)

diff ′ = max(diff ′1,diff ′2) (9)

Now the condition for separation can be given analo-
gously to Eq. 6:

((diff ′1 > 0) or (diff ′2 > 0))⇒ separation. (10)

Simulations done early in the design process showed
that fixed-point accuracy influences calculation time
(Fig. 3). Below 18 bits accuracy, an increasing num-
ber of false positives occurs compared to the floating-
point implementation and decreases calculation speed.
Above 18 bits, a second memory burst is needed to
fetch DOP coefficients from DDR-RAM.

2 This is no hard restriction since every well-constructed DOP should
not have acute angles to improve tightness of fit (even for oblong
objects in random orientation).

4.4 Bound on Fixed-Point Deviation
In this section we will derive a bound on the deviation
of the fixed-point image from the mathematically cor-
rect image. Let err denote this deviation (calledfixed-
point error in the following)

err := diff −diff ′ (11)

Since diff is defined as max(diff1,diff2) (and diff′

analogously) we know that

err1 := diff1−diff ′1
err2 := diff2−diff ′2

(12)

min(err1,err2)≤ err≤ max(err1,err2) (13)

Inserting Eqs. (3)–(5) and (7)–(9) into Eq. (12) yields

err1 =(PA ·a−P′
A ·a′)−2−c ·sn(a′)

+(PB ·bk−P′
B ·b′k)−2−c ·sn(b′k)

+(p− p′)

(14)

and err2 can be calculated analogously.
To calculate bounds on err1 and err2 we need to

bound the errors caused by products of mapping vec-
tors and DOP coefficients. Since this is all very similar,
we show how it is done, for example, forPA ·a−P′

A ·a′.

PA ·a−P′
A ·a′

=(PA−P′
A) ·a′+PA · (a−a′)

=
2

∑
i=0

(PA,i −P′
A,i) ·a′jA,i

+
2

∑
i=0

PA,i · (a jA,i −a′jA,i
)

=
2

∑
i=0

a′jA,i
≥0

(PA,i −P′
A,i) ·a′jA,i

+
2

∑
i=0

a′jA,i
<0

(PA,i −P′
A,i) ·a′jA,i

+
2

∑
i=0

PA,i · (a jA,i −a′jA,i
)

(15)

The cross sum of any mapping vector can be inter-
preted as the image of a vertex of the maximum DOP
(all di = 1). Assumermax to be the greatest distance
andrmin = 1 to be the smallest distance of a vertex of
the maximum DOP to the origin. Then−rmax is a lower
bound and−rmin is an upper bound for the cross sum of
any mapping vectorP.

Let sp(x) be the sum of allxi ≥ 0 analogously to
sn(x), the sum of allxi < 0.

With the known boundaries

-1≤ a′i ≤ 1 -2-b ≤ ai-a′i ≤ 0

-1≤ PA,i≤ 0 0≤ PA,i-P′
A,i≤ 2-c

0≤ p-p′ ≤ 2-z

Journal of WSCG 20 ISBN 1213-6972 ISBN 80-86943-09-7

we can bound all summands of Eq. (15):

0·sp(a′)≤
2

∑
i=0

a′jA,i
≥0

(PA,i −P′
A,i) ·a′jA,i

≤ 2−c ·sp(a′)

2−c ·sn(a′)≤
2

∑
i=0

a′jA,i
<0

(PA,i −P′
A,i) ·a′jA,i

≤ 0·sn(a′)

−rmin ·0≤
2

∑
i=0

PA,i · (a jA,i −a′jA,i
) ≤−rmax· (−2−b)

Along with Eq. (15) this amounts to

2-c ·sn(a′)≤ PA ·a−P′
A ·a′ ≤ 2-c ·sp(a′)+ rmax·2-b

(16)

Inserting Eq. (16) into Eq. (14) yields

err1 ≤2−c ·sp(a′)+ rmax·2−b−2−csn(a′)

+2−c ·sp(b′k)+ rmax·2−b−2−csn(b′k)+2−z

(17)

and

err1 ≥2−c ·sn(a′)−2−csn(a′)

+2−c ·sn(b′k)−2−csn(b′k)+0 = 0
(18)

Calculating bounds on err2 can be done analogously
and results in

err2 ≤2−c ·sp(b′)+ rmax·2−b−2−csn(b′)

+2−c ·sp(a′k)+ rmax·2−b−2−csn(a′k)−0+2−z

(19)

and

err2 ≥2−c ·sn(b′)−2−csn(b′)

+2−c ·sn(a′k)−2−csn(a′k)−2−z+2−z = 0
(20)

Since we ensured that the dihedral angles between all
pairs of neighboring faces exceedπ/2, rmax is bounded
by

√
3 [7]. Combining this with Eqs. (17)–(20) and

inserting the result in Eq. (14) yields the overall result

0≤ err≤
√

3 ·2−b+1 +6·2−c +2−z (21)

This gives a bound on the deviation of the image size
of a fixed-point DOP with respect to the exact image.
Additionally, it formally proves that no false negatives
can occur.

5 THE ARCHITECTURE

5.1 The Pipeline
Combining Eqs. (7)–(10) results in the overlap condi-
tion

P′
A ·a′+2-csn(a′)+P′

B ·b′k +2-csn(b′k)+ p′ > 0

or

P′
B ·b′+2-csn(b′)+P′

A ·a′k +2-csn(a′k)-(p′+2-z) > 0

⇒ separation

(22)

Eq. (22) is divided into seven stages to enable pipelin-
ing.

 0

 5

 10

 15

 20

 25

 30

 8 12 16 20 24 28 32 36 40 44

tim
e

(m
se

c)

fixed point precision (bits)

32bit float
fixed point

Figure 3: Speed of fixed-point arithmetic for different
bit widths. Beyond 18 bits a second, and beyond 40
bits a third memory burst is needed.

Selection.Stage one selects the 12 out ofk DOP coeffi-
cients defining the outer (maximal) vertices for a given
candidate separating axis based on the correspondences
(jA, jB).3 CorrespondencesjA and jB contain the indices
of 6 of them. The indices of the 6 remaining ones can be
derived by simply increasing these indices each byk/2.
Since we assume wrap around indexing here, this does
not need any combinational hardware, but can be done
by simply feeding the coefficients into the multiplexers
in modified order.
Scalar Products and Fixed-Point Correction. Stages
two to five implement the calculation of the scalar prod-
ucts and the fixed-point correction term. So, DOP
coefficients have to be multiplied byP′-vector entries
and summed up by an adder tree. Additionally,p′

(−(p′ + 2−z) in case of diff′2) is added. Concurrently,
negative DOP coefficients are selected and accumu-
lated. Stage six adds the results of both summations.
Multiplying by 2−c is done implicitly by shifting.
Result. Testing max(diff ′1,diff ′2) > 0 is done by negat-
ing the conjunction of the sign bits.

5.2 Overall Design
The overall architecture is shown in Fig. 4. The cal-
culation is initialized by the host system by sending
(P′

A,P′
B, p′, jA, jB) and the addresses of the DOP-trees

to the hardware. A controller keeps track of DOP over-
lap tests that must still be executed and requests the
needed DOP coefficients and triangle data. The mod-
ule "GetData" reads them from memory concurrently
to the current calculation. As soon as the parameters
are loaded and the last calculation is finished, it feeds
them into the pipeline (or the triangle-unit respectively).
The pipeline receives not only the DOP coefficients but
(from the controller) the data for the next axis test.

3 There are 2k-DOPs, 2 maximal vertices per DOP, and 3 coefficients
defining each vertex (see Section 4.1).

Journal of WSCG 21 ISBN 1213-6972 ISBN 80-86943-09-7

P
ip

e
lin

e

Controller

B
V

-S
ta

c
k

P
ip

e
D

a
ta

(a
d

d
re

s
s
e

s
,

la
s
t)

BV-
control

GetData

a b

Host FPGA

Axis-
control

Tria
n
g

le
-U

n
it

bnewanew

DDR-RAM

A
P
I

control

Iast

Iast

addresses

addresses
result

(separation
on axis)

BV-para-
meters

test axis

Triangle-data

test
axes

Triangle-
intersections

control

Figure 4: The complete intersection test hardware.

For each DOP pair,n axes are tested. A shift regis-
ter ("PipeData") holds additional bookkeeping informa-
tion. For every pipeline stage it contains the indices of
the processed DOPs and whether the contained calcu-
lation is the last axis test to be executed for the current
DOP pair. If this last axis test leaves the pipeline and
none of the test axes is a separating axis the controller
schedules the child DOPs to be tested. If a separating
axis is found, the remaining calculations belonging to
the same DOP-pair are obsolete. No new axis tests are
initiated and the results of the calculations that are still
in the pipeline will be ignored; no new DOP tests are
scheduled.

[13] showed that scheduling DOP tests in a stack is
far superior to queue control with regards to memory
usage. So, as soon as the stack, pipeline, and the Get-
Data module are empty, and no intersecting triangles
were found, the objects do not intersect and this is re-
ported to the host application. On the other hand, every
intersecting pair of triangles is reported to the host im-
mediately.

To check triangles for intersection we utilize the same
algorithm that was already proposed in [16] and imple-
mented in VHDL in [13]. It transforms both triangles
so that one of them becomes the “unit” triangle. That
way, the checks to be performed on the other triangle
become very simple and standardized.

5.3 Control
As mentioned in Section 3.2, it is not necessary to test
all axesLi whether they are separating axes. Even
more, [14] has shown that it is not efficient to test all
axes for OBBs since the probability of the BV to be dis-
joint decreases rapidly with every non-separating test
axis found so far. Fig. 5 shows that this applies for
DOPs, too.

On the other hand, we want to eliminate disjoint
branches of the DOP trees as early as possible to re-
duce expensive loading of DOP coefficients. Therefore,

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000

se
pa

ra
tio

ns
/B

V
-te

st

test axes count

24

Figure 5: The more axes are tested for intersection the
less probable it is for other axes to be separating.

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

tim
e

(m
se

c)

number of test axes (n)

Figure 6: For fixed k = 24, our design performs best
using n = 24 on the target architecture.

we determined whichn≤N gives the best trade-off be-
tween axis-testing and parameter-loading. As Fig. 6 in-
dicates,n= 24 yields the optimum performance for 24-
DOPs and the given memory architecture. 24 axis-tests
suffice to test all candidate separating axes generated
from the 12 face-orientations of each DOP. Although
this exceeds the time to load a complete set of DOP-
coefficients (only 20 clock-cycles) by 4 cycles, testing
24 axes seems to reduce the number of false positives
enough to yield a performance gain.

Still, there is no reason to stop testing axes if the next
DOP-pair is not completely loaded yet. This can hap-
pen, for instance, if the memory subsystem is occupied
by triangle data. As shown in Fig. 7 continued axes
testing until the next set of DOP-coefficients is fetched
from memory speeds-up calculation.

6 RESULTS
The target architecture is a Xilinx Virtex II (XC 2V6000,
speed grade -4) on an Alpha Data ADM-XRC-II board
with 256 MB DDR-RAM at 100MHz connected via a
64 bit wide bus. The FPGA features 144 18-bit multi-
pliers and 6 million gate equivalents. CoCentric from

Journal of WSCG 22 ISBN 1213-6972 ISBN 80-86943-09-7

 0

 10

 20

 30

 40

 50

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

tim
e

(m
se

c)

distance

FPGA-accelerated (n = 24)
FPGA-accelerated (n >= 24)

Figure 7: Testing further axes until next DOP-pair is
loaded yields a speed-up.

Synopsys was used to compile SystemC RTL to VHDL
code. Synthesis, Place, Route and Mapping were done
with Xilinx ISE 6.3.

6.1 Synthesis Results
Although 19-bit accuracy performs best on our test data
with respect to calculation time (Fig. 3), we decided
to implement the pipeline for 35 bits fixed-point 24-
DOPs to tolerate bigger differences in DOP size (see
Section 4.3). Since the target architecture features 18-
bit multipliers only, this results in two extra pipeline
stages to implement 35-bit pipelined multipliers.

Overall, the pipeline utilizes a total of 7278 out of
33792 slices (21%= 1,260,000 million gate equiva-
lents). Maximum clock frequency is 111.117MHz.

6.2 Benchmarking
All results presented here were obtained with two iden-
tical objects (a car headlight) with 5947 triangles [13].
They are placed at different distances from each other
and with different rotations. For each constellation, the
time to detect all intersecting triangles is determined.
Fig. 8 shows the comparison of our new architecture
with a state-of-the-art software intersection test running
on a 1 GHz Pentium III with 512 MByte main mem-
ory. Memory bandwidth and speed are identical on both
systems and hence allow for a direct performance com-
parison. The presented acceleration hardware yields a
speed up of about factor 4.

7 CONCLUSION AND FUTURE WORK
We have presented a novel algorithm for hierarchi-
cal collision detection of pairs of virtual objects. We
have also presented a highly space-efficient, FPGA-
optimized architecture implementing this algorithm on
an FPGA using fixed-point arithmetic. The fixed-point
calculations do not produce any false negatives, and we
have given bounds on the deviations from floating-point
arithmetic.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

tim
e

(m
se

c)

distance

software
FPGA-accelerated

Figure 8: The presented architecture is approximately
4 times faster than a state-of-the-art software intersec-
tion test.

Simulation results for collision queries using this ar-
chitecture proved that a speed-up of 4 compared to
state-of-the-art software intersection tests on a standard
CPU can be obtained. Taking earlier ASIC-targeted re-
sults into account [13], we conclude that an ASIC im-
plementation of our novel algorithm and architecture
will perform by one or two orders of magnitude faster
than a software implementation and even the FPGA-
implementation. Synthesis results proved the design to
be highly space-efficient.

In addition, our novel DOP overlap test algorithm
lends itself well to parallelization. Only a slight mod-
ification of the controller is necessary to use multiple
pipelines to test multiple candidate separating axes in
parallel. In conjunction with its low area consumption,
this allows for an easy implementation of a highly par-
allelized architecture with an expected speed-up linear
to the number of pipelines.

Here, memory bandwidth becomes the limiting factor
for speed of collision queries. Possible solutions could
be compression of DOP coefficients and the introduc-
tion of a cache.

Another important topic is fixed-point accuracy. Here,
a lot of different ways to get smaller projections are
conceivable.

Collision detection of deformable objects is another
important issue. It remains an open problem, which al-
gorithms and data structures are best suited for hard-
ware implementation. Furthermore, we will evalu-
ate different kinds of primitives like quadrangles and
NURBS.

REFERENCES
[1] Ageia. White paper, May 2005. http:

//www.ageia.com/pdf/wp_2005_3_
physics_gameplay.pdf .

[2] George Baciu, Wingo Sai-Keung Wong, and Han-
qiu Sun. RECODE: an image-based collision de-

Journal of WSCG 23 ISBN 1213-6972 ISBN 80-86943-09-7

tection algorithm. The Journal of Visualization
and Computer Animation, 10(4):181–192, Octo-
ber - December 1999. ISSN 1049-8907.

[3] Jens Eckstein and Elmar Schömer. Dynamic Col-
lision Detection in Virtual Reality Applications.
In Proc. The 7-th Int’l Conf. in Central Europe on
Comp. Graphics, Vis. and Interactive Digital Me-
dia ’99 (WSCG’99), pages 71–78, Plzen, Czech
Republic, February 1999. University of West Bo-
hemia.

[4] Stefan Gottschalk, Ming Lin, and Dinesh
Manocha. OBB-Tree: A Hierarchical Struc-
ture for Rapid Interference Detection. InSIG-
GRAPH 96 Conference Proceedings, Holly Rush-
meier, Ed., pages 171–180. ACM SIGGRAPH,
Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996.

[5] Naga K. Govindaraju, Stephane Redon, Ming C.
Lin, and Dinesh Manocha. CULLIDE: Interac-
tive Collision Detection Between Complex Mod-
els in Large Environments using Graphics Hard-
ware. InGraphics Hardware 2003, pages 25–32,
July 2003.

[6] Alexander Gress and Gabriel Zachmann. Object-
Space Interference Detection on Programmable
Graphics Hardware. InSIAM Conf. on Geomet-
ric Design and Computing, M. L. Lucian and
M. Neamtu, Eds., pages 311–328, Seattle, Wash-
ington, November13–17 2003. Nashboro Press.

[7] Stefan Hochgürtel, Andreas Raabe, Gabriel Zach-
mann, and Joachim K. Anlauf. Collision Detec-
tion for k-DOPs using SAT with Error Bounded
Fixed-Point Arithmetic. Tech. rep., University
of Bonn, September 2005. http://www.
collisionchip.de .

[8] P. M. Hubbard. Collision detection for interactive
graphics applications.IEEE Transactions on Visu-
alization and Computer Graphics, 1(3):218–230,
September 1995. ISSN 1077-2626.

[9] Jan Klein and Gabriel Zachmann. The Ex-
pected Running Time of Hierarchical Colli-
sion Detection. InSIGGRAPH 2005, Poster,
Los Angeles, August 2005. http://www.
gabrielzachmann.org/ .

[10] Dave Knott and Dinesh K. Pai. CInDeR: Colli-
sion and Interference Detection in Real-Time Us-
ing Graphics Hardware. InProc. of Graphics In-
terface, Halifax, Nova Scotia,Canada, June11–13
2003.

[11] Karol Myszkowski, Oleg G. Okunev, and
Tosiyasu L. Kunii. Fast collision detection be-
tween complex solids using rasterizing graphics
hardware.The Visual Computer, 11(9):497–512,
1995. ISSN 0178-2789.

[12] Andreas Raabe, Blazej Bartyzel, Joachim K. An-
lauf, and Gabriel Zachmann. Hardware Accel-
erated Collision Detection — An Architecture
and Simulation Results. InDesign Automation
and Test (DATE), Munich, Germany, March7–
11 2005.http://www.gabrielzachmann.
org/ .

[13] Andreas Raabe, Blazej Bartyzel, Joachim K. An-
lauf, and Gabriel Zachmann. Hardware Accel-
erated Collision Detection — An Architecture
and Simulation Results. InDesign Automation
and Test (DATE), Munich, Germany, March7–11
2005.http://www.collisionchip.de .

[14] Gino Johannes Apolonia van den Bergen.Colli-
sion Detection in Interactive 3D Computer Ani-
mation. PhD dissertation, Eindhoven University
of Technology, 1999.

[15] Gabriel Zachmann. Rapid Collision Detection
by Dynamically Aligned DOP-Trees. InProc. of
IEEE Virtual Reality Annual International Sympo-
sium; VRAIS ’98, pages 90–97, Atlanta, Georgia,
March 1998.

[16] Gabriel Zachmann and Günter Knittel. An
Architecture for Hierarchical Collision Detec-
tion. In Journal of WSCG ’2003, pages 149–
156, University of West Bohemia, Plzen, Czech
Republic, February3–7 2003.http://www.
gabrielzachmann.org/ .

[17] Gabriel Zachmann and Günter Knittel. High-
Performance Collision Detection Hardware. Tech.
Rep. CG-2003-3, University Bonn, Informatikk
II, Bonn, Germany, August 2003. http://
www.gabrielzachmann.org/ .

Journal of WSCG 24 ISBN 1213-6972 ISBN 80-86943-09-7

Making Grass and Fur Move

Sven Banisch and Charles A. Wüthrich
CoGVis/MMC – Faculty of Media

Bauhaus-University Weimar

D-99421 Weimar (GERMANY)

E-Mail: [sven.banisch|caw]@medien.uni-weimar.de

ABSTRACT
This paper introduces physical laws into the real–time animation of fur and grass. The main idea to achieve this,
is to combine shell-based rendering with a mass-spring system. In a preprocessing step, a volume array is filled
with the structure of fur and grass by a method based on exponential functions. The volumetric data is used to
generate a series of two dimensional, semitransparent textures that encode the presence of hair or of the blades.
In order to render the fur volume in real–time, these shell textures are applied to a series of layers extruded above
the initial surface. Moving fur can be achieved by horizontally displacing these shell layers at runtime through
a mass–spring mesh. Four different mass–spring topologies – different arrangements of masses and springs over
the grass–covered surface – are introduced and used for animation. Two of them allow the shell layers to separate
laterally, so that the ”parting” of grass can be simulated. Performance observations prove mass-spring systems to
be well-suited for the real–time simulation of fur and grass dynamics.

Keywords
Computer Graphics, Real–Time Animation, Physically–Based Simulation, Mass–Spring Systems

1 INTRODUCTION
Fur and grass are natural materials the real–time ren-
dering of which has attracted many computer graphics
researchers in the past years. High performance tech-
niques for their fast rendering have been developed. A
realistic animation, however, also requires an appro-
priate simulation of the dynamic behavior of the mate-
rial. There are rare attempts focussing on this problem
(e.g., [23, 14, 7]), but they do not yet use an adequate
physical description, and therefore, do not yet provide
a satisfactory solution. The motivation of this paper
is to develop such a physically–based approach by in-
troducing Newtons laws of motion into the real–time
animation of fur and grass.

The most common method to render fur– and grass–
covered surfaces in real–time is to represent the vol-
umetric structure as a series of layers which are ex-
truded above the initial surface and textured with
semi–transparent hair textures. This method (called
shell–based rendering) was introduced by Lengyel in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

2000 [17] and was subsequently improved during the
following years [16, 10, 7, 26]. A dynamical simula-
tion of the surface structure can be achieved if the shell
layers are horizontally displaced under the influence of
external forces [16].

The main issue of this paper is to analyze if, and in
what way, mass–spring systems can be used to deter-
mine the shell layer displacement, hence, if such sys-
tems can form a suitable physical model for the real–
time simulation of fur and grass dynamics.

A mass–spring system is a set of mass points which
are linked by springs. They are usually arranged in a
fixed topology. Mass–spring systems are mainly used
for the real–time simulation of deformable objects, in
particular, they are often involved into the simulation
of cloth–like objects [3, 21, 8, 13, 29]. To research
the applicability of mass–spring systems in the anima-
tion of fur and grass a topology of masses and springs
(called mass–spring topology) is generated over the
fur–covered surface represented by Lengyel’s method.
The shell method and the mass–spring system are
combined to simulate movement.

The remainder of this paper is organized as follows:
Section 2 presents a selection of previous related work.
Section 3 describes basic algorithms involved into the
dynamic grass simulation, and Section 4 then shows
how these algorithms have been combined. The sim-
ulation results achieved by this combination are pre-
sented in Section 5. Finally, Section 6 sums up this
work and points out issues for future development.

Journal of WSCG 25 ISBN 1213-6972 ISBN 80-86943-09-7

2 PREVIOUS WORK
Our approach combines two techniques which are
well–developed and have been frequently used in the
last years: the shell method as a real–time rendering
technique for furry surfaces, and the mass–spring sys-
tem used for the real–time simulation of deformations.
In the following, very briefly, both techniques are sep-
arately considered.

Fur and Grass in Computer Graphics
For more than 20 years the image synthesis of grass
has been an attractive topic of computer graphics. An
early proposal by Reeves and Blau was based on parti-
cle systems. Particles were used to create the structure
of grass as well as to render it [24]. Following the idea
of representing hair as a set of particle traces, Kajiya
and Kay introduced the texel – a three dimensional ar-
ray that stores the hair data – and arranged these texels
over an initial surface which is then rendered via ray
tracing [12]. With both proposals high–quality image
of grass and fur could be achieved at rendering times
far beyond real–time.

In 1998, Meyer and Neyret [20] introduced interac-
tive three dimensional textures using a method called
slicing. This technique could be adapted to the more
specific case of fur in 2000 by Lengyel [17]. His work
proposed shell-based rendering for the animation of
fur and grass in real–time. The shell method repre-
sents a furry surface as a series of concentrically or-
dered shell layers. The structure of fur and grass is
encoded into the alpha channel of the shell textures,
which are then applied one by one to their respective
shell layers. Since 2000, there have been various au-
thors (e.g., [16, 10, 7, 26]) addressing a more realistic
real–time animation of fur and grass, basically, by im-
proving the visual quality and the flexibility of shell-
based rendering.

To the authors knowledge, there are only two at-
tempts to a dynamic simulation of fur and grass dis-
played by a series of shell layers. The first one is a
method developed for ATIs RADEON 8000 graphic
card series which uses the programmable graphics
hardware for the rendering as well as for the dynamical
simulation [14]. The fur–covered object is rendered in
two stages: one to compute the shell layer displace-
ment, and a second one to draw the fur. The second
idea, proposed in 2003 [7] and extended in 2004 [26],
introduces so called ”wind vectors” which, stored at
each vertex of the object, determine the shell layer dis-
placement. Global forces resulting from wind, gravity,
motion and momentum are considered for the calcula-
tion the individual ”wind vectors”. Both attempts do
not use the Newtonian laws of motion, and a ”damping
force” is added by ”merging” the forces of two consec-
utive frames.

Mass–Spring Systems
Mass-spring systems are quite frequently used models
to approximate the physical behavior of deformable
objects (e.g., [22, 3, 8, 5, 15, 13, 21, 11]). They are
easy to understand and to implement, highly paral-
lelizable [29], and can achieve real–time rates. The
nonrigid object is modeled as a set of mass points and
springs in a fixed topology. The forces in between
two masses are linearly approximated with Hooke’s
law and neglected for points that are not connected by
a spring. These assumptions diminish the number of
computations, so that mass-spring systems can simu-
late complex deformable objects at interactive rates.

Nevertheless, mass-spring systems do involve the
solution of a system of ordinary differential equations
(ODEs), because they base on Newtons fundamental
law ~F = m~a. In order to solve the equations of motion
and to simulate such a system over time, a discretiza-
tion in time has to be applied. A discrete time step
is introduced and used for the numerical time integra-
tion of the equations ”governing” the motion. Numer-
ical time integration methods include explicit meth-
ods, such as the Runge Kutta method, and implicit
predictor-corrector schemes.

The range of problems mass–spring systems have
been used to solve is rather wide: from the simu-
lation of cloth–like objects in virtual environments
(e.g., [21, 8, 13, 29]), where detailed overviews are
available [3, 18], over the simulation of rigid bod-
ies attached to elastic ones [11], to the simulation of
hair(e.g., [25, 1, 28, 27]), where the recent techno-
logical advances are summarized in [19]. Within this
work, ways of adjusting masses and springs to shell–
based rendering have been developed, so that the range
of application of mass–spring systems is widened.

3 BASIC ALGORITHMS
This section briefly discusses the three basic compo-
nents involved into the grass animation: shell–based
rendering, shell texture generation and mass–spring
systems.

Shell–Based Rendering
The implementation of the shell method was based on
Lengyel’s initial proposal [17] as well as on the en-
hancements proposed in [16]. A number of shell lay-
ers (ranging from 12 to 128 in this work) is extruded
above the initial surface (”skin”) of the object. This
extrusion is determined by the surface normal vectors,
specifying the direction, and the inter–shell distance,
giving the distance between two consecutive layers.

Figure 1 illustrates the arrangement of the shell lay-
ers. To make the shell layers represent fur or grass,
the corresponding semitransparent shell textures are
applied to them. Figure 1b illustrates how this works.

Journal of WSCG 26 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

Figure 1: Shell layers are extruded above the initial
surface (a), and shell textures are applied to them (b).

The shell textures only encode the structure of grass.
Visual attributes, such as color and shadow, have to be
added to obtain appealing renderings. In this work,
per pixel lighting on programmable graphics hardware
has been used to gain a higher flexibility in combining
colors and evaluating different lighting models. The
color is determined by the color of the initial surface,
either by a ”skin” texture or by per vertex colors. The
shadow which individual blades throw onto each other
(self–shadowing) is approximated by darkening the
shell layers the closer they are to the initial surface1.
Finally, a diffuse shading model, based on Lambert’s
cosine law, is applied to the furry surface. Figure 2 il-
lustrates how adequate renderings of the furry dog are
achieved by adding color, self–shadow and shading to
the structure represented by concentric shell layers.

Shell Texture Generation
The generation of shell textures is of vital importance
to the visual result of the shell method. The textures
should encode the structure of fur and grass in a real-
istic fashion. The structure of fur and grass is rather
simple: a large number of distinct individual elements
is stochastically distributed over a surface. Most fre-
quently, particle systems have been used to generate
these individual elements (e.g., [24, 12, 17, 16, 10]).

There is, however, another generating method,
which uses exponential functions to define the shape
of the individual blade [4]. A large number of these
curves is distributed within a volume data set which is
then used to generate the shell textures by horizontally
slicing it. To make the structure inhomogeneous,
so to say more realistic, the stochastic parameters
length, direction of inclination and bending are
introduced and applied to each individual. This simple
method proved to be well–suited for the generation of
grass–like structures.

Following an idea thought by Kajiya and Kay in
1989 [12], we additionally generate an ”undercoat” – a
dense coat of short hair – in order to model an accurate
structure of fur as well.

1The most distinctive characteristic of shadow within grass and
fur is that it increases the further one approaches the ground. The
method proposed in [2] is based on this characteristic.

Mass–Spring System
A mass-spring system is a fixed topology of mass
points which are connected by springs. The anima-
tion of a system of n mass points requires the solution
of the system of n second order ODEs

Mp̈ = F (t, p, ṗ). (1)

The n× n dimensional matrix M stores the masses of
all mass points on its diagonal, the n dimensional vec-
tor p = (p1, p2, . . . , pi, . . . , pn)T represents the posi-
tions of all points, and F is a function which describes
the forces on the system at the time t. This system of
n second order ODEs can be reduced to the system of
2n ODEs of first order

d

dt

(
p
ṗ

)
=

d

dt

(
p
v

)
=

(
v

M−1F (t, p, v)

)
(2)

by substituting v = ṗ, where v is a n dimensional
vector containing the velocities of all mass points.

There are several different methods to numerically
solve such a system of ODEs. Explicit methods are
very fast at the expense of accuracy and possible insta-
bilities. Implicit methods are considered more stable,
but are computationally more expensive. Since it was
not clear how fast the mass–spring system has to be for
the physical simulation of fur and grass, and how sta-
ble it behaves, both an explicit and an implicit mass–
spring solver have been implemented. A detailed de-
scription of both solvers will not be presented within
this paper. We refer the reader to standard literature on
ODE solvers (e.g., [6, 3, 9]).

4 COMBINING THE METHODS
Grass represented by a series of shell layers moves if
the shell layers are horizontally displaced [16]. All the
previously proposed methods for moving grass anima-
tion use this characteristic [14, 7, 26]. The methods
differ in the way the shell layer displacement is deter-
mined, hence in the physical laws modeling the grass
movement.

In this work, mass–spring systems form this phys-
ical model. In order to combine such a system with
Lengyel’s rendering method, masses and springs are
generated over the surface and attached to the shell
layers. Different arrangements of masses and springs
are called mass–spring topologies, and will be de-
scribed first. After that, the method by which the
movement of mass points is transformed into shell
layer movement will be described.

Mass–Spring Topologies
The first and most simple mass–spring topology is
called spring–stick topology. At each vertex of the ini-
tial surface two mass points are generated – the first
one attached to the initial surface by setting its mass

Journal of WSCG 27 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b) (c) (d)

Figure 2: Creating the image of fur by adding color (b), self–shadowing (c) and a diffuse shading (d) to the fur
structure (a).

sufficiently large, and the second one connected to the
uppermost shell layer. Both points are connected by
a single spring. In Figure 3, the results of the spring–
stick topology generated over an entire surface are il-
lustrated.

(a) (b)

Figure 3: Spring–sticks applied to a single triangle (a)
and to a sphere (b).

The second topology is called prism topology since
the masses and the springs form a prism on each sur-
face triangle. Mass points are generated in the same
way as it was done for the spring–stick topology. Also
corresponding to the spring–sticks, the mass points are
vertically linked by a spring. Additionally, we connect
the mass points on the uppermost shell layer by gener-
ating springs along the edges of the uppermost layer.
The resulting prisms are shown in Figure 4.

An interesting effect in grass animation is the simu-
lation of parting. Parting means that fur and grass can
be split, and that clusters of hair can move indepen-
dently from other ones. This effect can be simulated
if shell layers separate laterally2. The parting of fur
and grass has been integrated into this work by imple-
menting two additional topologies – separable spring–
sticks and separable prisms.

Both separable mass–spring topologies are build by
treating the triangles separately for the generation of
mass points and springs. The triangles of the initial
surface are handled one by one to attach a mass point

2In [16], Lengyel et al. already saw this possibility.

(a) (b)

Figure 4: Prisms applied to a single triangle (a) and to
a sphere (b).

to each of its vertices. Then, mass points are assigned
to the vertices of the corresponding uppermost shell
layer triangle. The way springs are generated depends
on the respective mass-spring topology. In fact, we
treat every triangle as being a distinct surface, as a re-
sult that the number of mass points and springs needed
for an entire surface is increased using these topolo-
gies. The separable topologies, however, allow the
simulation of parting since neighboring shell layer tri-
angles are not connected. This is shown in Figure 5b.

(a) (b)

Figure 5: Neighboring shell layer triangles are con-
nected (a). The shell layers separate laterally (b).

Of course, there are further possibilities of arrang-
ing masses and springs over a surface. More springs
could be added to connect masses of the initial sur-
face and masses of the uppermost shell layer. Also,
mass points could be attached to a larger number
of layers. This paper, however, only considers the

Journal of WSCG 28 ISBN 1213-6972 ISBN 80-86943-09-7

four mass–spring topologies spring–sticks, separable
spring–sticks, prisms and separable prisms which have
been introduced above.

The mass-spring topologies are generated in a pre-
processing step. During the real time simulation, ex-
ternal forces are calculated and applied to the respec-
tive mass points. Then, the mass points positions are
updated by the mass-spring solver. In the current state
of the application, the external forces are with respect
to gravity, wind and motion of the object. Addition-
ally, it is possible to locally apply forces by user input.

Shell Layer Displacement
Masses are attached to the initial surface and to the up-
permost shell layer only. For this reason, a method to
determine the shell layer displacement of layers which
are not connected to a mass point is necessary. Such a
method should approximate the natural bending of the
blades. Bakay [7] proposes a technique which is based
on trigonometric functions. However, this method
is computationally expensive, and a new method has
been developed.

During runtime, for every vertex, we first compute
the scale vector

~si,j =
pj − pi

|pj − pi|
, (3)

which is defined by the positions of its two mass points
pi, pj . Since fur is usually rendered at large scales, it
will often be sufficient to linearly displace the shell
layers along this vector as shown in Figure 6a.

(a) (b)

Figure 6: Linear displacement (a) and the approxima-
tion of the natural bending (b).

In order to obtain an approximation matching better
natural bending, the shell layer displacement is com-
posed of a horizontal part ~h(li) and a vertical one
along the vertex normal vector ~n. The quantity of
vertical displacement is determined by the fixed inter-
shell distance. The horizontal displacement is defined
by

~h(li) =
(

i

nlayers

)k

(~s− ~n), (4)

which increases with the height of the layer li. Fig-
ure 6b shows how the shell layers separate from the
straight line defined by the vertical springs. Note that
the mass points, initially created on the uppermost

layer, separate from it. This is because of the vertical
displacement determined by the fixed value.

With combining the mass-spring system and the
shell method as described, there is one general diffi-
culty: once an external force has been applied to a
mass point, it is free to move and does not return to
its initial position. Moreover, it is possible that mass
points move to the other side of the initial surface (in-
side the object). Figure 7 illustrates that fur flips to
the wrong side of the surface if the mass points move
accordingly.

(a) (b)

Figure 7: Grass flips to the wrong side of the surface.

In order to solve this problem, we use the normal
vector ~n and the vector ~s to compute forces by which
the mass points on the uppermost layer are forced to
return to their initial position. The force ~F applied to
the respective mass point is calculated by

~F = (~n− ~s)(1− (~n · ~s))w, (5)

where the term (~n−~s) determines the direction of the
force. The term (1 − (~n · ~s)) is zero in rest state, and
increases with the angle formed by ~n and ~s. Addi-
tionally, an adjustable weight w determines the magni-
tude of the force. With this procedure, the mass–spring
topologies always return to their initial state, since the
mass points on the uppermost layer are permanently
forced to return to their initial position. Grass does
therefore not flip to the wrong side of the surface.

5 RESULTS
Performance Analysis
The moving grass animation presented in this paper
was developed and tested on a medium level plat-
form (P4 with 1,7 GHz and 512 MB RAM, Nvidia
GeForce 5700 FX with 256 MB). Benchmarks have
been done for the three different models shown in
Figure 8. Four topologies (spring-sticks, separable
spring-sticks, prisms and separable prisms) are com-
pared with each other regarding to the update times.
The analysis also takes into account how much of the
total time is needed to render the models. Moreover,
the two types of mass–spring solver the explicit and
the implicit variant are considered.

The first model is an elephant, consisting of 623 ver-
tices and 1148 faces. It is rendered with 16 shell lay-
ers, a screen size of 640 × 480 and a screen coverage

Journal of WSCG 29 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b) (c)

Figure 8: An elephant (a), a dog (b) and a square of grass (c) are used for the benchmarks.

(influencing the rendering speed since per pixel light-
ing is used) as shown in Figure 8a. The resolution of
the shell textures, which is an interesting performance
feature if many shell layers are used, is 128 × 128.

The size of the physical system depends on the
mass–spring topology. 1247 mass points and 623
springs (one spring for each vertex) are generated if
spring–sticks are used. In the largest case, using sep-
arable prisms, 6888 mass point and 6888 springs are
generated and have to be updated during every frame.

Figure 9: Update times of the elephant model.

The update times of the elephant model, shown in
Figure 9, prove that the method is fast enough for real–
time use. Spring–sticks and prisms work at update
rates of 22 to 27 frames per second. Even when us-
ing the potentially slower implicit solution method, no
significant slowdown can be noticed. Also, the separa-
ble topologies simulated using the explicit solver run
at update rates which are still interactive. On this ac-
count, the proposed technique is faster than the method
proposed in [26], even though the underlying physical
laws are of higher complexity.

The dog model consists of 1872 vertices and 3220
faces, and is rendered using 12 shell layers. The size of
the screen is 1024 × 768 and the resolution of the shell
textures 128 × 128. The screen coverage is shown in
Figure 8b. The benchmarking results of the second
model are shown below.

The performance evaluation of the dog shows that
the rendering process alone is near the limits of inter-

Figure 10: Update times of the dog model.

active application (≈ 17 FPS). Using the spring-sticks
for the dynamical simulation does not noticeably slow
down the system, and the interactive moving fur sim-
ulation of a model of more than 3000 faces and 1800
vertices is feasible, provided that the number of shell
layers is reduced to 12.

The last model considered here is a grass model
consisting of 13 vertices and 16 faces. It is rendered
with 64 shell layers, a texture resolution of 64 × 64
and a screen size of 640 × 480. The amount the object
covers of the screen is shown in Figure 8c. It is a cru-
cial performance feature for this example since many
shell layers are used to represent the grass.

Figure 11: Update times of the grass model.

We can see only slight differences in the perfor-
mance results. Nearly all the time needed to process
the animation is required by the rendering, not by the
physical system. Even the more complex mass-spring

Journal of WSCG 30 ISBN 1213-6972 ISBN 80-86943-09-7

topologies, simulated by the computationally more ex-
pensive implicit mass-spring solver, can be used for
the physical simulation of long grass without causing
the system to slow down.

The performance analysis shows that the real bot-
tleneck of the system is the shell method, and not
the physical simulation. This is obvious for the grass
example, since the size of the mass-spring system is
very small. But also for the moving fur simulation of
the dog and the elephant, using non-separable topolo-
gies, the computational power needed for rendering
the shell layers takes the greater part of the total per-
formance.

Animation Quality
The usage of a mass-spring system in grass simulation
allows a wide range of different effects. Such a sys-
tem can react to arbitrarily applied forces, and realistic
animation effects can be achieved if the forces that act
on the system approximate the forces acting in the real
world. Mass-spring systems, moreover, provide the
possibility to control the dynamical behavior of fur by
adapting the physical values which determine how the
system behaves.

Figure 12: A close view on the parting of grass.

Unfortunately, it is rather difficult to present anima-
tion results in writing. Therefore, this paper is ac-
companied by a video, which shows furry objects in
captured animation. Furthermore, in order to provide
a rough idea of the quality of animation, Figure 13
shows a sequence of grass waving in the wind. Fig-
ure 12 presents a close view on the parting of grass,
and gives an idea how this feature can enhance the re-
alism of a grass animation.

6 CONCLUSIONS
A new method for the simulation of grass dynamics
has been developed by combining the shell method
and mass–spring systems, so that the range of appli-
cation of mass–spring systems has been widened. Per-
formance observations have proven the methods appli-
cability of being used in a real–time context.

To conclude: mass–spring systems are well–suited
to simulate dynamical effects of grass and fur.

Figure 13: A sequence of grass waving in the wind.

Nevertheless there are several issues that could be
addressed by future work.

First and foremost, it will be fruitful put some effort
in optimizing the implementation, and ways to fully
exploit all capabilities of new graphic cards hardware
should be discussed. We believe that this can speed up
the application greatly.

An important question to be answered concerns the
dynamical effects resulting from motion of the object.
There will be no need to calculate any external force,
if motional changes of the object are directly trans-
formed into motional changes of the mass points on
the skin. Masses on the uppermost shell would react
automatically. It is possible that there will be effects
on stability of the mass-spring system. However, this
way of handling motional changes of the object has to
be implemented in future, since a lot of improvement
to the moving fur animation is to be expected.

With the development of new graphics hardware op-
timized for ray tracing, it might also be possible in fu-
ture, that fur and grass can be interactively rendered
by three dimensional textures, and that the texel ap-
proach [12] will be taken back in consideration. Vi-
sual quality of fur and grass would be improved by
great amounts. The proposed method can be adopted
to simulate the physical behavior of structures repre-
sented by three dimensional textures.

Last but not least, it might be interesting to research
more mass–spring topologies.

All in all, the presented technique yields good re-
sults and will be used for the simulation of fur and
grass in future real–time productions, such as com-
puter games or virtual puppetry.

Journal of WSCG 31 ISBN 1213-6972 ISBN 80-86943-09-7

7 ACKNOWLEDGMENTS
The authors wish to thank all participants of the project
”puppets & hands”. In particular, we thank Tobias
Hofmann, Benjamin Schmidt, Uwe Hahne and Bern-
hard Bittdorf for their support.

References
[1] K. Anjyo, Y. Usami, and T. Kurihara. A simple

method for extracting the natural beauty of hair. In
Proceedings of SIGGRAPH ’92, pages 111–120, 1992.

[2] D. C. Banks. Illumination in diverse codimensions. In
SIGGRAPH ’94, pages 327–334, 1994.

[3] D. Baraff and A. Witkin. Large steps in cloth
simulation. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and
interactive techniques, pages 43–54. ACM Press,
1998.

[4] H. B. Bidasaria. A new method for modeling of
hair-grass type textures. In CSC ’95: Proceedings of
the 1995 ACM 23rd annual conference on Computer
science, pages 109–113. ACM Press, 1995.

[5] D. Bourguignon and M.-P. Cani. Controlling
anisotropy in mass-spring systems. In Proceedings of
the 11th Eurographics Workshop on Computer
Animation and Simulation 2000, Springer Computer
Science, pages 113–123. Springer-Verlag, August
2000.

[6] I. Bronstein, K. Semendjajew, G. Musiol, and
H. Mühlig. Taschenbuch der Mathematik. Verlag
Harri Deutsch, Frankfurt am Main, Thun, third
edition, 1997.

[7] M. Brook Maurice Bakay. Animating and lighting
grass in real-time. Master’s thesis, The University Of
British Columbia, 2003.

[8] M. Desbrun, P. Schröder, and A. Barr. Interactive
animation of structured deformable objects. In
Graphics Interface, pages 1–8, June 1999.

[9] M. Hauth. Visual Simulation of Deformable Models.
PhD thesis, Eberhard–Karls–Universität Tübingen,
2004.

[10] J. Isidoro and J. L. Mitchell. User customizable
real–time fur, 2002. SIGGRAPH 2002 Technical
Sketch, pp.273.

[11] J. Jansson and J. Vergeest. Combining deformable and
rigid body mechanics simulation. The Visual
Computer, pages 280–289, February 2003.

[12] J. T. Kajiya and T. L. Kay. Rendering fur with three
dimensional textures. In SIGGRAPH ’89:
Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, pages
271–280. ACM Press, 1989.

[13] Y.-M. Kang and H.-G. Cho. Complex deformable
objects in virtual reality. In VRST ’02: Proceedings of
the ACM symposium on Virtual reality software and
technology, pages 49–56. ACM Press, 2002.

[14] T. Kano. Dynamic fur demo. ATI Developer: Source
Code http://www.ati.com/developer/indexsc.html.

[15] U. G. Kühnapfel, H. K. Çakmak, and H. Maaß.
Endoscopic surgery training using virtual reality and
deformable tissue simulation. Computers & Graphics,
24(5):671–682, 2000.

[16] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe.
Real-time fur over arbitrary surfaces. In SI3D ’01:
Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 227–232. ACM Press, 2001.

[17] J. E. Lengyel. Real-time hair. In Proceedings of the
Eurographics Workshop on Rendering Techniques
2000, pages 243–256. Springer-Verlag, 2000.

[18] N. Magnenat-Thalmann, F. Cordier, M. Keckeisen,
S. Kimmerle, R. Klein, and J. Meseth. Simulation of
Clothes for Real-time Applications. In Proceedings of
Eurographics 2004, Tutorial 1, 2004.

[19] N. Magnenat-Thalmann, S. Hadap, and P. Kalra. State
of art in hair simulation. International Workshop on
Human Modeling and Animation, Seoul, Korea, pages
3–9, 2002.

[20] A. Meyer and F. Neyret. Interactive volumetric
textures. In Eurographics Rendering Workshop 1998,
pages 157–168. Eurographics, Springer Wein, July
1998.

[21] M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr.
Interactive animation of cloth-like objects in virtual
reality. Journal of Vizualisation and Computer
Animation, 2000.

[22] G. S. P. Miller. The motion dynamics of snakes and
worms. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and
interactive techniques, pages 169–173. ACM Press,
1988.

[23] F. Perbet and M.-P. Cani. Animating prairies in
real-time. In ACM Interactive 3D Graphics, USA,
Mar 2001.

[24] W. T. Reeves and R. Blau. Approximate and
probabilistic algorithms for shading and rendering
structured particle systems. SIGGRAPH ’85 Comput.
Graph., 19(3):313–322, 1985.

[25] R. E. Rosenblum, W. E. Carlson, and E. Tripp, III.
Simulating the structure and dynamics of human hair:
modelling, rendering and animation. 2(4):141–148,
Oct.–Dec. 1991.

[26] G. Sheppard. Real–time rendering of fur. Bachelor
thesis, The University of Sheffield, 2004.

[27] K. Ward and M. C. Lin. Adaptive grouping and
subdivision for simulating hair dynamics. In Pacific
Conference on Computer Graphics and Applications,
pages 234–243, 2003.

[28] X. D. Yang, Z. Xu, J. Yang, and T. Wang. The cluster
hair model. Graphical Models, 62(2):85–103, 2000.

[29] F. Zara, F. Faure, and J.-M. Vincent. Physical cloth
simulation on a pc cluster. In Parallel Graphics and
Visualisation 2002, 2002.

Journal of WSCG 32 ISBN 1213-6972 ISBN 80-86943-09-7

Crowd Self-Organization, Streaming and Short Path
Smoothing

Stylianou Soteris
University of Cyprus
75 Kallipoleos Str.

 Cyprus (CY-1678), Nicosia,

ssotos@ucy.ac.cy

Chrysanthou Yiorgos
University of Cyprus
75 Kallipoleos Str.

 Cyprus (CY-1678), Nicosia,

yiorgos@ucy.ac.cy

ABSTRACT
Pedestrians implicitly cooperate by forming lanes inside dense crowd in order to facilitate flow and prevent
complete passage blocking. Our aim is to re-enforce this self-organization phenomenon in dense crowd for the
purpose of virtual crowd animation and navigation simplification. The mechanism of a flow grid is introduced to
measure flow over an area. The flow grid is a perception mechanism of the surrounding area and favors dynamic
lane formation (streams). It provides feedback to the navigation algorithm of the avatars, to enable them to
choose a route that both meets their goal (wanted direction) and a trajectory that assists in self-organization of
the crowd.
A very simplified yet fairly effective navigation method suitable for dense crowds is also presented. It
demonstrates that self-organization of the avatars can help in simplifying local navigation. The method produces
short distance, intermediate positions ahead in time and, as a post-processing step, smoothes them out before the
avatar needs to use them.

Keywords
Crowd Navigation, Behavioral Navigation, Pedestrian Simulation.

1. INTRODUCTION
Reproducing believable crowds in virtual

environments has always been a challenge. There are
many research topics related to crowds. Such topics
include character rendering, character animation,
navigation, crowd simulation, collision avoidance,
social behaviors and many more.

The focus of this paper is on the collective
behavior of pedestrians, otherwise known as self-
organization. A dense crowd of pedestrians, all
trying to travel to unique and independent directions,
creates a highly dynamic, changing environment.
The pedestrians have to continuously confront many
surrounding avatars whose navigation constantly

changes. It is not possible to try to predict each
opposing pedestrian’s path, as that will probably
change soon. Long distance path planning inside a
dense crowd is futile. For this reason, the flow grid
mechanism is introduced to simplify navigation and
enable crowd self organization.

In the next section a summary of related work on
navigation is presented. Section 3 presents the work
on self-organizing crowd, followed by a description
of the mechanisms needed to make this method
feasible in Section 4. In Section 5 the results of the
method are presented and finally in Section 6 a
summary is presented and future work is discussed.

2. RELATED WORK
Crowd navigation deals with the problem of

steering an avatar inside a large amount of static and
moving obstacles (other avatars). The complexity of
finding a suitable path increases as the density of
moving avatars increases. There are three different
approaches to solving the navigation problem. These
are path planning, reactive navigation and behavioral
navigation. Also of great interest to navigation is the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 33 ISBN 1213-6972 ISBN 80-86943-09-7

computationally expensive collision detection and
avoidance stage.

Most papers treat avatar navigation as a one
person steering and path finding problem. The
motion of an avatar from a starting point to a
destination is treated as a global navigation problem.
Various search algorithms try to find a complete path
from one point to another. The most popular path
planning algorithms are the Randomized Path
Planner [Tsa03a], Probabilistic Road Maps as in
[Kam04],[Sun05],[Sun04] and A* based Algorithms
and variations such as [Cla87a],[Har68a]. In general
path-planning algorithms are not a good option for
dense crowd navigation because continuous re-
planning would be needed due to the high number of
dynamically moving objects. This of course would
be inefficient.

Significant work has been carried in reactive
navigation. Reactive navigation includes force field
methods, rule based methods and XZT space
methods. Force fields have been used by [Kam04],
[Lam04], [Met03] for collision avoidance and
smooth steering, but force fields are expensive to
update. Rule based systems such as [Los03],
[Tcc02],[Tcc01],[Nie03] have proven to be
extremely fast as they can deal with thousands of
avatars. The behaviors produced are limited only, by
the number of rules applied. The Thalmann’s also
provide a good overview of previous work for
groups in [Mus04]. Their work on emergent crowds
is described. They model complex behaviors through
a combination of attributes and rules, and through
finite state machines. Their methods lack a global
vision mechanism, thus forcing them to consider
each neighboring avatar individually when making a
decision. Our method will expand the rule based
approach and add collective behavior by creating the
mechanisms to read the collective behavior of other
avatars in an area. XZT space methods exploit a
space-time representation to better represent the
movements of dynamic objects in space and time.
The added T dimension allows for more accurate
planning since it provides knowledge of the positions
of all avatars ahead of time. Only a few experiments
have been conducted with this method in [Feu00].
The same XZT space approach is also used by
[Tsa03] in path planning for groups.

In behavioral navigation researchers try to
simulate aspects of pedestrian behavior, mainly
grouping, staying together, path following, yielding
etc. Flocking [Rey87] is one such example. More
recent work on behavioral navigation, include
behavior maps [Los03], [Tcc01a], which cause
pedestrians to adopt specific behavior for designated
areas, according to the behavior map. Complete

Sociological models have been proposed by [Sul02]
and [Vil03]. Work on groups has also been carried
out by [Kam04] and [Tsa03] , but it focuses on path
finding and computation optimization for groups
rather than behavioral aspects of group.

In crowd simulation and safety, [Sti00] presents
extensive research with his thesis. Different
behaviors of pedestrians in crowded areas are studied
in detail. [Daa03] also reports on similar self-
organization and other phenomena.

Collision detection/avoidance (CD) is one of the
most expensive operations during navigation.
Collision detection methods include bounding
volume hierarchies, force fields, simple geometric
tests, triangulation methods, proximity queries,
occupancy maps, image-space methods and
stochastic collision detection. A comprehensive
review of CD methods can be found in the tutorial
[Tes05].

