
Modeling Solids and Surfaces with Sketches:
an Empirical Evaluation

Manuel Oliveira Vladimiro Colaço Joaquim Jorge Manuel Fonseca

Departamento de Engenharia Informática, IST/UTL
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

oliveira@syscog.pt vladimiro.colaco@megamedia.pt jorgej@acm.org mjf@ist.utl.pt

ABSTRACT

This paper presents and evaluates a simple editor for modeling solids and surfaces. The
editor uses sketches and gestures as the main interaction paradigm. We want to show that
sketch-based interaction for creating 3D scenes is more natural and intuitive than conven-
tional approaches.

Keywords: 3D Scene Modeling, Sketch-based interaction, Usability testing

1. INTRODUCTION
Creating 3D scenes using conventional applica-
tions based on the WIMP (Windows, Icons,
Mouse and Pointing) paradigm, is mostly a
hand and unusual task. Nearly all direct-
manipulation based applications use too many
menus with too many options, making their use
less intuitive and the interactions tedious and
time-consuming. To overcome this problem we
developed a 3D-scene editor based on sketches.
The created scenes can be saved in Quake
format. Our application uses the paper and pen-
cil metaphor, offering a set of gestures as the
principal way of interaction. Gestures are drawn
using a pen and a digitizing tablet expressing
graphic primitives (e.g. cones, spheres, etc.) or
commands such as delete, copy, etc. We intend
to show that interaction techniques based on
sketches in drawing applications are faster and
more intuitive than menu- and forms- driven
interfaces. To this end we have conducted us-
ability tests of our prototype comparing its per-
formance with more conventional approaches.

2. SKETCH-BASED INTERFACE
Sketch-based interfaces are organized around
using gestures and drawings produced using a
pen and a digitizing tablet. Individual gestures
and drawing commands are identified using a
shape recognizer [Fonse00]. Appendix A lists

the figures and gestures supported by the rec-
ognizer. Drawing commands create solid primi-
tives as a combination of gestures with a speci-
fied order and semantics (e.g. to create a cylin-

der we draw a circle and then a line staring at
the center of the circle). These define the syntax
of a visual language used to create three-
dimensional drawing primitives and executing
commands, some of which are exemplified in
Figure 1. The size of the shapes and the length
of lines thus sketched define attributes of new
primitives to be created (e.g. height, width, ro-
tation, position, etc.) which translates to signifi-
cant savings in commands and interactions as
compared to more conventional approaches. We
call this feature calligraphic 3D iconic input.

Figure 1: Sketching solids

The editor supports the creation of simple sol-
ids, such as Cubes, Spheres, Cylinders,

Cones, Prisms and Pyramids, just by
sketching combinations of gestures. The main
attributes of the solids are defined when they
are created, without the need to invoke the
usual boring menus. There are sets of opera-
tions that can be performed on solids, such as
copying, deleting, changing color, cutting, ap-
plying textures, grouping, etc.

We use natural and intuitive gestures to perform
these operations usually bearing a close mne-
monic relation with the semantics of the opera-
tions we have in mind. For example, we use
hand-drawn "C" to signify Copy command or a
"WavyLine" representing a sewing operation to
issue a Grouping command. This way, rather
than wasting our time searching for options on
menus or trying to remember shortcuts, we just
have to sketch the commands. Furthermore,
these sketch-based commands go a bit further
than direct manipulation techniques, because
they implicitly select the solid to apply the op-
eration to, as we can see in Fig. 2. We can thus
see that gestures are more expressive than con-
ventional commands, because they can a) spec-
ify the action to be performed b) additional ar-
guments such as geometry attributes and c) the
object or objects upon which the action is to be
performed in one single interaction. This ex-
pressiveness make gestures and sketches a bet-
ter match for drawing-type applications than
conventional direct manipulation environments,
where the syntax of the interface gets in the
way.

Our editor also allows creating three-
dimensional surfaces from free-hand two-

dimensional contours. After specifying the con-
tour, we can modify surfaces and deform them
by pulling points as depicted in Figure 3. We
can also cut surfaces, by drawing a cutting line
or even the application of a fractal roughing
method to emulate "real" terrain. Finally, we
can undo destructive operations applied to sol-
ids or surfaces, such as delete, cut or roughing,
by drawing a cross over the object, as illus-
trated by Figure 4.

3. IMPLEMENTATION DETAILS
Our editor was developed in C++ under Ms/
Windows. We used the CalI library for recog-
nizing commands and 2D primitives [Fonse99].

