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ABSTRACT
The Metropolis Light Transport algorithm generates physically based images with superior image quality than
classical ray tracing. Although it is trivially parallelizable on GPUs by running N MLTs, the performance on
current graphics hardware is below par. One of the main problems is the set of incoherent paths due to the inde-
pendent Markov chains. Since each MLT generates full paths and mutates them sequentially, we construct totally
incoherent rays which in negatively affects the performance on the GPU. By using a novel speculative variant of
the Metropolis algorithm we increase the similarity of paths and achieve higher coherence. This decreases the
computation time significantly. Further, we improve memory access by optimizing the data layout to better utilize
coalesced access.

Keywords
global illumination, parallel algorithms, markov chain monte carlo

1 INTRODUCTION
Todayâs standards in generation of high-quality images
are based on ray tracing methods. Classical ray trac-
ing [Kaj86] and its extensions have the ability to gener-
ate high-quality images with physically correct lighting
and shading. Due to the algorithms nature, only visible
results are calculated. In contrast to brute-force raster-
ization approaches, Ray tracing depends only logarith-
mically on scene complexity [WPS+03].

The emergence of massively parallel computing de-
vices with commodity graphics hardware has led to
increased research in the field of real-time raytracing.
Modern GPUs can handle several hundred threads si-
multaneously. Since several years, the performance of
commodity hardware (e.g. Desktop PCs) is suitable
enough for real-time raytracing approaches [RSH05].

Extending classical ray tracing, the path tracing ap-
proach leads to significant improvements of visible im-
age quality due to its physically-based rendering ap-
proach. Especially bi-directional path tracing and the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Equal time comparison (10 minutes) of
our speculative Metropolis Light transport (top) with
a naive parallelization (bottom) running on a GeForce
GTX Titan. The error images denote high errors in red,
medium in green and low in blue. Our approach clearly
improves the convergence rate and reduces the overall
error. The image was generated with a speculative tree
depth of three.

Metropolis Light Transport (MLT) algorithm have build
upon the ray tracing idea [Vea97, VG97]. These tech-
niques behave highly parallel due to the independent
nature of simultaneously traceable rays [PH10].

We show that the one of the main problems of MLT
on the GPU, the highly incoherent path samples, can
be mitigated by a different parallelization strategy. In
addition to performing N independent MLTs, we pro-
pose a speculative mutation algorithm. This reduces the
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overall incoherence of candidate paths and leads to a
reduced divergence and better memory access patterns
inside the warps and therefore a higher overall perfor-
mance.

Figure 1 shows an equal time comparison on a GeForce
GTX Titan after 10 minutes with a resolution of 1920×
1080. For the speculative MLT, a tree depth of 3 was
used. The overall convergence rate is improved not only
by the fact that more mutations per pixel are performed,
but also since each Markov process performs three steps
in a single iteration.

The main contribution of this paper is an efficient par-
allelization of the MLT algorithm on the GPU using
CUDA. In the following, we review existing work in
the area of GPU-based real-time ray and path tracing
(chapter 2), give a short recap on classical MLT (chap-
ter 3), describe how the MLT can be parallelized using
speculative mutations (chapter 4 and 5), show results
from our experiments (chapter 6) and give a short out-
look on limitations and further possible improvements
(chapter 7).

2 RELATED WORK
With the advent of programmable graphics chips,
global illumination algorithms were implemented
on the GPU. The first GPU-based path tracer was
published in 2002 by Purcell et al. [PBMH02]. Much
work has been done since these times, including topics
like efficient ray traversal [AL09, AK10, Gut14] and
ray compaction or sorting [GL09].

Implementing the path tracing algorithm on the GPU
has lead to new problems. Since path tracing, Bi-
Directional Path Tracing and the Metropolis Light
Transport (MLT) make use of Monte Carlo sam-
pling methods, their behavior is stochastic in nature.
Stochastic sampling lets rays terminate after different
path lengths and therefore leads to incoherencies in the
workload of each SM on the GPU. This was partially
solved by restarting terminated rays [NHD10]. Inco-
herent branching and memory access lead to reduced
performance on modern GPU hardware [ALK12].

Segovia et al. analyzed possibilities to adapt the MLT
algorithm for SIMD execution on general purpose
CPUs [SIP07]. They found out that proposing multiple
sub path mutations at once during the mutation step
increased parallel SIMD execution feasibility. They
implemented the Multiply-Try Metropolis algorithm
(MTM) [LLW00] to generate a bunch of m mutation
candidates during the mutation step for a given MLT
sample. These candidates form sub paths for the sam-
pled MLT path that are highly coherent. On the GPU
this might also look promising since tracing coherent
rays better utilizes the current hardware architecture
[ALK12]. The time required per mutation however
doubles due to the additional reference set. In addition,

each of these paths only contributes a smaller fraction
to the image, i.e. 1

m on average.