3. SELF-ORGANIZING
PEDESTRIANS
General Concept

Pedestrians follow other people when they travel
in the same direction and need effort to overtake
them. It is much easier to slow down and follow
rather than walk into the opposing pedestrian stream
when densely populated. Pedestrians need to be
aware of any lane formation phenomena around them
if they are to use the lanes to their benefit. Large
coherent groups of people are very rare. Pedestrians
form informal groups dynamically as they walk.
They follow a bunch of people going in the same
direction as them to avoid opposing streams
[Mus04], [Daa03].

Overall Description of methodology
Initially a flow grid is constructed over the walk

area. The flow grid measures the densities of
pedestrians and their velocities at various directions.
Thus the flow grid enables us to detect pedestrian
density concentration and dominating direction of
flow at any point in the walk area. The avatars use
the flow grid information during navigation to select
nearby areas that lie towards their final destination
and have smaller opposing flow. In essence they
avoid areas of high density or high opposing flow,
thus lane formation takes place. The avatars continue
to select nearby areas until they reach their final
destination.

A high level path planning and areas/portals
system is assumed on top of our system for
navigating through a city. It is also assume that the
avatars move on the XZ plane.

Journal of WSCG 34 ISBN 1213-6972 ISBN 80-86943-09-7

Measuring the Flows
Each avatar registers his position and velocity on

the flow grid as soon as he moves to a new position.
The velocities are separated into X and Z axis
components. Positive and negative axis velocities are
stored separately, Thus four velocity values are
stored at each point, (+vx, -vx, +vz, -vz). Velocities
are stored this way so that opposing velocities will
not be canceled out.

The avatar’s velocity and presence are
distributed to the four neighboring grid points as
shown in figure 1. The amount distributed to each
corner depends on the avatars distance from that
corner. The entire avatar density (1.0) is allocated to
a corner when the avatar is exactly at that corner and
is smoothly interpolated to zero as he moves away to
the next corner.

Figure 1. Each avatar is registered on the grid by
distributing his density and velocity to the 4

neighboring points

Figure 2. Light intensity shows the density

distribution. White lines show the dominating
direction of flow at each point. Dark grey avatars

heading for the right border and light grey
avatars for the left border.

Once all the avatars have registered on the grid,
a complete picture of the densities and flows over the
entire area is obtained, as shown in Figure 2. Higher
intensity grey areas indicate more people near that
grid location.

Later on, the flow grid is used to extract
information for navigation purposes. Densities and
velocities are interpolated between grid positions
when information is needed at any in-between point.

Using the Flow Grid to Navigate
A higher layer that assigns long distance

destinations to each avatar has been assumed, e.g.
[Sty04]. Then the steering towards that destination
must be performed. For example an avatar is told to
steer from one end of a road or square to another end
by the higher layer. The avatar has to navigate to that
destination. He does so by selecting intermediate
local targets just a few meters ahead of him. By
consulting the flow grid at regular intervals the
avatar chooses to head for the area with smaller
density and smaller opposing flow. To help the
avatar decide which area is best, a special weight
formula has been constructed. This formula is
explained in the box below:

The weight is a product of the density at that
spot and the angle difference between the direction
towards the avatar’s target and the dominating
direction of flow on the flow grid.

Figure 3. The arrows in circle demonstrate the

dominating flow on the flow grid at that position.
Two weights are calculated each time the avatar

needs to find a new intermediate destination. Each
weight lies approximately 2 meters ahead of each
pedestrian and to his left and right. The spot with the

Weight = (1 + D) * (1 + AngleDiff (T, F))

D = density at spot

T = vector showing direction towards target pos

F = vector showing direction of flow at spot

AngleDiff = Angle difference between 2 vectors
in radians

Journal of WSCG 35 ISBN 1213-6972 ISBN 80-86943-09-7

lowest weight is chosen as a temporary local target as
shown in Figure 3.

 The weight has been formulated empirically and
it gives a nice measurement of the density and
opposing flow at any spot.

The avatar continues to steer to the temporary
target until a new temporary target is calculated in a
short time interval. The grid takes care of the lane
formation behavior of the avatars. The steering and
collision avoidance method is presented next.

4. LOCAL STEERING AND
SMOOTHING

About steering in densely populated areas
Pedestrians walking in densely populated areas

change direction to avoid others all the time.
Checking for long free paths is not very useful. Even
if there is a free path along a direction, it can very
easily be claimed by other pedestrians and soon
become unavailable. A simple, but slightly deferent
than usual, approach has been used by our system.

Description of steering algorithm
A discrete occupancy map is used for collision

avoidance. The avatar maintains a list of six positions
at any time. Each position is no more than one
occupancy cell away from the previous position. At
all times the actual avatar position is interpolated
between positions 2 and 3. When the avatar reaches
position 3, the first position in the list is discarded
and a new position is added to the end of the list. The
avatar is looking only one occupancy cell around him
for a new position. For this reason, a very sharp turn
may be needed. Smoothing is used to minimize sharp
turns, as a post processing step. Essentially, the first
4 positions are used for curve interpolation and the
last 2 are used for path smoothing

Position interpolation
Interpolation allows us to perform path planning

only when needed. Practically path planning occurs
approximately 3 times per second. The occupancy
map cell size is 33cm and the average avatar speed is
100cm per second, so if avatar positions in the list
are to be adjacent, position searching will occur 3
times per second. All intermediate positions are
interpolated using a Catmul-Rom curve. This is an
excellent optimization since simple interpolation is
the only operation performed for most frames and
path planning is postponed until it needs to be
performed.

Next position search
Only the cells around the avatar are checked.

Long free paths are not checked, instead, free cells in
front of the avatar are checked. Figure 4 shows the
search area when looking for a new position. When
the avatar runs into dense crowd, he shouldn’t turn
back where he came from, as it would look
unnatural. For this reason the search distance is being
reduced when the rear of the avatar is being
searched.

Figure 4. The search area for possible positions is
shown here. The search starts from the top and

checks left and right at an increasing angle and a
reducing distance until an empty cell is found.

Path post-smoothing
Due to the limited search space ahead of the

avatar and the densely populated environment, sharp
turns can occur quite frequently. For this reason a
path smoothing step is performed as post-processing.
The curve is smoothed out by moving the in-between
position (5th step) to a better location if that is still
empty in the occupancy map. Figure 5 demonstrates
a smoothing step. Position 5 is moved towards the
line formed by positions 4 and 6 in order to minimize
the turn angle.

Figure 5. The 6 positions maintained by the
avatar. The first 4 are used for curve

interpolation. Position 5 is canceled and moved to
a better position (black spot) during smoothing.

Each position relates to the occupancy map at
the time the position was taken. Because of
smoothing, positions taken at past time need to be
changed. Occupancy maps for the previous time-
steps need to be maintained as well to validate
whether such a change is possible. Therefore 2
occupancy maps are maintained, one for the step at

 6
 3 5

 2 4
 1

Journal of WSCG 36 ISBN 1213-6972 ISBN 80-86943-09-7

position 5 and one for the new position 6. If the new
desired position at step 5 is not available on the
occupancy map then smoothing does not occur. It
would be possible to keep more positions for
smoothing, which in turn would require more
occupancy maps.

5. RESULTS
Various configurations of crossing and parallel

crowd streams have been tested. The results of those
tests as well as the local steering results are presented
in this section.

Two Parallel But Opposing Streams
The first test was composed of two opposing

crowd streams. The avatars are released from random
points on one end of the walk area and navigate to
another random point on the opposing side of the
area. As the two opposing streams meet they start to
formulate streams and lane formation becomes more
stable after a while (Figure 6). Avatars may need to
cross opposing streams if they need to head for a
different destination point.

Figure 6. Lane formation between two opposing
crowd streams. The dominating direction at each

point on the grid superimposed on top.

Figure 7. Lane formation between two opposing

crowd streams. The flow direction graph is under-
imposed.

To better visualize the lanes formulated, a flow

direction graph is rendered (Figure 7). The direction
of flow at each point on the grid is mapped to a color
using a grey color scheme.

Two Crossing Crowd Streams
The results are different for crossing streams.
Constant lane formation is not possible, as the two
streams need to cross each other. What happens is
vertical/horizontal alternation of streams at an area.
The momentary lane formation for one direction is
followed by alternation once the avatars from the
opposing direction start to gather up. The dominating
stream blocks the avatars traveling in a vertical
direction to the stream, forcing them to slow down.
Once the waiting avatars start to gather up, the
stream changes direction. Figure 8 shows two
crossing streams of avatars.

Figure 8. Two crossing crowd streams. Lanes are
formed only momentarily, temporarily slowing

down avatars that try to cross it.

Journal of WSCG 37 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 9. Two crossing pedestrian streams. The

avatars are rendered as impostors. Different
colors are used to distinguish avatars belonging to

different streams.
It can be seen in Figure 9 that the two crossing
streams of avatars mix much more than the previous
test case. The avatars in white color need to travel in
a perpendicular direction to avatars in grey color.
Crossing streams are much harder to distinguish.

Four Crossing Crowd Streams
As Daamen and Hoogendoorn [Daa03] state the

resulting self-organization at crossings is just chaos.
It has been observed that here too, lane formation is
only momentary. It only happens for very short
moments, as there are four crowd streams now
competing for the same area. The flow measurements
on the grid do favor only one direction, the
dominating direction at each area. Thus some avatars
choose and some avoid an area, which causes the
momentary lane formation. Figure 10 demonstrates
the resulting flows at a crossing.

Figure 10. Four crossing crowd streams

competing for the same areas. Lanes are formed
only momentarily, mostly its only chaos.

Resulting Paths
Some resulting paths are shown in Figures 11 and 12.
Figure 11 shows examples of horizontal paths inside

two horizontally opposing streams. Figure 12 shows
example paths of perpendicularly crossing streams.

Figure 11. Resulting paths of parallel but

opposing streams

Figure 12. Resulting paths of perpendicularly

crossing streams

Journal of WSCG 38 ISBN 1213-6972 ISBN 80-86943-09-7

The granularity of the flow grid affects the lane
formation. The lanes become thicker when the grid is
coarse, and thinner when the grid is finer. A
granularity of 5m to 10m between flow grid points
has been found to produce pleasing results.

Performance
The tests have been performed on a Pentium 4,

3Ghz machine with 512Mb RAM and Geforce 5600
with un-optimized code and are running at interactive
frame rates for up to 2000 avatars. The simulation
area is an open space of approximately 3000 square
meters.

The performance cost for the flow grid is
minimal. It lies between 1-2% of the navigation
performance cost. The relationship of the number of
avatars and the flow grid cost is linear. The size of
the area and the density of the grid do not affect the
performance cost of the flow grid. It is important
though to point out that the resulting crowd streams
allow for higher densities of avatars to flow through
an area, whereas without the flow grid they would
jam. Table 1 shows that approximately 20% to 25%
more avatars can flow through an area before the
crowd jam density limit is reached.

Area in
sq.meter

s

Max. Number of
avatars without

streaming
(approx.)

Max. Number
of avatars with

streaming
(approx.)

3000 ~600 ~800
5200 ~850 ~1200

20800 ~2500 ~3800
Table 1. Improved Density of avatars.

Approximate crowd jam limits for different area
sizes.

Number
of

avatars

Average
Algorithm

Frame
Time

(msec)

Number
of

avatars

Average
Algorithm

Frame
Time

(msec)
185 11.3 760 48.4
275 16.5 830 55.1
340 21.1 900 59.9
430 26.9 1020 65.4
570 35.2 1230 78.4
670 42.03 1320 86.5

Table 2. Local Navigation performance cost.
The local steering is the most costly part of the

algorithm since it includes local collision avoidance.
It has been observed that the critical factor in the
performance of local steering is the density of the

avatars. Table 2 shows the local collision avoidance
cost. The performance of navigation is fairly linear
(Figure 13) until near maximum capacity is reached.
Once the density of avatars becomes too high the
cost of collision avoidance rises exponentially due to
the high density and continues collisions between
avatars. The performance cost for collision avoidance
is significantly lower than other methods because
each avatar only searches for a step every few frames
and only looks at the neighboring cells on the
occupancy map around him.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100 600 1100

Avatars

A
ve

ra
ge

 F
ra

m
e

Ti
m

e
(m

se
c)

Average Algorithm Frame Time (msec)

Figure 13. The graph for Table 2. Performance of
local steering algorithm.

6. DISCUSION
This paper presented a method for lane

formation behavior in crowds and a method for quick
steering inside dense crowd. The method has been
visually evaluated and it gives pleasing walking
crowd results.

The flow grid gives an overall impression of
what kind of pedestrian traffic exists in that area. It
can easily be used with more complex path planning
algorithms for a more detailed path planning
approach. The simple path selection algorithm
presented here only examines two areas ahead of the
avatar, but it has been found to be adequate for dense
crowd navigation. Congested areas can also be
detected from the grid since they will have high
density and low flow.

One important benefit of the steering algorithm
is that there is no collision avoidance cost while the
avatar positions are being interpolated from one pre-
planned step to the next. The collision avoidance
costs are thus significantly reduced. Collision
avoidance is only performed each time a new step
needs to be planned.

Journal of WSCG 39 ISBN 1213-6972 ISBN 80-86943-09-7

The steering method is suitable for a dense
pedestrian environment. It cannot operate alone. It
needs to be directed towards short distance
intermediate waypoints. The intermediate waypoints
can be extracted from the flow grid or a similar
method. The avatar path list can be extended to
include more points and smoothing can be applied to
more points in the path list to produce smoother
paths.

7. ACKNOWLEDGMENTS
Special thanks to Franco Tecchia for permitting use
of his impostor rendering library.

8. REFERENCES
[Cla87] Clarcson, k. (1987). Approximation
algorithms for shortest path motion planning. In
Proceedings 19th Annu. ACM Symposium of Theory
Computation.
[Daa03] Daamen W. and H. S.P. (2003).
Experimental Research of Pedestrian Walking
Behavior. Louisiana, Louisiana Transport Research
Center.
[Feu00] Feurtey, F. (2000). Simulating The Collision
Avoidance Behavior of Pedestrians. Dept. of
Electronic Engineering. Tokyo, University of Tokyo.
MSc: 53.
[Har68] P. E. Hart, N. J. Nilsson, et al. (1968). "A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths." IEEE Transactions on
Systems Science and Cybernetics(SSC4 (2)): 100-
107.
[Kam04] A. Kamphuis and M. H. Overmars (2004).
Finding Paths for Coherent Groups using Clearance.
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation.
[Lam04] LAMARCHE F and D. S (2004). "Crowd
of virtual humans: a new approach for real time
navigation in complex and structured environments."
Computer Graphics Forum 23(3): 509-518.
[Los03] Celine Loscos, David Marchal, et al. (2003).
Intuitive Crowd Behaviour in Dense Urban
Environments using Local Laws. Proceedings of the
Theory and Practice of Computer Graphics 2003,
IEEE Computer Society.
[Met03] Ronald, A. M. and K. H. Jessica (2003).
Reactive Pedestrian Path Following from Examples.
Proceedings of the 16th International Conference on
Computer Animation and Social Agents (CASA
2003), IEEE Computer Society.

[Mus04] Soraia Raupp Musse, Branislav Ulicny, et
al. (2004). Chapter 14 summary of Handbook of
Virtual Humans. Groups and Crowd Simulation. D.
T. Nadia Magnenat-Thalmann.
[Nie03] C. Niederberger and M. Gross (2003).
Hierarchical and Heterogenous Reactive Agents for
Real-Time Applications. Eurographics 2003,
Granada, Spain.
[Rey87] Reynolds, C. W. (1987). "Flocks, herds, and
schools: A distributed behavioral model." In M. C.
Stone, editor, Computer Graphics (SIGGRAPH '87
Proceedings), urban walking environments. Journal
of Planning Literature: 25-34.
[Sti00] Still, K. (2000). Crowd Dynamics.
Department of Mathematics. Warwick, Warwick.
PhD.
[Sty04] Stylianou, S, Fyrillas, M and Chrysanthou,
Y (2004). "Scalable Pedestrian Simulation for
Virtual Cities". ACM VRST 2004, Hong Kong,
November 2004.
[Sul02] C. O'Sullivan, J. C., H. Vilhjálmsson, J.
Dingliana, S. Dobbyn, B. McNamee, C. Peters, and
T. Giang (2002). "Levels of Detail for Crowds and
Groups." Computer Graphics Forum, Volume 21
Issue 4: 733.
[Sun04] Sung, M., M. Gleicher, et al. (2004).
Scalable behaviors for crowd simulation.
EUROGRAPHICS 2004.
[Sun05] Mankyu Sung, Lucas Kovar, et al. (2005).
"Fast and accurate goal-directed motion synthesis for
crowds". Eurographics/ACM SIGGRAPH
Symposium on Computer Animation (2005).
[Tcc01] Franco Tecchia, Celine Loscos, et al. (2001).
"Agent Behaviour Simulator (ABS): A Platform for
Urban Behaviour Development". ACM/EG Games
Technology Conference.
[Tcc02] Franco Tecchia, Celine Loscos, et al. (2002).
"Visualizing Crowds in Real-Time." Computer
Graphics forum Volume 21(Number 4): pages 753-
765.
[Tes05] Matthias Teschner, Bruno Heidelberger, et
al. (2005). Tutorial: Collision Handling in Dynamic
Simulation Environments. Dublin, Ireland,
Eurographics 05.
[Tsa03] Tsai-Yen Li and H.-C. Chou (2003). Motion
planning for a crowd of robots. International
Conference on Robotics and Automation (ICRA).
San Diego, CA, IEEE Press.
[Vil03] Marta Becker Villamil, Luiz Paolo Luna de
Oliveira, et al. (2003). A Model for Grouping Virtual
Individuals Based on Social Behaviors. Intelligent
Virtual Agents 2003. Irsee, Germany

Journal of WSCG 40 ISBN 1213-6972 ISBN 80-86943-09-7

Wheelie - Using a Scroll-Wheel Pen in Complex
Virtual Environment Applications

M. Wögerbauer

VRVis – Research Center for Virtual Reality and
Visualization, Ltd

Donau-City-Strasse 1
A-1220, Vienna, Austria

mwoegerb@vrvis.at

A. L. Fuhrmann
VRVis – Research Center for Virtual Reality and

Visualization, Ltd
Donau-City-Strasse 1

A-1220, Vienna, Austria

fuhrmann@vrvis.at

ABSTRACT

Input devices and system control techniques for complex virtual environment (VE) applications are still an open
field of research. We propose the use of a scroll-wheel as an extra, dedicated input stream on a tracked stylus for
means of system control. We demonstrate how this enhanced stylus can be used together with an appropriate user
interface to quickly select commands, change tools, and adjust parameters.
This user interface consists of two different styles: a toolbar and a graphical menu system, both accessible by the
same hand that holds the stylus. The scroll-wheel extension does in no way impair the conventional use of the
stylus.

Keywords

Input Devices, Scrolling, Virtual environments, Application control, System control, Tool selection, Menu
system, Responsive Workbench, 3D Interaction

1. INTRODUCTION AND
MOTIVATION
Virtual environments (VEs) promise a great amount
of potential as a working environment for applica-
tions with a high degree of interactive complexity.
They provide a virtual workspace for the user in
which his or her hands can be used to grab and ma-
nipulate virtual objects in complex workflows. In
these workflows, however, we need to make exten-
sive use of overhead tasks like tool switching, adjust-
ing parameters or issuing commands to the system,
aside from the main task. Thus, there is a great de-
mand of user interfaces that are capable of perform-
ing these so called system control tasks efficiently.

In VEs the user interaction can be categorized into
four classes of universal interaction tasks [Bow99a].

Navigation changes the viewpoint in the environ-
ment, and can further be divided into a cognitive part
(wayfinding) and a motor part (travel). Selection re-
fers to the task of choosing one or more objects from
a set which is closely related to the third task of ma-
nipulation. Manipulation can be described as chang-
ing the properties of objects, such as their location in
the scene. The above mentioned task of system con-
trol subsumes all actions that apply commands to
change the mode of interaction or the system state.
While three-dimensional (3D) navigation and object
selection and manipulation were the focus of research
in past years, the equally important task of exploring
novel system control techniques was left behind. Of-
ten application designers settled for using 2D desktop
methods implemented in VE applications. In 2D
desktop environments the WIMP paradigm (Win-
dows, Icons, Menus and Pointers) is usually adopted
as the means of controlling applications. Unfortu-
nately, these interaction techniques cannot be effec-
tively transferred to the 3D world of VEs. 3D interac-
tion methods that employ 2D concepts struggle with
the presence of additional degrees-of-freedom (DOF),
originating from the extra dimension which hampers
the otherwise easy task of selection in menus. When
circumventing this problem by bringing 2D into 3D
VEs [Lin99a] [Sza97a], i.e. letting the user hold a
physical tracked tablet to execute 2D tasks on, we

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 41 ISBN 1213-6972 ISBN 80-86943-09-7

sacrifice the use of one hand to the passive task of
holding and gain no additional functionality directly
controllable by one hand at the spot of direct manipu-
lation, which would be preferable in complex work-
flows.

The most widely used input devices on 2D desktop
setups are keyboards, computer mice and graphic
tablets using a stylus. Their basic concept has re-
mained the same since their advent in the computer
world, but even they are still subject to refinement.
One important step of enhancing usability of desktop
systems was the introduction of the scroll-wheel for
computer mice. In document browsing and navigation
they take on the otherwise distracting task of scrolling
from the main task of reading and editing. The focus
of attention does not have to be switched to moving
the pointer to a scroll bar, dragging a slider, and then
switch back the attention to the document to actually
see where we are scrolling. As scroll-wheels have
become a de facto standard for mice, it appears to be
a logical step for us to equip a stylus, being one of the
most frequently used input devices in VEs, with a
scroll-wheel as well, and to take advantage of this
additional input stream. It will provide application
and user interface designers with supplementary input
to permit new ways and methods of interaction, not
limited to the interaction methods presented in this
paper.

We propose a new input device, called Wheelie,
combined with an appropriate user interface. Wheelie
is a multi-stream input device, a tracked stylus with
an embedded scroll-wheel that speeds up the execu-
tion of many system control tasks found in complex
VE applications. It is designed with the purpose to
provide a quick way of consecutive selection of dif-
ferent editing tools for direct manipulation or creation
of objects, and the possibility of issuing commands
extended in a new type of menu system that takes
advantage of the constrained input of the scroll-
wheel. Wheelie and its user interface are a general
purpose approach that can be combined with several
other input devices and interaction techniques.

2. RELATED WORK
In spite of the fact that system control tasks account
for a large number of interactions, usability of appli-
cation control in complex VE applications is still
mediocre. Research on appropriate interaction tech-
niques and input devices was long neglected and is an
open problem. However, much has been done in re-
cent years to mend this situation and some interesting
work has emerged.

Kruijff [Kru00a] proposes a categorization of cur-
rently used system control methods influenced by the
description of non-conventional control techniques by

McMillan et al. [McM97a]. It distinguishes between
graphical menus, voice commands, gestural interac-
tion, and tools. The group of graphical menus is fur-
ther divided into hand-oriented menus, converted 2D
menus, and 3D widgets. Tools can be divided into
physical and virtual tools.

In an attempt to overcome some of the drawbacks of
conventional 2D menus transferred to 3D environ-
ments and to take advantage of proprioceptive "eyes-
off" interaction with the menu, i.e. the person's sense
of the position of the body and limbs, Bowman and
Wingrave [Bow01a] presented a new menu system
called TULIP. It is based on displaying menu items
on top of each finger and selecting them by pinching
of fingers, using a Pinch Glove™.

Grosjean and Coquillart [Gro01a] developed a novel
quick-access menu system for workbench-like VE
configurations, called C³ (command and control
cube). It is a 3D extension of marking menus, taking
advantage of the three dimensions of the space for the
selection process. It consists of a 3D grid of small
cubes with which commands are associated and exe-
cuted by positioning a selection pointer in the corre-
sponding cube, using a tracked input device. It is de-
signed with the intent to allow the possibility of rap-
idly issuing a limited set of commands to the applica-
tion, similar to hotkeys in 2D desktop environments
equipped with a keyboard.

To integrate 2D interaction in 3D VEs, Coquillart
and Wesche [Coq99a], and in a similar approach
Schmalstieg et al. [Sch99a], proposed the use of
transparent props for two-handed application control
in projection-based environments. The virtual palette
and the PIP (personal interaction panel) consist of a
physical tracked transparent plate that is held in the
non-dominant hand and can present 2D menus and
widgets which are selected by using a tracked pen.
The physical surface, acting as a constraint, eases the
task of selection and also takes advantage of prop-
and body-centered aspects, delivering a kind of pas-
sive-haptic feedback.

A way of using the proprioceptive sense of the user is
the use of body-centered menus which were explored
by Mine et al. [Min97a] and place menu items rela-
tive to the user's body. This technique can signifi-
cantly enhance user performance and even allows for
"eyes-off" interaction and selection of menu items
and tools. Body-centered menus do not inherently
support a hierarchy of menu items and this poses a
problem since the selection becomes gradually more
difficult with increasing numbers of menu items.

In hand-oriented menus, as used in several applica-
tions as a method of system control [Lia94a]
[Min97b], the menu items are located on a circular

Journal of WSCG 42 ISBN 1213-6972 ISBN 80-86943-09-7

object. In order to select an item the user has to rotate
the hand to align the desired menu item in a selection
box. The rotation about a single axis, working as a
constraint, makes these menus fast and accurate. As is
the case with body-centered menus, hand-oriented
menus also do not imply a menu hierarchy.

A thorough description of two-handed direct manipu-
lation on the Responsive Workbench was given by
Cutler et al. [Cut97a]. It shows how users perform
certain tasks in a natural way using both hands. Pinch
Gloves and/or a stylus were used as input devices and
virtual tools could be selected from a toolbox located
in front of the user by either clicking on their repre-
sentations with the stylus or by pinching them with
the gloves. To reduce the number of necessary ex-
plicit tool switches, power tools, controlled by the
non-dominant hand, and implicit tool transitions were
implemented.

The ToolFinger by Wesche [Wes03a] is an interac-
tion technique for VEs that focuses on the problem of
frequent tool selection during complex direct manipu-
lation of objects and proposes the integration of the
task of tool selection into the workflow of tool appli-
cation. This is accomplished by subdividing a selec-
tion pointer of a tracked stylus into several sections
and interpreting an intersection of an object with one
of those sections of the pointer as a tool selection.
With each section of the ToolFinger a tool is associ-
ated. As a result of this method, the ToolFinger is
restrained to interactions which are always related to
virtual objects. Other interaction modes, e.g. object
creation or general application control tasks, are not
possible, making the ToolFinger a special purpose
technique for direct modification.

In [Ste03a] Stefani et al. discuss requirements for
input devices in immersive environments and the
design of two such input devices is presented. The
Dragonfly and the Bug are two input devices for the
dominant and the non-dominant hand, respectively,
which work in unison. The Dragonfly is a light-
weight, optical tracked, stylus-like pointing device
with 6 DOF, not featuring any button. The Bug is, in
essence, a 3 DOF (position only) tracked wireless
mouse with a jog-dial (or scroll-wheel) and two but-
tons, held in hand like a TV remote control. The 3
DOF nature of the bug allows the permanent display
of a context sensitive, graphical menu and the jog-
dial facilitates selection of menu items therein. This
way control of the menu system is decoupled from
tracking and instead uses the sole input of the jog-
dial.

Many interaction techniques described herein are an
attempt to overcome the problem of too many de-
grees-of-freedom of system control interfaces and
introduce some sort of constraint in order to ease the

task of selection in menus. Wheelie takes the same
approach as the Bug when tackling this problem by
adding a dedicated one-dimensional discrete input
stream to the VE, allowing the user to effectively
perform application control tasks without interrupting
the current workflow.

3. DESIGN CONCEPT
The basic idea of Wheelie is to extend the input pos-
sibilities of a stylus used in many VEs as an input
device by adding a scroll-wheel as is commonly used
in computer mice. Thus, a separate input stream is
available that can, in combination with two buttons,
be used to navigate a hierarchical system of applica-
tion control functionality (Figure 1). Tool selection
and navigation in the menu system are mainly con-
trolled by changing between different entries in a set
of tools or menu entries using the scroll-wheel.

Several other devices incorporating an additional
input stream already exist (e.g. the Wanda available
at http://www.wandavr.com/). But most of them are
palm held devices that feature a thumb controlled
joystick. A joystick is neither as appropriate to per-
form one-dimensional discrete selection tasks – by
virtue of its 2D continuous input stream – as a scroll-
wheel, nor do most devices support the use of the
extra input stream in conjunction with the other but-
tons. In this regard Wheelie – as a stylus with a
scroll-wheel operated by the index finger and buttons
activated by the thumb – offers new ways of interac-
tion previously unavailable.

Generally speaking, system control is the action in
which a command is applied to change either the
mode of interaction or the system state. In order to
issue the command, the user has to select an item
from a set and different interaction styles are em-
ployed in order to select the commands. As men-
tioned in the relating work above, these techniques

Figure 1: The conceptual design of Wheelie. The
index finger is used to operate the scroll-wheel,

while the thumb is used to activate two buttons on
the side of the stylus.

Journal of WSCG 43 ISBN 1213-6972 ISBN 80-86943-09-7

can be put into four categories: Graphical menus,
voice commands, gestural interaction and tools. In the
course of this work we want to use the following
slightly customized terminology of system control
tasks: A mode of interaction of direct manipulation or
creation of objects is referred to as a tool, resulting in
tool switches when changing between them. Func-
tions of the application that change the state of the
system or perform system tasks and should be acces-
sible to the user for execution are called commands.
If the value of a single variables is subject to explicit
changes through the user (parameterization), the
variable is called a parameter and the set of associ-
ated valid values is called the corresponding parame-
ter space.

As the addition of a scroll-wheel to the computer
mouse became a huge success and nearly all mice
manufactured today feature one, it is worth looking
into the question why it was so widely accepted and
what it is used for. The scroll-wheel provides an addi-
tional input stream without hindering normal mouse
interaction. Predominantly, document scrolling is the
domain of the scroll-wheel but other uses have been
adopted as well, like picture and document zooming
or scrolling through and selecting available options in
input fields. Another noteworthy usage of the scroll-
wheel is in first-person 3D action games where it is
used to quickly swap between different tools of inter-
action with the environment. It allows the player to
change tools while constantly moving at the same
time, which is crucial for success in these games.

Besides computer mice, the use of tablets is well es-
tablished as an input method for graphical art and
CAD applications. A currently available input device
that probably comes closest in form to the new multi-
stream input pen for VE applications proposed in this
work is the Wacom Intuos Airbrush-stylus
(http://www.wacom-europe.com/uk/products/intuos/
input_airbrush.asp). It is an optionally available sty-
lus for Wacom's Intuos line of pressure sensitive tab-
lets for pen based input and features a finger wheel,
similar to a scroll-wheel, with 1024 levels of activa-
tion and a side switch. The purpose of the finger
wheel on this stylus is to provide artists with the pos-
sibility to control ink-flow in graphical applications,
as is the case with real airbrushes.

Because of the fact that menu and tool selection is
essentially a 1 DOF operation and many previous
menu techniques suffered from difficult-to-learn se-
lection methods due to their 3 DOF nature, a scroll-
wheel should be well suited to this task, as it is natu-
rally constrained to 1 DOF and provides an input
stream utilizable for navigation in a one-dimensional
space. Moreover, the input is in fact discrete and sin-
gle "notches" in the wheel provide passive-haptic

feedback when switching from one position to the
other, making selection from a set particularly easy.
By studying the use of scroll-wheels on mice, we
learned that these sets can be the parameter space of
an (pseudo-)continuous value (e.g. document posi-
tion, ink-flow, zoom-level) or a discrete set of options
and tools. We want to use the scroll-wheel on the
stylus to switch between the following elements ac-
cording to our terminology of system control tasks:

• Tools and modes can be changed which results in
tool and mode switches when the scroll-wheel is
operated.

• Single commands and parameters can be se-
lected that can be executed or modified there-
upon. If a set only consists of commands and pa-
rameters, navigation between these corresponds
to navigation in a conventional one-dimensional
menu.

• The space for navigation with the scroll-wheel
can also be the parameter space of a scalar pa-
rameter itself.

A single set of tools, commands and parameters to
choose from would only be acceptable for a limited
number of elements, thus the implementation of the
user interface should offer some sort of hierarchy and
organization of tools and menu items using the input
of two buttons on the pen to move between levels in
the hierarchy.

4. IMPLEMENTATION
4.1. User Interface
We use two different styles of visual feedback: Tool-
bars and cylindrical menus.

In toolbars, 3D icons and labels are used to represent
tools and commands. These icons can also reflect the
parameterization of the tool, e.g. line size. Captions
of commands or parameters are represented by bill-
boarded labels. Apart from that, labels are also used
to clarify the meaning of icons and appear above
them in case they are needed by showing the name of
the tool. It is common to both styles that the item
currently selected – tool or menu entry – is always
visible in front of the tip of the tracked pen (see Fig-
ure 2 and Figure 3 for representation styles).

In a toolbar, the 3D icons and labels are positioned
on an imaginary linear list aligned parallel with and
running through the entire length of the pen (Figure
2). Since the scroll-wheel on the pen is also aligned
this way, turning of the wheel naturally maps to push-
ing away and pulling near elements in this linear list.
Since the list of icons and labels would interfere with
the scene, partly be obstructed by the pen, and thus
distract the user if entirely visible, only the entry

Journal of WSCG 44 ISBN 1213-6972 ISBN 80-86943-09-7

currently selected is shown in front of the tip of the
pen. In order to maintain the sense of spatiality and to
give the impression that the icons and labels are actu-
ally beaded on a line, icons and labels are sliding in
and out the tip of the pen – fading in and out while
they do so – in the direction of the rotation of the
scroll-wheel. According to [Bed99a] this animated
transition should also help users to better remember
positions of tools in the toolbar. If the scroll-wheel is
rotated by several notches in a short time and many
entries in the list have to be skipped, the speed of the
animation of the icons and labels sliding in or out at
the tip of the pen is accelerated to allow for faster
navigation [Hin02a].

A cylindrical menu is used for sets of application
control tasks that are made up entirely of commands
and parameters. In 2D desktop environments these
are usually implemented as pull-down menus. As the
turning of a scroll-wheel naturally maps to rolling of
a horizontal cylinder, the use of a cylindrical rota-
tional menu instead of a list on a plane is strongly
suggested (Figure 3). The advantage of this represen-
tation over our toolbar style representation obviously
is the visibility of several entries at once. This eases

the process of identifying and targeting the desired
item and significantly speeds up navigation. As the
user turns the scroll-wheel the menu will rotate to
bring the next or previous entry to the tip of the pen.
As is the case with the animation of the toolbar fast
scrolling of the wheel results in faster rotation of the
menu. In addition to the rotation of the menu, the
selected item will also get highlighted to be recog-
nized at a glance. As the menu is shaped like a cylin-
der it always has the same size, regardless of the
number of entries, which avoids cluttering of the
workspace. As with labels, the cylindrical menu is
view dependent and will always face the user. This
ensures its readability, no matter how the pen is ori-
ented.

As mentioned above, due to the large number of
tools, application commands and parameters in even
moderate complex applications, some sort of group-
ing and hierarchy is necessary. Two buttons on the
pen – one being the main button every stylus features,
the other being a supplementary button – are used to
navigate between toolbars and menus and submenus
of arbitrary depth, respectively. In order to conserve
the reference of a submenu, its parent stays visible in
its current state at one side of the submenu, much like
in conventional 2D pull-down menus (Figure 4).

4.2. Control
The two buttons of the Wheelie are not only used for
navigating the menu and tool hierarchy, but also for
activation of items and direct manipulation:

• Primary (activation) button: If the item currently
selected in the system control hierarchy is a sin-
gle tool, the primary button is used to apply the
tool while being pressed. If a command is se-
lected, it is executed when the primary button is
activated. If the selected item is a parameter, it
can be adjusted by scrolling through the parame-
ter-space with the scroll-wheel while the primary
button is pressed. Should the entry currently se-
lected contain a subset of tools or a submenu, ac-
tivation of the primary button effectuates a

Figure 2: Toolbar representation of the user inter-
face. Only the icon of the selected tool is actually

displayed – semi-transparent icons in the illustration
are added for the sake of clarity.

Figure 3: The graphical cylindrical menu represen-
tation of the user interface.

Figure 4: Example of a graphical cylindrical menu
showing the root menu with two cascaded sub-

menus. Menu items containing a submenu are indi-
cated by the '>' character.

Journal of WSCG 45 ISBN 1213-6972 ISBN 80-86943-09-7

change to the subset and descends in the menu
hierarchy.

• Secondary (escape) button: The supplementary
button on the pen is used to ascend one level in
the hierarchy structure.

• Scroll-wheel: The scroll-wheel is mainly used to
browse through the current set of available tools,
commands and parameters, or to select an item
from the graphical menu. As mentioned above, in
combination with the primary button it allows
parameterization of the current tool or menu
item. For instance, the diameter of the cross-
section of an extrusion tool, transparency or the
"ink-flow" of a spraying tool can be changed
during direct manipulation activities.

4.3. Hardware Setup
In order to build a prototype Wheelie stylus we used
a commercially available marker and the electronic
parts and the scroll-wheel of an old mouse. As it
turned out, the housing of a marker is very well suited
for our purpose, since it provides enough space for
the integration of a scroll-wheel in the narrow part of
the grip as well as two buttons on the flat side of it.
The scroll-wheel is installed in a position that, when
the pen is held as if for writing, allows comfortable
operation with the tip of the index finger. In the place
where the thumb is resting against the flat part of the
pen, two buttons are mounted in a row insofar as the
thumb does not have to be moved to reach either one
of them. This configuration resembles the handling of
a mouse with two extra buttons on its side, used for
document history navigation in internet browsers or
the like. Since it is crucial for the user interface to
deliver a smooth navigation experience, it is impor-
tant that both buttons can be operated easily. Since
push buttons are often awkward to activate if not
pressed directly from above, we decided to use but-

tons that tilt forward (front button) and backwards
(back button). This significantly enhances button con-
trol with the thumb. The button closer to the tip of the
pen functions as the primary activation button
whereas the rear button acts as the secondary escape
button. Unlike the scroll-wheels on a mouse, the
wheel on our prototype pen does not feature the addi-
tional function as a button. Although this would yield
an extra degree of freedom, the force needed to acti-
vate it with the index finger is uncomfortable since
the pen is held in hand and does not reside on a flat
surface that provides resistance to this force in oppo-
site direction. This is especially true since the force to
activate a button click on the scroll-wheel must be
higher than on ordinary buttons to avoid involuntary
activation while operating the scroll-wheel.

The test environment consisted of a Barco Baron™
virtual table, an ART optical tracker system and a PC
with a GeForce graphics card.

5. EVALUATION
To see how Wheelie performs in practice and to in-
formally observe users while interacting in a complex
application with it, we developed a test application
allowing the user to select from a variety of tools,
commands, and parameters. The test application, im-
plemented in the Studierstube framework [Sch02a],
resembles a desktop graphic application in which the
user can spray objects, create extrusions from cross-
sections and draw lines. Additionally, common edit-
ing tasks such as selecting, moving, scaling, painting
and deleting of object parts are available as tools.
The graphical menu offers commands to erase, save
and load created scenes, as well as options and pa-
rameters to customize the user interface.

The concept of scrolling through a list of available
tools with the pen was well received and the testers
did not voice problems with the overall handling and

Figure 6: With the move tool objects not only can be
moved but also scaled by using the scroll-wheel

while the primary key is pressed.

Figure 5: Spraying in the scene with a spray can
shaped tool. The icon also reflects the aperture angle

of the tool.

Journal of WSCG 46 ISBN 1213-6972 ISBN 80-86943-09-7

navigation of the interface (Figure 5 and Figure 6).

The use of the scroll-wheel during the application of
the tool, e.g. the change of the aperture angle of a
spray can while spraying, was less obvious, but im-
mediately adopted by the users when demonstrated.
This, however, revealed another issue: Users often
desired to adjust the parameter before actually apply-
ing the tool. While this does not pose a problem if the
tool is only interacting with objects in the scene, it
was a nuisance when the tool was actually adding
new content. Besides, it is disputable which parame-
ter of a tool should be subject to change in the course
of a workflow. Another issue worth mentioning
emerged from using our interface in combination with
a virtual palette: Widgets on the palette must be oper-
ated with a simple pointing tool, having no function
of its own. Since this would make recurrent switches
between the pointer and actual tools necessary, it is
solved by simply deactivating the function of a tool
when interacting with a widget.

An interesting aspect was noted when we observed
control of the graphical cylindrical menu system with
the Wheelie: Although the cylindrical shape of the
menu strongly suggests that its affordance is to be
rotated using the scroll-wheel in the same direction,
many users thought of it to work as moving the high-
lighted selected item with the scroll-wheel as opposed
to turning the menu cylinder so that the desired entry
gets aligned with the tip of the pen. We think this is
mainly induced by the visual feedback that highlights
the selected item and the notion of graphical menus to
be static, gathered from experience during extensive
use of 2D desktop menu systems. Tests with less ex-
perienced users should be made to investigate this
theory. Nevertheless, we added the option of invert-
ing the scroll-direction in the menu representation of
the interface (Figure 7).

Another point mentioned by our testers was that the
smooth animation (i.e. rotation) of the cylindrical
menu is dispensable. While the animation helps in the
toolbar representation as only one item is visible at a
time, the cylindrical menu provides an overview of
surrounding entries and transitions need not be ani-
mated. On this account we implemented an “expert
mode” (in both representations) that performs instan-
taneous jumps when operating the scroll-wheel. The
default configuration was changed to smooth transi-
tion in the toolbar representation and instantaneous
transition in the graphical cylindrical menu.

On the hardware side, a wireless device is preferable
to our wired prototype of the Wheelie. Therefore
future versions should only be made on a wireless
(e.g. Bluetooth) basis to further ease the handling of
the Wheelie.

6. CONCLUSION AND FUTURE
WORK
Wheelie, a scroll-wheel enhanced tracked stylus for
VEs presented in this paper, is an input-device that
provides application and user interface designers with
a separate one-dimensional discrete input stream ap-
plicable to various system control techniques for
complex VE applications. The user interface and
menu system proposed in this work allow the user to
quickly change between different tools, execute
commands and perform parameter manipulation with
the tips of his fingers of just a single hand. It takes
advantage of the fact that the input of the scroll-wheel
is constrained to 1 DOF, which makes it perfectly
tailored to the task of menu selection and tool switch-
ing, and certainly better than continuous input
streams like a joystick for these purposes.

When compared to other 3D system control tech-
niques, the Wheelie exhibits true general purpose
properties:

Although more extensive experimental evaluation
will have to be performed, switching between single
different tools for direct manipulation is not as fast as
ultimately possible with the ToolFinger approach
which, on the other hand, is a special purpose tech-
nique limited to a single set of available tools. A per-
fect combination would be the use of entire ToolF-
ingers as entries on the toolbar representation to
choose from with the scroll-wheel.

The C³, designed as a quick-access menu, provides a
faster way of activating commands but is also limited
to a single set. The Wheelie menu system offers a
familiar 2D-like representation of a hierarchical
graphical menu, providing a virtually limitless space
for commands while at the same time sustaining its
size, not occluding much of the valuable visible

Figure 7: The graphical menu in action. Rotation
direction of the menu when scrolling through entries

can be set to user’s preference.

Journal of WSCG 47 ISBN 1213-6972 ISBN 80-86943-09-7

space. Other interaction techniques can still be used
alongside Wheelie since Wheelie only extends the
input capabilities of a stylus.

Quantitative analyses which compare Wheelie to
other types of similar system control techniques will
have to be made in order to get proper information on
how Wheelie performs against them. Nevertheless,
we can confidently assume that a scroll-wheel imple-
ments a useful addition to the conventional 3D stylus
without cluttering the interface or complicating tradi-
tional stylus interaction.

7. REFERENCES
[Bed99a] Bederson B. B., Boltman A.: Does Anima-

tion Help Users Build Mental Maps of Spatial In-
formation? In INFOVIS '99: Proceedings of the
1999 IEEE Symposium on Information Visualiza-
tion (Washington, DC, USA, October 1999),
IEEE Computer Society, pp. 28-35.

[Bow99a] Bowman D. A., Hodges L.: Formalizing
the Design, Evaluation, and Application of Inter-
action Techniques for Immersive Virtual Envi-
ronments. In The Journal of Visual Languages
and Computing 10, 1 (1999), pp. 37-53.

[Bow01a] Bowman D. A., Wingrave C.A.: Design
and Evaluation of Menu Systems for Immersive
Virtual Environments. In VR ’01: Proceedings of
the Virtual Reality 2001 Conference (VR’01)
(Washington, DC, USA, 2001), IEEE Computer
Society, p.149.

[Coq99a] Coquillart S., Wesche G.: The Virtual Pal-
ette and the Virtual Remote Control Panel: A De-
vice and an Interaction Paradigm for the Respon-
sive Workbench(TM). In VR ’99: Proceedings of
the IEEE Virtual Reality (Washingron , DC,
USA, 1999), IEEE Computer Society, p. 213.

[Cut97a] Cutler L. D., Fröhlich B., Hanrahan P.:
Two-handed Direct Manipulation on the Respon-
sive Workbench. In SI3D ’97: Proceedings of the
1997 symposium on Interactive 3D Graphics
(New York, NY, USA, 1997), ACM Press, p.107
ff.

[Gro01a] Grosjean J., Coquillart S.: Command &
Control Cube: A Shortcut Paradigm for Virtual
Environments. In Immersive Projection Technol-
ogy and Virtual Environments 2001 Proceedings
(May 2001), pp. 1-12.

[Hin02a] Hinckley K., Cutrell E., Bathiche S., Muss
T.: Quantitative Analysis of Scrolling Techniques.
In CHI ’02: Proceedings of the SIGCHI confer-
ence on Human Factors in Computing Systems
(New York, NY, USA, 2002), ACM Press, pp.
65-72.

[Kru00a] Kruifjj E.: System Control. In 3D User In-
terface Design: Fundamental Techniques,
Therory, and Practice. SIGGRAPH 2000 Course
Notes (July 2000), Bowman D. A., Kruijff E.,
LaViola Jr. J., Mine M., Poupyrev I. (eds.), pp.
147-165.

[Lia94a] Liang J., Green M.: JDCAD: A Highly In-
teractive 3D Modeling System. Computers and
Graphics 18, 4 (July 1994), pp. 499-506.

[Lin99a] Lindeman R. W., Sibert J. L., Hahn J.K.:
Hand-held Windows: Towards effective 2D Inter-
action in Immersive Environments. In VR (1999),
pp. 205-212.

[McM97a] McMillan G. R., Eggleson R. G., Ander-
son T. R.: Nonconventional controls. In Hand-
book of Human Factors and Ergonomics 2nd ed.,
Salvendy G. (ed.) (New York, NY, USA, 1997),
John Wiley & Sons, pp. 729-771.

[Min97a] Mine M. R., Brooks Jr. F. P., Sequin C. H.:
Moving Objects in Space: Exploiting Propriocep-
tion in Virtual-Environment Interaction. In
SIGGRAPH ’97: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive
Techniques (1997), ACM Press/Addison-Wesley
Publishing Co., pp. 19-26.

[Min97b] Mine M. R.: Isaac: A Meta-CAD System
for Virtual Environments. Computer-Aided De-
sign 29, 8 (1997), pp. 547-554.

[Sch99a] Schmalstieg D., Encarnação L. M.,
Szalavári Z.: Using Transparent Props for Interac-
tion with the Virtual Table. In SI3D ’99: Proceed-
ings of the 1999 Symposium on Interactive 3D
Graphics (New York, NY, USA, 1999), ACM
Press, pp.147-153

[Sch02a] Schmalstieg D., Fuhrmann A.L., Hesina G.,
Szalavári Z., Encarnação L. M., Gervautz M.,
Purgathofer W.: The Studierstube Augmented
Reality Project. PRESENCE: Teleoperators and
Virtual Environments 11, 1 (February 2002).

[Ste03a] Stefani O., Hoffman H., Rauschenbach J.:
Design of Interaction Devices for Optical Track-
ing in Immersive Environments. HCI International
2003 Conference Proceedings (2003), Lawrence
Erlbaum Associates, Inc.

[Sza97a] Szalavári Z., Gervautz M.: The Personal
Interaction Panel – A Two-handed Interface for
Augmented Reality. In Proceedings of
EUROGRAPHICS ’97 (September 1997), pp.
335-346.

[Wes03a] Wesche G.: The Toolfinger: Supporting
Complex Direct Manipulation in Virtual Envi-
ronments. In EGVE ’03: Proceedings of the
Workshop on Virtual Environments 2003 (New
York, NY, USA, 2003), ACM Press, pp. 39-45.

Journal of WSCG 48 ISBN 1213-6972 ISBN 80-86943-09-7

GPU-Friendly High-Quality Terrain Rendering

Jens Schneider
Computer Graphics and Visualization Group

Technische Universität München
Lehrstuhl I15, Boltzmannstraße 3
D-85748 Garching bei München
jens.schneider@in.tum.de

Rüdiger Westermann
Computer Graphics and Visualization Group

Technische Universität München
Lehrstuhl I15, Boltzmannstraße 3
D-85748 Garching bei München
westermann@in.tum.de

ABSTRACT
We present a LOD rendering technique for large, textured terrain, which is well-suited for recent GPUs. In a pre-
process, we tile the domain, and we compute for each tile a discrete set of LODs using a nested mesh hierarchy.
This hierarchy can be encoded progressively. At run time, continuous LODs can simply be generated by inter-
polation of per-vertex height values on the GPU. Any mesh re-triangulation at run-time is avoided. Because the
number of triangles in the mesh hierarchy is substantially decimated and by progressive transmission of vertices,
our approach significantly reduces bandwidth requirements. During a typical fly-over we can guarantee extremely
small pixel errors at very high frame rates.

Keywords
Terrain rendering, hierarchical meshing, GPUs, progressive data transfer, geomorphs

1. INTRODUCTION
Despite the advances in CPU and GPU technology, for
the largest available terrain data sets rendering tech-
niques still cannot run at acceptable rates and qual-
ity. As processing, memory, and bandwidth capabil-
ities continue to increase, so does the resolution of
scanned landscapes and recent display technology. To-
day, satellite range scans comprised of over a billion
of samples are available, making even the handling of
such data sets difficult to perform due to memory con-
straints. In addition, high resolution displays of about
10 Mpixels [IBM] demand a substantial increase in
the number of primitives to be transferred to and pro-
cessed on the GPU. The requirements imposed by cur-
rent and future data acquisition and display technology
make real-time visualizations difficult to perform on
even the most powerful workstations. Therefore, the
need for a terrain rendering system that comprehen-
sively addresses the aforementioned issues is clear.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Journal of WSCG ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency

2. RELATED WORK
From a high-level view, previous approaches for ter-
rain rendering can be classified into the three follow-
ing categories.

View-dependent refinement
View-dependent refinement methods construct a con-
tinuous LOD triangulation on the CPU with respect
to a given world- and screen-space error. Gross et
al. [GGS95] employ a wavelet decomposition to gen-
erate adaptive quadtree meshes for terrain data, com-
bined with a lookup-table to store an irregular trian-
gulation for each of the possible quadtree leafs. Pa-
jarola [Paj98] introduced restricted quadtrees [HB87]
for terrain rendering. Duchaineau et al. [DWS+97]
used triangle bintrees to perform the remeshing. Tri-
angulated irregular networks (TINs) where first pro-
posed by Peucker et al. [PFL78], and later automated
by Fowler et al. [FL79]. Garland et al. [GH95] em-
ployed a greedy insertion strategy to construct a TIN.
Progressive meshes (PMs) were modified with respect
to the demands in terrain rendering by Hoppe [Hop98].

To speed up the remeshing process, frame-to-frame
coherence can be exploited. Priority queues that can
be updated incrementally to guide the remeshing are
one alternative [DWS+97]. A different approach up-
dates a quadtree data structure incrementally to keep
track of vertex dependencies [LKR+96]. Hoppe pro-
posed a method that keeps active cuts to achieve an in-
cremental update [Hop98]. While the exploitation of
frame-to-frame coherence usually results in a reason-

Journal of WSCG 49 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 1: A 360◦ panorama of the Alps (7K×1K pixels), generated with our method in less than 4 seconds.
This time includes rendering, reading data back from the GPU, and writing the final image to the disk.

able speed up, for particular camera movements such
as shoulder views in an airplane simulation a consid-
erable loss in performance can be observed. Further-
more, frame-to-frame coherent approaches are usually
harder to implement due to LOD constraints. This
was recognized by Lindstrom et al. [LP01, LP02], who
proposed a simple to implement, yet efficient method
to rebuild the mesh from scratch in every frame. They
improve the error metric proposed by Blow [Blo00].