We use the OpenGL™ graphics library, and the
OpenGL Utility Toolkit [Woo97, Kilg96] to
create and display graphical objects and sim-
plify a few direct-manipulation commands, e.g.
picking and resizing three-dimensional objects.

Creating and deforming surfaces uses Delaunay
triangulation to describe adjacencies and main-
tain surface consistency. We use the Super De-
launay Library [Kornmann00], to support these
operations..

Figure 3: Creating and deforming a surface Figure 2: Grouping solids using one gesture

Figure 4: Cutting surfaces and undoing

4. USABILITY STUDY
To measure advantages and disadvantages of
our editor we made a usability study involving
nine users without any experience in this do-
main. We divided the users into two groups,
one used a tablet with a built-in display and the
other used a simple tablet. Both groups did the
same experimental procedure. First, they an-
swer a written inquiry where they have to de-
fine a vocabulary for a calligraphic domain. We
want to notice that users did not have any pre-
vious contact with the application. A second
phase was used to get users acquainted to our
editor and to the conventional editor we used to
compare. Third, we ask users to perform a set
of steps that lead to clear values, allowing the
withdrawal of results on which the conclusions
are based. Finally, they answer a second written
inquiry, in which we asked them to compare
their model with the application's and to grade a
set of items. This study allows the extraction of
results of two different kinds, one is the number
of errors and time spent per operation, and the
other is users' feedback, based on their grades
to a set of items such as intuitiveness and sim-
plicity of the operations offered.

5. RESULTS
The analysis of the first questionnaire revealed
that users are quite unanimous about the way to
represent simple solids. The test itself uncov-
ered some interesting results. For instance, us-
ers made five times more errors with the simple
tablet than with the other. Another interesting
result is the gain of experience during the use of
the editor. Users take less time to create and
delete objects after some experience. We also
noticed that the creation of surfaces using the
tablet with display is far less time-consuming
than the conventional methods. Comparing our
editor with a map-building tool (BSP) shows
that the latter is better for regular scenes ori-
ented along the axes. Nevertheless, our editor
has the user preference, as far as the global in-
tuitiveness is concerned. The second inquiry
revealed that users appreciated the generality of
supported operations, as well as the simplicity
of sketch-based edition. It also revealed that
there are some problems to solve, such as, a

better navigation method for the camera and the
implementation of spatial constraint satisfaction
techniques to easy the process of combining
objects within the scene.

6. CONCLUSIONS
As seen, the results are quite good and the users
revealed satisfied with the generality of the as-
pects concerning the calligraphic model and
this editor, in particular. However, a few items
are still blurring these results and these would
naturally lead to desirable new functionality,
like the inclusion of restriction satisfaction al-
gorithms and the inclusion of several simulta-
neous views to solve the lack of three-
dimensional assistance.

7. ACKNOWLEDGMENTS
This work was supported in part by Portuguese
Science Foundation (FCT).

REFERENCES
 [Fonse00] Fonseca, M. J. and Jorge, J. A. Us-

ing Fuzzy Logic to Recognize Geometric
Shapes Interactively. In Proc. of the FUZZ-
IEEE 2000, San Antonio USA, May 2000.

[Fonse99] Fonseca, M.J., CalI: A Software Li-
brary for Calligraphic Interfaces, 1999,
http://immi.inesc.pt/~mjf/

[Igara99] Igarashi, T., Matsuoka, S., Tanaka,
H., Teddy: A Sketching Interface for 3D
Freeform Design, University of Tokyo, To-
kyo Institute of Technology, SIGGRAPH 99,
1999.

[Kilg96] Mark J. Kilgard, The OpenGL Utility
Toolkit (GLUT) – Programming Interface –
API Version 3, Silicon Graphics, Inc., Nov
13, 1996

[Kornmann00] David Kornmann, “The Super
Delaunay (Indexed) Library” (SDI),
http://www.iki.fi/~david

 [Watt93] Alan Watt, 3D Computer Graphics,
second edition, Addison-Wesley, 1993

 [Woo97] Woo, M., Neider, J., Davis, T.,
OpenGL® Programming Guide, Second Edi-
tion, OpenGL Architecture Review Board,
Addison-Wesley, 1997.

APPENDIX A: 2D SHAPES AND GESTURES RECOGNIZED

Figure 1: Figures and Commands Recognized by the CalI library