The traditional MLT implementation, described by
Veach [Vea97, VG97], directly mutates the path
vertices. While this might seem straightforward, the
implementation is very complicated. Therefore, Kele-
men et al. [KSKAC02] proposed to define the Markov
process in terms of the random numbers that would be
used in bi-directional path tracing. Despite importance
sampling, this approach produces images with slightly
lower quality than the original MLT. An alternative
strategy is described by Hachisuka et al. [HKD14].
By combining Markov Chain Monte Carlo (MCMC)
sampling with Multiple Importance Sampling (MIS),
they further decrease variance and achieve results of
similar or even better quality than the original MLT.
In our work, we use this combination as it has several
advantages due to the way it generates samples.

3 METROPOLIS LIGHT TRANSPORT
The original Metropolis Light Transport algorithm
[Vea97] extends the idea behind bi-directional path
tracing (BDPT). It connects paths between light
sources and the virtual camera lens to calculate the
energy that flows between the light source and the
objects and eventually reaches the virtual sensor. While
this approach is similar to BDPT, the way paths are
generated is different.

MLT first generates a path x that starts at the light
source. The path then is extended by a series of ver-
tices x0,x1, . . . ,xk for a length k ≥ 1 [VG97]. Each ver-
tex lies on an arbitrary surface and receives energy from
the light source through the path. The exact direction
for a new path segment is calculated using Monte Carlo
sampling. Once a path that successfully connects the
light source and the virtual sensor is found, it serves as
a starting point for random path mutation.

During path mutation, the algorithm generates a
Markov chain of path mutations X0,X1, . . . ,X i. Each
mutation X i is the result of a random walk permutation
of one of the vertices of the direct predecessor X i−1.
The mutation strategy only uses the direct predecessor
as a start for the next mutation, ignoring all earlier
mutations. Each new mutation is the result of a
Metropolis-Hastings sampling in local path space.

For each mutation X ′i, an acceptance probability func-
tion a(y|x) evaluates the chance that y will be X ′i if
x = X i−1. If X ′i is accepted, it becomes X i, otherwise
X i−1 will be kept.

After the mutation has finished (either with acceptance
or not), the contribution of the new path is calculated
and added to the corresponding pixel in the image
plane. Each pixel is sampled by a number of n
mutations, with example values of 250 [VG97].
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The main advantage of the MLT is the local behavior
of the mutations. Once a path with a certain contri-
bution has been sampled, each mutation will at first
be in the neighborhood of the original path. This in-
creases performance and quality for problematic scenes
where light has to travel mostly indirect, for example
the Sponza scene where the light source is outside the
atrium and only can enter through the open ceiling.

When trying to implement a parallel MLT algorithm,
the main problem of the classical MLT is the fact that it
randomly walks through path space. So when running
N MLTs in parallel, they usually sample completely dif-
ferent areas of the path space at each point in time. This
is especially problematic for GPU-based implementa-
tions as coherent processing is critical to maintain high
performance [AL09].

3.1 Primary Sampling Space MLT
Kelemen et al. [KSKAC02] proposed a novel muta-
tion strategy for MLT path mutation that operates in the
primary sampling space (PSSMLT). The basis is a bi-
directional path tracer for which the random numbers
are generated by a Markov chain. Thus the state itself
is a set of random numbers that were used to gener-
ate the path. This can be seen as a single point ui in a
high dimensional – or possible infinitely dimensional –
space. The mapping is shown in Figure 2.

���

���

�����

�����

Figure 2: Primary sampling space MLT. Every multi-
dimensional sampling point ui is mapped to a path X i.
Similar points map to similar paths.

Mutations are thus simply local or global movements
of this point, where large changes – i.e. generating new
random numbers – correspond to the original BDPT.
This has three advantages. First, any multi-dimensional
random number produces a valid path, where directly
changing the path vertices often produces invalid paths.
Second, similar sample points produce similar paths
which can be used to control the magnitude of path
change. And finally, the mutations can easily be made
symmetric which removes one of the more complicated
terms for computing the acceptance probability.

While all these significantly ease the implementation
and reduce the memory that is needed to store the path
information, the resulting quality is slightly lower than
that of the original MLT. One of the reasons is that
BDPT connects the eye and light path at all vertices.
In combination with the fact that very often the ver-
tices at the end of the eye and light subpath cannot be

connected, this means that the same contribution would
have been made by a shorter path that had required less
computation time.

3.2 Multiplexed MLT
An improvement of this approach is the Multiplexed
MLT (MMLT), where the mapping from the random
numbers to path space is not unique. Instead of con-
necting all vertices, only the end points of the eye and
light path are connected. For a fixed path length of k,
there are thus k + 2 possible mappings of the random
numbers to a path. The eye path length needs to be
chosen between 0 to k + 1 vertices and the light path
contains the remaining vertices. This is done using a
tempering parameter t that is also selected using the
same Markov chain as for the random numbers. The
mapping from (u, t)i to X i is shown in Figure 3.