If the terrain gets excessively large, many of the men-
tioned algorithms choose to partition the terrain into
square blocks or chunks of data, which can then be
processed independently from each other [KLR+95,
SN95]. The advantage is that these chunks can also be
paged independently. However, care has to be taken to
avoid invalid vertices (so-called T-vertices) at chunk
boundaries. One elegant approach to avoid these in-
valid vertices in a quadtree was taken by Röttger et
al. [RHSS98]. By restricting the error metric, they au-
tomatically guaranteed a valid mesh. However, a gen-
eralization to chunked meshes is not trivial and would
also limit the error metric to a Manhattan distance.

More recently, Ulrich [Ulr00] suggested to use restrict-
ed quadtree meshes without boundary constraints for
the chunks, and to fill possible cracks between them
using flanges or skirts – fins of geometry along the
boundaries pointing downwards from the terrain. How-
ever, ensuring correct anisotropic texture filtering at
these boundaries is not trivial due to the different view-
ing angle. A more general approach is to stitch bound-
aries together using so-called zero-area triangles (also
called ribbons in [Ulr00]), which guarantees correct
filtering.

Pomeranz [Pom00] suggested to use clusters of ROAM
triangulations (RUSTiC). To ensure validity, clusters
are enforced to uphold an edge constraint: on shared
edges the clusters must share vertices exactly. This
approach is also one of the first terrain rendering algo-
rithms exploiting graphics hardware. RUSTiC achieves
improved performance over ROAM by rendering clus-
ters as triangle strips. Hwa et al. [HDJ04] used 4-
8 meshes that induce a diamond-based hierarchy on
both textures and the height field. Combined with a
space-filling curve memory layout this allows for ef-
ficient out-of-core rendering of the terrain, utilizing

GPU memory as a cache. However, since each other
texture level is rotated by 45◦, a costly update of vertex
texture coordinates has to be performed.

Pre-computed geometry batches
Based on the observation that on recent GPUs the time
that is saved by rendering less triangles due to adap-
tive re-triangulation is entirely amortized by the time
needed to perform the re-triangulation, several authors
suggested to pre-triangulate the input data as much as
possible. Cignoni et al. [CGG+03a] suggested to re-
place triangles in the remeshing process by a batch, a
new primitive that approximates the terrain over a tri-
angular part of the input domain using a pre-computed
TIN. Stripping these TINs prior to rendering made them
highly efficient. Batches were kept in a bintree, for
which usual run-time re-meshing is performed, hence
the name of the method: Batched Dynamic Adaptive
Meshes (BDAM).

In [CGG+03b], the authors improved on their previ-
ous work to successfully render planet-size meshes at
interactive rates. Their system does not support ge-
omorphs, but a screen-space error of one pixel for a
640×480 view port can usually be guaranteed. How-
ever, this could become a problem soon, as displays
are about to reach 10Mpixels. Consequently, consider-
ably more triangles would have to be rendered to meet
a given screen-space error.

Non-adaptive triangulation
Only very recently, Losasso et al. [LH04] took full ad-
vantage of the speed of current consumer class GPUs.
They abandoned any view-dependent remeshing in fa-
vor of so-called geometry clipmaps, a triangulation
that is approximately screen-space uniform. Specifi-
cally they used concentric, uniformly tessellated, square
patches around the camera dropping exponentially in
resolution with distance. During run time, geometry
is fetched from a toroidal buffer residing on the GPU.
The update of this buffer is done by the CPU.

Since the heighfield raster data is used directly, it can
be compressed very efficiently. By applying a com-
pression scheme derived from Microsoft’s WMV for-
mat [Mal00], compression ratios of up to 100:1 can
be achieved. Because decoding the compressed data
puts a considerable amount of work on the CPU, the

Journal of WSCG 50 ISBN 1213-6972 ISBN 80-86943-09-7

decoder can eventually fall behind faster camera mo-
tions, resulting in a blurry representation of the ter-
rain. Despite the fact that geomorphs are not an issue
for this system, both the screen-space and world-space
errors are hard to control, implying an rms of about
1.5m. Optimal geometry filtering cannot be performed
due to the screen-space aligned topology. Also, since
height fields compress a lot better than regular images,
the application of photo textures will most likely result
in a major increase in memory requirements. Still, ex-
tremely high frame rates for virtually arbitrarily large
data sets can be achieved using this method.

3. CONTRIBUTIONS
In this work, we combine the advantages of contin-
uous LOD semi-regular meshes with the advantages
of a discrete LOD hierarchy, thus avoiding any re-
triangulation at run-time. In contrast to BDAM we
also avoid expensive irregular triangulations, greatly
improving pre-processing from several hours to some
minutes. The proposed method generates high qual-
ity renderings by supporting a continuous LOD repre-
sentation including geomorphs and photo-texturing. In
contrast to previous methods, the terrain is guaranteed
to be refined within a user-defined screen- and world-
space error. Aliasing is avoided by employing opti-
mal geometry filtering, at the best possible geomet-
ric resolution. At run-time, discrete sets of decimated
mesh structures are transmitted progressively, result-
ing in high bandwidth efficiency. To obtain a contin-
uous LOD representations, these sets are interpolated
and rendered using functionality on recent GPUs.

Algorithm overview
The domain is first partitioned into a set of equally
sized tiles. For each tile, a discrete set of LODs is
computed by means of a nested mesh hierarchy. The
construction of such a hierarchy is described in sec-
tion 4. This hierarchy has several beneficial properties:
Firstly, for each level of the mesh the terrain is deci-
mated according to a given world-space error, reduc-
ing the total amount of triangles. Secondly, to compute
a continuous LOD representation, vertices at finer res-
olutions only have to be morphed in height onto the
next coarser level. Third, as the hierarchy is nested,
each finer level is represented by all vertices at coarser
levels plus additional vertices required to resolve the
current level properly. These additional vertices can
be transmitted progressively.

The terrain hierarchy, including per-vertex morph val-
ues, is then prepared for rendering on the GPU. The
particular data structure used is discussed in-depth in
section 5. For textures, the S3TC standard is employed,
which enables high-resolution mipmaps to be used.
All data is stored in vertex buffers and 2D textures that

are handled by a memory manager to minimize bus
transfer. This issue is subject of section 6.

4. NESTED MESH HIERARCHY
The most common way to avoid sampling artifacts in
terrain rendering is by means of a LOD representation.
Such a hierarchy can either be represented implicitly
by adaptive re-triangulation at run time, or it can be
explicitly pre-computed for discrete LOD levels.

Figure 2: Levels of the nested mesh hierarchy.
A given height field H : N

2 7→ Z can be approximated
by a triangular mesh parameterized over a 2D domain.
The surface of this mesh defines a reconstruction H ′

of H. The approximation quality of the mesh is then
measured by a point-wise error metric δ : R×R 7→ R,
extended to the entire domain. In the current work, we
use the canonical extension of the Lmax error metric to
measure the error between H and H ′:

δ (H,H ′) := maxx,y δ (H(x,y),H ′(x,y))

By generating approximations of the height field with
decreasingly lower approximation error, a mesh hier-
archy that represents the original terrain at ever finer
scales is constructed. The hierarchy employed in this
work is nested with respect to the triangulation: For
each triangle on level i with canonic parameterization
Ωi there is a triangle on the next coarser level i−1 with
parameterization Ωi−1 such that Ωi ⊆ Ωi−1. That is, if
both triangles are projected onto the domain, the trian-
gle at level i is contained entirely in the triangle at level
i + 1. Such a hierarchy is automatically generated by
restricted quadtree [HB87, Paj98], bintree [DWS+97]
or red-green refinement [BSW83].

To generate a discrete set of nested hierarchy levels,
the terrain is partitioned into equal tiles of size 2572,
with an overlap of one sample in either direction. Then,
an error vector (ε0,ε1, . . . ,εn−1) of exponentially de-
creasing entries εi := 2n−1−i is built, where the εi are

Journal of WSCG 51 ISBN 1213-6972 ISBN 80-86943-09-7

usually measured in meters or feet. The particular
choice is motivated in section 5. Starting with ε0, a hi-
erarchy {Mi}

n−1
i=0 of restricted quadtree meshes satisfy-

ing Vi ⊆Vi+1 and εi+1 ≤ δ (H ′
i ,H) ≤ εi is constructed.

Here Vi and Vi+1 are the sets of vertices at hierarchy
levels i and i + 1. More precisely, in a top-down ap-
proach we construct each Mi+1 by refining Mi, and
we stop the construction if δ (H ′

i+1,H) ≤ εi+1.

To generate the next finer hierarchy level from the cur-
rent mesh, recursive quadtree refinement is performed
until one of the following two conditions is met.

1. the maximum deviation between the new mesh
and the original terrain is less than the error thres-
hold defined for the level.

2. the spacing between vertices of the mesh be-
comes smaller than the error threshold defined
for the level.

The second criterion is enforced by prohibiting the
quadtree from being refined below a certain scale. This
weakens the requirement εi+1 ≤ δ (H ′

i ,H)≤ εi, but ge-
nerally δ (H ′

i ,H) is still less than εi. In this way we can
avoid aliasing artifacts due to subsampling along the
domain axes. In a second step (following the Push/Pull
paradigm), geometry changes are propagated from fine
to coarse and sub-quadtrees are refined where needed
to avoid T-vertices.

Figure 3: Quadtree mesh and Π-order traversal.

The quadtree is then decomposed into recursive trian-
gle fans [RHSS98] or a single triangle strip [LP02].
Using triangle strips is possible in our framework, but
generating them increases the time spend for pre-pro-
cessing considerably. Triangle fans, on the other hand,
are easy to implement, reduce meshing time and are
similarly cache friendly as strips. However, generat-
ing fans results in a lot of separate primitives. In order
to render these primitives efficiently, primitive restarts
are employed. Primitive restarts are available on re-
cent nVidia GPUs and are exposed in OpenGL by the
GL primitive restart NV extension. When rendering
indexed vertices, the user may define a special index.
Whenever this index is encountered, no vertex is fetch-
ed but instead a new primitive is started. This allows
for a list of fans to be rendered efficiently by using
only a single draw call, reducing state changes and

setup overhead. To generate fans the quadtree is tra-
versed recursively in depth-first order. As a result, we
visit each fan in the order of a Π-order space-filling
curve (see figure 3), which was successfully used in
[LP02] to linearize memory layouts. This traversal has
the nice property that fans generated after each other
have a very high probability to be adjacent (in a full
quadtree all consecutive fans are adjacent), in which
case the newer one can re-use two or even three ver-
tices of the previous one. Since each fan has at most 9
vertices, the last fan will always be cached entirely on
current GPUs.

Figure 4: Best and worst cases for vertex cache
re-usal of fans. The gray fan can re-use the red

vertices of the white fan, resulting in a cache
coherence of at least 25%

Thus, recursive fans can re-use between 2/8 and 3/6
of their vertices (see figure 4).

To obtain a continuous LOD representation, we inter-
polate between the discrete LODs Mi. This is known
as Geomorphing [FEKR90]. In a nested hierarchy,
vertices retain their position within the domain during
morphing. Due to the property Vi ⊆ Vi+1 each vertex
at level i thus stores one height value for level i and
each coarser level k < i. To render a LOD between
two consecutive levels, the triangle mesh at the finer
level is rendered and vertices are morphed accordingly.
Although higher order interpolation is possible, only
linear interpolation is considered in this work for effi-
ciency reasons. This is described later in more detail.

5. RENDERING FRAMEWORK
As a benefit of the nested mesh hierarchy, tiles can
be uploaded progressively to the GPU. On the GPU,
an appropriate data structure accommodates real-time
rendering at high quality, including photo-texturing.
Optionally, if high resolution view ports require the
screen space error to be increased, geomorphing is per-
formed on the GPU. At the same time, the CPU per-
forms view frustum culling and level of detail com-
putations on a per-tile basis. Since all GPU tasks are
programmed in a high-level shading language, the en-
tire framework is extendable and can easily be tailored
to fit custom needs.

GPU data structures
As soon as a particular tile has to be rendered, a vertex
buffer large enough to store all shared vertices of that

Journal of WSCG 52 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 5: The GPU data structures used to enable
progressive transmission of vertices and indices.

tile is created. In this buffer, vertices are organized in
blocks according to their respective hierarchy levels.
(see figure 5). The associated topology is stored in one
separate element array for each level. The ith element
array contains only indices into the first i + 1 blocks
of the vertices. Such a shared vertex representation
has two major advantages. Firstly, it reduces storage
requirements compared to non-shared representations.
This is of special importance when additional vertex
attributes, such as geomorphs have to be stored. Sec-
ondly, it enables progressive transmission by re-using
vertices of coarser levels.

Because the tiles used in this work always have a res-
olution of 2572, relative domain coordinates are en-
coded in 9 bits. The height value can be considerably
larger. It is therefore encoded using 14 bits. All three
values are stored in two 16 bit vertex attribute compo-
nents. They are decoded in the vertex shader during
rendering.

If geomorphs are enabled, additional storage require-
ments arise. The method is still memory efficient, as
only one additional height value per coarser level needs
to be stored. Since usually only small offsets to the
original height are needed, 8 bits per value are suffi-
cient. This allows us to morph vertices within a range
of +127 . . .−128 units.

Run time processing
For each tile we keep an axis-aligned bounding box to
accommodate view frustum culling on the CPU. For
every frame, visible tiles are depth-sorted to exploit the
early-depth test, if available, and to reduce overdraw.
A memory manager, which is described below, ensures
that all visible tiles can be rendered by paging in data
not yet resident on the GPU.

Then for each visible tile the appropriate LOD is com-
puted. The index buffer as well as the vertices required
to render the respective level are sent to the GPU, if not
already resident. If a tile has been rendered previously,

at least a subset of vertices has already been sent to
the GPU. In this case, only the remaining vertices re-
quired to render the current level are transmitted and
written to the respective vertex buffer on the GPU. In
this way, even though an array large enough to keep
all vertices has to be allocated on the GPU, bandwidth
requirements at run time are substantially reduced.

To avoid cracks at tile boundaries, neighboring tiles
are stitched together using zero-area triangles. For
each tile and each level in the hierarchy, the set of bor-
der vertices along with all attributes is duplicated in
system memory. Whenever two neighboring tiles are
visible, the necessary triangles to fill out T-junctions
are generated on the CPU and are then rendered. Since
this process uses exact duplicates of the vertices on
the GPU and the same GPU programs are employed,
cracks are avoided without numerical precision issues.

Level of detail
Determining the appropriate LOD for each tile and
vertex requires the projection of the user-defined pixel
error to object space. Previous approaches rely on con-
servative estimates of this error and are often equiva-
lent to a linear approximation of the projection. Since
such estimates usually over-estimate the error, even for
pixel errors larger than one aliasing might still occur.
We compute a more precise error metric by directly us-
ing the current projection matrix, which maps homo-
geneous object coordinates v = (v1,v2,v3,1) to screen-
space coordinates s = (s1,s2,s3). Here, s3 corresponds
to the depth value. The appropriate scale of details ρ
can then be computed in a similar way as the appropri-
ate mipmap scale for texturing [Wil83]:

ρ :=

√

√

√

√

√

∑3
i=1

(

∂vi
∂ s1

ds1 + ∂vi
∂ s2

ds2

)2

ds2
1 +ds2

2

To compute ρ , s is expressed in parametric form s(v),
already including perspective division and scaling of
the canonic frustum to pixel coordinates. The Jacobi
matrix at v consists of the partial derivatives Ji j(v) :=
∂ si/∂v j. The inverse transpose of J(v) contains ex-
actly the partial derivatives required to compute ρ . The
differentials dsi are required to map from units of the
height field (eg.,feet or meters) to pixels. Computing
ρ yields the optimum scale corresponding to a screen-
space error τ equal to 1 pixel. If the user selects a
different screen-space error, the frustum is scaled to
pixel coordinates divided by τ instead of using the en-
tire resolution. Then, ρ is the object space distance
that projects onto τ pixels.

On the CPU, ρ j is computed per tile for each corner j
of its bounding box. Because entries of the error vec-
tor are given by εi = 2n−1−i units, the optimum LOD
value is computed by λ j := λmax −blog2(ρ j)c, where

Journal of WSCG 53 ISBN 1213-6972 ISBN 80-86943-09-7

λmax = n− 1 is the number of available levels. The
mesh Mmin j{λ j} is then selected for rendering the tile.

Geomorphing
As mentioned before, high resolution displays coupled
with a low screen-space error can require most of the
terrain to be rendered at the highest resolution. In or-
der to maintain stable and interactive frame rates, the
tolerable screen-space error has to be increased. To
prevent popping artifacts, geomorphs are applied. For
every vertex v in a tile, the λ j at box corners are tri-
linearly interpolated on the GPU to get an approximate
vertex LOD λ (v). Geomorphing [FEKR90] now con-
sists of linearly interpolating height values Hbλ (v)c and
Hbλ (v)c+1,using the fractional part λ (v)−bλ (v)c as in-
terpolation weight.

Finding the correct height values on the GPU could
be implemented in a straight forward manner using
conditionals. As conditionals are costly on current
GPUs, we avoid them by implementing a different ap-
proach based on clamped forward differences. In this
approach, we treat height values {Hi}

n−1
i=0 as the con-

trol points of a piecewise linear interpolant in λ . To

Figure 6: Basis-functions η ′ for geomorphs.
obtain H(λ), we compute shifted basis-functions that
can be reduced using simple dot product arithmetic.
Firstly, we compute a vector-valued function
η(λ) := clamp

(

(λ ,λ ,λ ,λ , . . .)t − (0,1,2,3, . . .)t ,0,1
)

Each component i of η contains a linear ramp between
λ = i and λ = i+1. For λ ≤ i it is 0, and for λ ≥ i+1
it is 1. Then, the desired basis function is obtained by
computing forward differences on η :

η ′
i (λ) :=

{

1−η0(λ) if i=0
ηi−1(λ)−ηi(λ) else

Finally, the η ′
i contain the well-known basis functions

for linear interpolation (see figure 6). Interpolation can
now be written as the dot product H(λ) = ∑n−1

i=0 η ′
i (λ) ·

Hi. This method is highly efficient on the GPU and
in our case (n = 9) outperformed the straight-forward
implementation using conditionals by a factor of 2.5.

Texturing
By default, a pre-lit 2D texture is mapped onto the ter-
rain. This can be a photo texture or, as for the Puget
Sound, a synthesized 2D texture. During pre-process-
ing, the texture is dyadically downsampled using a Lanc-
zos filter with radius 2 to obtain a single, large mipmap.

Now tiles are cut out of the mipmap to precisely match
the tiles of our mesh hierarchy. To save GPU memory
and bandwidth, each texture tile is then compressed
using the S3 compression scheme. More specific, tiles
are encoded using the DXT1 format, which yields good
results for most photographic or synthetic textures at
a compression rate of 6:1. We store the 16K2 Puget
Sound texture including 9 (11) mipmap levels for the
16K2 (4K2) geometry in about 170 MB.

If a pre-lit texture is not available, it is computed from
the original terrain in a pre-process. Alternatively, nor-
mals could be stored as additional vertex attributes.
However, besides the additional memory overhead that
is introduced (at least two 8 bit values to cover the up-
per hemisphere), lighting artifacts due to non-continu-
ous changes of normals during LOD transitions can
only be resolved by storing one normal per vertex and
level. On the other hand, a DXT1 pre-lit texture with
4 texels per vertex has the same storage requirements
as a single per-vertex normal, but it avoids any light-
ing artifacts because texture filtering is performed af-
ter lighting.

6. MEMORY MANAGEMENT
After building the discrete LOD hierarchy, for high-
resolution terrains including morph values and textures,
the data is far too large to be stored in local video
memory of recent GPUs. To avoid frequent paging of
textures and vertex buffers, and to optimize progres-
sive updates we have implemented a memory manager.
At initialization time, the memory manager allocates
chunks of exponentially growing sizes in GPU mem-
ory, to prevent external fragmentation. Sizes range
from 32KB to a maximum size that allows the largest
vertex buffer to be stored in such a chunk. Addition-
ally a number of textures with a fixed resolution is allo-
cated. The memory manager stores meta-data for each
memory block, i.e. size, a time stamp, and the num-
ber of levels already sent to the GPU. Paging is now
implemented as a mixture between a last recently used
(LRU) and a tightest fit (TF) strategy.

Whenever a tile A is to be rendered, the system de-
termines if there is already a chunk associated with
A. If not, and also no appropriate chunk is available,
the tile B with the earliest time stamp large enough to
completely store A is determined. B is then marked
as non-resident, and the chunk is overwritten with the
data of A. To efficiently determine B, we keep a prior-
ity list for each available size. This allows us to weight
the LRU strategy against a TF criterion. Once a chunk
has been associated with A, all data required to render
the current level is sent to the GPU. If there already
was a chunk associated with A, the memory manager
determines whether the chunk contains all necessary
data. If not, the CPU sends all missing vertices and the

Journal of WSCG 54 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 7: Test data sets in this paper. From left to right: Puget 16K×16K, Paris, Grand Canyon, and Alps.
Observe the high degree of geometric details present even in regions further away from the viewer.

Data Set Resolution Texture original Size Storage fps τ = 1 M∆/sec τ = 1 fps τ = 5
Puget4K 4K×4K 16K×16K 800MB 412MB 202 78.85 199
Puget16K 16K×16K 16K×16K 1.25GB 1.25GB 60 25.69 57
Grand Canyon 4K×2K 8K×4K 112MB 80MB 289 74.60 292
Paris 9.7K×5.8K 19.5K×11.7K 763MB 267MB 36 100.87 65
Alps 8.9K×8.5K 8.9K×8.5K 361MB 546MB 145 65.43 155

Table 1: Timings and Results. Original size only includes height field and texture, without taking mipmaps
into account. τ refers to the pixel error. For τ = 1 geomorphs were disabled, for τ = 5 they were enabled.

required index buffer to the GPU. Since vertices are
shared across levels, this update is usually very cheap
compared to the upload of all vertices. Whenever a tile
is rendered, its time stamp is updated.

The memory manager supports uniform load on the
bus connecting the CPU and the GPU, thus avoiding
’paging hiccups’: when a non-resident tile enters the
view frustum, there is usually another one that has to
be released, the texture tile has to be uploaded, and
an initial LOD has to be sent to the GPU. However,
with high probability this initial LOD requires only a
few vertices. On the other hand, if a tile was already
resident, performing an update only requires a fraction
of the entire data to be sent.

Speculative prefetches are also supported, if there are
unused memory chunks. If the number of chunks need-
ed to render the current view falls below a certain frac-
tion of all allocated chunks, the user’s view is pre-
dicted. Whenever the user moves, a list containing
the last viewing parameters is updated. By fitting a
spline through these parameters, new viewing param-
eters can be extrapolated and tiles that are predicted to
become visible in the near future can be prefetched, as
long as a maximum time budget is not expired. In this
way, very smooth fly-overs at high frame rates can be
achieved.

7. RESULTS
Our results and timings are summarized in table 1. All
timings were done on a P4 3.0GHz with 2GB RAM
and GeForce 6800GT with 256MB. The machine was
equipped with a single standard 120GB IDE hard disk.
All data sets were rendered to a 1024×768 view port.
Enabling 8x full-screen anti-aliasing and 4x anisotropic
texture supersampling, the frame rate dropped about
30%. The timings should be fairly comparable to more

recent publications. Though we have a newer graphics
card, we render a considerably larger view port com-
pared to many other systems.

Pre-processing of the geometry to a 9 level hierarchy
processes approximately 15M vertices per minute and
is linear in the amount of vertices. Memory consump-
tion is constant, as tiles are processed independently of
each other. Generating a 16K×16K texture hierarchy
including filtering takes about 5 Minutes.

The Puget4K and the Grand Canyon data sets are only
medium sized, and consequently our system is neither
triangle nor memory limited. For the Paris data set
with its 2.8M∆ per frame, we become triangle limited.
Note however that this is a worst-case scenario, as our
triangulation faithfully reconstructed all the steep sides
of the buildings. A lot of these triangles are backfaces
that are culled by OpenGL (but they are still counted
since they pass the geometry stage). However, the
Paris dataset is an excellent benchmark for the raw tri-
angle throughput that our system can achieve.

The Puget16K dataset on the other hand is large enough
to demonstrate the effects of the memory system. The
lower triangle throughput reflects that our paging strat-
egy does not come for free, but it still allows for highly
interactive fly-overs

The Alps data set is a good mixture between these
extremes. It contains lots of flat terrain around Mu-
nich and a considerable amount of very rough terrain
around the Alps.

As our results show, frame rates for highly triangu-
lated data sets, such as Paris, can also be improved by
increasing the pixel error and enabling geomorphing.
For these highly triangulated datasets we also hope to
benefit from continuously increasing vertex processor
throughput on future graphics chips.

Journal of WSCG 55 ISBN 1213-6972 ISBN 80-86943-09-7

8. CONCLUSION & FUTURE WORK
We have presented an efficient rendering system for
large and textured terrain data that provides excellent
quality and highly detailed views. In particular, at
equal frame rates our system guarantees a smaller pixel
error than previous approaches. We achieve these prop-
erties by exploiting a special discrete LOD hierarchy,
as well as processing and rendering functionality on
recent GPUs.

In the future, we will investigate dedicated compres-
sion schemes that are amenable to GPU decoding, such
as vector quantization. Both, the possibility to com-
press mesh hierarchies as well as texture will be con-
sidered. As GPUs are become increasingly powerful,
adaptive on-the-fly texture synthesis will become an
important feature.

Acknowledgements
We would like to thank the DLR and ISTAR for the
Paris and Alps data sets and the people from GA Tech
[Geo] for making the Puget Sound and Grand Canyon
datasets publicitly available.

9. REFERENCES
[Blo00] J. Blow. Terrain rendering at high levels of

detail. In Game Developer’s Conference, 2000.
[BSW83] R. E. Bank, A. H. Sherman, and A. Weiser.

Refinement algorithms and data structures for regular
local mesh refinement. In Scientific Computing, pages
3–17, 1983.

[CGG+03a] P. Cignoni, F. Ganovelli, E. Gobbetti,
F. Marton, F. Ponchio, and R. Scopigno. BDAM –
batched dynamic adaptive meshes for high
performance terrain visualization. Computer Graphics
Forum, 22(3):505–514, 2003.

[CGG+03b] P. Cignoni, F. Ganovelli, E. Gobbetti,
F. Marton, F. Ponchio, and R. Scopigno. Planet-sized
batched dynamic adaptive meshes (p-bdam). In Proc.
IEEE Visualization ’03, pages 147–154, 2003.

[DWS+97] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti,
M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein.
ROAMing terrain: real-time optimally adapting
meshes. In Proc. IEEE Visualization ’97, pages 81–88,
1997.

[FEKR90] R. L. Ferguson, R. Economy, W. A. Kelly, and
P. P. Ramos. Continuous terrain level of detail for
visual simulation. In IMAGE V Conference ’90, pages
144–151, 1990.

[FL79] R. J. Fowler and J. J. Little. Automatic extraction
of irregular network digital terrain models. In Proc.
ACM SIGGraph ’79, pages 199–207, 1979.

[Geo] Georgia Institute of Technology. Large Geometric
Models Archive.
http://www.cc.gatech.edu/projects/large models.

[GGS95] M. H. Gross, R. Gatti, and O. Staadt. Fast
multiresolution surface meshing. In Proc. IEEE
Visualization ’95, pages 135–142, 1995.

[GH95] M. Garland and P. Heckbert. Fast polygonal
approximation of terrains and height fields. Technical
Report CMU-CS-95-181, Carnegie Mellon University,
1995.

[HB87] B. Von Herzen and A. H. Barr. Accurate
triangulations of deformed, intersecting surfaces. In
Proc. ACM SIGGraph ’87, pages 103–110, 1987.

[HDJ04] L. M. Hwa, M. A. Duchaineau, and K. I. Joy.
Adaptive 4-8 texture hierarchies. In In Proc.
Visualization, pages 219–226, 2004.

[Hop98] H. Hoppe. Smooth view-dependent
level-of-detail control and its application to terrain
rendering. In Proc. IEEE Visualization ’98, pages
35–42, 1998.

[IBM] IBM Corp. T221 Flat Panel Monitor.
http://www.ibm.com.

[KLR+95] D. Koller, P. Lindstrom, W. Ribarsky, L.F.
Hodges, N. Faust, and G.A. Turner. Virtual GIS: A
real-time 3D geographic information system. In Proc.
IEEE Visualization ’95, pages 94–100, 1995.

[LH04] F. Losasso and H. Hoppe. Geometry clipmaps:
terrain rendering using nested regular grids. In Proc.
ACM SIGGraph ’04, pages 769–776, 2004.

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G. A. Turner. Real-time,
continuous level of detail rendering of height fields. In
Proc. ACM SIGGraph ’96, pages 109–118, 1996.

[LP01] P. Lindstrom and V. Pascucci. Visualization of
large terrains made easy. In Proc. IEEE Visualization
’01, pages 363–370, 2001.

[LP02] P. Lindstrom and V. Pascucci. Terrain
simplification simplified: A general framework for
view-dependent out-of-core visualization. IEEE
Transactions on Visualization and Computer Graphics,
8(3):239–254, 2002.

[Mal00] H. S. Malvar. Fast progressive image coding
without wavelets. In Proc. IEEE Data Compression,
pages 243–252, 2000.

[Paj98] R. Pajarola. Large scale terrain visualization
using the restricted quadtree triangulation. In Proc.
IEEE Visualization ’98, pages 19–26, 1998.

[PFL78] T. K. Peucker, R. J. Fowler, and J. J. Little. The
triangulated irregular network. In Proc. ASP-ACSM
Symposium on DTM’s, 1978.

[Pom00] A. A. Pomeranz. ROAM using surface triangle
clusters (RUSTiC). Master’s thesis, Center for Image
Processing and Integrated Computing, University of
California, Davis, 2000.

[RHSS98] S. Röttger, W. Heidrich, P. Slusallek, and H. P.
Seidel. Real-time generation of continuous levels of
detail for height fields. In Proc. WSCG ’98, pages
315–322, 1998.

[SN95] M. Suter and D. Nüesch. Automated generation
of visual simulation databases using remote sensing
and GIS. In IEEE Visualization ’95, pages 86–93,
1995.

[Ulr00] T. Ulrich. Rendering massive terrains using
chunked level of detail. ACM SIGGraph Course
“Super-size it! Scaling up to Massive Virtual Worlds”,
2000.

[Wil83] L. Williams. Pyramidal parametrics. In Proc.
ACM SIGGraph ’83, pages 1–11, 1983.

Journal of WSCG 56 ISBN 1213-6972 ISBN 80-86943-09-7

Improving Quality of Free-Viewpoint Image
by Mesh Based 3D Shape Deformation

Satoshi Yaguchi †‡ Hideo Saito †

† Department of Information and Computer Science, Keio University
3-4-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 JAPAN

‡NTT COMWARE Corporation, NTT Shinagawa TWINS Annex Bldg.

1-9-1 Konan, Minato-ku, Tokyo 108-8019 JAPAN
E-mail yagu@ozawa.ics.keio.ac.jp, saito@ozawa.ics.keio.ac.jp

ABSTRACT

In this paper, we present a method to synthesize high-quality virtual viewpoint image targeting the detailed
texture objects. About 30 images are taken from multiple uncalibrated cameras around the object, and the Visual
Hull model is reconstructed with Shape from Silhouette method. To deform 3D surface model that is converted
from Visual Hull Model using the information such as image texture and object silhouette, the difference
between the real object and the reconstructed model is evaluated as a cost function of optimization problem.
Our deforming model algorithm is based on single vertex iterative shifting. The vertex of surface triangle mesh
is moved to the selected candidate point that maximizes the cost function. The cost function is consisted by four
constraint criteria, texture correlation, smoothness, object silhouette, and mesh shape regularity. In addition to
the cost function, such as judging mesh direction and combining / dividing meshes are applied for refined 3D
models to avoid mesh folding and mesh size unevenness. The refined model provides a quite accurate dense
corresponding relationship between the input images, so that high quality image can be synthesized at virtual
viewpoint.
We also demonstrate the proposed method by showing virtual viewpoint images to applying the real image that
are taken from multiple uncalibrated cameras.

Keywords
Shape-from-Silhouette, the Visual Hull, shape refinement, Image Based Rendering, weakly calibrated multiple
camera system

1. INTRODUCTION
The acquisition of 3D geometric information and
generating virtual viewpoint images from multiple
cameras are studied many years and still researched
actively. The studies of those methods are
categorized into two basic methods, correlation-based
stereo approach and the Visual Hull [Lau94a] model
based approach.

The Multiple Baseline Stereo method [Oku93a,
Nay98a] enables acquisition of 3D geometric

information with correlation based stereo method
from multiple cameras. The advantage of correlation-
based approaches is able to handle concave regions.
In contrast, it is not stable to handle occluded region.
Occluded region causes losing pixels on synthesized
virtual viewpoint images. Baselines between each
camera are not short enough to remove occluded
region, even if there are several tens cameras
[Sai03a].

On the other hand, the Visual Hull model based
approaches mainly reconstruct a 3D geometric
information with shape from silhouette method
[Mat00a]. These approaches can synthesize virtual
viewpoint image without losing pixels even in
partially occluded regions. However, the difference
between the real object and reconstructed model may
cause blurring in the synthesized virtual images. It is
mainly caused by concave region or insufficient
number of cameras to curve a Visual Hull model.
Especially to apply an object with a detailed texture,
the blur greatly effects image quality in appearance.
Therefore the quality of the synthesized virtual

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 57 ISBN 1213-6972 ISBN 80-86943-09-7

viewpoint image is degraded by inaccuracy of the
reconstructed shape.

Recently, the advanced approaches that take into
account the both advantages are intensively studied.
Those approaches improve the image quality to
refine 3D geometric shape with various information
such as a texture correlation. The Space Curving
Method [Kut00a, Sla02a] removes unnecessary
voxels of the voxel-represented model using texture
information by reducing difference between
constructed models. The techniques for optimizing
3D model by deforming the vertex of surface triangle
mesh based on the correlation of the texture have also
been proposed [Eck04a, Nob03a].

We have been studied acquisition of 3D geometric
information and generating virtual viewpoint images
from multiple cameras. We have already proposed a
new framework for the Visual Hull based virtual
viewpoint image synthesizing method expanding to
weakly calibrated multiple cameras using the
"Projective Grid Space (PGS)"[Sai99a] in which the
coordinates are defined by epipolar geometry
between cameras instead of strong calibration
[Yag02a, Yag04a]. In the framework, virtual
viewpoint images can be synthesized with Image
Based Rendering using correspondence map derived
from the model like a view morphing method
[Sei96a]. However, there is still remained the
blurring problem, because the difference between the
reconstructed model and the real object is not well
considered.

The goal of this paper is to improve a quality of
virtual viewpoint image that is synthesized with the
framework. The proposed method in this paper aims
to reduce the blurring effect to deform the
reconstructed model with the information such as
image texture or object silhouette. Quite accurate
dense correspondence map between the images that
is derived from the refined model enables
synthesizing high quality virtual viewpoint images
without the blur.

2. PROPOSED METHOD
The approach of the proposed method is based on the
"Projective Grid Space (PGS)” framework [Sai99a],
which relates the 3D object space with 2D image
coordinates. Using PGS framework, reconstructing
3D shape model with Shape from Silhouette method
and generating virtual viewpoint images becomes
possible from uncalibrated multiple cameras
[Yag04a].

Input images are taken by uncalibrated cameras that
observe around a target object, and silhouette images
are synthesized from those images. Several
correspondence points between each image are

extracted from feature points, and fundamental
matrices, which are used for relating 3D object space
and 2D image plane with the PGS framework, are
calculated from those points. (Please refer the
appendix or those papers, the details of the PGS
framework is shown.)

An initial voxel model is reconstructed by the shape-
from-silhouette method on the PGS. By applying the
Marching Cubes algorithm, the Visual Hull model is
converted to the surface representation model. The
vertex of surface triangle mesh is moved to the
selected candidate point maximizes the cost function
that is consisted by four constraint criteria.

The cost function can be computed only on 2D image
domain according to the projection computation from
PGS to every image. Obtaining a dense
correspondence map between images from the
optimized model, high quality virtual view images
are synthesized as the image interpolating two input
images.

3. SHAPE REFINEMENT
This section describes proposed refinement technique
of the 3D-surface model by using only 2D image
domain information. Model shape is refined by
moving each vertex of surface triangle mesh
independently. Each vertex of the surface model is
visited sequentially, and then cost function is
evaluated at initial position of the vertex. If the
evaluated value is under threshold, candidate points
of refinement vertex are defined, and each cost value
is calculated at those candidate points respectively.
The vertex is moved to the candidate point that
maximizes the cost function. When all vertexes are
visited N times, or cost function is over threshold at
all vertexes, shape refinement is finished.

3.1 Vertex Position Optimization
Our algorithm of deforming 3D shape is based on
shifting a single vertex iteratively. Each vertex of
reconstructed model is visited respectively and
shifted independently. The process of shifting vertex
position is performed by selecting and moving the
candidate vertex to the point that maximizes cost
function. The candidate vertexes are defined every
iterating cycle.
To simplify the algorithm, the candidate points are
defined on the line passing through the target vertex

0v and a point g that is defined as the center of all

adjacent vertexes 0x , 1x , …, mx . Then 2n+1

candidate points nv , …, nv− , (within the target
vertex) are defined outside and inside of the model
surface at intervals of a unit vector scaled by a
weight s (see Figure 1).

Journal of WSCG 58 ISBN 1213-6972 ISBN 80-86943-09-7

The parameter s is decided dynamically depending
on the value of the cost function of 0v to enable
detailed search, and that is ranged 0.1≤ s≤ 1.0. The
number of candidate point n is decided depending on
the distance between 0v and g to preserve initial
shape detailed structures.

Figure 1. Deform of vertex: Moving candidate

points are defined on a line 0v to g.

Cost function nV− , 1+−nV , 0V , …, nV of each
candidate point nv is calculated by the following
equation (1).

)(ncorrn vVV ⋅=α

)(

)(
)(

nsil

nshape

nsmooth

vV

vV
vV

⋅+

⋅+
⋅+

δ

λ
β

 (1)

corrV : Texture correlation

smoothV : Smoothness

shapeV : Triangular shape regularity

silV : Silhouette

where α , β , γ , δ , ε are weighting coefficients.
Definition of each criterion is described next.

3.1.1 Texture Correlation
Texture correlation of a vertex is determined by the
texture of its adjacent triangle meshes. The
correlations between each image are calculated by
normalized cross correlation to apply all pixels of the
mesh. The correlations are defined for the input
images from which the vertex and the adjacent
meshes are able to observe.

Vertexes of triangle mesh iv0 , ix0 , ix1 in the image
i, and jv0 , jx0 , jx1 in the image j are related to 3D
position by fundamental matrices. Inner point p of
triangle mesh in the image i is corresponded to the
point in the image j by affine transform ijA (see
Figure 2).

Figure 2. Texture correlation: Adjacent triangle
Meshes are projected on images by fundamental

matrixes. Each pixel of mesh is corresponded
other images by Affine transformation matrixes.

The correlation of nv of adjacent mesh k between
image i and image j is shown equation (2).

∑ ∑

∑
−−

−−
=

p p
jpip

p
jpip

ncorr
wWwW

wWwW
vV

ji

ji

ijk 22)()(

))((
)(

(2)

where
ipW and

jpW are the color of the point
ip and jp , respectively, iw , jw are the averages of

color of all pixel in the image i and j, respectively.

)(ncorr vV
ijk

 is also calculated for all combination of
pairs of images on which the vertex nv is projected
onto the pair images without occlusion. Then total

)(ncorr vV is computed as the average of all
ijkcorrV

calculated for the vertex nv .)(ncorr vV
ijk

 is ranged
1)(1 <<− ncorr vV .

3.1.2 Smoothness Constraint
Though surface of the object should be locally
smooth, and be continuous, we apply to following
smoothness constraint. The constraint is defined
depending on the distance)(nvd between the vertex

nv and g, which is determined by all adjacent
vertexes of the target vertex as described in 3.1. In
order to reduce over-smoothing, the distance

)(0vd between g and the point 0v , which is the 1/6
distance point on the line segment between 0v and g,
is subtracted from)(nvd . Thus, we apply to
following function as the smoothness constraint.

()20 6/)()()(vdvdvV nnsmooth −= (4)

where d is the distance between nv and g, and
weighting coefficient β will be negative.

Journal of WSCG 59 ISBN 1213-6972 ISBN 80-86943-09-7

3.1.3 Silhouette Constraint
The 3D-surface model after deformed should be
filled over the initial Visual Hull sufficiently. The
vertexes that determine the Visual Hull are
constrained to the boundary of the initial silhouettes.
However, because the Visual Hull model doesn't
accurately express the real contour, for instance, the
concave regions, the vertex projected on the
boundary of the silhouette is only a candidate
determining the contour. The silhouette constraint
keeps the refined model to form the initial silhouette.

Therefore the following silhouette constraint is
applied to the target vertex and the refinement
candidate points (see Figure3).

Figure 3. Silhouette Constraint: An image in that

vertex projected on edge, silhouette constraint
criterion is defined depending on the distance

from edge.

1. When the target vertex 0v is not projected onto
the boundary of the silhouette in input image i,

isilV is not defined ()(nsil vV of all candidate

points are decided to 0.).

2. When 0v is projected onto the boundary of the

silhouette on input image i, isilV is defined in

proportion to the distance between the projected
coordinate of candidate points nv and that of 0v .

In addition,

3. If nv is projected on outer silhouette even by

one input image, nv is excluded from candidate.

After all,)(nsil vV of the candidate point is defined

by the sum of)(nisil vV as following equation (5).

∑∑ ==
i

i
i

nisilnsil dvVvV)()((5)

3.1.4 Constraint on Triangular shape
regularity
As iterative vertex deforming process goes on, mesh
shape and size are changed. If triangle of mesh is
very small or very narrow, its texture is not able to
derive enough to calculate correlation. So it is
preferable that triangle shape is kept shape regularity
and size as same as possible.

Therefore, the criterion of constraints on the
triangular shape regularity)(nshape vV of adjacent
mesh k of vertex nv is shown by equation (6)
[Eck04a].

2
3

2
2

2
1

2132)(
eee

ee
vV nkshape rrr

rr

++

×
⋅= ,

 10 ≤< shapeV (6)

where 1er ， 2er ， 3er are edge vectors. This function
represents the geometric quality of triangle area
rations

The criterion)(nshape vV of vertex nv is defined the

average of)(nkshape vV .

3.2 Additional Constraints
Going on the iterating process, vertex shift may cause
mesh folding or mesh size unevenness. Mesh folding
changes the topology of the model or the visibility of
the vertex, the correlation of the mesh is not able to
calculate accurately and the mesh is not rendered
correctly (such as “hole” or “overlap” texture is
appeared in the synthesized image).

Mesh size variation causes inequality of the precision
of cost function, and very small meshes cause
invalidate vertex because of having not enough areas
deriving textures. In order to avoid such folding or
unevenness of the mesh size, following additional
constraints are also considered.

3.2.1 Avoiding Mesh Folding
Mesh folding is occurred when the mesh is not
occluded turns to be occluded. It is stated differently,
it is caused when the vertex is moved over the
boundary of the adjacent mesh.

To avoid such mesh folding, normal direction of
mesh on the projected image can be used. Vertexes

Journal of WSCG 60 ISBN 1213-6972 ISBN 80-86943-09-7

of mesh 0v , 1x , 2x are indexed in the order of
clockwise on the projected image, if the mesh is not
occluded, as shown in Figure 4(a). Then the
direction of surface normal of the all the meshes
adjacent to 0v are calculated with edge vector.
According to the direction, every mesh is determined
if it is on the right side or wrong side.

If one of the meshes is not on the right side, mesh is
considered as folding as shown in Figure 4(b). Such
candidate points of 0v are excluded from the vertex
searching candidate points that are defined 3.1.

Figure 4. Mesh folding: If the candidate point is
decided over the boundary of the adjacent mesh,
rotation of vertexes and surface normal vector

are changed in reverse.

3.2.2 Merging / Dividing Meshes and Vertexes
The distance between the vertexes is changed after
the iterating process. Constraint on triangular shape
regularity described 3.1.5 is not able to avoid mesh
size unevenness. So, when every iteration cycle is
finished, meshes and vertexes are divided or merged
according to the distance between adjacent vertexes.

If the distance between adjacent vertexes is over the
threshold distance maxD , new vertex is inserted to
the middle point in these vertexes, and triangles that
sharing these vertexes are divide into two triangles
each. If the distance between each adjacent vertex is
less than the threshold distance minD , these vertexes
are merged into one vertex. When two vertexes
should be merged, first, the vertex after merged is
decided for the middle point of these vertexes. Next,
two triangles that share both vertexes are removed,
and the mesh index references of each vertex are re-
indexed to refer the new vertex.

4. EXPERIMENTAL RESULT
The proposed method has been tested with several
real objects. Input images are taken by uncalibrated
camera as color images (640×480 pixels BMP
format). Results for two real objects, a Jaguar and an
elephant are shown in this section.

4.1 Jaguar
The target object is a paper craft of "Jaguar" about
20cm×10cm×10cm. 36 images were taken around a
target object with a hand-held camera as input images.

Figure 5. Real Images from that virtual view

image shown Figure 7 are synthesized to
interpolate.

Figure 6. Initial surface model and refined model

iterated N=300.
Figure 5 shows the example of the input image. An
initial surface model reconstructed in the PGS and
the refined model with iteration N=300 by proposed
method are shown in Figure 6.
Virtual viewpoint image were synthesized with
interpolation ratio 5:5 of two real images as shown in
Figure 7. Here, Figure (1) and (2) represent the
image synthesized from initial model, and the image
synthesized from refined model iterated N=300,
respectively.

In the image of initial model (Figure 7 (1)), the
surface texture of the jaguar is blurred. The
background area image (blue area) is also rendered as
the surface texture of the object. Those bad
rendering effects are caused by inaccurate shape of
the initial model. Especially in the white ellipse area,
the discontinuous pattern is seen, that is because of
wrong shape of the jaguar’s foot. On the other hand,
such bad rendering effect is completely removed in
refined model image (Figure 7 (2)).

Journal of WSCG 61 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 7. Virtual view image

Figure 8. comparison of textures: (1) Rendering

from initial 3D shape model. (2) Real image
texture about the same viewpoint as virtual
viewpoint. (3), (4), and (5) Rendered images

with refined model of iteration N=100, N=200,
and N=300, respectively.

Next, Figure 8 shows the comparison of texture for
each iterating number, initial model, N=100, N=200,
N=300, and real viewpoint image. It is understood
that the image quality of synthesized image has been
improved as the number of iterating process is
increased. The real image shown in Figure 8 (2) is
taken from about same viewpoint as virtual
viewpoint. By comparing N=300 image (Figure 8

(5)) with real viewpoint image, about the same
quality texture is acquired with refined model.

4.2 Elephant
The target object is an "elephant" about
20cm×20cm×20cm. 30 images were taken as input
images. The examples of input images are shown in
Figure9.
Figure 10 shows an initial surface model and the
refined model with iteration N=450 by proposed
method. Figure 11 shows the synthesized free
viewpoint images. Images on either side are reference
real images and middle images are synthesized
changing interpolation-weighting factor. Upper
images were synthesized from initial model, and
lower were synthesized from refined model iterated
with N=450. In the upper images, many background
image areas (blur areas) are distributed, and the
border of adjacent rectangular patches are blurred.
On the other hand, such bad rendering effects are
reduced in the images rendered with the refined
model. In this way, free viewpoint images with
improved quality texture as same as input images are
able to synthesized using proposed method.

Figure 9. Examples of input images.

Figure 10. Initial surface model and refined model

iterated N=450.

5. CONCLUSION
We proposed a method for improving the quality of
new view image by deforming 3D surface model
from uncalibrated multiple cameras. The cost
function of deforming 3D shape model is defined
only on 2D image domain according to the projection
computation from PGS to every image. Deforming
3D shape model with the texture correlation and
other constraints reduces the difference between the
reconstructed model and the real object.

Journal of WSCG 62 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 11. Synthesized free viewpoint images. Images on either side are reference real images, the middle

upper images were synthesized from initial model, and lower were synthesized from refined model
iterated with N=450.

Using refined model removes the blur on the image
texture and enables synthesizing high quality free
viewpoint image. Our method requires only about 20
to 30 images and does not require strong calibration,
so that it is easy to use our method with simple
camera systems. For the future work, we will extend
this proposed method to the dynamic events and
synthesized free viewpoints video from uncalibrated
simple camera systems.

6. REFERENCES
[Eck04a] Eckert, G., Wingbermuhle, J. and Niem, W.
Mesh Based Shape Refinement for Reconstructing
3D-Objects from Multiple Images: The First
European Conference on Visual Media Production
(CVMP04), Mar.2004.

[Che93a] Chein, S. and Williams, L. View
interpolation for image synthesis: Proc. SIGGRAPH
'93, pp.279-288, 1993.

[Cur96a] Curless, B. and Levoy, M. A Volumetric
Method for Building Complex Models from Range
Images: Proc.of SIGGRAPH '96, 1996.

[Kut00a] Kutulakos, K.N. and Seitz, S.M. A Theory
of Shape by Space Carving: IJCV(38), No.3, pp.199-
218, 2000.

[Lau94a] Laurentini, A. The Visual Hul Concept for
Silhouette-based image understanding: IEEE Trans
Pattern Andl. Machine Intell., 16(2), pp150-pp162,
Feb. 1994.

[Nay98a] Narayanan, P.J., Rander, P.W. and Kanade,
T. Constructing Virtual Worlds using Dense Stereo:
Proc. ICCV 98, 1998.

[Mat00a] Matusik, W., Buehler, C., Raskar, R.,
Gorlter, S. and McMillan, L. Image-Based Visual
Hulls: Proc. of SIGGRAPH 2000, 2000.

 [Nob03a] Nobuhara, S. and Matsuyama, T. Dynamic
3D Shape from Multi-Viewpoint Images using
Deformable Mesh Models: Proc. of 3rd International
Symposium on Image and Signal Processing and
Analysis, Rome, Italy, September 18-20, pp. 192-
197, 2003.

[Oku93a] Okutomi, M. and Kanade, T. A Multiple-
Baseline Stereo: IEEE Trans. on PAMI, Vol.15,
No.4, pp.353-363, 1993

[Sai99a] Saito, H. and Kanade, T. Shape
Reconstruction in Projective Grid Space from Large
Number of Images: IEEE Proc. Computer Vision and
Pattern Recognition, Vol. 2, pp. 49-54, 1999.

[Sai03a] Saito, H., Baba, S., Kanade, T. Appearance-
Based Virtual View Generation From Multicamera
Videos Captured in the 3-D Room: IEEE Trans. on
Multimedia, vol.5, no.3, pp. 303-316, Sep. 2003

[Sei96a] Seitz, S. M. and Dyer, C. R. View
Morphing: proc. of SIGGRAPH '96, pp. 21-30, 1996.

[Sla02a] Slabaugh, G.G., Schafer, R.W. and Hans,
M.C. Multi-Resolution Space Carving Using Level
Set Methods: Proc.ICIP02, Vol.II, pp.545-548, 2002.

[Yag02a] Yaguchi, S. and Saito, H. Arbitrary
Viewpoint Video Synthesis from Uncalibrated
Multiple Cameras: WSCG'2002 - the 10-th
International Conference in Central Europe on
Computer Graphics, Visualization and Computer
Vision'2002, Feb.2002

Journal of WSCG 63 ISBN 1213-6972 ISBN 80-86943-09-7

[Yag04a] Yaguchi, S. and Saito, H. Arbitrary
Viewpoint Video Synthesis from Multiple
Uncalibrated Cameras: IEEE Trans. on Systems, Man
and Cybernetics, PartB, vol. 34, no1, PP.430-439,
2004.

APPENDIX
In our method, 3D point is related to 2D image point
without estimating the projection matrices by
“Projective Grid Space (PGS)”, which can be
determined by only fundamental matrices
representing the epipoler geometry between two basis
cameras. Because the 3D coordinate of PGS is
dependently defined by the camera image coordinates,
3D position of any sample points does not have to be
measured.

Projective Grid Space
The “Projective Grid Space (PGS)” is defined by
camera coordinate of the two basis cameras. Each
pixel point (p, q) in the first basis camera image
defines one grid line in the space. On the grid line,
grid node points are defined by horizontal position r
in the second image.

Thus, the coordinate P and Q of PGS is decided by
the horizontal coordinate and the vertical coordinate
of the first basis image, and the coordinate R of PGS
is decided by the horizontal coordinate of the second
basis image. Since fundamental matrix 21F limits the
position in the second basis view on the epipolar line
l, r is sufficient for defining the grid point. In this
way, the projective grid space can be defined by two
basis view images, of which node points are
represented by (p, q, r).

3D-2D Mapping
As described in the previous section, the PGS is
defined by two basis views, and the point in the PGS
is represented as A(p, q, r). The point A(p,q,r) is
projected onto 1a (p, q) and 2a (r, Y) in the first
basis image and the second basis image, respectively.
The point 1a is projected as the epipolar line l on the
second basis view expressed as equation (7).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
21 q

p
Fl (7)

where 21F represents the fundamental matrix
between the first and second basis images. The point

2a is onto l, thus the coordinate of 2a (r, Y) is
decided (see Figure 12).

Figure 12. Projection of 3D point onto an image:
The point on the projective grid space is projected

to the cross point of two epipolar lines in the
image of view i.

The projected point in i th arbitrary real image is
determined two fundamental matrices, 1iF ,

2iF between two basis images and i th image. The
projected point in the i th image must be on the
epipolar line 1l of 1a in the first basis image, which
is derived by the 1iF . In the same way, the projected
point in the i th image must be on the epipolar line 2l
of 2a , which is derived by the 2iF .The intersection
point between the epipolar line 1l and 2l is the
projected point A(p, q, r) in the i th image. In this
way, every point of the PGS are projected onto every
image, where the relationship can be represented by
only the fundamental matrices between the image and
two basis images.

In this way in the PGS, the fundamental matrices
between images determines 3D-2D mapping. In the
case of reconstructing 3D shape model with the
shape-from-silhouette method, the voxels within a
certain region of the PGS are projected into the
silhouette image. And the point in an image is able
to correspond to other image points to use
correspondence map derived from the reconstructed
model. And so the correspondence map enables to
synthesize new view images as interpolated views
and enables to calculate texture correlation between
input images.

Journal of WSCG 64 ISBN 1213-6972 ISBN 80-86943-09-7

Real Time Rendering of Atmospheric Scattering and
Volumetric Shadows

Biri Venceslas

Charles Cros Institute
6 bd du Danube

F-77700 SERRIS
FRANCE

biri@univ-mlv.fr

Arquès Didier
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

arques@univ-mlv.fr

Michelin Sylvain
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

michelin@univ-mlv.fr

ABSTRACT
Real time rendering of atmospheric light scattering is one of the most difficult lighting effect to achieve in
computer graphics. This paper presents a new real time method which renders these effects including volumetric
shadows, which provides a great performance improvement over previous methods. Using an analytical
expression of the light transport equation we are able to render directly the contribution of the participating
medium on any surface. The rendering of shadow planes, sorted with a spatial coherence technique, and in the
same philosophy than the shadow volume algorithm will add the volumetric shadows. Realistic images can be
produced in real time for usual graphic scenes and at a high level framerate for complex scenes, allowing
animation of lights, objects or even participating media. The method proposed in this paper use neither
precomputation depending on light positions, nor texture memory.

Keywords : Real time rendering / Volumetric shadows / Single scattering / Participating media

Figure 1: The same scene lit a. (left) classically, b. (center) with single scattering and

c. (right) with single scattering and volumetric shadows (right) .

1. INTRODUCTION
The growing capacities of graphic cards enable

the rendering of more and more complex physical
models in real time, like anisotropic reflection or

environment mapping. Therefore, it is not a surprise
if a current challenge in computer graphics is the
accurate rendering of atmospheric effects, and
especially the light scattering. Atmospheric light
scattering is due to little particles, like dust or water,
that lay in the air, scattering and absorbing the light
they receive. They creates effects such light beams,
shafts of light and visibility loss. These phenomena
often occur under foggy or smoky conditions but are
also visible by clear or cloudy weather in the
presence of sunlight.

Unfortunately, rendering such lighting effects in
real time remains quite complex since they depend
on camera and light positions and since they occur
everywhere in the space. Introducing such effect in
traditional graphic engine will greatly enhance the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 65 ISBN 1213-6972 ISBN 80-86943-09-7

realism of the virtual scene and have many
applications [Ru94]. Considering the particular
situation of figure 1, it is clear that rendering the
participating medium is not enough. Here, the
representation of shadow volumes is necessary to
obtain a realistic image. Thus there is a need for a
simple algorithm, easily integrated in traditional
algorithms, able to render those effects.

In this paper, we present a new algorithm that
fulfills this goal. It can render accurately
participating media, including effects like light
beams in foggy or smoky scenes, or any other
atmospheric scattering effects. The participating
media can be isotropic or anisotropic and are lit by
one or several, static or moving, point light sources
since no precomputation are done involving either
lights or camera. Our technique produces high
resolution images and takes into account volumetric
shadows, cast by occluders contained in the media.
Without any texture memory cost, but using
intensively graphics hardware, our method can
render images at a high frame rate, and is real time
for classical graphic scene. The method is also easy
to implement in traditional graphic engines since it
follows the same strategy than the shadow volume
algorithm. Therefore, it is straightforward to obtain
animations where objects, sources and even
participating media can move.

2. PREVIOUS WORK
The representation of participating media has

been a real challenge for years and the literature
about it is abundant. We can easily divide all these
studies between the single scattering methods and the
multiple scattering ones. Multiple scattering methods
try to compute all light reflections and inter-
reflections inside a medium, whatever the number of
these ones. This complex situation is difficult to
handle but is essential in the rendering of clouds for
example. Multiple scattering illumination can be
obtained by determinist methods [RT87, Ma94,
ND96] or by stochastic methods [PM93, LW96,
JC98] and sometimes involve a resolution of the flow
equations like in [FM97, St99, DK00, FS01]. Despite
their realism, they suffer from excessive computation
times due to the complexity of light exchanges
occurred in these cases. Therefore it is not suitable
for our goal and we will focus on single scattering
methods.

These techniques [NM87, Ma94, DY00, HP02,
DY02] approximate the multiple reflections of light
as a constant ambient term and consider only the first
scattering of light ray in the direction of camera. This
assumption allows a direct rendering of the
illumination of the medium which is more suitable
for interactive rendering. Visualization is often done

by ray tracing or ray marching. View rays are
followed to gather the participating media
contributions. Unfortunately, these methods [FM97,
JC98], are far from being real time on a conventional
desktop computer. With the growing capacities of
graphics hardware, the real time problem has been
investigated.

Two approaches can be used to achieve this
goal: volume rendering or direct representation. To
add the volumetric shadows the first approach will
use naturally shadow maps techniques when the
second one is oriented to shadow volumes algorithm
[He91]. Volume rendering is a classic solution to
render participating medium which is a volume de
facto. Methods like [BR98, WE98, St99, FS01,
NM01] represent densities or illumination in voxels
encoded into 2D or 3D textures. Accumulation
techniques using textured slices or virtual planes are
then used to display the result. That kind of methods
could produce nice images of clouds or gas. But
apart from requiring a lot of texture memory, they are
not suitable for shafts of light where sharp edges
exist. Special methods are defined to render beams
and shafts of light precisely and most of them
[DK00, DY00, Ev02, LG02] use volume rendering
techniques along with sampling shadows in shadow
maps. But they suffer from artifacts due to the
sampling. Dobashi et al. [DY02] presents a very
elegant solution to solve this problem using
specialized adaptive sampling for shadows. They
obtain an interactive rendering of participating media
without aliasing or artifacts. However the image
resolution remains small since the method is
expensive in terms of fillrate. Moreover, the method
works only with static lights due to the
precomputation of shadow maps.

The algorithms belonging to the second
approach computes directly, on every point in the
scene, the contribution of the participating medium.
This is well adapted to classical graphic engines
since it consists in one more rendering of the scene.
In this case, methods like [Me01, HP02] use
participating medium boundaries, or special virtual
planes, combined with vertex and fragments shaders.
Other methods focus on the rendering of the
atmosphere [On05]. A last method of this group is
proposed by Sun et al. [SR05] and is the only one to
consider the effect of light scattering on the
illumination of objects. Despite it is real time, it does
not take into account shadows. Our work belongs
also to this group and is the only one of them to
integrate realistic lighting effect with volumetric
shadows.

Journal of WSCG 66 ISBN 1213-6972 ISBN 80-86943-09-7

3. OVERVIEW OF OUR METHOD
To obtain real time performances, we consider

only one scattering of light in the medium. Multiple
scattering is approximated by a constant ambient
term in the scene and each participating medium is
homogeneous.

The algorithm exploits an analytical expression
of the total contribution of scattered light along a
view ray. This allows the direct computation of this
contribution between the camera and any point of the
scene. Therefore, we compute the previous
expression:

• on scene vertices or on boundaries of
participating media.

• on any point of the shadow planes.

As stated before, our method is close to shadow
volume techniques [He91] or other algorithms using
shadow planes [AA03]. Indeed, after having compute
and render light scattering contribution of lit areas,
we do the same for the shadow planes of any object
that is set to cast shadows.

These shadow planes are classically obtained by
using the object silhouettes regarding to the point
light position and meshed. After a back to front
sorting of the shadow planes, we render them. The
participating medium contribution will be added if
the shadow plane is frontfacing and subtracted if
backfacing to take into account the volumetric
shadows.

Figure 2 : Single scattering case and notations.

4. THEORETICAL BACKGROUND
As light is progressing through a participating
medium, it have four interactions with it : absorption,
emission, scattering and in-scattering [SH92]. If we
consider only single scattering, the luminance of a
point P seen from a point O can be written [SH92] :

∫
−−

− Ω
+=

d rkxk
stdk dxp

r
eeIkePLOL

tt
t

0
2)()(

4
)()(αω

π

r
 (1)

x, r, d, h are geometrical factors (cf. figure 2 for
notations), while kt is the extinction coefficient, and
Ω is the albedo. Is is the directional intensity of the
source. The first term takes into account the
scattering and the absorption while the second one is
the in-scattering which is responsible for the subtle
effects of atmospheric scattering. This equation is
called the integral transfer equation.

4.1 Angular formulation of the integral
transfer equation
The integral transfer equation can be written [LM00]
using the angle between the view ray and the
direction toward point light. This formulation will be
used to obtain an analytical solution of the previous
equation. Indeed, instead of integrating the integral
transfer equation regarding to the distance x along
the ray, we choose to use the variation of the angle θ
between the vector ω

r
 and the vector ST defined by

the orthogonal projection of the point light source on
the view ray. Using this variable change :

22)(txhr −+=

we can obtain (see [LM00]) :
)()()(PLePLOL m

dkt += −

where :

∫ ++
Ω

=
+

−− d
tt

dpeI
h

ekPL
hk

s

tk
t

m

θ

θ

θ
θ

θπθβθ
π

0

)
2

()(
4

)()cos(
1)sin(

Further on, Lm(P) will be called the medium
contribution of the point P.
The kernel Λ of the previous integral is complicated
enough to prevent any analytic integration. But we
can approximate this kernel to obtain a much more
simple expression. The function in the kernel without
considering the light intensity, depends only on the
angle θ, considering that the extinction coefficient is
constant, i.e. that the participating medium is
homogeneous. Therefore, we can develop its
expression in a polynomial base (we use 4 degree) :

...),(),()
2

(10
)cos(
1)sin(

++≈+
+

−

θπθθ
θ

hkchkcpe tt

hkt

For traditional phase functions – isotropic, hazy,
murky, etc. – the formal expressions of coefficients c
can be obtained in the annex. We introduce this
equation in the expression of Lm(P) to obtain :

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++

Ω
= ∫∫

−

...)(),()(),(
4

)(
00

10

ddt

dIhkcdIhkc
h

ekPL stst

tk
t

m

ς

θ

ς

θ

θθβθθβθ
π

Finally, for non directional point light source, these
integrals are easily computed :

[]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

Ω
=

−

...
2

),(),(
4

)(
0

0

2

10

d

d
t

hkchkc
h

ek
PL tt

tk
t

m

θ

θ

θ
θ

θ
θ

π
(2)

Journal of WSCG 67 ISBN 1213-6972 ISBN 80-86943-09-7

and so we can obtain the single scattering
contribution created by a point light source along any
view ray in constant time.
A study on the quality of these approximations can
be found in [Le01]. In general, they are quite good
except when the ray passes close to the source, or
when the observer is far from the source. In the first
case, the contribution is so high, and in the second
case, so small, that these errors remain unnoticeable.
Based on equation (2), we are now able to compute
in “constant time” – i.e. without any numerical
integration – the contribution of in-scattering light
along a ray contained in a participating medium.

Figure 3 : A view ray partially in shadows.

4.2 Considering shadow volumes
Previous equations describe the particular case where
the view ray remains totally lit and lays in the
participating medium. To integrate shadow volumes
and bounded participating medium, we need to
consider more general cases, illustrated in figure 3.
Indeed, due to shadows, the part of the ray laying in
the medium could be split into lit and shadowed
parts. In this example, the medium contribution along
the ray is split into three parts on AB, CD and EF.
The contribution of the single scattering of the ray
OP is then:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ+Λ+Λ

Ω
= ∫∫∫

− F

E

D

C

B

A

t

ddd
h

ekPL
tk

t
m

θ

θ

θ

θ

θ

θ

θθθθθθ
π

)()()(
4

)(

The key idea of our approach is to rewrite this
equation into a sum of differences. Indeed the light
contribution of segment EF for example can be seen
as the contribution of segment OF minus the one
from segment OE. If we denote Гm(P) the expression
(2) for a lit ray between the camera center O and any
point P, then the previous equation can be written :

() ()[
()])()(

)()()()(
)(

AB
CDEF

PL
mm

mmmm
m Γ−Γ+

Γ−Γ+Γ−Γ
=

It is also obvious that points B, C, D and E are
located on shadow planes, and that the points A and
F belong to the boundary of the participating
medium. Of course point F and P can merge for
object contained in the medium, and if it covers the
entire scene, points A and O will also merge.

Finally, when considering a bounded medium, the
equations are slightly different. The coefficient r and
x in the exponentials of equation (1) must be the
distance between the point X and the border of the
medium boundary. In our method, we approximate r
to the average distance R between a point located in
the boundary and a point in the medium. So R is
constant along the ray. The new value xn of x is
computed on the fly and is also a constant along the
ray. In this case, Lm(P) becomes :

∫ ++
Ω

=
+−−+− d

t
t

dpeIh
ekPL

hk

s

xnRrk
t

m

θ

θ

θ
θ

θπθβθπ
0

)2()(4)()cos(
1)sin()(

what only involves a change of coefficients c.

5. RENDERING ALGORITHM

5.1 Scenes Recovered by a Participating
Medium
In this case, every view ray is contained entirely in
the participating medium. The method is easy to
implement and works as follows :

1. The silhouettes of every moving shadow caster
are computed. If light is moving, every silhouette
needs to be recomputed.

2. Scene is rendered using the conventional
polygonal rendering method. Surface shadows
can be obtained using shadow planes algorithms
[He01, EK02]. The stencil buffer now contains lit
areas of the scene. An ambient fog is added to
take into account both absorption and multiple
scattering.

3. Scene is rendered once more and medium
contribution is computed for each vertex of the
scene. Depth test is set to the equality. Only lit
parts of the scene are rendered thanks to the
stencil buffer.

4. Shadow planes, determined by the object's
silhouettes, are sorted in a back to front order.

5. Shadow planes are rendered in that precise order.
The depth test function accepts only planes that
are closer to the camera. Front facing planes add
their contribution when back facing planes
subtract them. Stencil function is set to allow
fragments if the stencil is equal to 1 for front
facing planes and 0 for back facing ones. Front
facing planes always increment the stencil buffer
and back facing ones always decrement it.

All stages have to be done for each light source.
Each stage is detailed in the following sections.

5.1.1 Computation of silhouettes
In our algorithm, we select some objects to be
shadow caster. Their silhouettes are easily computed
in determining all edges of their mesh common to a

Journal of WSCG 68 ISBN 1213-6972 ISBN 80-86943-09-7

front-facing triangle regarding the light position and
one back facing it. Then all these edges are linked
together if possible, and stored in a loop list. To
obtain correct silhouettes, we need closed triangular
meshes (2-manifold) for which connectivity
informations are available. These conditions for the
shadow casters are the ones indicated in [EK02].
Shadow planes are infinite quads formed by a
silhouette edge and the light position. They are
constituted by the two edge's vertices and two other
points, projection of the previous vertices to infinity
toward direction : light position - vertex (cf. [He91]).
They are oriented toward the unshadowed area of the
scene. As we need to compute the medium
contribution on all shadow planes, it is necessary to
use shadow plane silhouettes rather than the shadow
planes of all little triangles. Of course, if the light
does not move, only moving shadow caster
silhouettes have to be computed. Finally, in case the
input geometry is modified by graphics hardware,
using displacement mapping for example, a solution
to obtain silhouettes of all objects quickly and
accurately can be found in [BS03].

5.1.2 Rendering the scene
The scene is rendered normally except for the light
attenuation due to absorption and scattering induced
by the participating medium. It multiplies the phong
model used in the standard graphic pipeline a
coefficient rkte− where kt is the extinction coefficient
and r the distance from the lit point and the point
light source. A simple vertex program can render this
equation which differs from the traditional one only
in the exponential attenuation.
In this stage we also add a fog effect to take into
account both absorption and multiple scattering. We
also compute the hard shadows and use the stencil
algorithm and its improvements [He91, BS03] to do
so. Indeed, they fit perfectly with our application
since we already have the silhouettes. In the end of
this stage, the stencil buffer contains the lit areas of
the image. Until the end of the image rendering, the
lighting is disabled.

5.1.3 Medium contribution of the scene
Still using stencil test, the scene is rendered once
more to add, with additive blending, the medium
contribution of every surface. This is simply done by
computing equation (2) for each vertex. The depth
test is set to the equality.

5.1.4 Sorting the shadow planes
Before rendering all shadow planes, we have to make
sure that we will not render shadow planes, or part of
them, that are themselves in shadow. If we do not
care about this problem, it will create artifacts we call

shadow in shadows, illustrated in figure 4. In the left
image, we can see that the shadow of the top plane is
propagated in the shadow of the bottom plane.

Figure 4: left : example of the shadows in shadows

artifact. Right : a correct rendering
To prevent these artifacts we render the shadow
planes, back- or front-facing, in a “back to front”'
order and use the stencil buffer to avoid the
rendering of shadowed shadow planes. The distance
we defined for the back to front order depends on
both camera and light positions. In two dimension,
we can see in figure 5 that the plan (a line in 2D)
created by the edge A (a point in 2D) must be
rendered before the one created by B. And this one
must be rendered before the shadow plane of edge C.
This is true whatever the distance between the edge
and the camera or between the edge and the light
position. A simple realization of such a distance is to
compute, for an edge P, the cosine between vectors

SO and SP where O is the camera center, S the
light position, and P a point belonging to the
silhouette.

A
C

B
camera

light
S

O

Figure 5: Ordering of shadow planes (in 2D)

We use the same ordering in 3D. In this case, the
silhouette edges are segments. Since silhouettes are
accurately meshed, these segments can be considered
as points (only for ordering). Therefore, we compute
the same cosine using as point P the center of the
silhouette edge.

5.1.5 Rendering the shadow planes
We always keep the stencil we have obtained in the
stage 2. Shadow planes are rendered in the order
defined in the previous stage with the depth test
function admitting only fragments that are closer to
the camera.
The color attributed to the shadow planes – i.e. their
contribution – are computed with exactly the same
expression than for lit point of the scene in stage 3,

Journal of WSCG 69 ISBN 1213-6972 ISBN 80-86943-09-7

i.e. using equation (2) for homogeneous point light.
Front facing planes add their contribution and back
facing planes subtract them.
We have to mesh the shadow planes to obtain
accurate values of the medium contribution. They
will be computed in each vertex of the mesh and the
GPU will make the interpolation between them.
According to the radial distribution of a point light, it
is wise to mesh the shadow planes finely when close
to the light and coarsely when far away. It is not
necessary to subdivide the silhouette edge which has
to be small.

0

0

1 2 1 0

a

b c

d
+1

+1 +1

+1

-1

-1
-1

-1

-1

-1
-1

-1

0 initial stencil value
+1 add one to the stencil
-1 subtract one to the stencil
* contribution added
^ contribution subtracted

^

^ *

*
*

*

*

Figure 6: Use of the stencil buffer in the rendering

of shadow planes
To take into account correctly the shadow in shadow
problem, we use the stencil intensively. Front facing
planes pass the stencil test if its value is one
(representing shadowed area), and back facing ones
passes if it equals 0 (value representing lit area).
Ideally the back (resp. front) facing quads should
always add (resp. subtract) one to the stencil buffer if
it passes depth test. But unfortunately it is not
possible to specify two different stencil functions
when a fragment fails the stencil test depending of
the result of the depth test. It imposes us to render the
simple quad of the shadow plane with the stencil
function set to always. Such problem will disappear
when programmability of graphics card will involve
the stencil test. Nevertheless this strategy works in all
the case as illustrated in figure 6. The strategy
indicated works if the camera is in the light. A
slightly different strategy can be used when the
camera is in shadow but the philosophy remains the
same.

5.2 Rendering Several Bounded
Participating Media
Several modifications have to be made to the
previous algorithm to take into account boundaries of
participating media and to avoid the rendering of
each object and each shadow planes for every
medium. Indeed, when several participating media
exist, stages 3 to 5 need to be computed for each one
of them. For simplicity we consider only convex

participating media, and that we have a mesh
representation of it.
First of all we will compute bounding boxes for each
object and each participating medium. This is to
avoid the rendering of objects that do not lay in the
area of a participating medium in stage 3. We also
check for each shadow plane if it is able to cut the
participating medium.
In stage 3, we use the equivalent of a shadow volume
algorithm to determine shadowed and lit area of the
boundary of the participating medium. Then we
render the lit areas of objects and of the medium
boundary. Objects are rendered only if they belong to
the medium bounding box. The front facing triangles
of the medium boundary are rendered using the
expression seen in section 4.
In stage 4, back-facing triangles of the medium
boundary are also sorted and integrated in the order
list. Since we use their center for the reference point
P in the ordering, these triangles must be small. For
each shadow plane, we determine if it is able to cut
the medium bounding box. If not, it is removed from
the sorted list to avoid unnecessary computation.
Finally the stage 5 remains the same, except that
when a back facing triangle of the medium boundary
is rendered, we set the stencil to 255 to avoid any
further rendering in this area.

6. RESULTS
The previous algorithm has been implemented on a
standard computer using a 2.6 GHz processor and an
ATI 9800 graphic card. All images that we will
present have a 800x600 resolution. We first compare
our method with the work of Dobashi et al. [DY02]
using their simple scene, a sphere beyond a spot light
(cf. figure 7). In our case, the spot light is obtained
by adding a cone above our point light. The
silhouette has 32 edges which involves 32 shadow
planes. Our rendering time is about 120 frames per
second at resolution 800x600. For our algorithm,
resolution is not really a problem. For example, the
same scene using a 1024x768 resolution is rendered
at 107 FPS. For the same test scene, Dobashi's
algorithm achieves 12.5 FPS for a 450x300
resolution. This is mainly due to the accumulation of
texture rendering inducing a high fill rate.
A drawback exists in our method which is only due
to the clamping of the framebuffer. Indeed, when we
render the contribution of the medium, it is possible
that the final value added to the one present in the
framebuffer exceeds 1. In that case, the value is
clamped to 1 and if we subtract a medium
contribution after that, the final result will be darker
than it should be. However, this problem can be
avoided in choosing reasonable intensity for the light

Journal of WSCG 70 ISBN 1213-6972 ISBN 80-86943-09-7

source, or in the future, using a float texture.
Unfortunately, we do not have develop this yet.
We also present in table 1 the ratio of work loads for
each stage (see 5.1). As expected, we can see that the
computations of the shadow plane contributions
represent the main cost of the whole process.

Stage 1 2 3 4 5

Fig 8 left 1% 8.7% 21.7% 9.6% 59%

Fig 8 right 1.7% 14% 33.6% 16% 34.7%

Table 1. Work loads for each stage.
We also present some snapshots of our animations.
The first image in figure 8.a. is a simple scene, where
two pens are bumping in front of a light. It illustrates
a classical situation where well design 3D objects are
moving and casting shadow. This scene is rendered
at more than 35 fps. The image in figure 8.b.
represents a simple scene with a box contained into
three different participating media, one red, one blue
and one green, moving before the light. Here we can
clearly see the volumetric shadows of each
participating media and how they blend together. As
we use exact shadow planes no aliasing occurs. This
case illustrates the ability of our algorithm to handle
all the position between shadow planes and the
boundary of a participating medium. Figure 8.c. is a
snapshot from a animation where the light is moving,
and its color is also changing. We have chosen this
scene because it contains a lot of shadow planes.
Finally figure 1.c., in the first page of this paper, is
also a snapshot to illustrate the use of our algorithm
when light is moving in a complex scene, containing
around 100 000 triangles. Table 2 presents the FPS
and the number of triangles of those scenes.

Scene Fig 8a Fig 8b Fig 8c Fig 1

FPS 23 35 25 12

Nb. triangles 34 549 14 785 20 747 107 514

Table 2. FPS and number of triangles of scenes.

7. CONCLUSION
We have presented a new real time algorithm that is
able to compute the single scattering of one or
several participating media. Our algorithm is fast
enough to handle more than 25 frames per second for
moderately complex scenes, which is an
improvement over other atmospheric scattering
algorithms, especially when a medium covers the
whole scene. As outlined above, the only
computations that we have done in software are the
participating medium contributions and the ordering
and the computation of shadow planes. Moreover,
we plan to design vertex and fragment shaders to
make the graphic card computes the participating
medium contributions. We also want to point out that
our algorithm does not create any sampling aliasing
artifact, for both surface and volumetric shadows,
thanks to the use of exact shadow planes.
As shadow planes have become more popular
recently, we think that our algorithm fit perfectly
with this kind of approach and is well adapted to the
growing capacities of graphics hardware. For
example, the final improvement of the algorithm
would be to compute soft surface shadows and soft
volumetric shadows. For this goal we can take
inspiration of the algorithm [AM03]. Finally, both
clustering and culling approaches will greatly speed
up this already fast algorithm.

8. REFERENCES
[AM03] Assarson U., Möller T.A., A Geometry-based Soft

Shadow Volume Algorithm using Graphics Hardware, In
proceedings of SIGGRAPH’03, Computer Graphics, vol. 22
(3), pp. 511-520

[BR98] Behrens U., Ratering R. , Adding Shadows to a
Texture-based Volume Renderer. In proceedings of 1998
symposium on Volume Vizualisation , 1998, pp. 39-46

[BS03] Brabec S., Seidel H.P., Shadow Volumes on
Programmable Graphics Hardware. In proceedings of
Eurographics’03, 2003, vol. 22(3)

[DK00] Dobashi Y., Kaneda K., Yamashita H., Okita T.,
Nishita T., A Simple, Efficient Method for Realistic
Animation of Clouds. In proceedings of SIGGRAPH’00,
Computer Graphics, 2000, pp. 19-28

[DY00] Dobashi Y., Yamamoto T., Nishita T., Interactive
Rendering Method for Displaying Shafts of Light. In
proceedings of Pacific Graphics 2000, pp. 31-37.

[DY02] Dobashi Y., Yamamoto T., Nishita T., Interactive
Rendering Method of Atmospheric Scattering Effects Using
Graphics Hardware. In proceedings of Graphics Hardware
2002, 2002, pp. 99-107.

[EK03] Everitt C., Kilgard M., Practical and Robust Shadow
Volumes, Nvidia white paper, 2003
http://developer.nvidia.com/object/robust_shadow_volumes.ht
ml.

[Ev02] Everitt C., A Fast Algorithm for Area Light Source
Using Backprojection. In proceedings of SIGGRAPH’94,
Computer Graphics, 1994, pp. 223-230

[FM97] Foster N., Metaxas D., Modeling the Motion of a Hot,
Turbulent Gas. In proceedings of SIGGRAPH’97, Computer
Graphics, 1997, pp. 181-188

Figure 7 : Replicate of the Dobashi's scene

Journal of WSCG 71 ISBN 1213-6972 ISBN 80-86943-09-7

[FS01] Fedwik R., Stam J., Jensen H., Visual Simulation of
Smoke. In proceedings of SIGGRAPH’01, Computer
Graphics, 2001, pp. 15-22.

[He91] Heidman T., Real Shadows Real Time. In IRIS
Universe (1991), vol. 18, pp 28-31

[HP02] Hoffman N., Preetham A., Rendering Outdoor Light
Scattering in Real Time. ATI white paper, 2002.
www.ati.com/developer/dx9/ATI-LightScattering.pdf

[JC98] Jensen H., Christensen P., Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon
Maps. In proceedings of SIGGRAPH’98, Computer Graphics,
pp 311-320

[Le01] Lecocq P., Simulation d’éclairage temps réel par des
sources lumineuses mobiles et statiques : outils pour la
simulation de conduite. PhD Thesis of the University of
Marne-la-Vallée, 2001. Samples of this thesis can be found
here : http://igm.univ-mlv.fr/~biri/

[LG02] Lefebvre S., Guy S., Volumetric Lighting and
Shadowing, NV30 Shader, 2002.
lefebvre.sylvain.free.fr/cgshaders/vshd/vshd.html

[LM00] Lecocq P, Michelin S., Arquès D., Kemeny A.,
Mathematical Approximation for Real Time Rendering of
Participating Media considering the luminous intensity
distribution of light sources. In proceedings of Pacific
Graphics 2000. pp 400-401.

[LW96] Lafortune E., Willems Y., Rendering Participating
Media with Bidirectional Ray Tracing. In proceedings of 6th
Eurographics Workshop on Rendering, june 1996, pp. 92-101.

[Ma94] Max N., Efficient Light Propagation for Multiple
Anisotropic Volume Scattering. In proceedings of 5th
Eurographics Workshop on Rendering, 1994, pp. 87-104

[Me01] Mech R., Hardware-Accelerated Real Time Rendering
of Gaseous Phenomena. In Journal of Graphics Tool, 2001,
vol. 6(3), pp. 1-16

[ND96] Nishita N., Dobashi Y, Nakamae E., Display of Clouds
Taking into Account Multiple Anistropic Scattering and
Skylight. In proceedings of SIGGRAPH’96, june 1996, pp.
379-386

[NM87] Nishita N., Miyawaki Y, Nakamae E., A shading model
for atmospheric scattering considering luminous distribution
of light sources. In proceedings of SIGGRAPH’97, Computer
Graphics, vol. 21(4), pp. 303-310

[NM01] Nulkar M., Mueller K., Splatting with shadows. In
proceedings of Volume Graphics 2001, pp. 35-49

[On05] S. O'Neil, Accurate atmospheric scattering, In GPU
Gems 2, Addison Wesley, march 2005, pp. 253-268.

[PM93] Pattanaik S., Mudur S., Computation of global
illumination in a participating medium by monte carlo
simulation. In The journal of Visual and Computer Animation,
1993, vol 4(3), pp. 133-153

[RT87] Rushmeier H., Torrance K., The zonal method for
calculating light intensities in the presence of participating
medium. In proceedings of SIGGRAPH’87, computer
graphics vol 21(4), pp. 293-302.

[Ru94] Rushmeier H., Rendering participating media :
problems and solutions from application areas. In proceedings

of 5th Eurographics Workshop on Rendering, june 1994, pp.
35-56.

[SH92] Siegel R., Howell J., Thermal Radiation Heat Transfer.
3rd ed. Hemisphere Publishing, 1992.

[SR05] Sun B., Ramamoorthi R., Narasimhan S.G., Nayar S.K.,
A practical analytic single scattering model for real time
rendering. In proceedings of SIGGRAPH’05, Computer
Graphics; 2005, vol 24(3), pp. 1040-1049.

[St99] Stam J., Stable fluids. In proceedings of
SIGGRAPH’99, Computer Graphics, 1999, pp. 121-128.

[WE98] Westermann R., Ertl T., Efficiently using graphics
hardware in volume rendering applications. In proceedings of
SIGGRAPH’98, Computer Graphics, 1998, pp. 169-177

9. ANNEXES
Expression of coefficients c for classical phase
functions. Isotropic phase function :

()

...
24

5
24

11
4

)(
24

)(

26
)(

2234

4

223

3

22
2

1

0

hktttt

hk
t

tt

hk
tt

hk
t

hk

t

t

t

t

t

ehkhkhkhkc

ehkhkhkc

ehkhkc

ehkc

ec

−

−

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

−=

−=

=

Rayleigh phase function :

...
4
3

8
3

4
3

4
3

22

2

1

0

hkt

hkt

hk

t

t

t

ehkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟
⎠
⎞

⎜
⎝
⎛−=

=

Hazzy phase function :

...
64
63

512
121

256
265

36
9

256
265

256
265

22

2

1

0

hktt

hkt

hk

t

t

t

ehkhkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−=

=

Murky phase function :

...
134217728

775
4294967296

2147482073
4294967296

2147483673

367108864
25

2147483648
2147483673

2147483648
2147483673

22

2

1

0

hktt

hkt

hk

t

t

t

ehkhkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

=

Figure 8. a. (left) Two pen moving. b. (center) Three participating media moving.

c. (right) Light is moving in a relatively complex scene.

Journal of WSCG 72 ISBN 1213-6972 ISBN 80-86943-09-7

Visual Exploration of Seismic Volume Datasets

Timo Ropinski
Institut für Informatik

WWU Münster
Einsteinstraße 62

48149 Münster, Germany

tr@math.uni-muenster.de

Frank Steinicke
Institut für Informatik

WWU Münster
Einsteinstraße 62

48149 Münster, Germany

fsteini@uni-muenster.de

Klaus Hinrichs
Institut für Informatik

WWU Münster
Einsteinstraße 62

48149 Münster, Germany

khh@uni-muenster.de

ABSTRACT

This paper introduces a novel method supporting the interactive exploration of volumetric subsurface data. To facilitate better
insights into the datasets we propose the application of focus and context visualization metaphors. Using these metaphors users
can emphasize arbitrary parts of a dataset or remove occluding information interactively to focus on the region of interest. In
addition to these visualization issues we will explain how the focus and context metaphors can be combined with VR-based
interaction techniques to allow the efficient exploration within more immersive VR environments. In particular, we will discuss
how to control the focus and context metaphor to highlight the region of interest in combination with the usage of visual
bookmarks to track potentially interesting parts within large volumetric subsurface datasets.

Keywords
Subsurface Exploration, Seismic Volume Data, Focus and Context Visualization, VR.

1 INTRODUCTION
With decreasing availability of fossil fuels such as oil
and gas, the demand for efficient techniques to locate
the remaining reservoirs is rising. Drilling for these re-
sources is a very cost intensive process, e.g., accord-
ing to the Joint Association Survey on Drilling Costs
drilling one well can cost up to several million US dol-
lars. Hence, the oil and gas industry tries to reduce
drilling costs, by using extensive computer-aided analy-
sis and exploration to make better predictions regarding
the location of subsurface reservoirs. Also more pre-
cise predictions of natural disasters such as earthquakes
can be obtained by computer aided subsurface analy-
sis. The most common approach to perform this subsur-
face analysis is interactive 3D exploration of subsurface
structures on the basis of seismic datasets.

Seismic datasets are acquired indirectly. Detonat-
ing explosives emit sound waves, which are propagated
through the subsurface. The reflections of those sound
waves are measured with special receivers located at the
surface. Thus geological layers, which reflect the sound
waves, can be identified based on the time elapsed be-
fore a signal is received as well as the signals atten-
uation. The resulting information is encoded in a 3D
volume composed of discrete samples, each represent-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ing the amplitude reflected beneath the surface. This
usually very large 3D volume is often stored as a SEG-
Y dataset [SEG02], and the acquired amplitudes can be
visualized using different transfer functions to represent
the geological structure.

Although the idea of 3D GIS has been pro-
posed [KLR+03], most current 3D GISs adapt the
concepts of polygonal representations for visualizing
geographic information and are therefore not sufficient
for analyzing volumetric seismic datasets. For these
reasons GISs supporting volumetric methods have
been developed, which are highly specialized appli-
cations designed for the purpose of exploring seismic
datasets [Geo06, VGe06, Fle06]. In conjunction with
these systems, virtual reality (VR) systems support
exploration of seismic datasets. VR systems provide
three major advantages compared to desktop-based
visualization systems. By using stereoscopic projection
techniques, spatial perception is improved and thus
aids visual comprehension. Furthermore, by using
appropriate tracking technologies, the user can perform
intuitive 3D interactions, whereas desktop-based
systems usually support only 2D input devices.

To benefit from these capabilities provided by VR
systems, the developer of a visualization application
has to consider VR design issues, e.g., the interactions
which can be performed have to be adapted to VR-
based interactions. To grant an efficient exploration
of seismic datasets it is important to obtain interactive
frame rates within the application in order to give im-
mediate visual feedback when the user has performed
an interaction. In the context of this paper we faced
three major challenges all leading to a reduced frame
rate: (1) seismic datasets are usually very large; (2)
the high screen resolutions of current displays; (3) for

Journal of WSCG 73 ISBN 1213-6972 ISBN 80-86943-09-7

stereoscopic viewing in VR systems the scene has to be
rendered twice, i.e., once for each eye. Therefore it is
important to use state-of-the-art volume rendering tech-
niques which exploit the features provided by current
graphics hardware to achieve interactive frame rates.

In this paper we propose a novel method for VR-
based exploration of seismic datasets. Our approach
supports efficient exploration of seismic volume
datasets by using focus and context visualization
metaphors in combination with intuitive and efficient
VR-based interactions. By using these interaction
concepts the user can emphasize the region of interest
inside the dataset interactively. This region of interest
is specified by a lens volume, which has an arbitrary
convex 3D shape. Inside the region of interest a
different visual representation is used for visualization
and thus aids comprehension of the dataset without
loosing the contextual information outside the region
of interest (see Figure 1). By using specialized 3D
interaction metaphors the user can switch between
different lens shapes as well as visual represen-
tations. Furthermore, it is possible to set spatial
visual bookmarks at certain points of interest, which
can be accessed later on using a guided VR-based
exploration-metaphor. For visualizing the datasets we
use GPU-based ray-casting [RGWE03, KW03] which
enables interactive frame rates while rendering the
scene stereoscopically and with a high resolution. To
use different visual representations within the region of
interest we have extended the GPU-based ray-casting
technique to support different rendering modes when
visualizing a volume dataset.

This paper is structured as follows. In the next section
we discuss related work while Section 3 briefly outlines
our extension of GPU-based ray-casting and the kinds
of visual representations we have found helpful for ex-
ploring seismic datasets within our prototype system.
In Section 4 the VR-based interaction techniques used
to alter the region of interest are explained in detail. The
paper concludes in Section 5 by giving a short overview
of the presented concepts.

2 RELATED WORK
Visualization techniques for representing volumetric
phenomena have advanced in the past years. While
most of the proposed techniques have been developed
for medical applications, Ma and Rokne [MR04]
present a good overview of visualization techniques
used to visualize seismic volume datasets. Further-
more, various software applications, e.g., Fledermaus1,
VoxelGeo2, and GeoProbe3, that use seismic data to
compile and process subsurface visualizations are

1 http://www.ivs3d.com/products/fledermaus/
2 http://www.paradigmgeo.com/products/voxelgeo.php
3 http://www.magic-earth.com/geo.asp

available. With these applications, geo-scientists
are able to process and visualize seismic data on
commodity hardware. However, even with these highly
evolved applications and the incorporated visualization
techniques the information contained in volumetric
data can be overwhelming during exploration.

In medical visualization a lot of work has been done
to support the generation of focus and context visualiza-
tion [HMBG01, VKG05, BGKG05]. In 2005 two soft-
ware systems have been presented, which allow inter-
active generation of illustrative visualizations of med-
ical volume data [BG05, SES05]. Both systems in-
corporate recent focus and context visualization tech-
niques. A general approach to support focus and con-
text visualization by applying the magic lens metaphor
to volume datasets can be found in [WZMK05]. Fur-
thermore, Diepstraten et al. [DWE03] have proposed a
set of guidelines for generating cutaway illustrations,
which can be used to provide the observer insights to
an otherwise opaque object.

Immersive visualization and interaction technologies,
allowing multidisciplinary teams to explore the subsur-
face data in a more intuitive and efficient manner, help
to increase the value of such enormous amounts of vol-
umetric datasets. A wide range of visualization systems
and input devices, which have originally been devel-
oped for applications outside of the geo-scientific in-
dustry, have been adapted to support users when ex-
ploring seismic datasets. Among others, these sys-
tems include immersive projection-based VR system
environments such as the CAVE, curved and flat-wall
displays, desk- or workbench-type systems as well as
head-mounted devices ([HBP+02],[CNSD+92]). The
best choice of a certain visualization system depends on
the task to be accomplished within the system. How-
ever, especially the semi-immersive responsive work-
bench ([KBF+95]) has proven its potential as table-
top metaphor for the exploration of geo-spatial data
([FBZ+99], [KHJ00]). The capability to mount the
workbench in a horizontal position allows to visualize
geo-spatial data in an intuitive way. Although the visu-
alization of seismic datasets within immersive VR sys-
tems enables an advanced exploration of the datasets
and improves the information retrieval, interaction with
the data within current systems is usually limited to
mouse, keyboard and/or joystick-type devices, and of-
ten requires an experienced navigation expert to pilot
other viewers through the visualization. However, since
semi-immersive and immersive VR systems allow to
explore and process a huge amount of data, recent re-
search approaches review innovative interaction tech-
nologies to enable an intuitive exploration and manipu-
lation of geo-spatial data ([MEH+99]).

Fröhlich et al. ([FBZ+99]) have shown, how the ex-
ploration of seismic datasets can benefit from the use
of volumetric lenses. However, their approach supports

Journal of WSCG 74 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 1: Application of focus and context visualization metaphors to a seismic volume dataset. Seismic dataset
rendered without using a lens (left), with a spherical clipping lens applied (middle) and with a cuboid lens altering
the used transfer function (right).

only lenses having cuboid geometries. Because the sur-
faces of a cube are given by orthogonal planes, the vi-
sualization is similar to the common slicing approach
where multiple clipping planes are used to reveal inside
structures ([CGH86]). Therefore the technique intro-
duced by Fröhlich et al. can be considered as a gener-
alization of this slicing approach.

However, due to the huge amount of volumetric
datasets tracking of the regions of interest is often
difficult. Once found regions may get lost since no VR
techniques support the geo-scientist when accessing
such already explored regions. Concepts for storing
regions as well as positions in 3D environments have
previously been introduced for guided navigation tasks
([SGLM03], [Döl05]). These approaches allow the
user to store certain positions and to define camera
paths leading through these so called bookmarks placed
in the virtual environment. For volume exploration no
comparable approaches exist.

3 VISUALIZATION OF VOLUMETRIC
SUBSURFACE DATA

In this section we shortly summarize our extension
to the GPU-based ray-casting technique [RGWE03] to
support different visual representations of the region of
interest within a volume dataset. A more detailed ex-
planation of our extension can be found in [RSH05].

GPU-based ray-casting supports very efficient vol-
ume rendering on commodity graphics hardware by
casting rays through the volume dataset which is rep-
resented by a 3D texture.

To apply a different visual representation for the re-
gion of interest inside the lens volume, the voxels con-
tributing to a pixel in image space need to be distin-
guished whether they are inside or outside the lens vol-
ume. We determine this voxel classification before ren-
dering the dataset, since it results in better performance,
because less per-fragment operations are needed during
rendering compared to an alternative approach where
the regions are distinguished during rendering. There-
fore, in our approach a ray cast through a volume

region1

region0

region2

eye

Figure 2: Scheme showing the three regions defined
by the lens volume.

dataset which is intersected by a convex lens volume
is split into at most three different sections, i.e., one
section in front of the lens, one inside the lens and one
behind the lens (see Figure 2). This leads to the three
view-dependent regions region0, region1 and region2.

Our algorithm renders these view-dependent regions
in three subsequent rendering passes starting with
region0. Because the view-dependent regions of the
volume dataset are determined before accessing the
dataset itself, rendering can be performed very fast,
since only the usually simple shaped lens geometry and
the bounding box of the volume dataset are considered
during this computation. In the next subsections we are
going to discuss concrete lenses which are useful for
3D exploration of seismic datasets.

3.1 Occlusion Lens
One problem occurring in the visualization of informa-
tion associated with volumetric data is that usually no
insight view can be provided. Especially when navi-
gating through a dense volume dataset the view of the
camera will always be occluded. To avoid this problem
we propose an occlusion lens which renders those parts
of the volume dataset transparently that occlude the re-
gion of interest (see Figure 3). Therefore when ren-
dering region0 we set the degree of transparency pro-
portional to the amount of volume data occluding the
region of interest, i.e., the number of voxels encoun-
tered by the ray. This effect does not result in any

Journal of WSCG 75 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 3: Application of an occlusion lens which ren-
ders the parts occluding the region of interest trans-
parently. Inside the lens subsurface structures having
a certain intensity are highlighted.

performance penalty compared to direct volume render-
ing, because during ray traversal instead of setting the
voxel’s alpha value based on the corresponding scalar
value simply the number of samples already processed
is used to determine the alpha value.

Another lens type, which we also classify as occlu-
sion lenses is the clipping lens, since it assists in ex-
ploring the information on the surface of the lens vol-
ume which would be occluded otherwise. Such a lens
is shown in Figure 1 (middle) where a spherical clip-
ping lens is used to reveal information hidden inside
the dataset. For an easier identification of the clipping
region its silhouette edges are enhanced.

3.2 Slicing Lens
A slicing lens incorporates clipping-based rendering of
slices as visual representation (see Figure 4 (right)).
When applying slice rendering surfaces sliced through
the volume dataset are displayed. In our prototype ap-
plication the number of slices and the distance between
the slices can be chosen interactively and the visual-
ization provides immediate visual feedback. Thus, it
is possible to visualize certain structures based on this
rendering technique. As shown in Figure 4 (left) when
applying slice rendering to the entire dataset it is diffi-
cult to comprehend spatial relationships. Because parts
of the dataset are invisible to the user it is difficult to vi-
sually comprehend the structure of the dataset and thus
the location of the slices. In Figure 4 (right) this spa-
tial relationships can be detected more easily because
contextual information is maintained outside the lens.
Furthermore the cross-section displayed on the surface
of the lens gives an important cue to localize the visu-
alized slices in relation to the rest of the dataset.

3.3 Object Emphasizing Lens
Another lens which improves interactive exploration of
seismic volume datasets allows to emphasize objects of

interest by applying image-based silhouette highlight-
ing in combination with a different transfer function.
Although in most volume visualization applications the
same transfer function is used for the entire dataset,
it may be desirable to use different transfer functions
in different parts of the dataset, e.g. to identify spe-
cial regions of interest [SML+99]. Thus, it is possi-
ble to reveal structures within the data without chang-
ing the context, since in the parts outside the lens vol-
ume the original transfer function is retained. In Fig-
ure 5 (right) an example is shown where the parts of the
dataset lying outside the lens are rendered using direct
volume visualization techniques, whereas the parts in-
side the lens are displayed using a different threshold
value as well as a different transfer function to high-
light certain objects. In the shown example we use a
1D transfer function inside and outside the focus re-
gion, but it would also be possible to combine 1D and
2D transfer functions. Furthermore, the color used for
edge-enhancement, the threshold value as well as the
transfer function used inside the lens volume can be ex-
changed interactively. Hence, geo-scientists can either
start with a preset threshold and explore the highlighted
structures, or they can alter the threshold interactively
to find an adequate value for identifying certain struc-
tures. By combining the edge-enhancement technique
with the altered transfer function objects of interest and
their structure can be identified more easily. It can be
seen in Figure 5 (left) that using the technique for the
entire dataset results in more difficult spatial compre-
hension.

3.4 Level of Detail Lens
In addition to applying the visual representations as de-
scribed above, the introduced algorithm allows to fur-
ther enhance rendering performance. This may be nec-
essary when dealing with datasets having dimensions
greater than the maximum dimensions allowed for 3D
textures on certain graphics hardware. To enhance per-
formance, a different level of detail (LoD) is used in-
side the region of interest compared to the LoD out-
side the region. This is achieved by using a different
sampling rate. Figure 6 shows the application of a lens
with a different transfer function used for the visualiza-
tion inside the lens. In Figure 6 (left) the same LoD
is used inside and outside the lens, whereas in Figure
6 (right) the LoD outside the lens is coarsened by us-
ing half the sampling rate compared to the visualization
inside the lens. Usually geo-scientists are interested in
details within the region of interest; the parts outside the
region of interest are not in focus and may therefore be
rendered using a lower sampling rate. Furthermore the
LoD outside the lens can be increased adaptively over
time when rendering is idle.

In addition to the lenses described in this section
several other lenses and even combinations of differ-

Journal of WSCG 76 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 4: Slice rendering of a seismic volume dataset (left). Slice rendering only applied within the lens volume
aids to comprehend spatial relationships (right).

Figure 5: Seismic dataset rendered with image-based edge-enhancement and different transfer function (left)
and with edge-enhancement and different transfer function only within the region of interest (right).

ent visual representations inside the lens are possible,
e.g., isosurface rendering of translucent surfaces can
be combined with regular volume rendering techniques.
However, the lenses presented in this section provide a
good understanding of the possibilities when applying
focus-based visualization techniques to seismic volume
datasets.

4 INTERACTION TECHNIQUES FOR
VR-BASED EXPLORATION

Although VR technologies provide an excellent alterna-
tive to allow more immersive and advanced exploration
of large datasets, when using seismic exploration soft-
ware interaction is often restricted to standard desktop
interaction concepts, i.e., interactions are performed via
mouse or keyboard devices. This leads to a loss of im-
mersion, since geo-scientists have to accomplish 3D in-
teraction using 2D devices. In this section we propose
a VR-based interaction technique that enables users to
explore volumetric subsurface data in a very intuitive
and efficient way.

4.1 Visualization in a Responsive Work-
bench Environment

Due to the horizontally mountable projection screen,
the semi-immersive workbench has been proven to
be advantageous for the exploration of geo-spatial
data. We stereoscopicaly display subsurface data in
our workbench environment by assigning a negative
parallax such that the seismic dataset appears on top of
the projection screen (see Figure 7). Thus, it is possible
to inspect the dataset from all sides. If the height of
the dataset exceeds the maximum height that can be
visualized above the projection screen, parts of the
dataset have to be displayed with positive parallax, i.e.,
below the projection plane.

To enable interaction with surface and subsurface
datasets projected on the responsive workbench an opti-
cal tracking system determines the position and the ori-
entation of the user’s head and input devices. Tracking
of the position and orientation of the input devices en-
ables users to interact with the virtual scene. Manipula-
tions can be performed by using virtual hand metaphors
([Min94]), i.e., users can directly pick and manipulate
objects with the hand or they can move the described

Journal of WSCG 77 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 6: A lens applying a different transfer function. The same LoD is used inside and outside the lens (left).
The LoD is coarsened outside the lens by using half the sampling rate (right).

Figure 7: User controlling a spherical clipping lens ap-
plied to a seismic volume dataset in a responsive work-
bench environment. The visual bookmarks have been
aligned to the image plane of the observer camera.

lens volume attached to an input device through the
subsurface data.

Virtual hand metaphors are not sufficient to allow in-
teraction with parts of a seismic dataset displayed be-
low the projection screen, therefore different strategies
must be applied in this context.

4.2 Controlling the Lens
The described lens metaphor offers a comfortable way
to explore seismic datasets by visually intruding into
the volume. Especially in combination with a stereo-
scopic projection the user experiences an immersive vi-
sualization of complex structures, which improves the
cognition of spatial data. To support this immersion, we
provide a very intuitive and efficient VR-based control
of the lens. The position and orientation of a tracked in-
put device, e.g., a user’s hand, are used to move the lens
accordingly. Thus, a very intuitive and natural mech-
anism for controlling the lens through the volumetric
dataset is ensured. However, the usage of this interac-
tion metaphor has its limitations. In regions where the
seismic data are displayed below the projection screen,
distant object interaction, i.e., interaction with data po-

sitioned outside the immediate reach of the user, must
be guaranteed.

To enable moving the lens into the aforementioned
regions, which are not accessible to the user, we provide
the concept of changing the control/display (C/D) ratio.
The C/D ratio controller adjusts the ratio determining
the relationship between input device movements and
the motion of the controlled virtual object, i.e., the lens
volume. This adjustment is determined by the input de-
vice’s position relative to the projection plane, i.e., the
closer the hand is to the projection plane the higher this
ratio is set. Thus, it is possible to make the movements
of the virtual input device less sensitive compared to
the user’s hand movement or to scale the movements
of the user’s hand, e.g., for distance object manipula-
tion [BJH01]. Hence in our setup a translation trans-
formation is applied as offset between the real input de-
vice and the lens volume depending on the depth of the
seismic volume dataset displayed below the projection
screen. Thus, an intuitive and efficient distant control
of the lens volume is possible.

However, when displaying subsurface data below the
projection screen, a side view onto the seismic dataset is
not possible due to physical constraints of the hardware
setup. Therefore, we have implemented a mechanism
to lift the seismic dataset out of the workbench frame
to make the lower portions of the volume visible from
the side. If the height of the dataset exceeds the maxi-
mum height that can be visualized above the projection
screen this may result in truncation of the upper parts
of the volume dataset.

4.3 Spatial Visual Bookmarking
Since, usually the amount of seismic data acquired for
an arbitrary area is very large, localization of regions of
interest can be a difficult task. Therefore, we provide
a mechanism to support the user by guiding him dur-
ing the exploration, i.e., the geo-scientist is assisted in
locating regions of interest. Once such a region is iden-

Journal of WSCG 78 ISBN 1213-6972 ISBN 80-86943-09-7

tified, the geo-scientist can mark this region and make
it accessible later on. Regions of interest can be stored
by bookmarking them with a visual hint. In order to
support an easy identification by the user textual infor-
mation about the regions of interest can be attached to
the bookmarks.

Individual bookmarks are markers positioned within
the seismic dataset, which are easily accessible. When
the lens is moved by the user through the dataset em-
phasizes a special region of interest, an individual book-
mark can be defined, e.g., by pressing a button of the
input device, and the user gets a visual hint about the
marker’s position. This approach ensures, the manage-
ment of bookmarks, e.g., bookmarks can be created,
deleted or repositioned.

4.4 Accessing the Bookmarks
Once the bookmarks are defined we use the so called
improved virtual pointer (IVP) metaphor ([SRH05]) to
select a bookmark to position the lens at the appropri-
ate location. The IVP metaphor is a ray-casting-based
selection and manipulation metaphor. With ray-casting
techniques a selection can be performed when the ray
extending from the user’s input device hits a selectable
object. When attempting to access a spatial visual
bookmark geo-scientists benefit from the usage of the
IVP metaphor since it provides a very efficient mecha-
nism to aim at small distant objects, such as spatial vi-
sual bookmarks. In contrast to other pointer metaphors
([Min94]) selection of a certain object does not require
an exact hit of that object with the ray. Thus, the user
roughly points the input device to a visual bookmark,
and the IVP metaphor determines the bookmark closest
to the ray. When using the IVP metaphor distant objects
are easy to select and access to bookmarks deep inside
the seismic dataset is ensured.

In Figure 7 a user is exploiting the explained inter-
action concepts in our responsive workbench environ-
ment. The seismic dataset is projected onto the pro-
jection screen of the workbench, and the user defines
and accesses several individual bookmarks within the
dataset.

5 CONCLUSION AND FUTURE
WORK

In this paper we have presented a novel method al-
lowing interactive VR-based exploration of volumetric
seismic datasets. We have proposed the usage of focus-
based visualization techniques to ease the identification
of certain structures within seismic dataset. Further-
more, we have introduced interaction techniques de-
veloped to control the used visualization metaphors in-
tuitively within VR environments. By allowing geo-
scientists to set spatial visual bookmarks the user is
guided during exploration and can backup previously
discovered results.

In the future we will define a taxonomy of lenses used
in volumetric visualization applications to assist appli-
cation developers to choose the optimal lens for their
purposes. Furthermore, we are going to conduct a user
study with a formal statistical analysis to determine us-
ability as well as efficiency of the proposed concepts.

6 ACKNOWLEDGMENTS
We would like to thank the Deutsche Montan Tech-
nologie (DMT) as well as the Deutsche Steinkohle AG
(DSK) for providing us seismic volume datasets and
giving us insights into the computer-aided seismic ex-
ploration process. Furthermore, we are thankful for the
valuable comments of the reviewers which helped to
improve the paper.

REFERENCES
[BG05] S. Bruckner and E. Gröller. Volumeshop:

An interactive system for direct volume
illustration. In H. Rushmeier C. T. Silva,
E. Gröller, editor, Proceedings of IEEE
Visualization 2005, pages 671–678, Oc-
tober 2005.

[BGKG05] S. Bruckner, S. Grimm, A. Kanitsar, and
E. Gröller. Illustrative context-preserving
volume rendering. In Proceedings of Eu-
roVis 2005, pages 69–76, May 2005.

[BJH01] D. Bowman, D. Johnson, and L. Hodges.
Testbed evaluation of virtual environ-
ment interaction techniques. Presence:
Teleoperators and Virtual Environments,
10(1):75–95, 2001.

[CGH86] M. P. Curtis, A. C. Gerhardstein, and
R.E. Howard. Interpretation of large 3-D
data volumes. In Expanded Abstracts of
the Society of Exploration Geophysicists,
pages 497–499, 1986.

[CNSD+92] C. Cruz-Neira, D. J. Sandin, T. A. De-
Fanti, R. Kenyon, and J. C. Hart. The
CAVE, audio visual experience automatic
virtual environment. Communications of
the ACM, pages 64–72, June 1992.

[Döl05] J. Döllner. Constraints as means of con-
trolling usage of geovirtual environments.
Cartography and Geographic Informa-
tion Science, 32(2):69–80, 2005.

[DWE03] J. Diepstraten, D. Weiskopf, and T. Ertl.
Interactive cutaway illustrations. In EU-
ROGRAPHICS, pages 523–532, 2003.

[FBZ+99] B. Fröhlich, S. Barrass, B. Zehner,
J. Plate, and M. Göbel. Exploring geo-
scientific data in virtual environments. In
Proceedings of the Conference on Visu-
alization (VIS99), pages 169–174. IEEE
Press, 1999.

Journal of WSCG 79 ISBN 1213-6972 ISBN 80-86943-09-7

[Fle06] Fledermaus. Technical report, IVS, 2006.
[Geo06] GeoProbe. Technical report, Magic Earth,

2006.
[HBP+02] N. R. Hedley, M. Billinghurst, L. Post-

ner, R. May, and H. Kato. Explo-
rations in the use of augmented reality
for geographic visualization. Presence:
Teleoperators and Virtual Environments,
11(2):119–133, 2002.

[HMBG01] H. Hauser, L. Mroz, G.I. Bischi, and
E. Gröller. Two-level volume rendering.
Transactions on Visualization and Com-
puter Graphics, 7:242 – 252, July 2001.

[KBF+95] W. Krüger, C. Bohn, B. Fröhlich,
H. Schuth, W. Strauss, and G. Wesche.
The responsive workbench: A virtual
work environment. IEEE Computer,
28(8):42–48, 1995.

[KHJ00] F. Kuester, B. Hamann, and K. I. Joy. In-
teractive two-handed terrain and set de-
sign in immersive environments. Pro-
ceedings of Tenth International Con-
ference on Artificial Reality and Tele-
Existence, pages 31–35, 2000.

[KLR+03] D. Koller, P. Lindstrom, W. Ribarsky,
L. F. Hodges, N. Faust, and G. Turner.
Virtual GIS: A real-time 3D geographic
information system. In Proceedings of
the Conference on Visualization (VIS03),
page 94. IEEE Press, 2003.

[KW03] J. Krüger and R. Westermann. Acceler-
ation techniques for GPU-based volume
rendering. In Proceedings IEEE Visual-
ization 2003, 2003.

[MEH+99] A. MacEachren, R. Edsall, D. Haug,
R. Baxter G. Otto, R. Masters,
S. Fuhrmann, and L. Qian. Virtual
environments for geographic visu-
alization: Potential and challenges.
Proceedings of the ACM Workshop on
New Paradigms for Invormation Visual-
ization and Manipulation, pages 35–40,
1999.

[Min94] M. Mine. Virtual environment interaction
techniques. In SIGGRAPH 1997 Course
Notes 27, pages B1–B21, 1994.

[MR04] C. Ma and J. Rokne. 3D seismic vol-
ume visualization. In Integrated Image
and Graphics Technologies, pages 241–
262. Kluwer Academic Publishers, 2004.

[RGWE03] S. Roettger, S. Guthe, D. Weiskopf, and

T. Ertl. Smart hardware-accelerated vol-
ume rendering. In Procceedings of
EG/IEEE TCVG Symposium on Visual-
ization VisSym ’03, pages 231–238, 2003.

[RSH05] T. Ropinski, F. Steinicke, and K. Hin-
richs. Interactive importance-driven visu-
alization techniques for medical volume
data. In Proceedings of the 10th Inter-
national Fall Workshop on Vision, Mod-
eling, and Visualization (VMV05), pages
273–280, 2005.

[SEG02] SEG-Y rev 1 Data Exchange Format.
Technical report, SEG Technical Stan-
dards Committee, 2002.

[SES05] N. Svakhine, D. Ebert, and D. Stredney.
Illustration motifs for effective volume vi-
sualization. Computer Graphics and Ap-
plications Special Issue ’Smart Depiction
in Visual Communication’, pages 31–39,
May/June 2005.

[SGLM03] B. Salomon, M. Garber, M. C. Lin, and
D. Manocha. Interactive navigation in
complex environments using path plan-
ning. Symposium on Interactive 3D
Graphics, pages 41–50, 2003.

[SML+99] T. M. Sheffield, D. Meyer, J. Lees, H. G.
Kahle, B. Payne, and M. J. Zeitlin.
Geovolume visualization interpretation:
Color in 3-D volumes. The Leading Edge,
pages 668–674, June 1999.

[SRH05] F. Steinicke, T. Ropinski, and K. Hin-
richs. Multimodal interaction metaphors
for manipulation of distant objects in im-
mersive virtual environments. In Pro-
ceedings of the 13th International Con-
ference in Central Europe on Computer
Graphics, Visualization and Computer Vi-
sion, pages 45–48, 2005.

[VGe06] VoxelGeo. Technical report, Paradigm,
2006.

[VKG05] I. Viola, A. Kanitsar, and E. Gröller.
Importance-driven feature enhancement
in volume visualization. IEEE Trans-
actions on Visualization and Computer
Graphics, 11(4):408–418, 2005.

[WZMK05] L. Wang, Y. Zhao, K. Mueller, and
A. Kaufman. The magic volume lens:
An interactive focus+context technique
for volume rendering. In Proceedings
of IEEE Visualization (VIS) 2005, pages
367–374, 2005.

Journal of WSCG 80 ISBN 1213-6972 ISBN 80-86943-09-7

Volume Wires : A Framework for Empirical Non-linear
Deformation of Volumetric Datasets

S.J. Walton and M.W. Jones
Swansea University

cssimon@swansea.ac.uk m.w.jones@swansea.ac.uk

ABSTRACT

We introduce a new framework for non-linear, non-reconstructive deformation of volumetric datasets. Traditional techniques
for deforming volumetric datasets non-linearly usually involve a reconstruction stage, where a new deformed volume is recon-
structed and then sent to the renderer. Our intuitive sweep-based technique avoids the drawbacks of reconstruction by creating
a small attribute field which defines the deformation, and then sending it with the original volume dataset to the rendering stage.
This paper also introduces acceleration techniques aimed at giving interactive control of deformation in future implementations.

Keywords: Volume rendering, Volume deformation, Swept volumes, Curves, Volume Animation, Nonlinear deformation,
Attribute distance field

1 INTRODUCTION
Research in the area of volume graphics is mainly con-
centrated on visualisation techniques. Tools and API’s
for volume modeling [SK00] and visualisation [WC01]
exist, but there is a lack of tools and techniques for
interactively manipulating these datasets. For surface-
based graphics, a huge variety of tools exist (such as
Maya and Character Studio) for the manipulation and
rendering of such objects. It would be beneficial to the
volume graphics community to bring some of the con-
cepts of such powerful animation tools to working with
volume datasets.

Volumetric deformation techniques have been recently
documented in the literature [CCI+05]. Deforming vol-
umetric datasets is viewed as a more complex problem
than surface-based deformation due to the size of the
data. Even if one extracts a subset of this data (a vol-
ume object) with segmentation techniques [Lak00], the
number of voxels to be deformed is still a limiting fac-
tor. Some approaches rely on either converting to an
intermediate representation (using marching cubes to
convert to a mesh structure) and then deforming that
representation, or reconstructing (voxelising) a newly
deformed volume dataset to be passed to the rendering
stage.

This paper introduces a new software-based method
to deform a volumetric dataset non-linearly without
converting to a mesh geometry or using expensive vol-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol. 14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ume reconstruction techniques. Our work concentrates
on empirical deformation with the aim of producing a
simple to use volume deformation and animation tool.

2 RELATED WORK
We split the related work into two logical areas - vol-
ume deformation and swept volumes.

2.1 Volume deformation
Spatial Transfer Functions [CSW+03] were introduced
by Chen et al . They define a framework for specifying
spatial transformation and deformation for volume ob-
jects. A spatial transfer function defines the geometrical
transformation of every point in the volume. Typically,
a backward-mapping operation must be performed (the
inverse of the deforming function) to find out where to
sample in the dataset based on the current sample point
on the ray. Depending on the complexity of the func-
tion, the computational cost can be high.

Similar non-reconstructive approaches involve plac-
ing ray deflectors in the scene [KY95] which deform
the ray as it passes through the volume, but its use is
rather limited, and specifying the deflectors is typically
unintuitive as the user must think in terms of the reverse
effect. Hardware-accelerated methods that work with
isosurfaces exist such as in [WRS01], however, speci-
fying the deformations is still unintuitive for the user,
and isosurface property restrictions exist. Other tech-
niques such as the 3D chainmail algorithm [Gib97] rely
on moving the individual voxels and then splatting the
newly-positioned voxels to the screen [Wes90]. These
methods still (e.g. for animation purposes) do not al-
low for intuitive deformation on a large scale from the
perspective of the user.

More recent work by Gagvani [GS01] has allowed for
the widely-used IK-skeleton deformation methods to be

Journal of WSCG 81 ISBN 1213-6972 ISBN 80-86943-09-7

utilised in volume graphics, whereby an entire new vol-
ume is reconstructed and then rendered. The algorithm
is costly when the size of the dataset is large (for ex-
ample, the visible human), as for the case of an anima-
tion, a new dataset must be created for each frame. A
small animation can easily run over 50GB when stored
on disk.

Prakash and Wu [WP99] animated the visible human
using Finite Element Methods and clustering for seg-
menting the dataset into blocks. A hardware acceler-
ated manipulation system called VolEdit [SSC03] al-
lows the user to interactively manipulate the IK-skeleton
and see the results in real-time. Since the transforma-
tions are linear, cracks can appear at joint areas. The
VolEdit system solves this problem using mid-plane ge-
ometry. Part of the motivation for our work in this paper
has been to solve this problem with a software based,
non-reconstructive method.

2.2 Swept volumes
A swept object is produced when some template is
swept along a trajectory through space. The template
to be swept can be a static template such as a 2D im-
age, or a dynamic template that changes through the
sweep. Complex swept objects can be achieved by scal-
ing [BvNP89] or rotating the template as it is swept.
If the template varies as with slices through an axis of
a volume dataset, then the result is a volume dataset
swept along a new trajectory.

Much work has been published on swept volumes
with an excellent review of techniques given in [AMBJ00].
The amount of work published is a reflection of the dif-
ficulty of some of the associated problems with sweep-
ing techniques – in particular, the problem of determin-
ing properties of a swept object such as its boundary
and volume. Early work on swept solids by Kajiya
[Kaj83], and Wijk [vW84] go into some detail on meth-
ods for ray-tracing swept solids defined with arbitrary
paths. Sealy and Wyvil [Sea97] describe how to vox-
elise new volume objects by sweeping contours along a
curve, which is achieved by recursively subdividing the
curve.

In [WC02], 2D images are swept along a path de-
fined by a Bézier curve to reconstruct a volume. The
volume is rendered using direct volume rendering. The
authors also discuss attempts to directly evaluate the re-
sulting deformation without reconstructing a volume,
but unfortunately such evaluation is expensive (since it
involves using numerical root finding methods), restric-
tive, and problematic (e.g, singularity conditions on an
axis where an image is swept around the axis).

A swept volume is produced when a swept object is
voxelised [Sea97]. The new volume can then be ren-
dered using any volume visualisation technique. The
disadvantage of reconstructing a volume from a sweep
is the space requirement – a new volume must be pro-

duced and either stored in memory or on disk. For an
animation, this is multiplied by the number of frames
if the user wishes to retain the intermediate data to re-
render the animation at a later date, with new view pa-
rameters or lookup functions.

3 DISTANCE FIELDS AND ATTRIBUTE
PROPAGATION

Since a distance field technique is required for our
method, we present a brief overview. Distance fields
[SJ01] have been widely used for a variety of applica-
tions in the volume domain, such as morphing [BW01],
voxelisation [Jon96] [JS00], and skeletonisation [GS01].
A distance field dataset D representing a surface S is de-
fined as D : R

3 → R, and for p ∈ R
3,

D(p) = min{| p−q |: q ∈ S} (1)

where || is the Euclidean norm and q are the near-
est points on the surface. Each voxel in the field con-
tains a value that represents the minimum distance to
the surface of interest in the data. In the case of vol-
ume data, we may be interested in a particular isosur-
face representing, for example, the bone surface in a
medical dataset. We can sign the value depending on
whether the voxel is inside the target surface - becom-
ing a signed distance field. A fast method of computing
this field is by using the distance transforms [SJ01] to
propagate local distances.

It follows that if we can propagate the minimum dis-
tances to a surface in this way, any related attributes of
the surface (e.g. colour, as in [BM99]) can also be prop-
agated. These additional attributes can be stored at each
voxel in the distance field. The field then becomes:

D(p) = (min{| p−q |: q ∈ S},a1, . . . ,an) (2)

where a1, . . . ,an are our additional attributes. If only
the attributes are of interest then the distance value at
each voxel may be discarded, thus saving typically 4
bytes per voxel if using floating-point precision. In our
method, we discard the distance values as they are not
needed in later stages.

4 METHOD DESCRIPTION
Our approach is based on the idea of sweeping a vol-
ume object along an arbitrarily defined path, although
the approach may also be viewed from the standpoint
that the deformed path has the effect of deforming the
surrounding volume object. Because no reconstruction
takes place, the deformation and rendering stages are
closely coupled. Figure 1 gives a high-level overview
of the system. The method is not limited to specific
classes of curve or any other trajectory definitions, ex-
cept for the requirement that it can be parametrically
evaluated, satisfying the general form:

α (t) = (αx(t),αy(t),αz(t)) (3)

Journal of WSCG 82 ISBN 1213-6972 ISBN 80-86943-09-7

The deformed dataset is evaluated at render time using
an attribute field, and can be rendered easily with a ray-
casting renderer using backward-mapping operations.

Volume
Dataset

User-defined
wires

Attribute Field
generation

stage

Attribute
Field

Rendering stage

Image

Figure 1: System overview

4.1 Specifying the deformation
From the user’s point of view, the specification of the
deformation is conceptually similar to that of wire de-
formers in Maya. We are therefore extending this
surface-based deformation technique to work neatly
with volumetric datasets. Such a transition is not triv-
ial due to the entirely different data representation (dis-
cretely sampled vs. surface based). In addition, an im-
portant difference is that we are not deforming the data
itself and sending it to the rendering stage.

In our method, the user defines a base wire close to
or inside the object to be deformed, and also an ob-
ject classification function for the wire β(p ∈ R

3) →
[true, f alse] which determines the associated volume
object. The wire is then transformed via translations,
rotations, and curve deformation and this has the ef-
fect of deforming the volume object defined by β in the
wire’s specified region of influence.

The method permits scaling and rotation values at ar-
bitrary points on the wire. For example, an angle of
θ = 0 at one end of the wire and θ = π at the other will
produce the effect of the object being twisted along the
path (linearly interpolating the θ values). The length of
the base wire and the modified wire need not be equal,
which allows for compression and expansion of the data
along the trajectory of the wire.

Figure 2(a) gives an overhead view of the user-defined
base wire on the CT carp dataset. Figure 2(b) shows
that the user has modified the wire, pulling one end
of the wire in the negative y-axis direction. Finally,
Figure 2(c) shows the resulting render from this defor-
mation. In this example, the wires are Bézier curves.
The base wire in this instance acts as the backbone of

y

x

(a) The base wire

y

x

(b) Modifying the wire

y

x

(c) The resulting render

Figure 2: Fish deformation

the carp. Deforming this backbone and then rendering
the result would result in a new pose for the carp, as
the surrounding soft tissue would be deformed around
the backbone. The backbone could be derived semi-
automatically using a simplified distance field thinning
technique [GS01] (choosing the strongest segment) or
watershed segmentation technique [Lak00].

5 BUILDING DEFORMATION DATA
In this stage, the deformation information from the
wire-specification stage is encoded into an attribute
field, which is then sent with the original volume object
to the rendering stage. The attribute field is a volumetric
dataset (γ,ε) where γ maps voxels to their correspond-
ing wire and ε maps voxels to the t-value (see equation
3) of the closest point on that wire. For certain classes
of curve (e.g. Catmull-Rom splines), the segment index
also needs to be stored.

The attribute field need not be the same scale as the
volume. In our research we have found that produc-
ing an attribute field of 1/8th size (half each dimen-
sion) produces results very close visually to the full
size field. Additional considerations regarding reduced
scale fields and example images are given in a later sec-
tion.

For each base wire, we associate a set of planes P (see
Figure 3) aligned with the trajectory of the wire. The
plane dimensions are automatically defined to tightly
fit the target object defined by classification function β
within the wire’s region of influence. To generate the
attribute field, an empty field is initialised over the do-
main of the union of each of the wires’ region of in-

Journal of WSCG 83 ISBN 1213-6972 ISBN 80-86943-09-7

t=0
t=1

Figure 3: Planes defined along wire

fluence. A mapping is now defined between planes on
the base wire and planes on the modified wire, essen-
tially the planes are copied based on their t-value. For
each plane on the modified wire, we look at the attribute
field voxels touched by the plane. If the plane touches
a voxel, then a flag is set with that voxel.

The optimal number of planes can be calculated from
an approximation of the wire’s length. For parame-
terised curves, the length can be approximated with pre-
cision p by:

| α |=
p

∑
i=2

| α (
i
p
)−α (

i−1
p

) | (4)

where || is the Euclidean norm.

5.1 Voxel Initialisation
Each wire is now voxelised into the attribute field.
When a new cell is entered by the wire, each of the
eight surrounding voxels’ γ (the wire reference) and ε
(closest t-value) attributes are set, and also the distance
d from the voxel to the point defined by ε, as shown
in Figure 4. The closest point on the wire is calculated
by subdividing the subset of the curve inside the voxel
(as in equation 4), and this calculation can be achieved
with parametrically-defined precision1. If a voxel has
already been set in a previous cube (as with v4), then
the new and current minimum distances are compared
and the minimum taken. This is denoted by the greyed-
out vector in Figure 4 where d ′ < d.

d'd

cubencuben-1 cuben+1

w0

ε = d'
w0γ =

V4

Figure 4: Pre-propagation voxel initialisation

Once this process is complete for all wires, the dis-
tances and associated attributes are propagated using a
distance transform method, and the distance values are

1 This is a fairly fast and accurate way to approximate the closest point
on a curve. Spline implicitization [Sha03] or other methods [Sch90]
could be used if more precision is required, at the expense of addi-
tional complexity.

discarded. The propagation only takes place with vox-
els flagged in the previous step, so large areas of the
field can be skipped. It is this propagation that removes
the need for a costly backward evaluation at each voxel.

6 RENDERING THE DEFORMATION
To render the deformation, a standard ray-casting ap-
proach is followed, with rays cast into the attribute field
instead of the volume object. We choose a ray-casting
approach to ensure a possible straightforward GPU im-
plementation for Geforce 6 based cards. All voxels in
the field which have not been flagged are ignored. At
each sample point psample on the ray, the wire refer-
ence w from the nearest voxel is noted. For the cur-
rent sample point psample, the wire parameter value t is
trilinearly interpolated from the eight surrounding vox-
els. The mapping achieved between the base wire and

pcurve
p
curve

p
sample

psample

w

rayi

rayj

(a) The modified wire

p'
sample

w

p'
sample

p'curve

p'curve

(b) The base wire

w

p'
sample

p'curve

p'curve

p'
sample

rayi

rayj

(b) The effective path of rays i and j

Figure 5: The mapping between wires

the deformed wire is illustrated in Figure 5. Given the
wire reference w and t-value t, we can calculate the
closest point on the modified wire and build a vector
to it, becoming psample → pcurve. To obtain the ac-
tual sample point in the volume dataset from this, vec-
tor psample → pcurve is mapped onto the base wire, be-
coming p′

sample → p′curve by using the t-value. This is
demonstrated in Figure 5 where two sample points on
rayi and ray j are mapped from the modified wire (a) to
the base wire (b). p′

sample is now our new sample point

Journal of WSCG 84 ISBN 1213-6972 ISBN 80-86943-09-7

in the dataset. The final effect of rayi and ray j’s trajec-
tories being deformed is shown in (c).

If the attribute field has been scaled with respect to
the volume object, then the density of sample points in
the field must be modified accordingly. We also must
deal with cases where a cube’s eight vertices give dif-
ferent wire references, as in Figure 6. The interpolated
t-value at psample would be inaccurate for either choice
of wire (a or b). We have looked at fast methods for
recovering a t-value (such as taking averages of the ma-
jority wire), but we have found that the decision at these
voxels contributes little to the final image quality ex-
cept with very low scale fields. In the resulting images
(given later), we simply choose the wire and t-value at
the closest voxel to psample.

rayi

a 0.1 a 0.1

a 0.2

a 0.2

a 0.1

b 0.1

b 0.0

a 0.1

psample

Figure 6: Differing wire reference problem

6.1 Calculating the new normals
Once the the new sample point has been calculated, a
new normal at that point is required if we are to ac-
curately light the deformed object. One way to achieve
this would be to use central differences using backward-
mapped points, but this is clearly an expensive opera-
tion. Therefore, to compute the deformed normal, we
first compute the normal n at the new sample point
p′sample obtained in the backward-mapping stage. This
normal can be calculated using central differences in the
original volume dataset at p′

sample. To obtain a new nor-
mal n′, we transform n by the inverse of the backward-
mapping transformation obtained for the current sample
point. n′ is then sent to a lighting equation.

7 OPTIMISATION AND THE DELIN-
EATION PROBLEM

Problems may arise when the user wishes to deform two
objects that are in close proximity – perhaps by pulling
the two objects apart to separate them. We illustrate
this problem in Figure 7. Figure 7(a) shows two objects
x and y, and Figure 7(b) shows a slice of the objects
(the slice is shown half-way down the objects in (a)). In
this case, a plane of target object x’s wire (shown as a
dotted rectangle) has overlapped object y. Part of object
y will therefore be included in the deformation of object
x, since y is within x’s plane. This is unlikely to be what
the user would have intended in this case.

If the user has defined multiple wires inside the vol-
ume dataset, it is likely that they wish to treat the dataset

wa wb

x
y

(a) (b)

Figure 7: The delineation problem

as a set of disjoint volume objects as defined by func-
tion β . It would be favourable for the system to be able
to automatically delineate the objects in Figure 7 with-
out the user resorting to volume segmentation methods
[Lak00], which are typically very difficult to work with.

7.1 Plane masks
To solve the problem discussed above, plane masks are
introduced. Once the planes are defined on the wire,
a 2.5D seed fill2 is performed on each of the planes to
generate a 2D bit-mask, which is then stored with the
plane.

Figure 8 shows a selection of these masks defined
along the wire for the CT carp dataset, with an object
classification function β set to identify the outer skin
area with a simple value threshold. The resolution of
the mask can be varied by parameter s, and the memory
requirement for each wire in bytes is calculated as:

n

∑
p=1

(a(p)∗ s)
8

where n is the number of planes on the wire, a gives the
area of the plane, and s is a resolution scale multiplier.
Values of s below 1 give a sparse mask, values above
give a fine mask and therefore greater precision, at the
expense of a greater storage overhead and preprocess-
ing time.

Figure 8: Masks defined along wire

The algorithm automatically hunts for an appropriate
seed point by searching inside the plane area outwards
from the wire. The condition for a fill at each pixel in
the bit-mask is the wire’s β function. If a suitable seed
point is not found, then the plane is removed from the

2 Essentially, a 2D image cutting through the volume dataset - the 2D
bit-mask is filled, and the part of the volume touched by the plane
used to identify the target object.

Journal of WSCG 85 ISBN 1213-6972 ISBN 80-86943-09-7

list, as no object data has been found within the plane’s
subsection of the volume. To ensure that data at the
edges is not skipped, we also apply a morphological
dilation operation to the mask. Voxels in the attribute
field are now only flagged if the plane mask bit at that
point is 1 (See Figure 9).

Figure 9: A Plane mask flagging voxels

This solution is effective in that not only does it solve
the delineation problem, but it also further reduces the
number of flagged voxels in the scene, which reduces
rendering time. Backward-mapping operations are now
only performed on voxels whose resulting new sample
positions lie within the target object (or slightly out).
Table 1 gives the number of non-flagged voxels ignored
for some example deformations. Note that we do not
include samples outside of the field boundaries in the
figures.

Dataset # Sample pts # Pts ignored % ignored
CT Carp 26,011,195 15,523,566 59.7%
Visman 45,461,270 39,253,862 86.3%

Table 1: Voxels ignored while rendering

7.2 Speed / Storage / Accuracy trade-offs
Each voxel in the attribute field requires three attributes.
The first is γ : the wire reference, the second is ε : the
t-value on the wire, and the third is a bit for the flag that
denotes a voxel has been swept. If we assume floating-
point precision on the t-value, we have a minimum of 5
bytes per voxel including 7 bits for the wire reference
with a maximum of 128 wires in the scene. This storage
requirement can be reduced by using integer precision
on the t-value. Below is an example 2-byte per voxel
solution for Catmull-Rom spline wires.

Bits Range of values Data
1 2 swept flag
4 16 w : wire reference
4 16 s : segment index on w
7 128 integer t-value on s

The integer precision on the t-value has another ad-
vantage. The points at each integer offset on the wire
can be cached before the rendering stage and then used
during rendering to avoid expensive curve evaluation at
each sample point (the points are chosen by subdivid-
ing the curve as in equation 4). The wire point calcu-
lation is now reduced to a simple array lookup. If we

wish for greater precision still, linear interpolation can
be performed between values. The same technique can
be used for the wire normals : for each modified wire
point p, the difference between the wire normal at p
and the normal at the same t-value on the base wire is
calculated, and stored.

8 IMPLEMENTATION
The method has been implemented in C++ on GNU /
Linux x86. To assist with rapid testing, and to demon-
strate the simplicity of specifying deformations, we
have built a simple user interface using the GTK+ li-
brary. The interface allows the user to view the volume
dataset from multiple angles interactively and quickly
define and deform wires. The user can also specify an
animation by deforming the wire differently for an arbi-
trary number of frames. The wires can be saved to disk
for later retrieval, and rendered into a series of images
which can be encoded into a movie.

9 RESULTS
To give a more accurate representation of the overhead
of our method implementation, we first give the timings
for a software ray-casting volume rendering algorithm
written in C++ with very few optimisations (see table
2), and then modify it to work with our method (re-
sults in table 3). Preprocessing refers to the attribute
field generation stage, which also includes mask gen-
eration, curve lookup table generation, and other pre-
render data discussed in previous sections. The differ-
ence in the timings gives the overhead of calculating
the attribute field and transforming sample positions in
each case.

The base wire and deformed wires are identical to
give the same number of sample positions during vol-
ume rendering (thus ensuring a fair comparison). The
deformation is therefore the identity deformation. The
viewing parameters and image size of 512x256 are also
constant. The timings are based on a P4 at 3.2GHz with
512MB RAM.

Dataset Render time
CT Carp 5.74 secs
Tubes 2.59 secs
Visman torso 4.31 secs

Table 2: Standard rendering times

Dataset Preprocessing Render Total
CT Carp 1.78 12.65 14.43
Tubes 0.96 4.81 5.77
Visman torso 2.97 22.87 25.84

Table 3: Deform/render times

The timings were performed using all acceleration
techniques discussed, but the majority of code has not

Journal of WSCG 86 ISBN 1213-6972 ISBN 80-86943-09-7

yet been optimised. The tables show that the overhead
in the rendering stage is far higher than the preprocess-
ing stage. The biggest factor in the cost of attribute field
generation is the size of the field, as more propagation
must take place.

Figure 12 shows the visible human rendered with the
same deformation (the head has been pulled back), with
differing attribute field to dataset ratios. 1:1 (same di-
mensions) predictably gives the most pleasing repro-
duction, while a 1:4096 (each dimension is 1/16th the
size) field gives a blocky appearance due to trilinear in-
terpolation taking place in the large gaps between vox-
els. We also give the time for attribute field generation
for each.

10 CONCLUSION
We have introduced a new software-based framework
for non-linear, non-reconstructive deformation of volu-
metric datasets. The framework brings a much-needed
intuitive deformation method to the field of discretely
sampled object representations. The lack of such meth-
ods available for volume deformation severely hampers
the area, and we feel that this framework goes some
way to correct this.

We have shown that the method requires only a small
memory storage overhead, and avoids the discussed dis-
advantages of reconstruction-based methods. The spec-

Figure 10: CT Carp deformation

Figure 11: Visible human deformation

(a) ratio 1:1, time 11.74s

(b) ratio 1:8 (1:2 dim), time 4.45

(c) ratio 1:64 (1:4 dim), time 2.61s

(d) ratio 1:512 (1:8 dim), time 2.17s

(e) ratio 1:4096 (1:16 dim), time 2.12s

Figure 12: Attribute field scales

ification of such deformations can be easily defined
without knowledge of the internal algorithms that de-
form the data. The problem of delineating volume ob-
jects to deform independently is also handled in a sim-
ple manner.

In addition, the standard ray-casting approach to vol-
ume rendering can be used to render the result with only
minor modifications to the rendering engine. This fa-
cilitates the method’s integration into the volume defor-
mation and rendering pipeline. We have recently imple-
mented the rendering stage on the GPU by loading the
attribute field as a 3D texture, so the total time required
is now little more than the field generation overhead.

11 ACKNOWLEDGEMENTS
This work has been supported by EPSRC grant GR /
S44198. The authors would also like to acknowledge

Journal of WSCG 87 ISBN 1213-6972 ISBN 80-86943-09-7

Stefan Roettger’s volume library [Roe], and the Na-
tional Library of Medicine’s Visible Human project.

REFERENCES
[AMBJ00] K. Adbel-Malek, D. Blackmore, and

K. Joy. Swept volumes: Foundations, per-
spectives, and applications. In Interna-
tional Journal of Shape Modeling, 2000.

[BM99] D.E. Breen and S. Mauch. Generat-
ing shaded offset surfaces with distance,
closest-point and color volumes. In Pro-
ceedings of the International Workshop on
Volume Graphics, pages 307–320, March
1999.

[BvNP89] W. F. Bronsvoort, P. R. van Nieuwen-
huizen, and F. H. Post. Display of pro-
filed sweep objects. The Visual Computer,
5(3):147–157, 1989.

[BW01] D. E. Breen and R. T. Whitaker. A level-set
approach for the metamorphosis of solid
models. IEEE Transactions on Visualiza-
tion and Computer Graphics, 7(2):173–
192, 2001.

[CCI+05] M. Chen, C Correa, S Islam, M. W. Jones,
P.Y. Shen, D Silver, S. J. Walton, and
P. J. Willis. Deforming and animating dis-
cretely sampled object representations. In
Eurographics 2005 STAR Reports, pages
113–140, Dublin, Ireland, August 2005.

[CSW+03] M. Chen, D. Silver, A. S. Winter, V. Singh,
and N. Cornea. Spatial transfer functions –
a unified approach to specifying deforma-
tion in volume modeling and animation. In
Proc. Volume Graphics 2003, pages 35–44,
Tokyo, Japan, 2003.

[Gib97] S. Gibson. 3D chainmail: a fast algorithm
for deforming volumetric objects. In Proc.
1997 Symposium on Interactive 3D Graph-
ics, pages 149–154, April 1997.

[GS01] N. Gagvani and D. Silver. Animating
volumetric models. Graphical Models,
63(6):443–458, 2001.

[Jon96] M. W. Jones. The production of vol-
ume data from triangular meshes using
voxelisation. Computer Graphics Forum,
15(5):311–318, 1996.

[JS00] M.W. Jones and R.A. Satherley. Shape
representation using space filled sub-voxel
distance fields. In Vision, Modeling and Vi-
sualization, pages 316–325, 2000.

[Kaj83] J.T. Kajiya. New techniques for ray trac-
ing procedurally defined objects. In SIG-
GRAPH ’83, pages 91–102, New York,
NY, USA, 1983.

[KY95] Y. Kurzion and R. Yagel. Space deforma-
tion using ray deflectors. In Proc. 6th Eu-
rographics Workshop on Rendering 1995,
pages 21–32, Dublin, Ireland, June 1995.

[Lak00] S. Lakare. 3D segmentation
techniques for medical volumes.
http://www.cs.sunysb.edu/ mueller /
teaching / cse616 / sarangRPE.pdf, 2000.

[Roe] Stefan Roettger. The volume library.
http://www9.cs.fau.de / Persons / Roettger
/ library/.

[Sch90] P. Schneider. Solving the nearest-point-on-
curve problem. In Graphics Gems, vol-
ume 1, pages 607–612. Academic Press,
1990.

[Sea97] G. Sealy. Representing and rendering
sweep objects using volume models. In
CGI ’97, pages 22–27, Washington, DC,
USA, 1997.

[Sha03] M. Shalaby. Spline implicitization of pla-
nar curves and applications. PhD thesis,
Johannes Kepler University, 2003.

[SJ01] R.A. Satherley and M.W. Jones. Vector-
city vector distance transform. Com-
puter Vision and Image Understanding,
82(3):238–254, 2001.

[SK00] M. Sramek and A.E. Kaufman. vxt : A
c++ class library for object voxelisation. In
Volume Graphics. Springer, 2000.

[SSC03] V. Singh, D. Silver, and N. Cornea. Real-
time volume manipulation. In Proceed-
ings of the 2003 Eurographics/IEEE TVCG
Workshop on Volume graphics, pages 45–
52, 2003.

[vW84] Jarke J. van Wijk. Ray tracing objects
defined by sweeping planar cubic splines.
ACM Trans. Graph., 3(3):223–237, 1984.

[WC01] A.S. Winter and M. Chen. vlib: A volume
graphics API. In Volume Graphics 2001.
Springer-Wien New York, 2001.

[WC02] A.S. Winter and M. Chen. Image-swept
volumes. Computer Graphics Forum,
21(3):441–441, 2002.

[Wes90] L. Westover. Footprint evaluation for
volume rendering. Computer Graphics,
24(4):367–376, August 1990.

[WP99] Z. Wu and E.C. Prakash. Visible human
walk: bringing life back to the dead body.
In VG99, pages 347–356, 1999.

[WRS01] R. Westermann and C. Rezk-Salama. Real-
time volume deformations. In Comput.
Graph. Forum, volume 20, 2001.

Journal of WSCG 88 ISBN 1213-6972 ISBN 80-86943-09-7

Detecting Holes in Point Set Surfaces

Gerhard H. Bendels Ruwen Schnabel

Universität Bonn

Institut für Informatik II – Computergraphik

Römerstraße 164

D-53117 Bonn, Germany

Reinhard Klein

ABSTRACT

Models of non-trivial objects resulting from a 3d data acquisition process (e.g. Laser Range Scanning) often contain
holes due to occlusion, reflectance or transparency. As point set surfaces are unstructured surface representations
with no adjacency or connectivity information, defining and detecting holes is a non-trivial task. In this paper we
investigate properties of point sets to derive criteria for automatic hole detection. For each point, we combine sev-
eral criteria into an integrated boundary probability. A final boundary loop extraction step uses this probability and
exploits additional coherence properties of the boundary to derive a robust and automatic hole detection algorithm.

Keywords Point Set Surfaces, Modelling, Filtering, Repairing

1 Introduction
Point set surfaces have become popular with the rise
of 3D data acquisition techniques such as laser-range
scanning. Their conceptual simplicity makes them
suitable for both modelling as well as high quality ren-
dering. Usually, these 3D data acquisition methods
deliver unstructured point clouds, possibly equipped
with normals and additional surface properties, such
as colour. The surface is encoded implicitly therein
and can only be extracted using some neighbourhood
relation between samples. Compared to mesh based
representations, the lack of explicit connectivity in-
formation simplifies the definition and implementa-
tion of many tasks encountered in geometric mod-
elling, such that for instance free-form deformation
techniques for point sets become increasingly popular
[PKKG03, BK05]. On the other hand, the detection of
holes in the surface – trivial in the case of meshes –
becomes an ill-defined problem.
The knowledge of holes in the data, however, is vi-
tal for many applications dealing with point set sur-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.14, ISSN 1213-6972
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

faces and it can be exploited in several ways. It can
be used to reconstruct surfaces with boundaries or to
direct a further scanning step, gathering missing infor-
mation in holes, either manually or even automatically.
In postprocessing, a smoothing step to remove noise
profits from boundary information as many smoothing
operators usually fail on boundaries and special han-
dling is required at the borders. Identification of points
on the boundary of a hole is obviously required before
any attempt to algorithmically fill holes, an application
useful not only in surface repairing but also in mod-
elling and interactive editing [BSK05, SACO04].
While several authors proposed sampling conditions
for surfaces to ensure correct reconstruction (most no-
tably [ABE98]), we are not primarily concerned with
undersampling but are interested in holes that a human
user might identify when inspecting a point cloud, of-
ten unaware of the original surface. Also we want to
provide a user with intuitive parameters making it easy
to find the holes needed for a given application.

2 Previous Work
The problem of detecting holes in point set surfaces
is closely related to surface reconstruction as well as
feature extraction. Thus, many algorithms in those ar-
eas include criteria to identify holes or undersampled
surface patches.
[GWM01], [LP02] as well as [CN04] apply what we
shall call the angle criterion. The angle criterion con-
siders for each sample point p a set of neighbouring
samples and examines the maximum angle between
two consecutive neighbours. [GWM01] also use the

Journal of WSCG 89 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 1: The steps of the boundary detection algorithm. From left to right: A boundary probability Π(p) is
computed for every point (the points are shaded in red according to their boundary probability). Then points
are classified into boundary and interior points, exploiting coherence. Finally, for each hole a boundary loop is
extracted.

correlation matrix formed by the neighbourhood. The
eigenvectors and eigenvalues of this matrix define a
correlation ellipsoid. Its shape, expressed in the ratios
of the eigenvalues, is used to identify corner, crease
and boundary points and also gives an approximation
to crease and boundary direction. In order to find con-
tinuous crease lines, a neighbourhood graph on the
point set is built and its edges are weighted according
to the crease probability. Edges with high probability
are then collected and constitute the feature patterns.
In [DG01], undersampled regions are detected using
the sampling requirement of [ABE98]. This sampling
condition is based on an approximation of the medial
axis by so called poles of each sample’s Voronoi cell.
The distance of each point to the medial axis gives
the local feature size. Every point on the true surface
needs at least one sample point within a ball defined
by the local feature size and a factor r. Consequently,
[DG01]’s approach fails to identify holes in flat areas
of the surface, where only very few samples are re-
quired to fulfill this requirement (in flat areas the me-
dial axis is far away). In these areas, though, often
holes are present and clearly visible for a human ob-
server. Similarly, we are not interested in regions de-
clared undersampled at sharp creases where the sam-
pling requirement can never be met (at sharp edges the
medial axis touches the surface).

3 Overview
Let S be a 2-manifold surface and let the set of points
P = {p1, . . . ,pn} ⊂ R

3 be a (not necessarily reg-
ular) sampling of S. Suppose also that n1, . . . ,nn

are the corresponding surface normals. The problem
is now to define an operator

BP : P → 2P ; BP(P) 7→ {p ∈ P|p is boundary}

that identifies the set of boundary points B = BP(P)
circumscribing holes in P . We denote the boundary
operator with a subscript P to stress that the assign-

ment boundary or non-boundary is strictly a property
of the point set under consideration itself.
The basic layout of our hole detection scheme (de-
picted in figure 1) is as follows: For each point p ∈ P
we compute a boundary probability Π(p), reflecting
the probability that p is located on or near a hole in
the surface sampling (section 4). Thereafter, we ex-
ploit that the boundary property is coherent, i.e. that
boundary points have proximate neighbours that are
also boundary, and construct closed loops circumscrib-
ing the hole in a shortest cost path manner (section 5).
Results and applications of our hole detection scheme
are given in sec. 6.

4 Boundary Probability
The property of being boundary inherently is a prop-
erty of the local neighbourhood of p rather than of
the point p itself. In order to define and evaluate the
boundary criteria, we therefore have to seize the local
neighbourhood Np more formally.

4.1 Neighbourhood Collection
A very common definition of local neighbourhoods
around a point p found in the literature is the k-
neighbourhood Nk

p , consisting of the k nearest sam-
ples in P to p. This simple definition, though, be-
comes unreliable in areas of varying sampling density.
In points lying on the edge of a densely sampled re-
gion, the k-neighbourhood will be biased towards the
densely sampled region (fig. 2, left).
This problem can be alleviated somewhat by the Nkε

p

neighbourhood, that includes not only the k nearest
points but also all points inside a small sphere with ra-
dius ε. By selecting an appropriate value for ε, the bi-
asing effect can be reduced, but the neighbourhood of
points in densely sampled regions will contain more
points than necessary, increasing the cost of evalu-
ating the boundary criteria, which effectively limits
the range of a feasible ε. For sharp sampling density

Journal of WSCG 90 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 2: Left: The kε-neighbourhood is biased towards densely sampled regions. Middle: kε-neighbourhoods
of points in the sparsely sampled region contain points of the densely sampled area. Right: The symmetric kε-
neighbourhood is not affected by the change in sampling density.

changes (as often encountered in point sets stemming
from registered range images), this alleviation alone is
not sufficient.
However, whereas the kε-neighbourhood for points
situated on a sampling density drop will include only
points in the densely sampled region, these points will
be contained in the neighbourhood of nearby points,
located in the sparsely sampled region (fig. 2, middle).
To overcome the biasing effect, it therefore typically
suffices to include these nearby points in the neigh-
bourhood (fig. 2, right). To complete the neighbour-
hood for the critical points, we hence define:

Np = {q ∈ P | q ∈ Nkε
p ∨ p ∈ Nkε

q },

i.e. q is considered one of p’s neighbours, already if p
is one of q’s.
To efficiently find the neighbourhood for each point, a
kd-tree is built, containing all points in P . The kd-tree
supports the collection of the k nearest neighbours to a
point in O(klog3|P|) and can also be used to quickly
retrieve all points in a sphere of radius ε. After the
kd-tree has been constructed, we build the proximity
graph G(P, E), with P as vertices and edges

E = {(i, j) | pj ∈ Npi
}.

Please note that this graph is symmetric, and the
adjacency lists of the graph correspond to the Np-
neighbourhood of each point.

4.2 The Angle Criterion
The angle criterion projects all neighbouring points
contained in Np on the tangent plane and sorts them
according to their angle around the centre sample, see
figure 3, and computes the largest gap g between two
consecutive projected neighbours. The basic idea is
that g will be significantly larger for a boundary point
than for an interior point, as illustrated in figure 3.
Consequently, the boundary probability is given as

Π6 (p) = min

(
g − 2π

|Np|

π − 2π
|Np|

, 1

)
.

Figure 3: The three steps in the evaluation of the angle
criterion for an interior point (top row) and a bound-
ary point (bottom row). After projection into the tan-
gent plane the difference vectors are generated (left).
The projected points are sorted according to their an-
gle around p (middle). The largest angular gap be-
tween two consecutive points is used to compute the
boundary probability (right).

In contrast to the standard angle criterion, we ignore
points q ∈ Np with a small scalar product 〈np,q−p〉.
This way the angle criterion becomes less susceptible
to small inaccuracies in normal direction.

4.3 The Halfdisc Criterion
In 2D-image processing, edge detection algorithms
identify pixels, whose luminance deviates consider-
ably from the average luminance of its neighbouring
pixels. The same rationale can also be applied in our
problem setting. On a 2-manifold, the neighbourhood
of points in the interior of the surface is homeomorphic
to a disc such that we can expect the difference be-
tween the point p itself and the average µp of its neigh-
bours to be small, as opposed to points on a boundary.
Their neighbourhood is homeomorphic to a halfdisc
(see figure 4), such that µp will deviate from p sig-
nificantly. Therefore, to derive a boundary probability,
we compare µp with the centre of mass of an ideal
halfdisc in the tangent plane. To reduce the influence

Journal of WSCG 91 ISBN 1213-6972 ISBN 80-86943-09-7

(a)

(b) (c)

Figure 4: (a) The local neighbourhood of points lo-
cated on the surface boundary is homeomorphic to a
halfdisc as opposed to the full disc of an interior point.
(b) For an interior point, the average of the neighbour-
hood points will coincide with the interior point itself,
while for a boundary point (c), it will deviate in direc-
tion of the interior surface.

of variations in the sampling density, we compute µp

as a weighted average of Np using the Gauss kernel

gσ(d) = exp
(
−d2

σ2

)
,

where σ depends on the average distance to the neigh-
bouring points rp (namely σ = 1

3rp), such that the
influence of points outside the neighbourhood Np can
be neglected. This delivers:

µp =

∑
q∈Np

gσ(‖q− p‖)q∑
q∈Np

gσ(‖q− p‖)
.

To filter out properties of the surface itself and to in-
clude in our criterion properties of the sampling itself
only, we compute the projection µp of µp into the tan-
gent plane and define the boundary probability as

Πµ(p) = min(
‖p− (µp)‖

4
3π rp

, 1).

4.4 The Shape Criterion
As noted in [GWM01], the shape of the correlation el-
lipsoid of Np approximates the general form of the
neighbouring points. The shape of the ellipsoid is
encoded in the eigenvalues λ0 ≥ λ1 ≥ λ2 of the
weighted covariance matrix Cp:

Cp =
∑

q∈Np

w(q)(µp − q)(µp − q)t

(a) (b)

Figure 5: (a) The triangle formed by all Λ values with
highlighted characteristic points for certain shapes.
The circles passing through the triangle centroid c are
shown for every shape in the respective colour. (b) The
tentative probability Π̃boundary is computed by evalu-
ating the kernel around the characteristic Λ for bound-
ary points.

We collect the relative magnitudes of the eigenvalues
in a decision vector Λp = (λ0

α , λ1
α , λ2

α), with α = λ0+
λ1 + λ2. There are four characteristic situations φ ∈
Φ = {Boundary, Interior, Corner/Noise, Line}:

φ = Boundary Λφ = (2
3 , 1

3 , 0)

φ = Interior Λφ = (1
2 , 1

2 , 0)

φ = Corner/Noise Λφ = (1
3 , 1

3 , 1
3)

φ = Line Λφ = (1, 0, 0)

The latter three values of Λ span a triangle TΛ con-
taining all possible values for Λ (fig. 5). We can
now extract tentative classification probabilities Π̃φ

for each of the situations described above from Λp

by evaluating a spatial kernel around the characteris-
tic Λφ. Again, we use a Gauss kernel gσ with σφ =
1
3‖Λφ − centroid(TΛ)‖2, effectively defining a radius
of influence for the characteristic point (see figure 5,
left). Now Π̃φ is for each shape φ ∈ Φ given as

Π̃φ(p) = gσφ
(‖Λp − Λφ‖)

Obviously, the regions for different shapes overlap.
Therefore we normalise and define

Πφ(p) =
Π̃φ(p)∑

ϕ∈Φ Π̃ϕ(p)
.

4.5 Combining the Criteria
Every criterion has its own advantages. Compared to
the angle criterion, the halfdisc criterion is better capa-
ble of detecting small holes, especially when the hole
is crossed by some edges of the neighbourhood graph,
see figure 6.
On the other hand, while the halfdisc and the ellip-
soid criterion typically find narrow bands of boundary

Journal of WSCG 92 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

Figure 6: A small hole, crossed by some edges of
the neighbourhood graph G. Points with a boundary
probability (as computed with the angle criterion (a)
and the halfdisc criterion (b)) above a threshold of 0.5
are coloured in red.

(a) (b)

Figure 7: Boundary points detected by the halfdisc
criterion form a band of boundary points (b), whereas
the angle criterion finds a sharp boundary (a).

points around holes (in particular for larger k) the an-
gle criterion is sharper and better exposes thin lines
of boundary points (see figure 7). In the presence of
noise, finally, the shape criterion performs best (see
figure 8).
In order to make use of the different capabilities of the
criteria and to increase the robustness of the bound-
ary probability computation, we derive a combined
boundary probability into a weighted sum

Π(p) = w6 Π6 (p) + wµΠµ(p) + wφΠBoundary(p).

The weights w6 , wµ and wφ, where w6 +wµ +wφ =
1, can be adjusted by the user upon visual inspec-
tion. As default, a uniform weighting scheme pro-
duces good results, but for noisy models, the weight
of the shape criterion should be increased.

4.6 Normal Estimation
Both, the angle and the average criterion, depend heav-
ily on the normal at the point p. Therefore, if the data
comes without normal information, a good estimation

(a) (b)

Figure 8: The angle criterion (a) identifies many false
boundary points in the presence of noise, while the
shape criterion (b) is not affected.

of the normal is mandatory. Following the normal esti-
mation method by Hoppe et al. [HDD+92], the normal
is given as the eigenvector corresponding to the small-
est eigenvalue of the weighted covariance matrix of
Np. In addition to that, we integrate information gath-

Figure 9: In sharp creases the fitting plane sometimes be-
comes normal to the surface. These cases can be detected
with the angle criterion and the normal can then be flipped.

ered during the computation of the angle criterion in
the normal estimation process as suggested in [LP02].
Sometimes, at sharp creases, the fitting plane is normal
to the surface, see figure 9. To detect this situation, the
angle criterion is evaluated after the normal has been
estimated. If the boundary probability Π6 (p) exceeds
a given threshold, the estimated normal is rotated by
90 degrees about the axis defined by the two points
on both sides of the maximum gap, projected into the
tangent plane. Then the angle criterion is evaluated
again, this time using the rotated normal, and the new
normal is kept if the boundary probability has been re-
duced significantly, i.e. by more than 50%. This helps
at sharp creases where sometimes the fitting plane is
normal to the surface, see figure 9.
Please note that the estimation algorithm does not
yield consistently oriented normals. Although this is
required for neither of our criteria, it can easily be

Journal of WSCG 93 ISBN 1213-6972 ISBN 80-86943-09-7

achieved by applying the minimum spanning tree tra-
versal introduced in [HDD+92] on the neighbourhood
graph. We use this approach for visualisation pur-
poses.

5 Boundary Loops
The extraction stage of the boundary detection al-
gorithm aims at producing a classification for each
point, stating if it is a boundary or an interior point.
Here, in addition to the boundary probability com-
puted with the scheme described in the last section, we
will exploit the coherence between boundary points.
This greatly improves the robustness of our method.
Moreover, connected loops of points, circumscribing
a hole, will be found, providing immediate access to
the boundary.

5.1 Boundary Coherence
Any point on a boundary loop has at least one neigh-
bour to each side also belonging to the boundary. This
property can easily be exploited using a simple itera-
tive classification step. First, all points with a bound-
ary probability greater than a user defined threshold
are declared boundary points. Then, for each of these
points, the two neighbours forming the maximum gap
in the sense of the angle criterion are found. A point
stays classified as boundary point if and only if both
of these neighbouring points have also been declared
boundary points. All other points are marked as in-
terior points. This process is repeated until no more
points change their status. Note that only the neigh-
bours of points that did change status in the previous
iteration have to be reconsidered in the following step,
making the classification very efficient.
After the classification, we use an algorithm that is
built upon the one presented in [GWM01] to construct
a minimum spanning graph (MSG) based on the prox-
imity graph G. By construction, this MSG will contain
loops if and only if they correspond to the boundary
loops we are interested in.
To this end, we use an extension of Kruskal’s min-
imum spanning tree algorithm. The required edge
weights w(i, j), are derived similar to [GWM01] in
two parts. The first component penalises the boundary
probability of the adjacent points:

wprob(i, j) = 2−Π(pi)−Π(pj).

The second component incorporates the local sam-
pling density measured by rp (defined as the average
distance to p’s neighbours (see sec. 4.3) and penalises
long edges so that the boundary loops will contain as
many boundary points as possible:

wdensity(i, j) =
2‖pi − pj‖
rpi

+ rpj

.

The total weight is then given by

wtotal(i, j) = wprob(i, j) + wdensity(i, j).

The construction of the MSG uses an extension to
Kruskal’s minimum spanning tree algorithm. In the
beginning, every vertex of G comprises a stand-alone
component in G. Then all eligible edges are processed
in ascending order, according to their weight. Here, an
edge (i, j) is considered eligible only if wprob(i, j) and
wtotal(i, j) are below pre-defined thresholds. A thresh-
old combination of 1.1 and 3 proved good in our ex-
periments and was used for all the examples given in
this paper.
If an edge (i, j) connects two distinct components of
G, the edge is added to the MSG and the two com-
ponents are joined. If, on the other hand, the edge
connects two vertices of the same component, it is in-
cluded in the MSG only if the emerging loop is longer
than a predefined minimum loop length e, measured as
the number of edges in the loop. Similar to the radius ε
in the construction of the neighbourhood graph G, the
minimum loop length e steers the minimal hole radius
to be found. Therefore, we link these two parameters
and set e = 2πε

d , where d is the average edge length in
the graph.

5.2 Loop Extraction
With the MSG at hand, the boundary loops can be
extracted using a breadth first search. The search is
started once for each vertex in the MSG, unless it has
become part of a loop already. The algorithm main-
tains for all vertices a colour value signaling one of
three states: white (untouched vertices), grey (queued
for visitation) or black (already processed). In the be-
ginning, all vertices are white, except the origin, which
is grey (see figure 10). In every step the vertex on the
front is marked black, removed from the queue of grey
vertices, and all its white adjacent vertices are marked
grey and appended to the queue. If an adjacent vertex
is black, it is ignored, but if one of the adjacent vertices
encountered is grey, a loop has been found and can be
extracted by tracing back the steps of the breadth first
search. In a final step, points belonging to a loop are
marked as boundary points. The process is illustrated
in figure 10.

6 Results and Conclusions
We applied our algorithm to a variety of models.
Figure 11 illustrates the effect of our hole detection
method using the symmetric neighbourhood graph that
is designed particularly to filter out even abrupt sam-
pling density changes, a situation which causes even
well-established hole criteria to fail. For this example,

Journal of WSCG 94 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

(c) (d)

Figure 10: The extraction of a loop in one compo-
nent of the MSG. (a) The breadth first graph traversal
is spawned at the highlighted vertex (grey in the begin-
ning). (b) The state of the vertices after four steps of
the search. All grey vertices are queued for visitation,
black vertices have been visited. Arrows indicate the
vertices’ predecessors. (c) When the adjacent vertices
of the green vertex are examined, the grey vertex (red)
is encountered and a loop has been found. The loop
is extracted by tracing back the predecessors of both
vertices. (d) The extracted loop.

one half of the depicted data set was heavily downsam-
pled and only the angle criterion employed. Note how
well the drastic change in sampling density is handled.
Although this novel neighbourhood construction al-
ready considerably improves the performance of the
so-called angle-criterion, the robust detection of holes
in the presence of noise or also of holes of small size
remains a challenge using only this criterion. To over-
come this, we presented two novel boundary criteria:
The halfdisc criterion is the 3d-analogue to the well-
known border detection in images, whereas the ellip-
soid criterion exploits a classification scheme based on
local data analysis.
The notion of a hole is inherently and per-se ill-defined
in the context of point set surfaces, and hence any clas-
sification ultimately needs to adapt to the application’s
(or rather the user’s) interpretation. Consequently, our
probabilistic approach can be trimmed using intuitive
parameters, rendering the method easily adjustable to
the task at hand. The parameter k of the neighbour-
hood definition determines the size of the local neigh-
bourhoods. If k is increased, only larger holes can be
detected, as smaller holes will be crossed by edges
of G. We typically used a value between 12 and 25
for our test cases, depending on the amount of noise

Figure 11: The effect of the symmetric neighbourhood re-
lation. Left: k-nearest neighbours Right: Symmetric neigh-
bourhood graph

Figure 12: Boundary points identified in the mannequin
model (points only) with k = 15. The top right image is
taken from [DG01].

present in the data. If there is considerable noise,
larger values of k can be used to improve the robust-
ness of the hole detection, while the parameter ε can be
used to define a minimum hole size, since the neigh-
bourhood will stretch over all holes with a diameter
less than ε. This way the user is enabled to focus on the
important holes in the dragon for instance, as demon-
strated in figure 14.
By making use of the coherence between boundary
samples, the robustness of the hole detection is fur-
ther increased. As a by-product of this stage, boundary
loops are extracted, delivering subsequent processes
direct access to the contours of the holes.
For many applications, such as automatic hole filling,
the detection of holes has to be repeated after filling
part of the hole. A reasonable efficiency of the hole
detection is therefore desirable. In the dragon example
(containing over 400000 points) the holes depicted in
figure 14 (right) were detected in less than two minutes
on a AMD Athlon 2.21 GHz processor. Specifically,
the timings were: Construction of the kd-tree and the
symmetrised proximity graph 23s, computation of the

Journal of WSCG 95 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 13: Boundary found in a scan of an echinite. All
three criteria were combined with equal weight.

Figure 14: Numerous small holes are detected in the dragon
model for k = 15, but larger holes can be isolated if all
points within 0.01 of the bounding box diagonal are also
included in the neighbourhood.

integrated boundary probability 46s, extraction of the
boundary loops 36s. In the context of hole filling,
the update of the boundary loops can naturally be per-
formed incrementally, such that here timings can be
expected to be even considerably faster; this has not
been in the scope of this paper, though.
Figure 12 shows that our method extracts holes in the
mannequin point cloud comparable to those identified
for the corresponding mesh in [DG01]. Here, a clas-
sification step with a threshold of .3 was applied. In
figure 15 the boundary of a single scan of the bunny
has been extracted as a loop. A minimum loop size of
e = 1000 was used to suppress the detection of loops
around the smaller holes.

References
[ABE98] N. Amenta, M. Bern, and D. Eppstein. The

crust and the -skeleton: Combinatorial curve
reconstruction. Graphical models and image
processing: GMIP, 60(2):125–135, 1998.

[BK05] Mario Botsch and Leif Kobbelt. Real-time
shape editing using radial basis functions.
Computer Graphics Forum, 24(3):611 – 621,
2005.

Figure 15: Detected boundaries in a single scan of the
bunny and in the registered, yet incomplete squirrel data set.

[BSK05] Gerhard Heinrich Bendels, Ruwen Schnabel,
and Reinhard Klein. Fragment-based surface
inpainting. Poster proceedings of the
Eurographics Symposium on Geometry
Processing 2005, July 2005.

[CN04] Moenning C. and Dodgson N.A. Intrinsic point
cloud simplification. In Proc. 14th GrahiCon,
volume 14, Moscow, September 2004.

[DG01] Tamal K. Dey and Joachim Giesen. Detecting
undersampling in surface reconstruction. In
Proceedings of the seventeenth annual
symposium on Computational geometry, pages
257–263. ACM Press, 2001.

[GWM01] Stefan Gumhold, Xinlong Wang, and Rob
McLeod. Feature extraction from point clouds.
In Proceedings of 10th International Meshing
Roundtable, pages 293–305, Sandia National
Laboratories, Newport Beach, CA, October
2001.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp,
John McDonald, and Werner Stuetzle. Surface
reconstruction from unorganized points. In
Proceedings of the 19th annual conference on
Computer graphics and interactive techniques,
pages 71–78. ACM Press, 1992.

[LP02] Lars Linsen and Hartmut Prautzsch. Fan
clouds - an alternative to meshes. In T. Alano,
R. Klette, and Ch. Ronse, editors, Proceedings
Dagstuhl Seminar 02151 on Theoretical
Foundations of Computer Vision - Geometry,
Morphology and Computational Imaging, page
[10]. Springer-Verlag Berlin Heidelberg, 2002.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt,
and Markus Gross. Shape modeling with
point-sampled geometry. ACM Trans. Graph.,
22(3):641–650, 2003.

[SACO04] Andrei Sharf, Marc Alexa, and Daniel
Cohen-Or. Context-based surface completion.
ACM Trans. Graph., 23(3):878–887, 2004.

Journal of WSCG 96 ISBN 1213-6972 ISBN 80-86943-09-7

Reusing frames in camera animation

Àlex Méndez-Feliu
Universitat de Girona

Institut d’Informàtica i Aplicacions
Edifici P4, Campus de Montilivi

17071, Girona, Spain

amendez@ima.udg.es

Mateu Sbert
Universitat de Girona

Institut d’Informàtica i Aplicacions
Edifici P4, Campus de Montilivi

17071, Girona, Spain

mateu@ima.udg.es

László Szirmay-Kalos
Technical University of Budapest

Informatics Building, B320
1117 Pázmány P. sétány 1/D.

Budapest, Hungary

szirmay@iit.bme.hu

ABSTRACT

Rendering an animation in a global illumination framework is a very costly process. Each frame has to be computed with high
accuracy to avoid both noise in a single frame and flickering from frame to frame. Recently an efficient solution has been
presented for camera animation, which reused the results computed in a frame for other frames via reprojection of the first hits
of primary rays. This solution, however, is biased since it does not take into account the different probability densities that
generated the different contributions to a pixel. In this paper we present a correct, unbiased solution for frame reuse. We show
how the different contributions can be combined into an unbiased solution using multiple importance sampling. The validity
of our solution is tested with an animation using path-tracing technique, and the results are compared with both the classic
independent approach and the previous unweighted, biased, solution.

Keywords: Animation, Ray tracing, Path reuse, Global illumination, Path tracing

1 INTRODUCTION
In global illumination an image can be computed by
tracing paths from the eye (or observer position) trough
the pixels that compose the image plane towards the
surfaces of the scene. In the path-tracing technique,
from the hit point in the scene a random walk is fol-
lowed, gathering the energy at every new hit point. The
main drawback of these Monte Carlo random walks is
the high number of paths needed to obtain an accept-
able result. To obtain an animation or a sequence of
frames in a global illumination framework with produc-
tion quality, we need to cast many rays per pixel. Each
frame has to have high accuracy to avoid both noise in
the frame and flickering from frame to frame. An effi-
cient solution to reduce this cost has been presented for
camera animation [9]. Computation for one frame is
reused for other frames via reprojection of the first hit
of the eye ray to neighbour eyes positions. Although
very computationally efficient, this solution is biased,
as it does not take into account the different probabil-
ity densities that generated the different contributions
to a pixel. In this paper we improve on this solution
by presenting an unbiased method for frame reuse. Our
approach is a follow-up of previous research on path
reuse [2, 17, 16]. We show how the different contri-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

butions can be combined to an unbiased solution using
multiple importance sampling [20]. We test our solu-
tion with an animation using the path-tracing algorithm
for global illumination, and compare it with a classic
independent solution and the previous unweighted, bi-
ased, technique. Although the results are shown in this
paper for the path-tracing algorithm, the validity of our
technique is general.

This paper is organized as follows. In the next sec-
tion we will refer to previous work on reusing frames in
animation and on reusing paths in the context of radios-
ity and global illumination. Path-tracing is also shortly
revisited. The theoretical foundation and algorithms of
our techniques for reusing frames are presented in sec-
tion 3. In section 4 details about the implementation
and costs of our algorithm are explained. In section 5
results are presented that illustrate the benefits of our
technique, and in the last section we present the con-
clusions and future work.

2 PREVIOUS WORK
2.1 Path-tracing algorithm
Random walks are a Monte Carlo common tool to solve
second kind Fredholm integral equation [15, 7, 12]. For
instance, they are used in global illumination and ra-
diosity [1, 5] to solve the rendering equation [11]. Path-
tracing [11], distributed ray-tracing [4], bidirectional
path-tracing [13, 20], photon map [10] and Metropolis
[22] are main global illumination techniques using ran-
dom walk. In the path-tracing technique (see Fig.1a)
an image is computed by tracing paths from the eye
(or observer position) trough the pixels that compose
the image plane towards the surfaces of the scene. To

Journal of WSCG 97 ISBN 1213-6972 ISBN 80-86943-09-7

avoid a huge variance, from each hit point ray(s) are
directed towards the light sources to gather light. The
random walk can be terminated upon different termina-
tion conditions. Russian roulette is the most used ter-
mination technique. At a hit point, we decide at ran-
dom whether to terminate or follow the path. Another
possibility is to accumulate the albedos of visited hit
points and stop when the accumulated albedo is below
a given threshold. Path-tracing is a general, unbiased
simple technique to compute global illumination, rela-
tively easily to implement and very much appropriate
to test improvements in global illumination, although
more sofisticated techniques have been introduced like
Metropolis and bidirectional path-tracing. On the other
hand, shooting random walk solves the adjoint equation
by simulating the trajectories of photons from the light
sources, and hybrid methods like bidirectional path-
tracing combine both shooting and gathering. The cost
of a random walk simulation is mainly the cost of com-
puting the next hit point, that is, the point visible from
the old hit point in the sampled direction.

The main drawback of these Monte Carlo random
walks is however the high number of paths needed to
obtain an acceptable result. As the variance of the es-
timators is proportional to N−1 with N the number of
paths, it makes necessary the use of many paths, of the
order of millions, to obtain an acceptable noiseless im-
age. This is still more dramatic in an animation com-
putation, due to the high number of frames to be com-
puted. Thus achieving some sort of path reusing can
reduce the computational cost.

2.2 Reusing paths
Bidirectional path-tracing [13, 20] can be considered as
the first attempt to reduce the cost by reusing paths.
This method joins sub-paths belonging to the same
pixel or to the same source point. However, the idea
of the reuse of full paths and for different states (i.e.,
pixels, patches or light sources) was first presented by
John Halton in [6] in the context of the random walk
solution of an equation system. This technique was ap-
plied by Bekaert et al. in the context of path-tracing
in [2, 16] (see Fig.1a), combined with multiple im-
portance sampling [21, 20] to avoid bias. Pixels were
grouped in tiles, and paths belonging to a pixel in the
tile were reused for the other pixels in the tile from the
second hit point of the path. A speed-up of one order
of magnitude was reported for fairly complex scenes.
Havran et al. [9] presented the reuse of paths in a walk-
through, that is, when the observer changes position.
Paths cast from one observer position were reused for
other neighbor positions. Their technique admitted mo-
tion blur and they applied it in the context of bidirec-
tional path-tracing. Although obtaining a high speed-
up, the method remained biased as the samples were
not weighted with the respective probability. In the

radiosity context Besuievsky [3] used the same set of
lines to expand direct illumination from different light
source positions. The source positions were packed in a
bounding box and lines crossing this box expanded the
power of all intersected positions. The drawback of this
method is that lines are wasted if the source positions
are not tightly packed. Moreover, this method is only
valid for diffuse sources. Recently path-reuse has been
applied to light source animation in [17, 18, 14].

3 FRAME REUSE
In this section the theoretical framework of our algo-
rithm is introduced. We first introduce the basic native
estimators, then we show how we can estimate the radi-
ance from a different eye and finally how the radiance
estimators obtained with paths from different eyes can
be combined by multiple importance sampling.

3.1 Estimating the native radiance
In global illumination we are interested in the integrals
Lo(i) =

∫

Ai
L(p)dp where Ai is the area of pixel i, and

L(p) is the radiance from visible scene point x that
reaches the observer at point o through point p in pixel
i . Introducing a change of integration variable [19] we
obtain

Lo(i) =

∫

S
L(x → o)G(o,x)Vi(x)

cos3 θi

f 2 dx, (1)

where the integration extends over all scene surface
points S, θi is the angle between the normal of the
screen plane and direction ω(x → o) at the center of
the pixel i, and f is the focal distance, i.e. the distance
from o to the plane of the screen. Vi(x) takes the value
of 1 if x is visible through the pixel i and 0 otherwise.
The geometric factor G(o,x) is defined as

G(o,x) = vis(o,x)
cos(Nx,ω(x → o))

d2(x,o)
(2)

where vis(o,x) is 1 if x and o see each other and 0 oth-
erwise, Nx is the normal at point x, ω(x → o) is the
direction from x to o, and d(x,o) is their distance. The
radiance L(x → o) comes from the global illumination
equation [11]:

L(x → o) = Le(x → o)+
∫

Ω ρ(ω in,x,x → o)L(x,ω in)cos(Nx,ω in)dω in (3)

where Le(x→ o) is the self emitted radiance, ρ(ω in,x,x→
o) is the bidirectional reflectance distribution (brdf)
function at point x, incoming direction ω in 1 and outgo-
ing direction x → o. L(x,ω in) is the incoming radiance
to x in direction ω in.

1 In fact, the true incoming direction is −ω in, but we use the opposite
one to keep the reciprocity in the brdf.

Journal of WSCG 98 ISBN 1213-6972 ISBN 80-86943-09-7

x

O

y

x’

y’
O

O’

x

(a) (b)
Figure 1: (a) Reusing a path from the second hit point, y, for a single observer O, creating thus the new path
O,x′,y, . . . at the cost of the visibility test vis(x′,y). (b) Reusing the path from observer O for observer O′, at the
cost of the visibility test vis(O′,x).

Substituting (3) into (1), and dropping constant terms
and self-emission 2, we obtain

Lo(i) =

∫

S

∫

Ω
G(o,x)Vi(x)ρ(ω in,x,x → o)

L(x,ω in)cos(Nx,ω in)dω indx (4)

Primary estimator L̂o(i) for Lo(i) is obtained by select-
ing a point x with probability po

i (x) and then direction
ω in with probability p(ω in;x,x → o). An unbiased esti-
mator for L(x,ω in), ̂L(x,ω in), can be obtained by any
suitable technique, for instance by the random walk
path-tracing technique. Thus

L̂o(i) =
G(o,x)Vi(x)ρ(ω in

,x,x → o) ̂L(x,ω in)cos(Nx,ω in)

po
i (x)p(ω in;x,x → o)

(5)

With importance sampling we select probabilities

po
i (x) ∝ G(o,x)Vi(x)

and

p(ω in;x,x → o) ∝ ρ(ω in,x,x → o)cos(Nx,ω in)

Inthis case the estimator becomes:

L̂o(i) = a(x,x → o)Ωi
̂L(x,ω in) (6)

where Ωi (solid angle subtended by pixel i) and a(x,x→
o) (albedo) are the probabilities normalization constants.
Estimator (5) is the unbiased native estimator for a
pixel, that is, the one obtained by sending rays from
the observer through the pixel.

2 Self emission can be easily dealt with separately.

3.2 Estimating the radiance from a differ-
ent eye

Consider now a different observer o′ (see Fig.1b). This
observer will see x through a different pixel, j. We can
obtain a (biased) estimator for Lo′(j) reusing the value
obtained for the radiance at x with estimator ̂L(x,ω in)
(this comes to reusing the path from x supposing the
estimator is a random walk, see Fig. 1b). The estimator
for pixel j from eye o′ obtained with a ray started from
eye o is given by the following expression:

̂Lo′ ,i(j) =
G(o′,x)Vj(x)ρ(ω in

,x,x → o′) ̂L(x,ω in)cos(Nx,ω in)

po
i (x)p(ω in;x,x → o)

(7)

Note that the probabilities used in the denominator are
the native probabilities used to find point x from eye o
through pixel i, but they should be normalized with re-
spect to pixel j as seen from eye o′. We have then to
normalize po

i (x) with respect to the new eye. Let us
drop the assumption that probability po

i (x) depends on
pixel i as seen from o and through which the ray was
generated (this is an approximation, considering pixels
on a spherical screen). The corresponding normaliza-
tion condition should be fulfilled

∫

S
po(x)V j(x)dx = 1 (8)

where V j(x) = 1 if point x is visible from o′ trough pixel
j and 0 otherwise. Suppose now that we distribute eye
rays from o with probability proportional to G(o,x). To
obtain probabilities po(x) we have to find the normal-
ization constant given by the integral:

I =
∫

S
G(o,x)V j(x)dx (9)

Integral (9) can be interpreted as the solid angle from
o that sees the portion of the scene seen from the solid
angle subtended by pixel j from eye o′ (Ω j), see fig.

Journal of WSCG 99 ISBN 1213-6972 ISBN 80-86943-09-7

O’

O

I

x
jΩ

∆S

Figure 2: Here is shown in a graphical way the interpre-
tation of equation (9). Ω j is the solid angle subtended
by pixel j, and I is the solid angle through which eye o
sees what eye o′ can see through Ω j.

2. Observe that when o = o′ integral (9) is equal to
Ω j. Integral (9) is not known and computing it (using
Monte Carlo integration) would require sending a lot of
rays from o and comparing the visible or unoccluded hit
points from o′ to the total unoccluded+occluded. Lack-
ing this information, we make the assumption that we
have no visibility problems. Thus, given hit x from
o obtained with probabilities proportional to G(o,x),
and taking into account that without occlusions ∆Ω j =
G(o′,x)∆S and ∆I = G(o,x)∆S, the normalization con-
stant (9) is approximated by

I ≈
Ω jG(o,x)
G(o′,x)

(10)

Expression (10) is used to normalize po
i and estimator

(7) (having dropped the dependence on the pixel i) thus
becomes

̂Lo′ (j) =
G(o′ ,x)ρ(ω in

,x,x→o′) ̂L(x,ω in)cos(Nx,ω in)
G(o′ ,x)

Ω jG(o,x) G(o,x)p(ω in;x,x→o)

=
Ω jρ(ω in

,x,x→o′) ̂L(x,ω in)cos(Nx,ω in)
p(ω in;x,x→o)

(11)

and for a diffuse hit point ρ (and thus neither p) de-
pends on the incoming eye ray, thus it becomes simply

̂Lo′(j) = Ω jL̂(x) (12)

where L̂(x) is the estimated radiance from hit point x.

3.3 Combining paths
In [9] an unweighted combination of estimators of kind
(5) and (7) was done, resulting in a biased estimator.
We present now a strategy that gives an unbiased esti-
mator. For each pixel and frame, we keep accumulated

radiance value and native ray estimators (among many
other data useful for our computation, see 4.3) gen-
erated with probability po

i (x)p(ω in;x,x → o)). When
hits from neighbour frames can be reused for this pixel
(suppose estimator ̂Lo, j(i), generated with probability
po j

j (x j)p(ω in, j;x j ,x j
→ o j)), we combine them using

multiple importance sampling with the native estima-
tor. This gives the new unbiased estimator:

L̂o(i) = ∑
j

po j

j (x j)p(ω in, j;x j,x j
→ o j) ̂Lo, j(i)

∑k pok
k (x j)p(ω in, j;x j,x j → ok)

(13)

We show now how this estimator is applied.
For the sake of simplicity, and without loss of gener-

ality, consider only two observers O1 and O2
3. In this

case estimator (13) becomes estimator (14) for observer
O1, using the approximation (12) for the estimator and
also (9) for the normalization constant in the weights.
We have taken the approximation that all pixels subtend
the same solid angle. Remember also that the visibility
boolean function is included in the G function. Con-
sider first the particular case for diffuse hit pixels.

L(O1) = G(O1,x1)

G(O1,x1)+G(O2,x1)
G(O1,x1)
G(O2,x1)

L(x1)

+
G(O2,x2)

G(O1,x2)
G(O2,x2)
G(O1 ,x2)

+G(O2,x2)
L(x2)

= 1
2 L(x1)+ 1

2 L(x2)

(14)

Thus approximation (10) for the normalization con-
stant leads to the simple unweighted estimator when we
deal only with diffuse hits, and this is why Havran et al.
solution [9] works well for diffuse surfaces.

For the non-diffuse general case, using again approx-
imation (10) allows us to eliminate all G terms, and us-
ing estimator form (11) we obtain

L(O1) =
ρ(ω in,1;x1,x1→O1)L(x1,ω in,1)cos(Nx1 ,ω in,1)

p(ω in,1;x1,x1→O1)+p(ω in,1;x1,x1→O2)

+
ρ(ω in,2;x2,x2→O1)L(x2,ω in,2)cos(Nx2 ,ω in,2)

p(ω in,2;x2,x2→O1)+p(ω in,2;x2,x2→O2)

(15)

where L(x1,ω in,1) and L(x2,ω in,2) are the incoming ra-
diances to x1 from direction ω in,1 and to x2 from direc-
tion ω in,2.

4 IMPLEMENTATION
4.1 Algorithm
Once we hit a point in the scene from the eye, we can
reuse this information for all the other frames in our
camera animation, but only if the point is visible from
the other eyes. For this reason and also because of
memory restrictions, we are only interested in reusing

3 For a clearer explanation we also drop here the albedo and solid angle
Ω

Journal of WSCG 100 ISBN 1213-6972 ISBN 80-86943-09-7

for i = firstFrame to lastFrame do
currentEye = getEye(i)
for all pixel in images[i] do

hit=traceRay(currentEye, pixel)
for j = firstFrame to lastFrame do

reuseHitinImage(hit,images[j])
Algorithm 1: The algorithm for the hit harvest phase,
considering only the group of neighbouring frames.

the hit with the closest neighbouring frames, as the
probability of being visible is much higher.

We will consider two phases in the computation of
our animation frames. The first one is the hit harvest
(see algorithm 1), where we find the native hit points,
compute the rest of the gathering path, connect every
hit point with the other eyes to see if they can be reused,
and finally, if it is the case, we add a pointer to it in the
list of outer hits of the corresponding pixel. Meanwhile,
additional probabilities and reflectances needed for the
computation are kept in memory. The second phase is
the image computation itself, in which we use all the
stored information, including the native and outer hits
for every pixel to compute the final pixel color.

As a few seconds animation involves hundreds of
frames, it is not feasible to keep all them in memory
at the same time. We have two possible strategies.
The first one is to reuse a hit in the n previous and
subsequent frames keeping in memory all information
needed for the final computation, that will be done once
we know we are not reusing more hits for that frame,
that is, the (actual − n)th frame. But as we can see
in equations (15) and (13), for every hit that will be
used in a pixel computation, we need to use all proba-
bilities in combination with all the eyes that have been
used in the other hits for that pixel. This means keeping
in memory also information for frames previous to the
(actual − n)th, or recompute these probabilities every
time we need them. This is a waste of time or a waste
of memory.

The second strategy consists in considering a group
of 2n + 1 neighbour frames and reuse every native hit
in all the other frames in the group, no matter if it is the
first one, the last one or the one in the middle. When
we are done for the group, instead of moving to the next
2n+1 frames, we can move just one frame, overlapping
2n frames, but without deleting the previous results for
the frames that are still active. This previous results
can be simply averaged with the new ones. This is the
strategy we follow.

4.2 Cost analysis
Now we analyze the relative cost of the animations with
and without reuse. Suppose we cast nr rays per pixel
and reuse n f frames at once. The cost of tracing an eye
ray is ce, the cost of computing the illumination at the

hit point in the scene is cl , and the cost of a visibility
test is cv. In the case of no reuse, the cost of comput-
ing n f frames is n f n′r(ce + cl). In the reusing case the
cost is n f nr(ce +cl)+n f (n f −1)nrcv, where the second
term in the sum accounts for reusing all rays. In the op-
timal case a ray through a pixel would be equivalent to
a native ray, and we compare thus the cost of two an-
imations with equal number of rays per pixel, that is,
n′r ' n f nr. The relative cost for this case is:

n f n f nr(ce + cl))

n f nr(ce + cl)+n f (n f −1)nrcv
=

n f nr(ce + cl)

nr(ce + cl)+(n f −1)nrcv
=

n f (ce + cl)

(ce + cl)+(n f −1)cv
(16)

This last expression has the limiting value (ce+cl)
cv

when n f tends to infinite. Supposing cl � ce, limit ef-
ficiency will be cl

cv
.

Observe that the above limit efficiency is an upper
bound, as on the one hand not all rays will be able to be
reused, and on the other hand the variance associated
with a reusing frames estimator is higher than with an
independent one, because in the independent estimator
we have the benefit of importance sampling.

A second, and very important, independent increase
in efficiency comes from the reduction in flickering
from frame to frame. This reduction is due to that reuse
of paths for different frames correlates the computa-
tions for all them. And in the way we have constructed
our algorithm there is no flickering shown when pass-
ing from a group of reused frames to the following one,
as we interleave them.

4.3 Memory use
We need a huge amount of memory to keep track of
all our computation. We have to keep not only all the
images for the current group being computed (includ-
ing native reflectances and hits), but also the lists of
outer hits for every pixel and all possible combinations
of probabilities and reflectances per pixel and frame.

Same as before, suppose we use nh hits per pixel and
reuse n f frames at once. Images are made of w × h
pixels, so we have a total number of pixels npix = w×

h×n f .
For every pixel we keep the final color and the num-

ber of samples to add and average every result. We
also need the list of outer hits for every pixel. The to-
tal nodes of outer hits are nnod = nh × npix × (n f − 1)
and are distributed in lists among all the pixels. Ev-
ery node contains four integers: the image number, the
pixel (w and h) and the number of sample, thus it can
point towards the data we need to reuse from another
image. For every native hit in a pixel we have to keep

Journal of WSCG 101 ISBN 1213-6972 ISBN 80-86943-09-7

the native direct and indirect gathered radiance, cosinus
weighted, and a n f -vector containing all probabilities
and reflectances if we combined the hit with the rest of
eyes.

Just to see the numbers in a concrete example, if we
are using 2 samples for every one of the 800×600 pix-
els and reusing groups of 7 images, we get 3360000
pixels (800× 600× 7), each containing a final color
(3 floats), the number of samples (one integer) and a
pointer to the list of nodes. We have 40320000 nodes
(2×800×600×7×6), four integers and a pointer each.
We also have the 6720000 native radiances to reuse
(direct and indirect, 3 floats each) and 47040000 (2×
800× 600× 72) probabilities (1 float) and reflectances
(3 floats). If we assume each float, integer and pointer is
4 bytes, we need a total memory of 1787520000 bytes
for this structure. That’s almost all the memory of our
2Gb pentium 4.

5 RESULTS
We have applied the proposed algorithm to an anima-
tion computed using path tracing. The frame resolu-
tion is 800× 600 pixels. We rendered 48 frames, for
a 2 seconds animation4. For every pixel, we used 2
samples and reused them in groups of seven neighbour
frames. As these groups are overlapped, we get a maxi-
mum average in number of samples of 98 (2×72). The
actual average is less than that (between 85 and 90) be-
cause some reuses are lost (they can lie out of frame
or be hidden by other objects) and it mainly depends
on distances between different neighbour eyes, i.e. the
smoothness of the camera movement. If camera move-
ment is not smooth or the number of neighbour frames
to reuse is too high this ratio decreases, and noticeable
differences of noise between different parts of the same
image might appear. In our example, as our camera
movement corresponds to a zooming of a glossy phong
brdf vase, the pixels in the center of the images get more
samples than those lying near the borders. This can
be interpreted as an advantage, as perception focuses
in the center of the image when zooming, some kind
of perception driven sampling is performed. The first
frames and the last ones present more noise because
they cannot be overlapped with previous (in the case of
the first ones) or subsequent (for the last ones) groups of
frames. Computing time was approximately 40 hours,
for a PentiumIV with 2 Gigabytes of memory. That
is 50 minutes per frame. A single path tracing image
without reuse and with 98 samples per pixel takes more
than 5 hours to compute. It is more than 6 times faster,
and it can be even faster if we reuse more frames. If
we compare this animation with the one computed with
Havran et al. method [9], we can appreciate almost no

4 Animations can be found in
http://ima.udg.es/˜amendez/TIC2001/gal_hitreuse.html.

differences. This is because we have reused very few
frames and they are very close to each other.

We have computed a second animation with a higher
number of reusing frames to prove more clearly the dif-
ferences between the methods. In this case one hit is
reused in 17 frames. We used 2 samples per hit, so we
get a maximum average in number of samples of 578
(2×172). The actual average is about 500 due to loss of
reuses. Due to memory restrictions, resolution is now
reduced to 320×240 pixels. Computation time is about
16 hours. This is 20 minutes per frame, almost 8 times
faster than the computation time of a single path tracing
image with 500 samples per pixel (155 minutes). If we
look at Havran et al. version of the same animation we
clearly appreciate more noise in the vase in the form of
glittering.

In Fig. 3 we show the same frame (the middle frame
in our second animation) obtained with three differ-
ent computations. In the first one (image a) an image
with no reuse has been computed using 500 samples per
pixel. It takes more than two and a half hours to com-
pute. Image b) shows biased Havran et al. [9] version
for reuse of frames. Time computation results in about
18 minutes per frame. Image c) is the result of our un-
biased version. It takes 20 minutes to compute, a little
more time than b), but we need much more memory.
Both images b) and c) present more noise than image a)
near the border due to loss of reuses. Image b) presents
more noise than image c) in the vase and other glossy
objects. Diffuse objects look the same in images b) and
c).

In Fig. 4, details for the vase are shown. First image
a) is computed with no reuse and 15 samples per pixel.
Image b) is biased and computed with the Havran et al.
[9] version and image c) is computed with our unbiased
method. Both are computed with 2 samples per pixel
and reuse of three fairly separated frames, i. e., a maxi-
mum average in number of samples of 18 (2×32). We
clearly see much more noise in image b).

6 CONCLUSIONS AND FUTURE WORK
We have presented in this paper an efficient unbiased
method to combine frames in camera animation. It con-
sists in reusing the incoming radiance information of
a hit point for the neighbouring frames of the anima-
tion. The different probabilities are taken into account
and multiple importance sampling technique is used to
correctly combine the different samples. Our method
makes the difference when using non-diffuse materials,
because the diffuse ones distribute reflected rays with
equal probabilities in all directions, and when the sep-
aration between reusing frames increases. In diffuse
cases or when reusing frames are very close, other bi-
ased methods can work fine. The main drawback of our
method is the large amount of memory needed for the
computation.

Journal of WSCG 102 ISBN 1213-6972 ISBN 80-86943-09-7

The new method has been demonstrated with an ani-
mation of a camera in a scene that contains a vase with
a glossy brdf, computing the global illumination using
the path-tracing technique.

Future work will be addressed to increase the effi-
ciency of our approach using coherence in visibility
computation, by guessing on the one hand the visibil-
ity for one observer from the results for neighbour ob-
servers and on the other hand by using an acceleration
schema similar to [8]. We will also try to combine both
the benefits of this approach and the reuse of paths for
light source animation [18]. Combination with an adap-
tive sampling technique, i.e., using more native sam-
ples for those pixels that come with not enough outer
hit samples, because they are occluded by other objects
or because they lie near the bounder of the image.

ACKNOWLEDGEMENTS
This project has been funded in part with Gametools
project from the European VIth Framework, with grant
number TIN2004-07451-C03-01from the Spanish Gov-
ernment and with Hungarian-Spanish Joint Action num-
ber HH2004-0011.

REFERENCES
[1] Philippe Bekaert. Hierarchical and Stochastic Algorithms for

Radiosity. PhD thesis, Department of Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, 1999.

[2] Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating
path tracing by re-using paths. In Rendering Techniques 2002
(Proceedings of the Thirteenth Eurographics Workshop on Ren-
dering), pages 125–134, June 2002.

[3] Gonzalo Besuievsky. A Monte Carlo Approach for Animated
Radiosity Environments. PhD thesis, Universitat Politecnica de
Catalunya, Barcelona, Spain, 2001.

[4] Robert L. Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed Ray Tracing. In Computer Graphics (ACM SIGGRAPH
’84 Proceedings), volume 18, pages 137–145, July 1984.

[5] Philip Dutre, Philippe Bekaert, and Kavita Bala. Advanced
Global Illumination. AK Peters Limited, 2003.

[6] John Halton. Sequential monte carlo techniques for the solution
of linear systems. Journal of Scientific Computing, 9(2):213–
257, 1994.

[7] J. Hammersley and D. Handscomb. Monte Carlo Methods.
Chapman and Hall, London, 1979.

[8] Vlastimil Havran, Jiri Bittner, and Hans-Peter Seidel. Exploit-
ing temporal coherence in ray casted walkthroughs. In Pro-
ceedings of the Spring Conference on Computer Graphics 2003
(SCCG 2003), April 2003.

[9] Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and
Hans-Peter Seidel. An efficient spatio-temporal architecture for
animation rendering. In Proceedings of Eurographics Sympo-
sium on Rendering 2003, pages 106–117. ACM SIGGRAPH,
June 2003.

[10] Henrik Wann Jensen. Global Illumination Using Photon Maps.
In Rendering Techniques ’96 (Proceedings of the Seventh Eu-
rographics Workshop on Rendering), pages 21–30. Springer-
Verlag/Wien, 1996.

[11] James T. Kajiya. The Rendering Equation. Computer Graphics
(ACM SIGGRAPH ’86 Proceedings), 20(4):143–150, August
1986.

[12] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods. John
Wiley & Sons, 1986.

[13] Eric P. Lafortune and Yves D. Willems. Bi-directional Path
Tracing. In H. P. Santo, editor, Proceedings of Third Interna-
tional Conference on Computational Graphics and Visualiza-
tion Techniques (Compugraphics ’93), pages 145–153, Alvor,
Portugal, December 1993.

[14] Àlex Méndez-Feliu and Mateu Sbert. Combining light anima-
tion with obscurances for glossy environments. Computer Ani-
mation and Virtual Worlds, 15(3-4):463–470, july 2004.

[15] R.Y. Rubinstein. Simulation and the Monte Carlo Method. Wi-
ley Series in Probabilities and Mathematical Statistics, 1981.

[16] Mateu Sbert, Philippe Bekaert, and John Halton. Reusing paths
in radiosity and global illumination. Monte Carlo Methods and
Applications, 10(3-4):575–586, 2004.

[17] Mateu Sbert, Francesc Castro, and John Halton. Reuse of paths
in light source animation. In Proceedings of Computer Graph-
ics International 2004 (CGI ’04), pages 532–535. IEEE Com-
puter Society, June 2004.

[18] Mateu Sbert, Laszlo Szecsi, and Laszlo Szirmay-Kalos. Real-
time light animation. Computer Graphics Forum (Eurographics
2004 Proceedings), 23(3):291–299, September 2004.

[19] László Szirmay-Kalos, Mateu Sbert, Roel Martínez, and
Robert F. Tobler. Incoming first-shot for non-diffuse
global illumination. In Spring Conference on Computer
Graphics, Budmerice, Slovakia, 2000. Available from
http://www.fsz.bme.hu/˜szirmay/puba.htm.

[20] Eric Veach. Robust Monte Carlo Methods for
Light Transport Simulation. PhD thesis, Stan-
ford University, December 1997. Available from
http://graphics.stanford.edu/papers/veach_thesis.

[21] Eric Veach and Leonidas J. Guibas. Optimally Combining Sam-
pling Techniques for Monte Carlo Rendering. In Computer
Graphics Proceedings, Annual Conference Series, 1995 (ACM
SIGGRAPH ’95 Proceedings), pages 419–428, 1995.

[22] Eric Veach and Leonidas J. Guibas. Metropolis light trans-
port. In Computer Graphics (ACM SIGGRAPH ’97 Proceed-
ings), volume 31, pages 65–76, 1997.

Journal of WSCG 103 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b) (c)
Figure 3: Here we show the same frame (the middle frame in our animation) obtained with three different com-
putations. In the first one (image a) an image with no reuse has been computed. It takes more than 2,5 hours
to be computed. Image b) shows Havran et al. [9] version for reuse of frames and takes 18 minutes to compute.
Image c) is the result of our unbiased version and takes 20 minutes. The unbiased c) version uses much more
memory. Images b) and c) presents noise near the border due to loss of reuses, and image b) presents noise in
glossy objects due to biased computation.

(a) (b) (c)
Figure 4: The differences between the methods are clearly appreciated for non-diffuse materials when we reduce
the computation time (noise is higher, consequently) and the separation between frames increases. Here we
see the details of the vase for the 800× 600 image when reusing only 3 frames fairly separated. First image
a) is computed with no reuse. Image b) is biased and computed with Havran et al. [9] version and image c) is
computed with our unbiased method. We clearly see much more noise in image b).

Journal of WSCG 104 ISBN 1213-6972 ISBN 80-86943-09-7

Similarity Brushing for Exploring Multidimensional
Relations

Matej Novotný
Comenius University Bratislava

mnovotny@fmph.uniba.sk

Helwig Hauser
VRVis Research Center, Vienna

hauser@vrvis.at

ABSTRACT

Displaying multidimensional information has always been a challenge. Projecting multiple dimensions into a two dimensional
display is one of the core tasks of information visualization. The human visual system is limited to a low number of dimensions
and therefore the human-oriented projection does not easily combine the whole information contained in the original space.
This paper introduces a new interaction tool, that implants the n-dimensional information into a low dimensional view and
bridges the projection space with the original space in an intuitive and simple way. In one direction the tool performs n-
dimensional data-driven brushing based on screen space interaction. In the opposite direction it allows for interactive visual
exploration of the original multidimensional space in an infovis display. The implementation is presented using a standard
scatterplot but it can be extended to many other infovis techniques as the concept does not depend on the screen space configu-
ration.
Keywords: Information visualization, brushing, selection, multiple dimensions, interaction, scatterplot.

1 INTRODUCTION
analysis of multidimensional information is a widely
spread and important task. Many domains generate and
handle data of multiple attributes e.g. physical simu-
lations, biochemical data or stock market information.
The raw data themselves contain a lot of knowledge
but almost none of it reveals without analysis. Many
techniques were developed to support the knowledge
discovery and two basic directions of research can be
observed. One of them exploits the processing power
of computers to work out the knowledge in an auto-
matic way using statistical or data mining methods. The
drawbacks of the automatic methods are usually lack of
semantics or non-linear logic. Therefore the second ap-
proach takes advantage of abstract thinking and domain
knowledge of human and often uses visualization-based
interfaces to analyze the data. Both human and com-
puter have their own qualities that predetermine them
each for specific (and usually different) tasks.

In data analysis domain these two powerful proces-
sors are now being used in conjunction and the resulting
techniques try to take the best of both worlds to com-
plete their tasks. The power, storage and precise com-
putations of a machine are being combined with the in-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1: A complex n-dimensional segmentation per-
formed in a simple scatterplot. These overlapping and fuzzy
segments would require arduous effort to select if only stan-
dard brushing was applied. Please refer to [23] for full color
figures.

tuition, experience-based judgment and common or do-
main knowledge.

One of the advantages of computers over humans is
the ability to handle high-dimensional information. To
compensate for this, the broadest information channel
(the human visual system) is popularly used to com-
municate between computers and humans. Numerous
visualization systems operate these days to support this
type of information exchange. But when exploring mul-
tidimensional information through the means of com-
puter visualization, one usually faces the problem of
the low dimensional graphical interface between the hu-

Journal of WSCG 105 ISBN 1213-6972 ISBN 80-86943-09-7

man and the computer [20] Our solution presents a way
to combine user-driven analysis with the power of au-
tomatic processing in order to effectively observe, ex-
plore and analyze multidimensional information in any
common visualization technique (Figure 1).

1.1 Multidimensional visualization
Numerous solutions for visualization of multivariate
data exist but, no matter how precise they are, eventu-
ally they bring up the question of how much does a low
dimensional projection correspond to its original mul-
tidimensional source. The link between the 2D display
and the original nD data leads through the projection.
The action (be it either a selection or an observation)
performed in the display extrapolates to the data space
in order to match the original multidimensional context.
Even though the re-projection extends the 2D action
into nD, its nature remains two-dimensional. Another
2d action (usually using a different view) has to be pre-
sented to refine the action and such a refinement often
has to be performed several times to satisfyingly ap-
proximate the desired nD action through a combination
of multiple 2D actions [22], [2].

The tool presented in this paper, called the similarity
brush, combines automatic and human-based process-
ing in a way that overcomes the dimensionality bottle-
neck of a computer display. This is feasible using the
presumption that the samples similar one to another are
often parts of the same structure regardless of their di-
mensionality. This enables to bridge the screen space
and the data space through similarity information that
captures the nD structures inside the data. Thus high-
dimensional relations can be explored by user in a sin-
gle 2D display and the interaction with the 2D display
connects directly to the original data space where auto-
matic techniques take place. The similarity brush pro-
vides a new means to focus user attention and to steer
the exploratory process inside a multidimensional envi-
ronment.

The fact that various similarity measures used to ab-
stract multidimensional information have been heavily
investigated in the data mining society [15], [16] cre-
ates a reliable theoretical background for abstracting
the nD information and makes the presented concept
a promising framework for visual exploration of multi-
dimensional data.

The tool and the idea behind it are further explained
in Sections 3 and 4. Examples of using the similarity
brush together with comments on them can be found in
Section 5. The related work is addressed in Section 2.

2 RELATED WORK
The need for an accurate display of multivariate data
is one of the most motivating stimuli for information
visualization. The techniques that visualize multivari-
ate information are basically twofold. Either they re-

duce the number of dimensions (by dimension sub-
setting or dimension reduction) so that intuitive visu-
alization methods can be used or they display all di-
mensions using various sophisticated designs [9] (di-
mensional stacking, dimension embedding or axis re-
configuration.) Dimension reduction techniques such
as principal component analysis [10], self organizing
maps [11] or multidimensional scaling [13] produce a
low-dimensional representation of the data while trying
to preserve most of the multidimensional information.
In our approach this information is condensed in a func-
tion that describes similarity between two data entries.

The similarity brush uses this function to produce a
data-based selection that is derived from a user speci-
fied screen-based brush. The idea of data-driven brushes
was successfully implemented in the structure based
brushes [9] to perform selection in data space, but a hi-
erarchical structure for the data had to be provided be-
forehand. An attempt to perform data-driven brushing
was presented by Martin and Ward [14]. Their solution
operates only on the two-dimensional data subspace
identical to the screen space and the brush is eventually
ruined by being transformed to a combination of regular
one-dimensional value-based queries, which naturally
includes many undesired entries into the result.

Our approach protects the multidimensional nature
of a data-driven brush and works without any a priori
given hierarchy. Moreover it stores separate informa-
tion about the screen-based brush and the derived data-
driven brush to enable further refinement in both the
data space and the screen space. These two brushes are
combined using a framework described in Section 3.2.
The framework extends and formalizes various pre-
vious approaches to brush combination [5], [21] and
balances the combination of two different information
spaces.

2.1 Interaction
One way to deal with the limitations of an infovis dis-
play leads through changing the parameters of the vi-
sualization or performing user-driven operations on the
data. Manipulation with the display is a crucial part of
the visual exploration. Especially if the data are mul-
tivariate and the user has to change his focus, operate
with different views, refine his actions or adjust the dis-
play to fit his/hers needs. As described in [7], through a
realtime interaction with the display the user immerses
himself in the data and if the connection between his
actions and the reaction of the display is appropriate,
even complex structures can be perceived in a 2D dis-
play [12].

An important part in interactive exploration is defin-
ing the area of interest. This paper addresses this
problem by combining nD brushes and 2D interaction,
which allows to perform multidimensional selection

Journal of WSCG 106 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 2: The basics of similarity brushing – primary selection inside the remote sensing data set is conducted on screen
as a combination of different local brushes (marked yellow.) The data-driven selection (marked red) is derived from it by
decreasing the similarity threshold.

operation using only standard interaction metaphors
like brushing or dynamic queries [1], [24].

In a wide area of data analysis tasks the area of in-
terest is not known beforehand and the exploratory pro-
cess involves looking for interesting structures or pat-
terns in the data. The hereby presented approach takes
advantage of another well-known metaphor – the Magic
Lens [4] – and uses it to integrate information of nD na-
ture into the screen space. The examples demonstrating
the advantages of these new interaction options can be
found in Section 5.

2.2 Scatterplot
We chose Scatterplot to illustrate the benefits of the
similarity brush, as it is a popular and very powerful
visualization technique. Scatterplot [3] is plainly an or-
thographic projection of n-dimensional data space into
a two-dimensional subspace determined by particular
two of the original dimensions. The greatest advan-
tage of the scatterplot lies in the ability to show two-
dimensional relations in an instant thanks to the projec-
tion that preserves the basic spatial relations. The draw-
back of the simplicity of the scatterplot are the limita-
tions of the displayed dimensions. Structures exceeding
the two specified dimensions or those that are overplot-
ted might get lost in the scatterplot. A different view
is usually necessary to improve the visualization. The
similarity brush overcomes this limitation and provides
valuable information from "behind the scenes". With
the help of the similarity brush many new structures that
could not be seen before are revealed, mainly those of
higher dimensionality or with unsharp and overlapping
borders.

3 SIMILARITY BRUSHING
In this section we describe our new approach to jointly
operate in visualization space as well as also in data
space when interacting with the data, e.g., while select-
ing data subsets of special interest or during interactive
data exploration. Below, we first describe the basic idea
of Similarity Brushing before we go into details.

3.1 Similarity Brushing – The Basic Idea
For similarity brushing we consider a visualization sce-
nario in which an n-dimensional dataset D (with n
usually being around 5 to 50) is visualized in an m-
dimensional visualization space V (with m < n and m
usually being 2 or 3), i.e., a scenario in which the visu-
alization transform p : D → V introduces a loss of di-
mensionality. As well known also from a lot of related
work, it is difficult (or sometimes even impossible) to
properly represent the n-dimensional relations between
the data items of D in the m-dimensional visualization.
Through p, it is usually well possible that data items,
which are far apart from each other in the n-space, lie
near to each other in the mD visualization. Accordingly,
it easily can happen that data substructures (like data
clusters), which clearly are delimited in n-space, show
up intermingled in the visualization and therefore can-
not be visually differentiated apart from each other.

Similarity brushing now enables the user to jointly
address structures in the visualization, i.e., data struc-
tures which are preserved by transform p, as well as
also structures, which only show up in the original nD
data space. The basic idea of similarity brushing is as
follows:

Working in visualization space: First, the user inter-
actively marks a certain structure in the visualization
(like in standard brushing) to select some data items
for further investigation. The prime example here is
that the user marks the core of a data structure of
interest in the visualization. This can be one data
point only, an entire subset of the data, or even a
larger part of the visualized data items.

Working in data space: Next, the user extends this
first brush to also include further data items which
are similar to the already selected data items. The
important thing here is that now a distance metric for
the nD data space is used (instead of measuring dis-
tances in visualization space). Thereby, only those
data items are added to the original brush which
also are near to the previously selected ones in the
n-space. To continue our prime example, the user

Journal of WSCG 107 ISBN 1213-6972 ISBN 80-86943-09-7

would thus extend his/her first (quite conservative)
selection to also include all other data items of the
spotted data structure (but without touching all those
data items which only seem to be part of the struc-
ture, but not really are – at least in terms of distances
in n-space). An example is depicted in Figure 3.

The advantage of similarity brushing is that we can ex-
ploit the advantages of the visualization as well as of a
data-centered approach (such as data mining): (1) The
mD data visualization usually provides the user with a
very intuitive interface to the data – the user literally
sees the data in front of him/her. The human visual
system is very powerful in detecting interesting struc-
tures/subsets in such a visualization. Accordingly, it
is very useful to allow the visualization-based selec-
tion of data items (as long used under the term brush-
ing). (2) Our approach to extend (not substitute) this
interaction also to data space allows to overcome situa-
tions where disadvantages of the visualization become
apparent such as the loss of dimensionality that leads to
ambiguities in the visualization.

We see several key applications of this concept of
similarity brushing to ease the interactive visual anal-
ysis of n-dimensional data as described below:

nD substructure brushing: The most straight-forward
application of similarity brushing, as already ad-
dressed in the example above, is the interactive se-
lection of nD data substructures, which are nicely
delimited in n-space (but not in m-space, i.e., in
the visualization space). As described above, the
procedure is to (1) select a visually well-separated
core subset of the structure under investigation and
then (2) extend this brush to also include the other
(visually not so well-delimited) data items of the re-
spective data substructure. The result of such an ac-
tion can be seen in Figure 3.

(n− k)D subspace brushing: The substructure brush-
ing described before does not necessarily have to
consider the full dimensionality of the data set. Of-
ten there are features that reside inside a certain
(n− k)D subspace of the original data domain but
are lost if the whole set of dimensions is considered.
The similarity brush allows for user-driven selection
of dimensions to use to evaluate the similarity.

Interactive nD exploration: Another very useful ap-
plication of similarity brushing is the interactive vi-
sual analysis of high-dimensional properties of the
nD data. This can be achieved by interactively mov-
ing the visualization-based mD brush over the visu-
alization and at the same time watching what data
items get selected through the brush extension based
on the nD distance metric. Examples of the applica-
tion used to discover hidden relations are presented
in Figure 4.

Figure 3: An nD similarity-based selection in the geochemi-
cal data [8] renders as sparse and scattered in 2D. It is even
overlapped by different unselected items. Obviously it would
be very hard and too laborious to select this structure using
only conventional brushing.

Iterative brush refinement: The fourth interesting ap-
plication of similarity brushing is the option for it-
erative brush refinements. In this application, the
two-step process of similarity brushing are extended
to form a process of alternately working in visual-
ization and data space. For example, a brush can
be started in visualization space as described above,
then the brush can be extended to nD (again as
above). But instead of stopping here, the user could
go back to visualization space, e.g., alter the visu-
alization setup by choosing a different visualization
mapping p first and then again restrict the brush to
only contain a subset of the currently selected data
items (an AND operation with a second brush, for
example).

Below, we now present a formal framework of how to
integrate the selections in visualization space and those
in data space.

3.2 Similarity Brushing – A Unified
Framework

First we recall that we assume an nD data space D and
an mD visualization space V , as well as a visualization
transform p : D → V . In the following, we will now
consider the two parts of similarity brushing, i.e., the
visualization-based brushing as well as the data space
based consideration of distances between data items.

For mD brushing (part 1), we assume that brush-
ing interactions result in the assignment of a so-called
degree-of-interest (DOI) function bV to all the data
items – bV (di) is 1 if data item di is brushed, i.e., se-
lected, and 0 if not. Often, bV will be such a function
to either map to 1 or 0, but nothing else (either a data
item is brushed, or not). However, in many applica-
tions, it also makes sense to allow bV to map to the en-

Journal of WSCG 108 ISBN 1213-6972 ISBN 80-86943-09-7

tire interval [0,1] – called smooth brushing in the work
of Doleisch et al. [6]. Even though we will in the mean-
time assume the bV is either 0 or 1, we will further be-
low demonstrate that all the here presented framework
also works fine with a smooth brush bV .

For nD extensions to our mD brushes, we assume
to have a nD×nD metric < ., . >D∈ R+ available in
data space to compute distances between nD data items
(with < di,d j >D= 0 ⇔ di = d j). In a first approach,
we will consider the nD extension of an mD brush bV to
be defined as follows: all data items di, which not yet
are brushed by bV , i.e., with bV (di) = 0, are checked
whether there exists any other (brushed) data item d j,
i.e., with bV (d j) = 1, which is near enough, i.e., with
< di,d j >D < dmax. If such a near and brushed data
item d j can be found, then di is added to the brush.

In our unified framework, we formulate mD brushing
and nD extensions of mD brushes as follows. In addi-
tion to brush bV we assume a non-visual “brush” bD to
map nD distances to 1 (or 0), depending on whether the
distance yields an inclusion within the extended brush
(or not, respectively). We now integrate bV and bD to
yield a combined brush b for all data items d i, depend-
ing on whether they are part of the extended similarity
brush:

b(di) = 1−min
j

((1−bD(<di,d j >))+ (1−bV(d j)))

(1)
In other words, to evaluate whether a data item d i is
part of the extended similarity brush b, all data items
d j are checked (at least in principle; in practice it is
sufficient to check only those with bV (d j) > 0 – all the
others cannot generate a b > 0): If there is at least one
data item d j which (1) lies in the original brush, i.e.,
bV (d j) = 1, and which (2) is near enough to data item
di, i.e., bD(di,d j) = 1, then also b is 1. This, of course,
also holds if di itself lies in the original brush bV . There
are a number of nice properties of this integration to be
mentioned:
Boundedness of b – The ((1−bD(.))+ (1−bV(.)))-

argument of the min is bounded (for an arbitrary
j) between 0 and 2 (which potentially could lead to
negative bs). But for j = i, bD(<di,d j >)= bD(0)=
1. This yields that ((1−bD)+ (1−bV)) is bounded
between 0 & 1 for j = i. Accordingly, the entire
min-expression cannot become more than 1 which
consequently yields that 0 < b < 1.

Preservation of bV – With the same line of argumen-
tation as above we can show that b(di) ≥ bV (di),
i.e., for data items which already lie within the orig-
inal brush, the extended brush cannot exclude them
anymore.

Smooth brushing compliance – Equation (1) also holds
for smooth brushes, i.e., bV ∈ [0,1] and bD ∈ [0,1].
The ((1−bD)+ (1−bV))-expression can also be in-
terpreted as a sum of two distances, one measured

in visualization space (1−bV) and one measured in
data space (1− bD). If the sum is small enough,
then the resulting b can become greater than 0 which
means that the respective point is included within the
extended similarity brush b.

For the implementation, a number of optimizations can
be realized, of course, to speed up the calculation of
b. First, only those data items d j need to be checked
with a non-zero bV (this most oftenly is a comparably
small number). Second, data items d i, which are too
far away from brush bV after projection p, do not need
to be evaluated since they can never generate a b > 0.
Practice shows that only a relatively small number of
data items actually have to be checked to compute b.

4 SIMILARITY BRUSH WORKFLOW
The process of data exploration using the similarity
brush is user-driven and constructed in a way that the
user can take advantage of the automatic methods dur-
ing the whole process. In the first stage a primary se-
lection (depicted in yellow) is performed in the screen
space using usual brushes and their various combina-
tions (AND, OR, NOT). The secondary selection is a
data-driven brush derived from the primary selection
and is depicted in red. The last parameter is the sim-
ilarity threshold that, basically, determines the extent of
the selection.

The selection process can be iterated or refined to
support complex data exploration tasks. Let’s consider
real world data (Figure 2). These data contain many
outliers that for many reasons are usually considered an
undesired feature of the data. To remove the outliers,
we select several among them on screen and then ex-
tend this selection in the data space to include all the
outliers. This selection can than be refined in other di-
mensions to include more outliers or remove entries that
are of interest with respect to a different projection. Af-
ter that the outliers, which are now selected using the
similarity brush, can be removed and the data analysis
can continue.

4.1 Advanced Interaction
To support the visual exploration tasks such as segmen-
tation or classification a number of other functionali-
ties is present. Any performed selection can be stored
as a segment which excludes its entries from further
brushing and is marked by a different color. In addi-
tion, every segment can be broken apart which reverses
the segmentation process and returns its entries back
to the data domain. With the support for unsharp and
overlapping features provided by the similarity brush
this allows for efficient user-based data-driven classifi-
cation or segmentation of multidimensional data. (see
example)

Journal of WSCG 109 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 4: Major changes in the underlying structure discovered using the realtime exploration feature. The assumed indiffer-
ent region (first picture) in the bottom left of the scatterplot is evidently compiled of two separate structures (second and third
picture.) The fourth picture proves the smaller structure being identical with the class number seven.

5 EXAMPLES
In the following sections, several examples illustrate the
using of similarity brush to discover interesting multi-
dimensional behavior or to easily perform complicated
brushes. The data sets for these examples are the remote
sensing data [19] obtained from SPOT satellites [17]. It
contains 5 distinct channels (SPOT, magnetics, 3 bands
of radiometrics) combined for a particular region in
Western Australia. The second data set contains geo-
chemical data [8] of concentration of multiple elements
in a series of observed samples. The last one is one of
the Statlog datasets [18] and contains samples produced
by image processing together. It is a data set that is usu-
ally used for training automated techniques and thus it
also includes classification information (brickface, sky,
foliage etc.) We used this classification to partially eval-
uate relevance of our exploration.

5.1 Separate structures
Interesting topology can be discovered in a 2D dis-
play using the similarity brush. For example sudden
changes in the brushes generated by two areas imply
that these areas are separate structures in the original n-
dimensional space. This can be explored using the re-
altime exploration feature of the similarity brush. The
user moves the primary brush (often only a point se-
lection) over the display and observes the changes of
the secondary brush. An area in the image process-
ing data, that was previously considered homogeneous,
turned out to consist of two separate structures (Fig-
ure 4.) To illustrate the relevance of the data-driven
brush we compared this new information to the classi-
fication provided with the data set. The entries encom-
passed in the brush fully correspond to those segments
of the source images that depict grass.

5.2 Subspace relations
Unlike the previous example, the structures don’t only
have to be separate in the full dimensionality of the
original data domain. Two different three-way combi-
nations (SPOT, Magnetics, Uranium and SPOT, Tho-
rium, Uranium) of dimensions were used to create two

Figure 5: Two different subsets of dimensions were used to
compute similarity information. This resulted in two different
data-driven brushes (red) given the same primary selection
(yellow).

different similarity measures. Given the same screen-
based primary selection (samples with very high potas-
sium values) two data-driven selections were derived
from that (Figure 5) and we observe differences be-
tween them. The most significant difference is that a
change in the set of considered dimensions splits the
dense U-shaped cluster into two, revealing its two-fold
intrinsic nature. The left part (with low thorium val-
ues, evaluated using SPOT, Magnetics, Uranium) and
the right part (with high thorium values, evaluated us-
ing SPOT, Thorium, Uranium). The left part is much
more similar to the samples with high potassium values
with respect to the magnetics characteristics. Unlike
that, the right part is more similar to the high potassium
samples with respect to the concentration of thorium.

Using only usual visualization the cluster would prob-
ably be considered homogeneous. The real nature of the
cluster could be discovered using automatic data min-
ing, but without user interaction the analysis of such a
knowledge would require additional human-based ef-
fort.

5.3 Anomalies
The geochemical data contains an interesting entry that
was discovered using the similarity brush. When inves-
tigating the data set using the realtime similarity brush,
one entry was found to generate no secondary brush.
Even though this entry is not depicted as an outlier (in

Journal of WSCG 110 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 6: Complex, unsharp and overlapping segments are seldom feasible when conventional brushing techniques are
applied. With similarity brush the segmentation of the remote sensing data set took less than a minute and required only
simple interaction. Please refer to [23] for full color pictures.

any projection of the geochemical data) it is not simi-
lar to any of the remaining entries unless a very loose
threshold is chosen. It is a hot candidate for a multidi-
mensional outlier – a sample that lies within a reason-
able range of neighbors in every projection, but the sets
of the neighbors change over the dimensions (imagine
a point in the centre of a hollow sphere-shaped shell.)
This makes it isolated if the full dimensionality of the
space is taken into account.

5.4 Interactive segmentation
Automated techniques are often used to perform seg-
mentation tasks. But the automated techniques in many
ways benefit from the domain knowledge, intuition and
abstract thinking of the human user. In conjunction
with the similarity brush, the user has the ability to
incorporate his capabilities into the segmentation pro-
cess by specifying interactively the core of the seg-
ments and the difference tolerance level within a seg-
ment. This gives him a two-fold advantage over the
automated techniques. First, the user can specify com-
plex and sophisticated starting points for the segmenta-
tion process via creating the primary selection. Second,
the user can at any time refine his selections, backtrack
the steps and change the decisions he/she made. These
actions are rarely performed in an automatic segmenta-
tion process.

In addition, the similarity brush interleaves the se-
mantic identification process with the segmentation pro-
cess. If a computer performs data segmentation auto-
matically, it often produces segments without an actual
meaning and additional human-based processing has to
take place in order to identify the semantics of the seg-
ments. In interactive segmentation provided by similar-
ity brushing the segment starts as a specific core that is
user-specified and thus correspond to some real world
knowledge provided by the human.

The Figure 6 shows the results of user-based segmen-
tation on a dense multidimensional data set. The result-
ing segments are consistent and prove to be compact

in all views (only three are depicted here though.) The
segments have sparse boundaries and overlap in most
of the views, which is a common property among real
world multivariate data, and would be difficult to mark
out using only conventional screen-based brushes.

6 EXTENDING THE CONCEPT
The similarity information computed from all the di-
mensions of a data set offers hints about the nD nature
of the information. As a concept, this can be easily
incorporated into other popular displaying techniques,
such as the parallel coordinates or the histograms. Also
possible extensions of the concept could be used in sci-
entific or flow visualization.

The design allows for arbitrary similarity functions to
be used. Among the most popular ones are the spatial
distance measures (Euclid, Chebychev, Manhattan, Ma-
halanobis.) Another option is to use information gained
from e.g. fuzzy clustering or other automated data min-
ing techniques. Such techniques detect items of similar
properties in the set and group them together. The simi-
larity of two samples could thus be evaluated using this
information.

Another promising extension is to allow new samples
to "join" the screen-based brush if they are close enough
or follow other given criteria. This would allow for the
chaining effect known from data mining and structures
of even more complex shapes could be addressed.

7 CONCLUSION
The tool presented in this paper uses a combination of
visual and automatic data-mining to introduces a new
way to integrate n-dimensional information into a low
dimensional display. By interaction with the similar-
ity brush, the user gets to directly touch the multi-
dimensional structures in their original space instead
of having to only approximate this by numerous low-
dimensional actions. This interaction technique can be
used to enhance visual exploration of multidimensional

Journal of WSCG 111 ISBN 1213-6972 ISBN 80-86943-09-7

data. As shown by the examples, complex multidimen-
sional topology can be observed even in a simple scat-
terplot by using the similarity brush. With the use of
the similarity brush for visual exploration, extra infor-
mation can be provided that might help the user to steer
his precious attention in further visual exploration ac-
tions.

This intuitive tool does not encumber the user’s per-
ception by generating visual overload and can be suc-
cessfully used in many displays. We believe that the
similarity brush may well become a useful interaction
tool for exploring multidimensional data in many future
applications.

8 ACKNOWLEDGMENTS
The research is a part of the basic research on visualiza-
tion conducted in cooperation between the Comenius
University, Bratislava and the VRVis Research Center
in Vienna (http://www.vrvis.at). VRVis is funded by an
Austrian research program called Kplus. The project
is also partly funded by the Slovak government grant
VEGA 1/3083/06.
The authors would also like to thank Prof. Peter Filz-
moser from Vienna University of Technology for his
kind help with the data sets.

REFERENCES
[1] C. Ahlberg, C. Williamson, and B. Shneiderman.

Dynamic queries for information exploration: an
implementation and evaluation. In CHI ’92: Pro-
ceedings of the SIGCHI conference on Human
factors in computing systems, pages 619–626,
New York, NY, USA, 1992. ACM Press.

[2] M.Q.W. Baldonado, A. Woodruff, and A. Kuchin-
sky. Guidelines for using multiple views in infor-
mation visualization. In Proceedings of the work-
ing conference on Advanced visual interfaces,
pages 110–119. ACM Press, 2000.

[3] R.A. Becker and W.S. Cleveland. Brushing scat-
terplots. Technometrics, 29(2):127–142, 1987.

[4] E.A. Bier, M.C. Stone, K. Pier, W. Buxton, and
T.D. DeRose. Toolglass and magic lenses: the
see-through interface. In SIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages
73–80, New York, NY, USA, 1993. ACM Press.

[5] H. Chen. Compound brushing. In Proceedings of
the IEEE Symposium on Information Visualization
2003 (INFOVIS’03), 2003.

[6] H. Doleisch and H. Hauser. Smooth brushing for
focus+context visualization of simulation data in
3D. Journal of WSCG, 10(1):147–154, 2002.

[7] S. Eick and G. Wills. High Interaction Graphics.
1995.

[8] C.Reimann et al. Environmental Geochemical At-
las of the Central Barents Region. 1998.

[9] Y.H. Fua, M.O. Ward, and E.A. Runden-
steiner. Navigating hierarchies with structure-
based brushes. In INFOVIS, pages 58–64, 1999.

[10] I. T. Jolliffe. Principal Component Analysis. Se-
ries in Statistics. Springer-Verlag, 1986.

[11] T. Kohonen. Self organizing maps. Springer, New
York, 2000.

[12] R. Kosara, H. Hauser, and D. Gresh. An inter-
action view on information visualization, star. In
EUROGRAPHICS 2003, 2003.

[13] J. Kruskal and M. Wish. Multidimensional Scal-
ing. Sage Publications, 1978.

[14] A.R. Martin and M.O. Ward. High dimensional
brushing for interactive exploration of multivari-
ate data. In VIS ’95: Proceedings of the 6th con-
ference on Visualization ’95, page 271, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[15] L. Parsons, E. Haque, and H. Liu. Subspace
clustering for high dimensional data: a review.
SIGKDD Explor. Newsl., 6(1):90–105, 2004.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Near-
est neighbor queries. In SIGMOD ’95: Pro-
ceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 71–79,
New York, NY, USA, 1995. ACM Press.

[17] http://www.spot.com.

[18] http://www.liacc.up.pt/ml/statlog/datasets.html.

[19] http://davis.wpi.edu/˜xmdv/datasets.html.

[20] E.R. Tufte. Envisioning Information. Graphics
Press, 1990.

[21] M. O. Ward. Creating and manipulating n-
dimensional brushes. In Proceedings of Joint Sta-
tistical Meeting, pages 6–14, August.

[22] M.O. Ward. Xmdvtool: integrating multiple
methods for visualizing multivariate data. In VIS
’94: Proceedings of the conference on Visualiza-
tion ’94, pages 326–333, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[23] http://www.vrvis.at/via/research/simi-brush/.

[24] G. J. Wills. Selection: 524,288 ways to say "this
is interesting". In INFOVIS ’96: Proceedings of
the 1996 IEEE Symposium on Information Visual-
ization (INFOVIS ’96), page 54, Washington, DC,
USA, 1996. IEEE Computer Society.

Journal of WSCG 112 ISBN 1213-6972 ISBN 80-86943-09-7

3D Reconstruction and Visualization of Spiral Galaxies

Kristian Hildebrand Marcus Magnor Bernd Fröhlich

MPI Informatik Technical University of Braunschweig Bauhaus University Weimar

Stuhlsatzenhausweg 85 Muehlenpfordtstrasse 23 Bauhausstrasse 11

Saarbrücken, Germany Braunschweig, Germany Weimar, Germany

khildeb@mpi-inf.mpg.de magnor@mpi-inf.mpg.de bernd.froehlich@medien.uni-weimar.de

ABSTRACT

Spiral Galaxies are among the most stunning objects in the night sky. However, reconstructing a 3D volumetric
model of these astronomical objects from conventional 2D images is a hard problem, since we are restricted to
our terrestrial point of view. This work consists of two contributions. First, we employ a physically motivated,
GPU-based volume rendering algorithm which models the complex interplay of scattering and extinction of light
in interstellar space. Making use of general galactic shape information and far-infrared data, we secondly present
a new approach to recover 3D volumes of spiral galaxies from conventional 2D images. We achieve this by an
analysis-by-synthesis optimization using our rendering algorithm to minimize the difference between the rendition
of the reconstructed volume and the input galaxy image. The presented approach yields a plausible volumetric
structure of spiral galaxies which is suitable for creating 3D visualization, e.g., for planetarium shows or other
educational purposes.

Keywords
3D visualization, astronomical visualization, 3D reconstruction

1 Introduction
The night sky emanates a deep fascination. It has been
the target of contemplation and research efforts since
the earliest beginnings of human culture. The colorful,
attractive appearance of astronomical objects is awe-
inspiring. Besides their esthetical value, astrophysi-
cists are able to draw conclusions about the origin of
the cosmos from scientifically studying these objects.
Therefore, telescopes around the world and in space
record and collect data that is not only useful for physi-
cists but also stunning and beautiful to everybody on
earth.
By looking through an eye-piece of a telescope one
can see various objects in the night sky, e.g. plan-
ets, stars, all sorts of nebulae and galaxies. To get
an impression on how these objects look like from a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006, Jan-
uary 30-February 3, Plzen, Czech Republic.
Copyright UNION Agency–Science Press

different viewpoint than our terrestrial position one
has to visualize astronomical objects in their three-
dimensional shape and simulate the visual effects by
exploring physical properties of light in interstellar
material.
The increasing interest of 3D visualization in TV doc-
umentaries, science fiction movies, games and educa-
tion makes it desirable to find a realistic representa-
tion of astronomical objects. Todays animations are
often based on a more artistic then physically correct
representation of astronomical objects, even though it
is useful to give a more realistic impression of what
can be observed. Furthermore we can use our results
to provide additional information in telescope applica-
tions like recently published by Linţu et al. [LM05] to
increase the understanding of the observed data.
In this paper we present an approach on how to de-
termine the three-dimensional shape of spiral galaxies
from conventional 2D images, which is, in general, a
very challenging problem, due to our restricted point
of view.
However, our approach relies on several physical in-
formation about the object, like a general shape evolved
from its formation. Additionally we use different
band-filtered data from the objects observation to gain
more insights of the material it consists of. The ap-
pearance of spiral galaxies is significantly determined

Journal of WSCG 113 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

(c) (d)

Figure 1: M81 as photographed from the Spitzer Space
Telescope in the infrared light c©NASA/Spitzer [Tel].
(a) Galaxy M81 in visible light. (b), (c), (d) M81 at
three different infrared wavelengths (3.6, 8, and 24
µm, respectively).

by the amount of interstellar material within the galax-
ies, because clouds of dust have scattering and extinc-
tion properties at different visible-light wavelengths as
can be seen in Figure 4 from [BM98]. To be able to re-
construct a 3D volumetric model of spiral galaxies we
have to simulate these effects.
The paper is structured as follows. After a brief
overview of related work, we provide some fundamen-
tal background information about galaxies in Section
3 We describe our volumetric radiance model, which
is important for the reconstruction process in Section
4 and illustrate in detail how to recover the actual 3D
volumetric shape in Section 5 Our results are presented
in Section 7

2 Previous Work
Pioneering work in visualizing virtual space journeys
was done by Jim Blinn [Bli87] and his set of anima-
tions called ‘Voyager Fly-by Animations‘, ‘Cosmos‘
and ‘The Mechanical Universe‘ from the late 70ies and
early 80ies. Many spectacular, almost always artistic,
3D fly-throughs of astronomical objects can be seen in
planetariums. An exceptionally physically based work
is done by Nadeau et al. [NGN+01], [NE]. They em-
ployed massive computational power to create scien-
tifically justified views of the orion nebula. Their vi-

sualization relies on a 3D model of the Orion nebula
that was determined by astronomers from various ob-
servational data [ZO95]. Hanson et al. [HFW00] did a
lot of work on large scale visualization of astronomi-
cal data and more recently on exploring the physical
Universe as an enormous environment. They intro-
duce a so-called powers-of-ten visualization architec-
ture to provide scale-independent modeling and ren-
dering [FH05].
Magnor et al. [MKH04] recently reconstructed and
rendered 3D models of planetary nebulae. Former as-
trophysical research had shown that some planetary
nebulae have specific symmetry characteristics due to
physical processes of their formation. The basic idea
is to use astronomical image data and symmetric struc-
tural constraints of the nebulae to reconstruct the three-
dimensional volume by an analysis-by-synthesis ap-
proach. They introduced the term constraint inverse
volumetric rendering (CIVR) as a GPU-based opti-
mization procedure to reconstruct a volumetric model
for planetary nebulae. Magnor et al. [MHLH05] most
recently visualized physically correct reflection neb-
ulae by taking into account the astrophysical proper-
ties of dust in interstellar space. Reflection nebulae
are clouds of interstellar dust which are reflecting visi-
ble light of a nearby star or stars. That results in a very
colorful interplay between scattering and extinction ef-
fects and makes them one of the most colorful objects
in the night sky. The used volume rendering approach
employs the Henyey-Greenstein scattering phase func-
tion to create a lookup table for the amount of light
scattered in the observer’s direction [HG41], [Gor04],
[HG38]. The synthetic data sets mimic artificially gen-
erated reflection nebulae very realistically.
In this paper we rely on the proposed reconstruc-
tion and rendering technique ([MKH04], [MHLH05])
but employ different optimization constraints and an
adopted visualization model.
Fundamental basic knowledge and research about galac-
tic astronomy can be found in Binney et al. [BM98].
They provide a complete overview of colors, morphol-
ogy and photometry of galaxies, as well as the proper-
ties of interstellar material and its effect on observed
data.

3 Background
A galaxy is a system of stars, interstellar gas and dust,
dark matter in the center and possibly dark energy.
Galaxies usually contain 10 million to one trillion stars
orbiting a center of gravity. It consists of rarefied inter-
stellar material, star clusters, single stars and various
types of nebulae, such as emission-, dark-, planetary-
and reflection nebulae. The generic shape in Figure 3
can be divided into a center bulge embedding very old
stars, a circular disk of younger stars and a surround-

Journal of WSCG 114 ISBN 1213-6972 ISBN 80-86943-09-7

ing spherical halo [BM98].

3.1 Shape Classification

Astronomers classify galaxies based on their overall
shape and further by the specific properties of the in-
dividual galaxy, like the number of spiral arms, the de-
gree of the ellipse or the pitch angle of the spiral. The
system of galaxy classification is known as the Hub-
ble sequence or Hubble tuning fork which is shown
in Figure 2. This classification scheme starts at the
left with elliptical galaxies (E0-E6 types) divided by
the factor of oval-shape. Then the diagram splits into
two branches. The upper branch shows spiral galax-
ies (Sa-Sc types) which are basically split into differ-
ent spiral pitch angles. The lower branch (SBa-SBc
types) covers barred-spiral galaxies that differ in their
characteristic formed bar in contrast to the spherical
shaped bulge of Sa-Sc types. We will focus on re-
covering galaxies of type Sb and Sc using data from
the Spitzer telescope [Tel], in particular Galaxy M81,
a publicly available data set that can be used for the
proposed reconstruction method.

Figure 2: Hubble Classification Scheme c©S.D. Cohen
(from [Coh]). The Hubble Classification Scheme is
able to capture the topological diversity of most galax-
ies. From left to right, spherical and elliptical shapes
are succeeded by spirals of different extent, with or
without a central bar.

The arms of spiral galaxies approximately have the
shape of a logarithmic spiral and are areas of high
density or density waves and can be observed at vis-
ible wavelengths. The high concentration of gas and
dust in the arms facilitates star formation of very bright
stars.

3.2 Interstellar Dust

A galaxy viewed from the front, the so-called face-
on view, shows dark spiral stripes containing interstel-
lar dust (see Figure 3). Interstellar dust has the prop-
erty to scatter and absorb photons at different wave-
length. Blue light is scattered more often, because the
size of many of the individual grains of space dust is
about the same as the wavelength for blue light vary-
ing between 100nm and 1µm. It means, that much

of the blue light emitted from stars in the galaxy be-
hind the dust clouds gets scattered away from our di-
rect view, making the stars in the galaxy, as we see
them through the dust look redder and dimmer than
they actually are [BM98]. The wavelength-dependent
scattering properties of particles are described by the
Mie scattering theory [vdH82]. Furthermore photons
that get absorbed from the dust convert the energy into
heat. Thus, the dust transforms blue light into far in-
frared light and the absorption of starlight warms dust
grains to ≈ 10K. At this temperature they radiate sig-
nificantly at λ ≈ 200µm, and photons of this wave-
length can escape.
Figure 1 shows infrared images obtained by Spitzer’s
infrared array camera, a space telescope to obtain im-
ages and spectra in infrared at wavelengths between
3 to 180 micron, that cannot be detected from Earth
[Tel]. It exhibits a four-color composite of Galaxy
M81 which is located at a distance of 12 million light-
years from Earth. The images of visible and invisible
light show emissions from wavelengths of 3.6 microns
(blue), 8 microns (green), and 24.0 microns (red). Im-
ages in near-infrared collected at 3.6 micron trace the
distribution of older and redder stars and are virtually
unaffected by obscuring dust. As one moves to longer
wavelengths, the spiral arms become the dominant fea-
ture of the galaxy. The 8 micron emission is domi-
nanted by infrared light radiated by hot dust that has
been heated by nearby luminous stars. The dust par-
ticles are composed of silicates, carbonaceous grains
and polycyclic aromatic hydrocarbons and trace the
gas distribution in the galaxy. The well mixed gas and
dust, which is best detected at radio wavelengths, pro-
vide a reservoir of raw materials for future star forma-
tion. The 24-micron image shows emission of warm
dust heated by the most luminous young stars. The
bright knots show where massive stars are being born.
These star formation regions are of great astrophysical
interest because they help identifying the conditions
and processes of star formation [Tel].

Figure 3: Generic Galaxy Shape. On the left is the so-
called edge-on view (90o). The dust is concentrated
along a galaxy’s equatorial region. Compared to the
right, which is often referred to as face-on view (0o),
where the dust is concentrated along the spiral arms.

Journal of WSCG 115 ISBN 1213-6972 ISBN 80-86943-09-7

4 Galaxy Visualization
From our terrestrially confined viewpoint, recovering
the actual three-dimensional shape of distant astro-
nomical objects is very challenging. The key to re-
construct a 3D spiral galaxy volume from an 2D im-
age is to find a visualization technique which is able
to reproduce the visual effects of the galaxies appear-
ance. Figure 4 shows that due to the distribution of
dust within the galaxy a complex interplay of light and
dust takes place. The appearance of galaxies as we see
them can be described by effects of scattering and ex-
tinction [BM98]. Thus, we need to find a visualization
model that simulates realistically these effects.

Figure 4: Effects of scattering and absorption of light
by dust. Light from the top reaches the observer with-
out obstruction. Light from the lower part is partially
absorbed and scattered into the path of the observer.

4.1 Volumetric Radiance Model

At this point we can make use of a method proposed
by Magnor et al. [MHLH05]. They are simulating
the effects of interstellar dust for reflection nebulae.
Adopting their visualization model to galaxies can be
done as follows: first, we subdivide the space around
the galaxy into voxels. Each voxel is assigned the ra-
diance Lill arrived at the voxel from the stars and a
value proportional to the density of dust πsct, where
πsct = σsct · l, with l as the size of the voxel and
σsct as the scattering coefficient, the average amount
of scattering, for a voxel.
Only a fraction P (πsct) of the radiance Lill at a voxel
is scattered into the observers direction to define Lsct.
P (πsct) is pre-computed and tabulated using a Monte-
Carlo simulation. Since we assume isotropic scatter-
ing due to the large-scale structure, the portion of scat-
tered light is not direction-dependent in contrast to re-
flection nebulae rendering [MHLH05].

Lsct = Lill · P (πsct) (1)

However, the scattered light still must travel the path
form the voxel to the observer, where it also is at-
tenuated along the line of sight due to optical depth
πopt = πsct/a in the interstellar medium. The albedo,
a = [0, 1] can be described as the average percent-
age of radiation that is being scattered on a single dust

particle. It becomes zero when the dust is completely
black and all incident radiation is absorbed and one
when all photons are deflected by the particle. As
pointed out in [Gor04], it is reasonable to assume that
for the current measured and analyzed data at visi-
ble wavelengths the albedo is a ≈ 0.6 throughout the
galaxies. That yields

L = Lsct · exp−
R

l

0
πopt(l

′)dl′. (2)

Since πsct and πopt vary with wavelength we compute
L separately for the red, green and blue channel. Bin-
ney et al. [BM98], Magnor et al. [MHLH05] and
Cardelli et al. [CCM89] illustrate the wavelength-
dependent effects of extinction which can be described
by astrophysical parameters such as the ratio of total-
to-selective extinction. We also take these values into
account.

(a) (b)

Figure 5: Discretization of the space around the galaxy
into voxels. Each voxel emits light according to local
star density (a). A fraction of the light is scattered de-
pending on dust density or scattering depth πsct. More
light is absorbed on distance l from the voxel to the ob-
server.

Figure 5(a) shows the radiance Lill that is received at
a volume position (x,y,z) and the scattering depth πsct

proportional to the dust density in Figure 5(b) . More
details on how we can derive these values from the 2D
observations for reconstruction are described in Sec-
tion 5

4.2 Interactive GPU-Raycasting

Our rendering algorithm relies on graphics hardware-
based ray-casting. The basic idea, proposed by Krueger
[KW03], is simple. The dataset is stored in a 3D
texture to take advantage of built-in trilinear filtering.
Then a bounding box geometry is created encoding the
position in the data set as colors, i.e., we can interpret
these as 3D texture coordinates.
The rendering algorithm runs in four passes. The first
two passes prepare the proxy-geometry, i.e., render

Journal of WSCG 116 ISBN 1213-6972 ISBN 80-86943-09-7

front- and back-faces, and compute the ray direction
and length. In the third pass we first issue a fragment
program to step along the viewing vector from front to
back in voxel length intervals. The pre-computed scat-
tering table P (πsct) is uploaded as a 1D floating-point
texture to graphics memory. A 3D floating point tex-
ture stores scattering depth πsct and illumination Lill

for each voxel. At each step along the ray we lookup
local scattering depth πsct and voxel illumination Lill

from the 3D volume textures. These values are trilin-
ear interpolated on graphics hardware. Then the frag-
ment program queries the scattering lookup table to
determine P (πsct). Lsct can be determined by (1).
Lsct undergoes extinction σext = πsct/a on the line
of sight which is accumulated by stepping along the
ray to compute L (2). The image correction is done in
the final fourth pass.

5 3D Reconstruction
The proposed visualization model is able to capture
the general effects of interstellar material that are re-
sponsible for the overall appearance of galaxies. How-
ever, to reconstruct the galaxy from a conventional 2D
image we have to recover dust density and light distri-
bution information from observational data.
Before analyzing the images in Figure 1 we compute
their geometric moments up to the second order and
center, rotate and de-project the images, i.e., correct
to a face-on view as commonly done in astrophysical
research. Now, we can recover approximately the den-
sity of dust by adding up Figure 1(c) and Figure 1(d).
Adding up the dust images is essentially like accumu-
lating different sorts of interstellar material that radiate
at different infrared wavelengths because of their size
and temperature. The image intensity can be then in-
terpreted as a dust density which is proportional to the
scattering depth πsct, shown in Figure 6(b). The radi-
ance Lill received at a voxel can be taken from Figure
6(c) which shows the star light unaffected by obscur-
ing dust and can be interpreted as the distribution of
light at a specific point in the galaxy.
However, we still have to take the amount of light into
account that gets scattered in the observer’s direction.
Also, we account for the attenuation by optical depth
when light travels through the galaxy to the observer
as seen in Eq. (1) and (2). Lill and πsct, taken from the
observational data, are sufficient to define our volume
data structure.
We now can try to fit our 2D image in the generic
galaxy shape using a simple back-projection approach.
By back-projecting the image we smear it through the
volume constraint by the generic galaxy shape which
can be described by a gaussian function (see Figure 3).
We discard all values outside the model and weight
their contribution according to the distance from the

(a) (b)

(c) (d)

Figure 6: Reconstruction results from infrared image
data, see Figure 1. We can achieve similar render-
ing results by extracting a dust distribution from the
infrared images. (a) Original image in visible light,
deprojected to face-on view. (b) Reconstructed dust
distribution (c) Star light distribution at 3.6µm (d) Re-
sulting rendition.

center.
However, just back-projecting the dust distribution
into the generic shape creates stripes that make the im-
age look unnatural. Using procedural noise [Per85] we
can break up these stripes in a more natural way.
Figure 6 shows, that the original image (a) can be im-
plicitly reconstructed by using the dust distribution (b)
and a radiance profile in image (c). Image (d) shows
the result. It is interesting to see that without any fur-
ther information, just by using dust and light distribu-
tion we can achieve a similar appearance of the galaxy.
The blueish tint of the rendition (d) shows the assumed
dust density map is not sufficient enough to reconstruct
the galaxy realistically.
Using the adopted reflection nebulae rendering
[MHLH05], [Hil05] is still an approximation, since
the effects of scattering and absorption effects for the
nebulae are only evaluated locally for a few stars and
not globally for the entire galaxy. However, we can
assume a dust density or scattering depth πsct and a
radiant power of star light Lill at any voxel for our
galaxy visualization model. By reconstructing a dust
density map from several band-filtered infrared images
it is possible to find a valid representation for an orig-
inal image. As mentioned in Section 3.2 mid- and far-

Journal of WSCG 117 ISBN 1213-6972 ISBN 80-86943-09-7

infrared data provide necessary information about the
dust distribution of the galaxy. Now, we can expand
this approach by using the reconstructed dust density
map as an initialization parameter for an analysis-by-
synthesis algorithm to approximate the original shape
more closely.

6 Analysis-by-Synthesis
Reconstruction

3D image analysis-by-synthesis is the general concept
of inverting the image formation process by solving
the forward problem repeatedly while adjusting the pa-
rameters of the reconstruction until the differences be-
tween the original and the synthesized image are min-
imized.

Figure 7: Analysis-by-synthesis scheme for spiral
galaxy reconstruction. The volume is rendered and the
difference between rendition and original is evaluated
using sum-of-squared differences. After optimizing
the model parameters in the dust density distribution
we update the volume and render again.

The spiral galaxy reconstruction approach relies on
constraint inverse volume rendering (CIVR), Magnor
et al. [MKH04]. However, our CIVR approach is
based on the generic shape of the galaxy and the pro-
posed visualization method. The model we want to
optimize is the dust density map which is proportional
with the scattering depth πsct. The approximated im-
age in Figure 6(b) can be used as prior knowledge and
as an initial guess for the optimization. The galaxy
rendering provides the basis of our approach, since we
assume that it is a plausible way to realistically visual-
ize galaxy volumes. It is important to understand that
a visualization which cannot provide plausible render-
ings, cannot be used for this approach, since we rely
on evaluating the error functional based on the rendi-
tion and the image difference.

Given that the galaxy visualization is a non-linear pro-
cess we employ non-linear optimization, i.e., a stan-
dard implementation of Powell’s non-linear optimiza-
tion method [PFTV92]. Powell’s direction set numer-
ically evaluates the error function’s local slope along
all dimensions of the model m1...N from which it de-
termines the conjugate-gradient direction.
The aim of the optimization is to determine the closest
possible solution for the 2D projection, i.e., the vol-
ume rendering result that matches as closely as pos-
sible with the original galaxy image at visible wave-
lengths. Each optimization iteration step entails a
modification in the volume data set, uploading the
modified data onto the graphics card, rendering the
model again and re-evaluating the error measure, as
shown in Figure 7. To qualify the difference between
both images we compare the corresponding pixel us-
ing the sum-of-squared-differences (SSD)

arg min
d1...N

∑

(p(x, y) − pr(x, y))2 (3)

where d1...N denotes the parameters in the dust den-
sity map and the color parameters for the overall ap-
proximated star colors. Additionally, the error func-
tional penalizes negative values and scattering depth
πsct values that reach outside the scattering table for
values πsct > 10.0. The color values are also penal-
ized, if they fall outside the RGB range. That allows
us to constrain our optimization to physically reason-
able values. Magnor et al. [MKH04] employed sev-
eral error functionals of which the SSD error measure
yielded the fastest convergence. The algorithm table
summarizes the steps again:

Algorithm 1 Analysis-by-Synthesis
Back-project illumination and dust density map into
generic shape;
Render galaxy volume;
Initialize optimization parameters, i.e., 2D scatter-
ing depth;
while Convergence not reached do

Render volume;
Optimization using Powell’s Direction Set;
Compute SSD to evaluate error;
Penalize parameters that are out of range;
Update optimization parameters, i.e., 2D scatter-
ing depth and color values;
Back-project and update 3D volume on the
graphics card;

end while

The algorithm stops, when the difference between op-
timization steps is lower than a certain tolerance value.
From the optimization point of view this approach un-
derlies a high-dimensional parameter space. Each it-
eration step we modify our parameters until the algo-

Journal of WSCG 118 ISBN 1213-6972 ISBN 80-86943-09-7

rithm converges to a minimum of the error function.
Since we are dealing with a non-linear optimization
problem, a global convergence to the global minimum
can not be guaranteed.
If the initial guess is not close to the global minimum,
or the parameters are not reasonable constraint, the al-
gorithm does not converge to a physically plausible so-
lution. Also, if our rendering procedure does not map
the values closely to the original projection a conver-
gence cannot be expected, because we are not able to
produce the desired values.

(a) (b)

(c) (d)

Figure 8: Figure (a) shows the original M81 image de-
projected to face-on view. (b) M81 after analysis-by-
synthesis optimization. (c) Reconstructed dust den-
sity map.(scaled for displaying purposes) (d) Differ-
ence image between original and optimized image.

7 Results
Figure 8 shows that the reconstructed image (b) closely
resembles the original galaxy photograph (a). The pro-
posed visualization model is able to recover the overall
appearance of galaxies. The dust density distribution
entries are optimized which is a sufficient model to re-
construct the volume. Despite a reasonable guess for
our analysis-by-synthesis procedure the optimization
computation took about three days on a 3.0Ghz Pen-
tium4 with nVidia GeForce 6800 Ultra graphics board.
Figure 8(d) shows the difference between original and
reconstruction. One can see that especially the galactic
bulge area exhibits high differences. That is because
the dust consistency changes drastically throughout

the galaxy center due to very hot stars. The recon-
structed dust density distribution varies compared to
initial guess in Figure 6(b) and is very noisy. The rea-
son is that there are many regions where dust density
changes, e.g. because of star formation.

Figure 9: Resulting fly-by images for the presented 3D
volume reconstruction of Spiral Galaxy M81.

Figure 9 shows that the proposed method recovers an
approximated, plausible shape of the volume using the
galaxy rendering, which yields the conclusion, that the
proposed method is a promising approach to attack the
problem.
However, there are still a lot of problems, mostly re-
lated to approximations in the visualization model.
The radiance map, as seen in Figure 6(c), doesn’t have
enough influence on the rendering to display the bluish
areas along the spiral arms. That should be taken into
account during optimization. Furthermore, we should
take other physical parameters into account to repre-
sent the galaxies appearance more closely.

8 Conclusion
We have presented an adopted rendering method to re-
construct a plausible shape for spiral galaxy M81. Its
inherent generic shape and additional observations in
far-infrared enable us to use a model to describe the
galaxy’s three-dimensional dust distribution in space,
thereby constraining the reconstruction problem. By
rendering realistic images of our model and compar-
ing the rendering results to the original image data,
we employ an optimization approach that helps con-
verge towards a reasonable dust density distribution
for the galaxy. Using the optimized model we are able
to closely resemble a realistic appearance of the galaxy

Journal of WSCG 119 ISBN 1213-6972 ISBN 80-86943-09-7

by fitting the values to a generic shape. Figure 9 shows
a series of images from different view points around
galaxy M81.

References
[Bli87] J. Blinn. Voyager fly-by animations. Anima-

tions depicting space missions to Jupiter, Saturn
and Uranus, 1977-87.

[BM98] J. Binney and M.Merrifield. Galactic astron-
omy. Princeton University Press, 1998.

[CCM89] J. Cardelli, G. Clayton, and J. Mathis. The re-
lationship between infrared, optical and ultra-
violet extinction. Astrophysical Journal, pages
345:245–256, 1989.

[Coh] S. D. Cohen. Hubble classification scheme.
website: http://en.wikipedia.org/
wiki/Image:Hubblescheme.png.
visited August 2005.

[FH05] Chi-Wing Fu and A. Hanson. The powers-of-
ten visualization architecture for exploring the
physical universe. submitted for publication,
2005.

[Gor04] K. Gordon. Interstellar dust scattering proper-
ties. in a. witt, g. clayton, and b. draine, edi-
tors. Astrophysics of Dust. ASP conference se-
ries, 2004.

[HFW00] A.J. Hanson, Chi-Wing Fu, and E.A. Wernert.
Very large scale visualization methods for as-
trophysical data. Proceedings of the Joint Eu-
rographics and IEEE TVCG Symposium on Vi-
sualization, pages 115–124, 2000.

[HG38] J. Henyey and J. Greenstein. The theory of the
colors of reflection nebulae. Astrophysical Jour-
nal, 88:580–604, 1938.

[HG41] J. Henyey and J. Greenstein. Diffuse radiation
in the galaxy. Astrophysical Journal, 93:70–83,
1941.

[Hil05] K. Hildebrand. Rendering and reconstruction of
astronomical objects. Diploma Thesis, 2005.

[KW03] J. Krueger and R. Westermann. Accelera-
tion technique for gpu-based volume rendering.
Proceedings of IEEE Visualization, pages 287–
292, 2003.

[LM05] A. Linţu and M. Magnor. Augmented astro-
nomical telescope. Second GI-Workshop VR/AR
Proceedings, 2005.

[MHLH05] M. Magnor, K. Hildebrand, A. Linţu, and
A. Hanson. Reflection nebula visualiza-
tion. Proc. IEEE Visualization, pages 255–262,
2005.

[MKH04] M. Magnor, G. Kindlmann, and H. Hansen.
Constrained inverse volume rendering for plan-
etary nebulae. Proceedings of IEEE Visualiza-
tion, pages 83–90, 2004.

[NE] D. Nadeau and E. Engquist. Volume visual-
ization of the evolution of an emission neb-
ula. website: http://vis.sdsc.edu/
research/hayden2.html. visited Jan-
uary 2005.

[NGN+01] D. Nadeau, J. Genetti, S. Napear, B. Pailthrope,
C. Emmart, E. Wesselak, and D. Davidson. Vi-
sualizing stars and emission nebulae. Computer
Graphics Forum, 20:27–33, 2001.

[Per85] K. Perlin. An image synthesizer. Proceedings
of ACM SIGGRAPH, pages 287–296, 1985.

[PFTV92] W. Press, B. Flannery, S. Teukolsky, and
W. Vetterling. Numerical recipes in c. Cam-
bridge University Press, 1992.

[Tel] Spitzer Space Telescope. website: http:
//www.spitzer.caltech.edu/. visited
June 2005.

[vdH82] H. van de Hulst. Light scattering by small parti-
cles. Dover Publications Inc., New York, 1982.

[ZO95] W. Zhen and C. ODell. A three-dimensional
model of the orion nebula. Astrophysical Jour-
nal, 438:784–793, 1995.

Journal of WSCG 120 ISBN 1213-6972 ISBN 80-86943-09-7

Real-time Plane-Sweep with local strategy

Vincent Nozick Sylvain Michelin Didier Arquès

SISAR team,
Marne-la-Vallée University, ISIS Laboratory,
6 cours du Danube, France, 77 700 Serris

{vnozick,michelin,arques}@univ-mlv.fr

ABSTRACT
Recent research in computer vision has made significant progress in the reconstruction of depth information
from two-dimensional images. A new challenge is to extend these techniques to video images. Given a small set
of calibrated video cameras, our goal is to render on-line dynamic scenes in real-time from new viewpoints. This
paper presents an image-based rendering system using photogrametric constraints without any knowledge of the
geometry of the scene. Our approach follows a plane-sweep algorithm extended by a local dynamic scoring that
handles occlusions. In addition, we present an optimization of our method for stereoscopic rendering which
computes the second image at low cost. Our method achieves real-time framerate on consumer graphic hardware
thanks to fragment shaders.

Keywords
Image-based rendering, plane-sweep, fragment shaders.

1. INTRODUCTION
Given a set of images from different viewpoints of a
scene, we set out to create new views of this scene
from new viewpoints. This reconstruction problem is
treated from several approaches. Some methods
focus on the geometry of the scene while others use
photogrametric properties. These methods can also
differ on the number of input images, on the visual
quality of the views created and on computation
time. Most of the past work in this field concerns
static scenes and tries to improve reconstruction
accuracy, but past years, dynamic scene
reconstruction has become a more important research
area.

Figure 1 : A real-time reconstruction example

from four cameras

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Journal of WSCG 121 ISBN 1213-6972 ISBN 80-86943-09-7

In this paper, we present an overview of image-based
real-time rendering for static and dynamic scenes.
We detail one of these known as the plane-sweep
algorithm, and present an adaptation of this method
that handles occlusion. Our method achieves real-
time framerate on consumer graphic hardware using
fragment shaders. We also introduce an computation
optimization of our method for stereoscopic
rendering.

2. RELATED WORK
This section surveys previous work on real-time
image-based rendering (IBR) techniques and real-
time reconstruction for static and dynamic scenes.

Real-time rendering
Some image-based methods like the Plenoptic
modeling [MB95], the Lumigraph [GGSC96] and the
Light Field rendering [LH96] provide real-time
photorealistic rendering using a large set of input 2D
image samples. Nevertheless these methods require
considerable off-line processing before visualization
so the handling of dynamic scenes becomes very
difficult. Schirmacher et al. [SLS01] extend a
Lumigraph structure with per-pixel depth
information using a depth-from-stereo algorithm and
reach interactive-time at the cost of visual quality.

Depth-from-stereo algorithms [SS02] like SRI SVS
[BBH03] provide real-time depth-maps computation
from two input video streams without any special
purpose hardware. However they do not provide a
real-time rendering method synchronized with the
real-time depth-map.

Other reconstruction methods such as texture-
mapped rendering [PKV00] provide fluid navigation
in the reconstructed scene but they require lengthy
computation time before visualization.

Dynamic scene rendering
These last methods compute new views of a scene in
real-time but most of them begin with a significant
preprocessing which prevents them from computing
dynamic scenes. In recent years, alternatives to this
preprocessing problem and new solutions have been
ardently investigated.

A first solution to this problem is to make a
preprocessing on a set of videos rather than on a set
of images. This allows navigation in dynamic scenes
in real-time but these methods can only render
playback video. Kanade et al. choose this approach
with their Virtualized RealityTM System [KRN97]
and achieve real-time rendering with a collection of
51 cameras mounted on a geodesic dome of 5 meters
diameter. Zitnick et al. proposed a color-
segmentation based stereo algorithm [ZBUWS04]

providing high visual quality image in real-time from
a set of 8 or more cameras but again, this method
involves preprocessing.

Some other real-time techniques handle on-line video
flows. Matusik et al. provide an efficient real-time
rendering method with their image-based visual hulls
[MBRGM00] using a set of four cameras. This
method shades visual hulls from silhouette image
data but therefore can not handle concave objects.

Finally, some methods like [IHA02] are based on
color matching between different views, according to
the epipolar constraint. Collins [C96] introduces the
plane-sweep algorithm and provides basic
reconstruction from binary images. Yang et al.
[YWB02] extend this method to color-images and
present a real-time implementation using graphic
hardware. Woetzel et al. [WJKR04] adapt this
method for real-time depth-mapping and introduce a
first approach to handling occlusions. Geys et al.
[GKV04] use a plane sweep algorithm to generate a
crude depth map cleaned up using a graph-cut
algorithm.

Our algorithm belongs to the latter family. We will
first expose the basic plane-sweep algorithm and
[YWB02, WJKR04, GKV04] contribution. Then we
will detail our method.

Figure 2 : Plane-sweep algorithm with two
input cameras cam1 and cam2. M is a point
of an object lying on one of the planes Dm
in front of the virtual camera camx. The
input cameras will project M's color on the
same pixel of Dm.

Journal of WSCG 122 ISBN 1213-6972 ISBN 80-86943-09-7

3. PLANE-SWEEP ALGORITHM
The initial plane-sweep algorithm was introduced in
1996 by Collins [C96]. He first applied an edge
detector filter on the input images and provided a
geometric reconstruction of the scene from these
binary images. The following overview is an
adaptation of this method to color-images.

Overview
Given a small set of calibrated images from video
cameras, we wish to generate a new view of the
scene from a new viewpoint. Considering a scene
where objects are exclusively diffuse, we first place
the virtual camera and divide space in parallel planes
Di in front of the camera as shown in Figure 2. We
project the input images onto each plane Di in a back
to front order. Let's consider a visible object of the
scene lying on one of these planes at a point M. The
input cameras will project on M the same color
(i.e. the object color). Therefore, points on the planes
Di where projected colors match together potentially
correspond to an object of the scene.

Let I1 ... In denote a set of n calibrated images. Ix is
the new image to be computed and camx is its virtual
pinhole projective camera. We define a near plane
and a far plane parallel to camx image plane such that
all the objects of the scenes lie between near and far.
For each pixel of each plane Di, a score and a color
are computed according to the matching of the
colors. The plane-sweep algorithm can be explained
as follows :

• initialize Ix’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di
as textures

→ project Di multi-textured on Ix
→ for each pixel p of Ix

- compute a score and a color according to
the coherence of the colors from each
camera's contribution

- if the score is better than the previous ones
then update the score and the color of p

• draw Ix

Figure 3 shows samples of multitextured planes Di.
When a plane pass through an object of the scene,
this object becomes sharp on the multitextured
image. This is the case for the wood head on the top
right image.

What this method does in effect is comparing
epipolar lines between the input images from each
pixel of Ix. This method also provides depth-maps by
drawing Di's depth rather than a color.

Figure 3 : Pictures associated to four planes Di
using four input images

Like several IBR techniques, this basic algorithm
does not handle occlusion since the score is only
computed according to the coherence of a small set
of colors. We present in section 4 a modification of
this algorithm that handles occlusion.

Classical score computation
Yang et al. [YWB02] propose an implementation of
the plane-sweep algorithm using register combiners.
For the scoring stage, they choose a reference camera
cambase that is closest to camx and compare the
contribution of each input image with the reference
image. Each pixel score is computed by adding the
Sum of Squared Difference (SSD) from each input
images. The SSD (1) compares the luminance of a
pixel Yi of an input image Ik with the corresponding
luminance Ybase from the reference camera.

()(,) 2
i base i base

i
SSD Y Y Y -Y=∑ (1)

For more robustness, they use mipmapping to
combine the pixels' score with a score computed
from the same images with a lower level of detail.
According to the small number of instructions, this
method provides good speed results, however the
input cameras have to be close to each other and the
navigation of the virtual camera should lie between
the viewpoints of the input cameras, otherwise the
reference camera may not be representative of camx.
Lastly, there may appear discontinuities in the
computed images when the virtual camera moves and
changes its reference camera. They propose a register
combiners implementation and reach real-time
rendering for dynamic scenes using five input
cameras.

Woetzel et al. [WJKR04] propose a plane-sweep
system that provides real-time depth-maps. Contrary
to Yang et al. [YWB02], they do not choose a
reference camera but they still compare the input
images by pairs. They compute the SSD of each pair
of input images and sort out the contribution of the

Journal of WSCG 123 ISBN 1213-6972 ISBN 80-86943-09-7

two worse scores. It is a first step to handling
occlusions but this method applies the same
treatment to each pixel without selecting those which
are concerned by occlusion and those which are not.
They propose a real-time depth-map method but do
not propose any rendering algorithm. This makes the
comparison between our algorithms difficult.

The same problem of scoring and choosing colors
among a set of colors from epipolar lines has been
treated by Fitzigibbon et al. [FWZ03]. They use
priors under a large set of input images to choose the
color (and hence the depth) that corresponds best to
most of the input images. This method is well
adapted to a large set of input images and provides
good results. However it requires too much
computation time for real-time rendering.

Finally, Geys et al. [GKV04] propose a two steps
method using two input cameras. First, a plane sweep
(GPU) computes a depth map using a Sum of
Absolute Differences (SAD) from the two input
images. Then, an energy minimisation method (CPU)
cleans up the depth map. The energy function
considers temporal and spatial continuity, the
previous SAD and an occlusion term derived from a
background-foreground repartition of the scene
elements. The energy function minimisation is solved
by a graph cut method and provides a consequent
improvement of the initial depth map. View
dependent texture mapping of the two input images
is performed to create the new view. However, this
method requires a background-foreground scene
decomposition with a static background. [GV05]
introduces an adaptation of this method for three or
more cameras.

4. OUR METHOD
We propose a new implementation which makes it
possible to take into account all input images
together where other methods compute images pair
by pair. We introduce new methods using local
strategy to compute scores allowing independent
treatment of each pixel of Ix in order to handle
occlusions. We also propose a new algorithm
providing a stereoscopic pair of images with the
second view at low cost.

New scores computation
The score computation is a crucial step in the plane-
sweep algorithm. Both visual results and speedy
computation depend on it. We propose a new method
to compute a score according to all the input image
colors instead of computing by pairs. For this
purpose, we use multi-texturing functions to access
each input camera color contribution.

For each pixel of Ix, we propose a finite number of
positions X in the scene (one per plane D). A score is
computed for each position and this score depends on
the color Ci of the projections of X in each input
image. We propose three methods to compute scores.

A first possibility is to set the score as the variance of
each color Ci and the final color as the average of the
Ci. This method is easily implemented and provides
good visual results especially if the input cameras are
close together. However this method does not handle
occlusions. Indeed, a point viewed by all the input
cameras except one will have its score and its color
distorted since this camera may increase the variance
and spoil the average. Nevertheless, this method
implicitly treat occlusions when the virtual camera is
near from an input camera which projects for each
planes Di approximatively the same image.

We also propose an iterative algorithm to reject
outlier colors using a sigma clipping technique. This
method first computes the variance v of the color set
S={Ci}i=1...n, computes a score from v and finds the
color Cf ∈ S the furthest from the average. If this
color is further than a defined distance d, then it is
removed from S. This step is repeated until stability
or until S contains only 2 elements. The returned
score is the variance found in the last step. The
choice of the constant d depends on the input
cameras layout and on the scene complexity. This
algorithm can be summarized as follows :

• bool stable = false
• S = {Ci}i=1…n
• a = average(S)
• v = variance(S, a)
• score = scoreFunction(v, Card(S))
• do

→ find the farest color Cf ∈ S from a
→ if distance(Cf, a) ≥ d then

- S = S - Cf
- a = average(S)
- v = variance(S, a)
- score = scoreFunction(v, Card(S))
else stable = true

while Card(S) ≥ 2 and stable = false

The scoreFunction weighs the variances according to
Card(S) such that with equal variance, the set of
colors with the maximum cardinal is favoured. A
good score corresponds to a small variance.

Finally, we propose a third method to compute the
colors' scores. This method also begins by a variance
and an average computation in the color set

Journal of WSCG 124 ISBN 1213-6972 ISBN 80-86943-09-7

S={Ci}i=1...n. Then we find the color Cf ∈ S that is the
furthest from the average. A new variance and a new
score are computed without this color. If this score is
better than the previous one, Cf is removed from S.
This step is repeated until a good score is found or
until S contains only 2 elements. The score is set as
the variance weighed by the cardinal of S. This
algorithm can be summarized as follows :

• bool stable = false
• S = {Ci}i=1…n
• a = average(S)
• v = variance(S, a)
• score = scoreFunction(v, Card(S))
• do

→ find the farest color Cf ∈ S from a
→ a* = average(S - Cf)
→ v* = variance(S - Cf, a*)
→ score* = scoreFunction(v*, Card(S)-1)
→ if score* ≤ score then

- a = a*
- v = v*
- score = score*
- S = S - Cf
else stable = true

while Card(S) ≥ 2 and stable = false

These three methods are easily implemented using
fragment shaders. As shown in Figure 4, the two
iterative methods provide better visual results,
especially when the input camera are placed in a 1D
arc configuration which increase the occlusions
effects.

(a) (b) (c)

Figure 4: image (a) is computed using the
variance and the average, (b) using the
sigma clipping technique and (c) using the
second iterative method.

Neighborhood with mipmapping
For more robustness during the scoring stage, we
take into account the neighborhood color
contribution of each pixel. Mipmapping provides
access to the same image but with a lower level of
details (lod) and hence provides the average color of
the neighborhood of the current pixel. For each pixel

(a) (b) (c)

Figure 5: Images computed with different
mipmap levels : (a) no additional mipmap
level, (b) 1 mipmap level and (c) 2 mipmap
levels.

score, we combine the score computed using
different lods. Yang et al. [YWB02] propose a
summation over a box-filtered lod pyramid but only
one additional mipmap level works well with our
method and more mipmap levels do not improve the
visual results. This is illustrated in Figure 5.

Stereoscopic rendering
Virtual reality applications often requires
stereoscopic display to increase immersion and most
of these applications have to render the scene twice.
But a lot of information such as diffuse lighting for
example can be shared for both views. Concerning
IBR techniques, depth-mapping is often view-
dependant and hence the two new views must be
computed separately. The plane-sweep algorithm
computes local score associated to scene points. This
information can be shared for several virtual
cameras. We extend our method with a low cost
algorithm providing the second view.

Figure 6 : Each plane Di is common to

the two views, but their projection differs

Stereoscopic rendering must satisfy several
conditions concerning virtual camera parameters

Journal of WSCG 125 ISBN 1213-6972 ISBN 80-86943-09-7

[SC97]. In particular, both cameras must have their
principal ray parallel to avoid vertical parallax in the
stereoscopic image. Let camL and camR be a pair of
virtual cameras satisfying this constraint and D1...m a
set of planes parallel to these cameras' image plane.
As shown in Figure 6, the score and the color
computation of a plane Di is common for both camL
and camR. Only the projection of Di on the two
cameras will differ. The score computation is a
central task in the plane-sweep algorithm, so sharing
this stage among the two views provides a
consequent gain in computation time. Thus, our
plane-sweep method must be modified as follows :

• initialize IL and IR’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di

→ render Di on two textures texScore and
texColor : for each pixel of Itmp
- compute a score and a color according to

the coherence of the colors from each
camera's contribution

→ copy texScore and texColor on Di

→ project Di multi-textured on IL and IR

→ for each pixel of IL and IR
- if the score is better than the previous one

then update the score and the color
• draw IL and IR

For each planes Di, this method first computes scores
and colors and stores them in two textures. In a
second pass, these two textures are copied on Di and
projected on the two virtual cameras. The first pass
requires off-screen rendering performed by Frame
Buffer Objects (FBO) and Multiple Render Target
(MRT). This step can also be achieved using
p-buffers with a small frame rate penalty.

Thus, this method can easily be implemented such
that all the image data stay in the graphic card and
hence avoid expensive data transfers between the
graphic card and the main memory.

Figure 7: Real-time stereoscopic pair
(cross vision)

Figure 7 shows a stereoscopic pair rendered in real-
time. Note that the fusion of the two images
decreases the imperfection impact of the images.

As illustrated in Table 1, stereoscopic rendering
achieves a 15% frame rate decrease instead of the
50% expected by rendering twice the scene.

Implementation
Input cameras are calibrated using the gold standard
algorithm [HZ04]. We implemented our method on
OpenGL 2.0 and we use OpenGL Shading Language
for the scoring stage.

For more accuracy, the texture coordinates are
computed using projected textures directly from the
camera projection matrices. We use multitexturing in
order to get access to each texture during the scoring
stage. Each score is computed with fragment
shaders using mipmapping. They are stored in
the gl_FragDepth and the colors in the
gl_FragColor. Hence we let OpenGL select best
scores with the z-test and update the color in the
frame buffer.

To compute a depth-map rather than a new
 view, we just set the gl_FragColor to the
gl_FragCoord.z value.

Most of the work is done by the graphic card and the
CPU is free for others tasks.

5. RESULTS
We tested our methods on an Athlon AMD 1GHz
with a Nvidia GeForce 6800GT. We used four tri-
CCD Sony DCR-PC1000E cameras for the input
images acquisition. The white balance is essential
in a plane-sweep algorithm. Indeed, we must
homogenize the camera color range such that any
point in the scene is seen with the same color from
each camera. For our tests, we used the manual white
balance provided by the tri-CCD cameras but for
more accuracy, we planed to use a color calibration
method as proposed by Magnor [M05].

Table 1 shows the framerate we obtain with 4 input
cameras.

Number
of plans D

Simple
variance

Method
1 and 2

Stereo-
scopic

10 140 85 91 110

30 43 28 30 38

50 30 17 18 25

100 15 9 9 13
Table 1. Frame rate in frame per second for a

320x240 image from 4 input cameras.

Journal of WSCG 126 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

(c) (d)

Figure 8: Number of planes used for each
scene : (a) 5 planes, (b) 10 planes, (c) 30
planes and (d) 50 planes

The computation time depends on the number of
planes we choose to discretize the scene. Our tests
indicate that after 50 planes, the quality difference
becomes neglible (Figure 8).

We are presently working on examples of on-line
dynamic scenes.

6. CONCLUSION
This paper presents a plane-sweep method that
allows real-time rendering of on-line dynamic
scenes. Except for near and far planes, it does not
require any prior knowledge of the scene. This
method can be implemented on every consumer
graphic harware that supports fragment shaders and
therefore frees CPU for other tasks. Furthermore, our
scoring method enhances robustness and implies
fewer constraints on the position of the virtual
camera, i.e. it does not need to lie between the input
camera's area.

We propose to extend our research in optimisation of
Di planes repartition in order to reduce its amount
without depreciating the visual result. We also intend
to achieve a better stereo viewing result by producing
pairs of virtual cameras with non symetric projection
pyramid in order to save space on the edges of the
stereo images [GPS94].

7. REFERENCES
[BBH03] Myron Z. Brown, Darius Burschka, and

Gregory D. Hager. Advances in Computational
Stereo, IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 993-1008, 2003.

[C96] Robert T. Collins, A Space-Sweep Approach to
True Multi-Image Matching, in proc. Computer
Vision and Pattern Recognition Conf., pages358-
363, 1996.

[FWZ03] Andrew Fitzgibbon, Yonatan Wexler and
Andrew Zisserman, Image-based rendering using
image-based priors, 9th IEEE International
Conference on Computer Vision (ICCV 2003),
pages 1176-1183, 2003.

[GGSC96] J. Gortler, R. Grzeszczuk, R. Szeliski and
M. F. Cohen, The lumigraph, SIGGRAPH, pages
43-54, 1996.

[GKV04] Indra Geys, T. P. Koninckx and L.
Van Gool, Fast Interpolated Cameras by
combining a GPU based Plane Sweep with a
Max-Flow Regularisation Algorithm, in proc. of
second international symposium on 3D Data
Processing, Visualization & Transmission -
3DPVT'04, pages 534-541, 2004.

[GPS94] V.S. Grinberg, G. Podnar and M. Siegel,
Geometry of Binocular Imaging, Stereoscopic
Displays and Virtual Reality Systems, Vol. 2177,
pages 56-65, 1994.

[GV05] Indra Geys and L.Van Gool, Extended view
interpolation by parallel use of the GPU and the
CPU, in proc. of IS&T SPIE, 17th annual
symposium on electronic imaging - videometrics
VIII, vol. 5665, pages 96-107, 2005.

[HZ04] Richard Hartley and Andrew Zisserman,
Multiple View Geometry in Computer Vision,
second edition, Cambridge University Press,
ISBN: 052154051, 2004.

[IHA02] M. Irani, T. Hassner and P. Anandan.
“What does the scene look like from a scene
point?”, Proc. ECCV, pages 883-897, 2002.

[KRN97] Takeo Kanade, Peter Rander and P. J.
Narayanan, Virtualized Reality: Constructing
Virtual Worlds from Real Scenes, IEEE
MultiMedia, volume 4, pages 34-47, 1997.

[LH96] Marc Levoy and Pat Hanrahan, Light Field
Rendering, SIGGRAPH, pages 31-42, 1996.

[M05] Marcus A. Magnor, Video-Based Rendering,
Editor : A K Peters Ltd, ISBN : 1568812442,
2005.

Journal of WSCG 127 ISBN 1213-6972 ISBN 80-86943-09-7

[MB95] Leonard McMillan and Gary Bishop,
Plenoptic Modeling: An Image-Based Rendering
System, SIGGRAPH, pages 39-46, 1995.

[MBRGM00] Wojciech Matusik, Chris Buehler,
Ramesh Raskar, Steven J. Gortler and Leonard
McMillan, Image-Based Visual Hulls, in proc
ACM SIGGRAPH, pages 369-374, 2000.

[PKV00] M. Pollefeys, R. Koch, M. Vergauwen and
L. Van Gool, Automated reconstruction of 3D
scenes from sequences of images, ISPRS Journal
Of Photogrammetry And Remote Sensing (55)4,
pages 251-267, 2000.

[SC97] StereoGraphics Corporation, Developer's
Handbook : background on creating images for
CrystalEyes and SimulEyes, StereoGraphics
Corporation, 1997.

[SLS01] Hartmut Schirmacher, Ming Li and Hans-
Peter Seidel, On-the-fly Processing of
Generalized Lumigraphs, Proc.
EUROGRAPHICS 2001, Eurographics
Association, pages 165-173, 2001.

[SS02] Daniel Scharstein and Richard Szeliski,A
Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms, IJCV, 47,
pages 7-42, 2002.

[WJKR04] Woetzel, Jan, Koch and Reinhard, Multi-
camera real-time depth estimation with
discontinuity handling on PC graphics hardware,
in proc. of 17th International Conference on
Pattern Recognition (ICPR 2004), pages 741-744,
2004.

[YWB02] Ruigang Yang, Greg Welch and Gary
Bishop, Real-Time Consensus-Based Scene
Reconstruction using Commodity Graphics
Hardware, in proc. of Pacific Graphics, pages
225-234, 2002.

[ZBUWS04] C. Lawrence Zitnick, Sing Bing Kang,
Matthew Uyttendaele, Simon Winder and
Richard Szeliski, High-quality video view
interpolation using a layered representation, in
proc. ACM SIGGRAPH, pages 600-608, august
2004.

Journal of WSCG 128 ISBN 1213-6972 ISBN 80-86943-09-7

View-dependent Tetrahedral Meshing and Rendering using
Arbitrary Segments

Ralf Sondershaus
WSI / GRIS

University of Tübingen, Germany
sondershaus@gris.uni-tuebingen.de

Wolfgang Straßer
WSI / GRIS

University of Tübingen, Germany
strasser@gris.uni-tuebingen.de

ABSTRACT

We present a meshing and rendering framework for tetrahedral meshes that constructs a multi-resolution representation and uses
this representation to adapt the mesh to rendering parameters. The mesh is partitioned into several segments which are simplified
independently. A multi-resolution representation is constructed by merging simplified segments and again simplifying the
merged segments. We end up with a (binary) hierarchy of segments whose parent nodes are the simplified versions of their
children nodes. We show how the segments of arbitrary levels can be connected efficiently such that the mesh can be adapted
fast to rendering parameters at run time. This hierarchy is stored on disc and segments are swapped into the main memory as
needed. Our algorithm ensures that the adapted mesh can always be treated like a not-segmented mesh from outside and thus
can be used by any renderer. We demonstrate a segmentation technnique that is based on an octree although the multi-resolution
representation itself does not rely on any paticular segmentation technique.

Keywords: multi-resolution meshes, tetrahedral meshes, view-dependent rendering, volume rendering

1 INTRODUCTION

Tetrahedral meshes are often used as finite element
meshes that discretize a volumetric domain for sci-
entific simulations like computational fluid dynamics
(CFD). Modern simulation environments typically use
meshes that contain millions of tetrahedra.

The simulations carry data along with a tetrahedral
mesh. The data values are usually scalar values like
temperature or pressure, or vector values like velocity,
and can be attached to the vertices, edges, border faces
or to the tetrahedra.

The emerging need to visualize the simulation data
has introduced tetrahedral meshes to volume visualiza-
tion. Modern algorithms render up to about one million
of projected tetrahedra per second [KQE04] or can ex-
tract isosurfaces of about two millions of tetrahedra per
second [KSE04]. This is not enough to render a model
like the F16 interactively (figure 8) that contains about
6 million tetrahedra.

In this paper, we present anout-of-core data struc-
ture that enables such a big mesh to be simplified with
a small memory footprint. The data structure is built on
segments which are swapped efficiently to and from the
core memory as needed. Additionally, we introduce a
multi-resolution frameworkwhich is built on a hierar-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

chy of segments and can be used forinteractive volume
rendering.

Our out-of-core data structure partitions the mesh
into segments by merging leaves of an octree. The seg-
mentation adapts to the details of the mesh and thereby
creates segments which contain similiar number of ver-
tices (and tetrahedra). Subsequent algorithms (like sim-
plifiers) process the mesh one segment after the other
and need small memory footprints. As a by-product,
the vertices are reordered as they are assigned to the
segments which results in a better performance of a
subsequent algorithm because it tends to reduce cache-
misses.

Based on the out-of-core data structure, we introduce
a multi-resolution framework. Many previously pub-
lished multi-resolution frameworks work with a hierar-
chy of vertices and decide per frame which vertex is
to be split or which edge is to be collapsed in order to
refine or coarsen the mesh. Because a huge mesh can
contain millions of points, the adaptation of the mesh
can be become time-consuming even if priority queues
are used. We construct a hierarchy of segments where
segments of arbitrary resolution levels can connect to
each other (however, they need to share the same border
vertices). The hierarchy of segments is used at run-time
to adjust the mesh to viewing parameters and performs
better than a vertex hierarchy because fewer nodes must
be tested to be refined or coarsened and no dependen-
cies between nodes are needed.

For triangle meshes, the big issue is to connect differ-
ent segments correctly if the segments belong to differ-
ent resolution levels. Many previous algorithms store
dependencies between segments in a directed acyclic
graph or restrict the resolution levels to differ by at

Journal of WSCG 129 ISBN 1213-6972 ISBN 80-86943-09-7

most one between adjacent segments in order to ensure
correct connections between segments. Our model can
connect arbitrary resolution levels by fixing the borders
between segments.

For tetrahedral meshes, the adjacency information
for every tetrahedron must additionally be set in or-
der for subsequent algorithms (like MPVO sorting
in volume rendering) to work correctly. Our multi-
resolution framework introduces a so-called 0-segment
which handles the adaptation of the adjacency informa-
tion efficiently. The volume renderer always sees just
one consistent mesh and can run its sorting and render-
ing routines as if no multi-resolution mesh is used.

Our multi-resolution model does not depend directly
on how the mesh is segmented but can work on any seg-
mentation. Instead of the octree-based structure, other
techniques like vertex clustering could be used. Fur-
thermore, we do not rely on edge collapse based sim-
plifications but could use any simplification technique.

2 RELATED WORK
Simplification, multi-resolution, and out-of-core tech-
niques are described shortly because they are important
to our technique. A small overview to volume render-
ing techniques is given.

Simplification. We restrict our overview to ap-
proaches that are based on edge collapses. For other
simplification techniques we refer to mesh decimation
[RO96] or TetFusion [CM02].

Popovic et al. [PH97] have extended the Progres-
sive Mesh approach [Hop96] to general simplicial com-
plexes but do not take into account how the underlying
scalar field of a tetrahedral mesh is approximated.

Staadt et al. [SG98] have applied the Progressive
Mesh approach to tetrahedral meshes. The edge col-
lapses are sorted by an error heap that uses a cost func-
tion which considers various errors like scalar field er-
ror or volume and shape deformation.

Cignoni et al. [CCM+00] have characterized the field
and domain errors of an edge collapse and present vari-
ous techniques to predict these errors reliably. The field
error is introduced by approximating the original scalar
field of the mesh whereas the domain error is introduced
by reducing the boundary of the mesh.

Kraus et al. [KE00] have simplified non-convex
meshes and can change the topology of the mesh dur-
ing simplification. Chiang [CL03] have preserved the
topological structure of isosurfaces of the mesh during
simplification.

Garland [GZ05] extended the quadric error metrics to
arbitrary simplices (and to tetrahedra in particular) and
showed that this approach produces high-quality ap-
proximations that automatically take domain and field
errors into account.

Out-of-Core Data Structures. Cignoni et al.
[CMRS03] use an octree to partition a large tetrahedral

(or triangle) mesh into segments. Each segment can be
modified independently of the other segments. Simpli-
fication algorithms are adapted to process the mesh on
a per-segment basis.

Gumhold et al. [GI03] construct a segmentation of a
huge triangle mesh by sorting the vertices into a regular
grid and merging grid cells into segments that contain
approximatively the same number of vertices. Triangles
are sorted into the segments according to their center
points.

Isenburg et al. [IL05] introduced streaming meshes
which are defined as a new file format that interleaves
triangle and vertex definitions and does not introduce a
vertex until it is indexed by a triangle. Furthermore,
it is marked if no subsequent triangle indexes a ver-
tex anymore such that this vertex can be safely deleted.
Streaming meshes are highly efficient to both mesh
compression and mesh simplification [VCL+05].

Multi-resolution representations. Many multi-
resolution representations [CMRS03, DDFM+04,
CDFL+04] construct a binary vertex hierarchy by edge
collapses. At run-time, a front through the hierarchy
defines a valid mesh. Vertices on the front can be split
(which refines the mesh) or collapsed (which coarsens
the mesh). In order for the mesh to be valid, not all
splits or collapses are valid. Geometric and topological
conditions need to be checked and the operation is
allowed only if the conditions are fulfilled. These
conditions can be enforced by performing additional
operations which results in additional costs.

Cignoni et al. [CGG+04] use longest-edge bisection
of a tetrahedral mesh in order to decompose the spa-
tial domain of a huge polygonal mesh and to construct
a hierarchical decomposition of this polygonal mesh.
The mesh segments that are contained in a tetrahedra
diamond are simplified leaving the border vertices un-
changed, i.e. those vertices that connect different seg-
ments. Using longest-edge bisection results in a hierar-
chy which ensures that neighboring segments can differ
in at most one resolution level.

Volume Visualization. A standard technique for
direct volume rendering of unstuctured tetrahedral
meshes is the projected tetrahedra algorithm of [ST90]
that has been greatly enhanced by the pre-integration
technique of [MHC90, RKE00].

The tetrahedra are sorted from back to front which
can be done for all acyclic tetrahedral meshes and be-
cause a tetrahedron is always convex. The tetrahedra
are projected onto the view plane and decomposed into
1 - 4 triangles according to the positions of the pro-
jected vertices. These triangles are rendered using al-
pha blending from back to front.

3 OUT-OF-CORE DATA STRUCTURE
We design a data structure that is suited to handle large
tetrahedral meshes memory efficiently as well as to sup-

Journal of WSCG 130 ISBN 1213-6972 ISBN 80-86943-09-7

port volume rendering at run-time. Therefore, the mesh
is partitioned into segments such that the segments are
stored on disc, can be loaded independently to main
memory and can be written back to disc.

Every segment contains a number of vertices (such
that a vertex of the original mesh belongs to exactly
one segment) and a number of tetrahedra (a tetrahedra
of the original mesh belongs to exactly one segment).

The index of a vertex consists of an index-pair(si , l i)
with a segment indexsi and a local indexl i which spec-
ifies the vertex within the segmentsi . We encode this
index-pair as a bit field of 32 bits. A tetrahedron is also
addressed as an index-pair withl i as the local index of
the tetrahedron.

Because all vertices and tetrahedra need to be ad-
dressable with this address space, the number of ver-
tices and tetrahedra within a segment should be bal-
anced.

The multi-resolution model (section 5) adds new seg-
ments to the mesh that are simplified versions of the
original segments. Every simplified segment has an er-
ror associated with it such that the volume renderer can
compute which segment is to be swapped in and out
from the main memory. In order to achieve a good er-
ror estimation for each segment, we need segments that
contain vertices with similiar attribute values and tetra-
hedra with similiar sizes.

Using these objectives as a starting point, we con-
struct the segmentation as follows.

3.1 Construction
Although we could use the techiques of [CMRS03] or
[GI03], we found both only partly applicable to our
models. An octree partitions the vertices of a mesh fast
and robust. Its leaves reflect the density of the points
in the mesh which can be significantly different in dif-
ferent areas of a tetrahedral mesh (for an example see
figure 8, left). But the number of vertices that are sorted
into cells can differ highly such that some cells contain
almost no vertices whereas other contain many. This
leads to segments of different sizes which can result in
memory and address space defraction.

A grid has the disadvantage that the user must specify
its resolution and that dependending on the resolution
the variation of the number of vertices of the grid cells
differ highly. But it is easy to be implemented out-of-
core. It is mandatory to combine cells afterwards to
form segments in order to obtain balanced segments.
For tetrahedral meshes, the size of the grid cells needs
to be very small in order to catch the fine-detailed areas
of the mesh which results in a huge number of cells that
contain data.

We combine both approaches. First, an octree is con-
structed for the vertices of the mesh. Afterwards, the
leaves of the octree are considered as nodes in a (undi-
rected) graph. The edges of the graph reflect the neigh-

borhood of the leaves but contain edges between cells
only that share a face and have similiar sizes (we re-
strict the size difference to be at most two). This ensures
that areas of the mesh with a similiar point density are
merged into one segment because the size of an octree
leaf reflects the point density of the mesh.

A graph partitioning algorithm (we use Metis 4.0) is
called which constructs a partition of the graph. Every
partition forms now a segment and consists of a col-
lection of leaves of the octree. Every leaf belongs to
exactly one segment.

a) b)

Figure 1: Segmentations that sort the tetrahedra (a) accord-
ing to their center vertices into the segmentation, or (b) ac-
cording to the smallest segment index of their four vertices.

Afterwards, we sort the tetrahedra into the segments
as follows. The four vertices of a tetrahedron are as-
signed to their segments. The tetrahedron is assigned
to the segment of the vertex with the smallest segment
index. We do not need to compute the center of the
segment (as it is done by [CMRS03] and [GI03]) and
found this method to produce well-shaped borders that
are sufficient for our purposes, see figures 1 and 2.

The user specifies the average number of vertices that
are to be stored in each segment. The octree is con-
structed to contain at most this number of vertices in its
leaves. The graph matching combines leaves into seg-
ments such that a balanced segmentation is achieved.

a) b)

Figure 2: (a) A tetrahedron is sorted to the segment of its
index with the smallest segment index. Red is smaller than
yellow which is smaller than blue. Note that a tetrahedron
may reference vertices from other segments. (b) The white
vertices on the boundary belong to the0-segment as described
in section 5.

Because subsequent algorithms process the mesh by
traversing the segments one after another, the segments
need to be stored in an order that neighboring segments
are traversed together. Therefore, we sort the segments
by their minimal points, first inx-, followed byy- and

Journal of WSCG 131 ISBN 1213-6972 ISBN 80-86943-09-7

by z-coordinates. More elaborated techniques could be
applied here.

The segments are stored in a single file on disc in the
order of the sortation. For every segment, we store

1. The geometry of the vertices using the local order-
ing of the vertices within the segment.

2. The attributes of the vertices (if any).

3. For every tetrahedron its four vertex index-pairs.

4. The attributes of the tetrahedra (if any).

5. For every tetrahedron its four adjacent tetrahedra.

6. The indices of all segments that are incident to this
segment (i.e. share at least one vertex).

In order to traverse the tetrahedra of the mesh, we store
adjacency indices (number 5 above). Every tetrahedron
t stores one index-triple(si , ti ,ci) for each of its vertex
index-pairs that points to the tetrahedron that is oppo-
site to the vertex. The index-triple encodes the segment
index si , the local indexti (within the segmentsi) and
a codeci ∈ {0,1,2,3}. The code specifies the vertex
inside the adjacent tetrahedron that is opposite to the
shared face.

The interface of the data structures allows for loading
a particular segment as well as to request a single vertex
or tetrahedron such that the segment that this vertex be-
longs to is automatically loaded. A Last-Recently-Used
queue keeps track of all loaded segments and stores seg-
ments that have been changed back to disc if they are
not needed any more.

4 SIMPLIFICATION
Using our data structure, the simplifier traverses the
mesh one segment after the other and simplifies each
segment. Our simplifier uses edge collapses and is
steered by a priority queue that sorts all possible col-
lapses of a segment by the error that they introduce.
The error is evaluated by using quadric error metrics
of Garland et al. [GZ05].

A quadric error metric measures the squared geo-
metric and attribute distances of points to hyperplanes
that are spanned by the (original) tetrahedra. A special
penalty error can be introduced at boundary vertices in
order to preserve the boundary of the mesh well.

The verticesv = (vx,vy,vz) of the mesh and their
attributes fi,v are embedded into a 3+ k dimensional
space withp = p(vx,vy,vz, f1,v, ..., fk,v). For every tetra-
hedront = (p0,p1,p2,p3), a local coordinate systeme0,
e1, e2 is constructed by orthonormalizing the vectors
p1−p0, p2−p0, andp3−p0.

Then, the quadric error functionQ of a tetrahedron
can be written with a symmetric, positive semi-definite
matrixA, a vectorb, and a scalar valuec as

Q(x) = xTAx−2bTx+c

with

A = I −
2

∑
i=0

eieT
i b = Ap c = pTAp

wherep is the barycenter of the tetrahedron.
The quadric error of a vertex approximates the sum

of the squared distances to its incident hyperplanes
and can be computed by summing all matricesA
component-wise as well as all vectorsb and all scalars
c of the incident tetrahedra.

For an edge collapse, the metrics (i.e.A, b, andc) of
both collapsing vertices are summed component-wise.
The point that minimizes this quadratic error function
can be found by solving the linear systemAx = b. Be-
causeA is symmetric and positive semi-definite, a cg
solver can be used that takes the middle point of the
collapsing edge as starting point.

5 MULTI-RESOLUTION MODEL
The data structure and the simplifier presented so far
can be used to simplify a tetrahedral mesh as a whole.
But for view-dependent rendering the mesh needs to be
adapted to viewing parameters and thus different sim-
plification (or resolution) levels need to be merged into
one mesh at run-time.

Therefore, we build a hierarchy of segments where
each segment can connect to its neighbors regardless of
their resolution levels. We first describe how the hier-
archy is constructed and show after that how the adja-
cency information between segments can be updated.

5.1 Construction
The segmented tetrahedral mesh is stored on disc as de-
scribed above. We create new segments to build up a
hierarchy as follows and append the new segments at
the end of the file. Each segment stores all the informa-
tion described in section 3.

First, we copy each segment of the original mesh and
simplify the copies (as described above) independently.
The vertices that are referenced by different segments
remain unchanged (i.e. the vertices on the boundary be-
tween at least two segments). We end up with a coarse
approximation of each segment where the segments are
still connected at the original resolution level. The sim-
plified copies are inserted as parents of their original
segments into the hierarchy, see figure 6.

Secondly, we construct an undirected graph whose
nodes are the (simplified) segments and whose edges
are between every pair of (simplified) segments that
share at least one tetrahedral face. The nodes are
weighted by the number of vertices in their segments.
We find a matching of the graph using a greedy algo-
rithm and end up with pairs of nodes (segments).

Each pair is merged into a new segment and the new
segment is simplified. The vertices that have connected

Journal of WSCG 132 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 3: The construction process of the NASA fighter dataset merges two segments into a new segment which is simplified.
The colors of the segments can change from picture to picture.

both segments belong to the new segment now and are
simplified. The vertices that are on the boundaries be-
tween the new segments remain unchanged as shown in
figure 4.

Figure 4: The purple and the green segment are merged and
simplified. The shared vertices are removed but the vertices
to the red segment are left unchanged (white vertices).

Iterating this strategy leads to the algorithm in fig-
ure 5. Every iteration constructs the neighboring graph
and computes pairs of segments. Both segments of a
pair are merged into a new segment which is simplified.
The hierarchy is constructed by building a (at most lev-
els binary) tree where the new segment is the parent of
both merged segments as shown in figure 6.

Because the border vertices between segments are
left unchanged, different resolution levels automatically
connect to each other. Figure 3 shows the construction
process for the NASA fighter dataset.

For every segments s

snew = copy segment s;

add snew as parent of s;

simplify snew;

While the number of roots > 1

construct the node graph G;

find pairwise matching M of G;

For every pair (s1,s2) in M

snew = merge segments s1 and s2;

add snew as parent of s1 and s2;

simplify snew;

Figure 5: Every iteration finds pairs of segments that are
merged into a new segment and simplified.

The final mesh segments are written in breadth-
first order to disc together with the hierarchy. Us-
ing a breadth-first order enhances file accesses because

neighboring segments are likely to be stored near to-
gether. Each segment is stored as described in section 3.

5.2 Usage
Refining one segment means to replace the mesh of the
segment by the meshes of its children. Both children
can now be refined independently of each other. For in-
stance, the first child could be refined again and again
while the second child remains unchanged. This would
lead to a high resolution level that automatically con-
nects to the low resolution level of the second child (but
with the limitation that both the high and the low reso-
lution segments need to share the same vertices on their
border).

Figure 6: The segment hierarchy stores how the segments are
merged into their parent segments (left). The segments of the
original mesh are gray. A front through the hierarchy corre-
sponds to a valid mesh (right).

Coarsening a segment means to replace the segment
itself as well as its sibbling (in the binary hierarchy) by
the coarser mesh of the parent.

A valid mesh is defined as a list of segments within
the hierarchy that has exactly one segment in every path
from the root down to the leaves as shown in figure 6
(right). We call this list a segment front. This corre-
sponds to the well-known vertex front in vertex-based
multi-resolution models [DDFM+04].

5.3 The0-segment
The meshes of the segment front form a valid tetrahe-
dral mesh. During rendering, the adjacencies between
all tetrahedra are often needed (for instance for MPVO-
based sorting [Wil92]). A fast method to adapt the ad-
jacencies between segments is needed whenever a seg-
ment is replaced by another segment. We introduce
a special segment that handles the adjacency between
any two neighboring segments. Because this special
segment has the unique segment index 0, we call it 0-
segment.

Journal of WSCG 133 ISBN 1213-6972 ISBN 80-86943-09-7

The 0-segment is defined as the cut of all segments of
the original mesh. Thus, it contains

• all vertices that are on boundaries between two
neighboring segments in the original mesh (white
vertices in figure 1b), and

• all triangles that form the border between two
neighboring segments, and

• (theoretically) all edges (not stored).

The triangles of the 0-segment are now used as a buffer
(or a docking station) between two segments. Instead
of storing the index of the adjacent tetrahedron, the in-
dex of the shared triangle in the 0-segment is stored in
the adjacency information. Because the triangles never
change and have always the same index, the adjacency
to this triangle can be stored in the mesh (and in the
file).

Each triangle stores two adjacency index-triples that
point to tetrahedra in the adjacent segments, see also
figure 7b. The tetrahedra of a segment that have a bor-
der to the 0-segment store an index-triple(si , ti ,ci) as
usual that points into the 0-segment withs0 = 0 andti
as the triangle index.ci can be 0 or 1 and points to one
of the two adjacency index-triples of the triangle.

When a segmentsreplaces another segmentr, it must
update the 0-segment as follows. All border tetrahedra
of s are traversed. At least one of the four adjacency
index-triples of these tetrahedra point to a trianglet in
the 0-segment (the other index-triples point to tetrahe-
dra insides itself). The index-triple oft points to the
segmentr and must be replaced by the index-triple of
s, i.e. (si , ti ,ci) wheresi = s, ti is the index of the bor-
der tetrahedron andci is the local index of the opposite
vertex withinti , see also figure 7.

a) b)

Figure 7: Instead of storing the index-triple of the neighbor-
ing tetrahedron at the border of two segments (a), the index of
the triangle in the0-segment is stored (b).

In order to find all border tetrahedra fast, they are
stored before all other (inner) tetrahedra in the file. So
iterating all border tetrahedra can be accomplished by
iterating over all tetrahedra until a non-border tetrahe-
dron is found.

The 0-segment does not need to exist at the construc-
tion phase. It must exist only at run-time when seg-
ments are to be exchanged very fast and can be com-
puted once after (or before) the construction phase.

6 VIEW-DEPENDENT RENDERING
In order to adapt the mesh to current viewing and classi-
fication parameters, we need to decide which segments
of the segment front must be coarsened (replaced by the
parent) or refined (replaced by the children). Therefore,
the following values are stored with each segment

• The histogramH of the attribute values (which is a
lookup-table of resolutionN with normalized en-
triesHi ∈ [0,1]), and

• A look-up tableE of the same resolutionN which
specifies the maximal error that the segment con-
tains for the according attribute value, and

• The (axis aligned) bounding box.

The user can specify a maximal field errorεmax.
For each frame, the segment front is traversed. Every

segment of the front is marked by the tags COARSEN,
REFINE, and NOTHING that help later to adapt the
mesh:

1. If the bounding box is outside the view-frustum
and if the sibbling exists, mark as COARSEN, else

2. Compute the averageS = ∑N
i HiEiαi where the

sum runs over all histogram values,Hi is the (nor-
malized)i-th histogram value,Ei is the according
error andαi is the according classified opacity.

If S> εmax, mark as REFINE, else

3. Mark as NOTHING.

After all segments of the front are marked, the front
is traversed again and every segment is adapted:

1. If a segment is marked as REFINE, it is replaced
by its children.

2. If a segment and its sibbling are marked as
COARSEN, both are replaced by their parent.

The histogramH as well as the look-up tableE
are computed during the construction of the multi-
resolution model. Every edge collapse introduces a par-
ticular error for a scalar field attribute which is stored in
the look-up tableE if it is greater than the already stored
error.

A simple LRU queue keeps track of the mapped seg-
ments. We refer the reader to the more elaborated
caching methods of for instance [YLPM05].

7 RESULTS
We implemented the technique with memory mapped
files which are a operating system opportunity for mem-
ory allocation such that parts of a file can be directly
mapped into memory. The operating system performs
all necessary swapping.

Journal of WSCG 134 ISBN 1213-6972 ISBN 80-86943-09-7

Name # Vertices # Tetra # Segments Min Vertices Max Vertices Min Tets Max Tets Time
per segment per segment per segment per segment hh:mm:ss

Seaway 102,165 524,640 18 3,050 5,989 17,382 38,929 0:00:10
Fighter 256,614 1,403,504 48 3,175 5,078 21,648 31,660 0:00:15
Rbl 730,273 3,886,728 131 2,714 6,599 17,378 36,284 0:00:26
F16 1,124,648 6,345,709 212 2,874 6,169 26,104 37,087 0:00:58

Table 1:The properties of the datasets and the timings for the construction of the segmented mesh from the original mesh. The
octree was steered to contain at most 5,000 vertices per leaf node.

So if a segments replaces another segment, our im-
plementation calls the operating system to map the parts
of the file that correspond tos into the memory. We
found that the operating system (we use Windows XP)
needs nearly constant time to map a segment if the mesh
part has been accessed some time before due to caching.
However, sometimes the caching misses and delays of
at most one second may occur.

The frame rates depend mainly on the power of the
volume renderer that uses preintegrated projected tetra-
hedra. Because the size of the segment front is small,
the costs for checking if a segment can be refined or
coarsened, are neglectable. We experienced frame rates
of about 3-4 frames per second with a workload of
about 250,000 tetrahedra. We can render the F16 model
interactively which is impossible for the full resolution
mesh (it would take at least 6 seconds to render a single
frame).

In average, 80% of the time of a frame is used by the
volume renderer whereas 16% are used for reloading
segments (file IO) and 4% are used for segment adja-
cency adaption (measured average values for the NASA
Fighter dataset, the other datasets perform similiar).

The construction timings of the segmented meshes
(section 3) are shown in table 1. Most of the time is
needed for file IO. For the Rbl dataset, for instance, the
IO to write the mesh to disc needed 20 seconds (out of
the 26 seconds total construction time).

The main time was spent to simplify the meshes and
to construct the hierarchy, see table 2. Although the
timings do not compare to the (much faster) timings
of Lindstrom [VCL+05], we differ from Lindstrom be-
cause we need to store all segments and do not use the
randomized edge collapses.

Furthermore, the file sizes are huge because we store
each segment in a raw format such that it is ready to be
mapped to memory.

Name # Tetra in Time file size
base mesh hh:mm:ss [MB]

Seaway 18,763 0:13:47 67
Fighter 30,042 0:19:23 101
Rbl 259,363 0:31:05 349
F16 84,246 1:08:23 514

Table 2:The simplification timings and the sizes of the stored
multi-resolution files.

8 CONCLUSION AND FUTURE
WORK

We presented an out-of-core data structure that enables
to simplify a tetrahedral mesh with a small memory
footprint. The segments are constructed by combining
leaves of an octree such that the segments contain sim-
iliar parts of the mesh.

A multi-resolution hierarchy is built based on the seg-
ments where pairs of segments are merged and sim-
plified. The segments connect to each other using the
0-segment. It allows for the multi-resolution mesh
to adapt its adjacancy information efficiently which
is mandatory for tetrahedral sorting algorithms like
MPVO.

The multi-resolution model is included into a direct
volume rendering frame work that adpats the mesh to
viewing and classification parameters using a histogram
of attribute values and errors.

Future work should make use of a compression
scheme for the segments in order to shrink the file sizes
of the models. Furthermore, more elaborated segmenta-
tion techniques that cluster vertex data based on spatial
density and attribute values can be used.

ACKNOWLEDGEMENTS
The authors would like to thank Udo Tremel from
EADS Military Aircraft for the beautiful F16-like sim-
ulation data, and Uli Bieg from the University of Tübin-
gen for the mesh of the Burdigalian Seaway. This work
is supported by EC within FP6 under Grant 511568
with the acronym 3DTV. This work has been funded
by the SFB grant 382 of the German Research Council
(DFG).

REFERENCES
[CCM+00] P. Cignoni, D. Constanza, C. Montani, C. Rocchini, and

R. Scopigno. Simplification of tetrahedral meshes with accu-
rate error evaluation. InProceedings of the conference on IEEE
Visualization ’00, pages 85–92, 2000.

[CDFL+04] P. Cignoni, L. De Floriani, P. Lindstrom, V. Pascucci,
J. Rossignac, and C. Silva. Multi–resolution modeling, visu-
alization and streaming of volume meshes.Eurographics ’04
Tutorial Notes, 2004.

[CGG+04] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio
Marton, Federico Ponchio, and Roberto Scopigno. Adaptive
tetrapuzzles: efficient out-of-core construction and visualiza-
tion of gigantic multiresolution polygonal models.ACM Trans-
actions on Graphics, 23(3):796–803, 2004.

Journal of WSCG 135 ISBN 1213-6972 ISBN 80-86943-09-7

a) b) c) d)

Figure 8: This model is used for a CFD simulation of a F16-like aircraft and contains about 6 million tetrahedra. Figure (a)
shows the full resolution mesh and (b) shows a zoom into the full resolution mesh. Note how the size of the tetrahedra varies
which needs to be captured by the segmentation. Figure (c) shows how the mesh is adapted to the viewpoint in the volume
rendering (d).

a) b) c) d) e)

Figure 9: The NASA fighter dataset (a-c) shows a fighter in a wind tunnel and contains 1.5 million tetrahedra. The full
resolution mesh (a) is adpated to the viewpoint and the classification (b) in order to render picture (c) with 250,000 tetrahedra
interactively. The Rbl dataset (d) is a portion of an endoplastic reticulum in a cell. Its 3.8 million tetrahedra are simplified to
260,000 tetrahedra using the segmentation in (d). Picture (e) shows a zoom to an adaption of the mesh.

[CL03] Y. Chiang and X. Lu. Progressive simplification of tetra-
hedral meshes preserving all isosurface topologies. InCom-
puter Graphics Forum (Special Issue for Eurographics ’03),
volume 22, pages 493–504, 2003.

[CM02] Prashant Chopra and Jörg Meyer. Tetfusion: an algorithm
for rapid tetrahedral mesh simplification. InProceedings of the
conference on Visualization ’02, pages 133–140, 2002.

[CMRS03] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno.
External memory management and simplification of huge
meshes. IEEE Transactions on Visualization and Computer
Graphics, 9:525–537, Nov 2003.

[DDFM+04] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo,
D. Sobrero, and N. Sokolovsky. A compact data structure for
level–of–detail tetrahedral meshes. Technical report, Univer-
sity of Genova, 2004.

[GI03] Stefan Gumhold and Martin Isenburg. Out-of-core compres-
sion for gigantic polygon meshes. InACM Transactions on
Graphics, volume 22, pages 935–942, 2003.

[GZ05] Michael Garland and Yuan Zhou. Quadric-based simplifica-
tion in any dimension.ACM Transactions on Graphics, 24(2),
2005.

[Hop96] Hugues Hoppe. Progressive meshes.Computer Graphics,
30(Annual Conference Series):99–108, 1996.

[IL05] Martin Isenburg and Peter Lindstrom. Streaming meshes. In
IEEE Visualization 05, pages 231–238, 2005.

[KE00] M. Kraus and T. Ertl. Simplification of nonconvex tetrahe-
dral meshes.Electronic Proceedings of NSF/DoE Lake Tahoe
Workshop for Scientific Visualization, 2000.

[KQE04] M. Kraus, W. Qiao, and D. Ebert. Projecting tetrahedra
without rendering artifacts. InProceedings of IEEE Visualiza-
tion ’04, pages 27–34, 2004.

[KSE04] T. Klein, S. Stegmaier, and T. Ertl. Hardware–accelerated
reconstruction of polygonal isosurface representations on un-
structured grids. InProceedings of Pacific Graphics ’04, pages
186–195, 2004.

[MHC90] N. L. Max, P. Hanrahan, and R. Crawfis. Area and vol-
ume coherence for efficient visualization of 3d scalar functions.
Computer Graphics (San Diego Workshop on Volume Visual-
ization), 24(5):27–33, 1990.

[PH97] Jovan Popovic and Hugues Hoppe. Progressive simplicial
complexes. InSIGGRAPH, pages 217–224, 1997.

[RKE00] S. Roettger, M. Kraus, and T. Ertl. Hardware–accelerated
volume and isosurface rendering based on cell projection. In
IEEE Proceedings Visualization ’00, pages 109–116, 2000.

[RO96] Kevin J. Renze and James H. Oliver. Generalized unstruc-
tured decimation.IEEE Computer Graphics and Applications,
Nov 1996.

[SG98] O. G. Staadt and M. H. Gross. Progressive tetrahedraliza-
tions. In Proceedings of IEEE Visualization ’98, pages 397–
402, Oct 1998.

[ST90] P. Shirley and A. Tuchman. A polygonal approximation to
direct scalar volume rendering.ACM Computer Graphics (San
Diego Workshop on Volume Visualization), 5(4):63–70, 1990.

[VCL+05] Hyu Vo, Steven Callahan, Peter Lindstrom, Valerio Pas-
cucci, and Claudio Silva. Streaming simplification of tetrahe-
dral meshes. Technical report, LLNL technical report UCRL-
CONF-208710, 2005.

[Wil92] Peter L. Williams. Visibility-ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103–126, 1992.

[YLPM05] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-oblivious mesh layouts. InACM Transactions on
Graphics (SIGGRAPH), pages 886–893, 2005.

Journal of WSCG 136 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf
	Introduction
	Previous Work
	Overview
	Boundary Probability
	Neighbourhood Collection
	The Angle Criterion
	The Halfdisc Criterion
	The Shape Criterion
	Combining the Criteria
	Normal Estimation

	Boundary Loops
	Boundary Coherence
	Loop Extraction

	Results and Conclusions