���

��, � �

��, � ���

�����

Figure 3: Multiplexed MLT. An additional tempering
parameter t is used to determine the length of the eye
and light subpath. Only the end points are connected.

In contrast to the PSSMLT, every edge that was traced
is used to calculate the contribution. If the end points
cannot be connected, e.g. because one of the surface
normals points away from the connecting edge, the path
contribution becomes zero. This means that such a path
is never accepted and the MLT continues its search from
the previous path X i−1 that had a contribution. The
same holds for a path with occluded connecting edge.
Thus mostly paths where every edge transports energy
are sampled. This means that the number of unnec-
essarily traced rays is reduced compared to PSSMLT.
In the end, the method produces results that are com-
petitive with the original MLT with respect to peak
signal noise ratio. The simple mapping from multi-
dimensional points to valid paths has however a signif-
icant advantage as we will discuss in the following.

3.3 Problem Statement
Both of these approaches share the property that sim-
ilar random numbers generate similar paths. Thus the
coherence between neighboring threads that handle dif-
ferent Markov chains can be increased if they are based
on similar random numbers. Simply using N indepen-
dent Markov chains however leads to samples that are
distributed throughout the sampling space.
One possibility would be to sort the paths according to
their random numbers but this adds a significant over-
head that is not easily alleviated by the improved co-
herency. Using Multiple-Try mutations also generates
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similar paths but adds the overhead of generating a ref-
erence set and reduces the contribution of each path.
If m tries are generated, the contribution of each is ex-
pected to be 1

m . Another possibility would be to gener-
ate a set of mutations from the current state and succes-
sively test them until the first one is accepted [BJB10].
While this reject chain (RC) sampling is a good strategy
for Markov Chains with low acceptance probability, all
MLT variants try to achieve an acceptance rate close to
1.

If we use a PSSMLT or MMLT, the mutation itself does
not depend on the actual path but only on the random
numbers that define it. Thus we can generate more than
a single mutation – and their corresponding paths – in
parallel. Instead of only sampling the reject chain, we
can sample all possible paths up to a depth of d.

4 SPECULATIVE MLT
The main idea behind the speculative MLT (SMLT) is
to simultaneously and speculatively evaluate possible
mutations from a candidate set. To this end, we need
to perform three steps: First, we generate the sampling
points in primary space. Then we evaluate the corre-
sponding paths. Finally, we accumulate the contribu-
tions and choose the final candidate.

Performing all possible mutations up to a given depth d
produces a binary tree of candidates. As global muta-
tions completely change the sampling points in primary
space, we only allow them as first mutation of the lo-
cal tree. All other mutations are always local ones that
produce similar paths. Details on the parallel imple-
mentation are discussed in section 5.1.

Then we trace the paths to compute their transported en-
ergy, probability and weight as discussed in [HKD14].
From this we can compute the local acceptance proba-
bility a(Xb|Xa) for each mutation from Xa to Xb. For a
single mutation step starting at X i−1, we then have the
following iteration:

X i =

{
X ′i : a(X ′i|X i−1)

X i−1 : 1−a(X ′i|X i−1)
(1)

When extending the local mutation tree to a depth of
2, we also need to consider the two possible mutations
from X i−1 to X1

i+1 and from X ′i to X2
i+1. If a1 denotes

the acceptance probability from X i−1 to X i, a2
1 from

X i−1 to X1
i+1 and a2

2 from X ′i to X2
i+1, we can write the

total acceptance probabilities as:

p(X i−1) = (1−a1) · (1−a2
1)

p(X1
i+1) = (1−a1) ·a2

1
p(X i) = a1 · (1−a2

2)

p(X2
i+1) = a1 ·a2

2

(2)

Note that these always sum up to Σp = 1. Equation 2
is illustrated in Figure 4. For larger trees, the probabil-
ity for each candidate is the product of all accept/reject
probabilities from the root down to the leaf level.

 𝑋𝑖−1

1 − 𝑎1
1(  𝑋𝑖−1 →  𝑋𝑖) 𝑎1

1(  𝑋𝑖−1 →  𝑋𝑖)

 𝑋𝑖−1
 𝑋𝑖

 𝑋𝑖
 𝑋𝑖+1
1  𝑋𝑖+1

2 𝑋𝑖−1

1 − 𝑎1
2(  𝑋𝑖−1 →  𝑋𝑖+1

1 ) 1 − 𝑎2
2(  𝑋𝑖 →  𝑋𝑖+1

2 )

𝑎1
2(  𝑋𝑖−1 →  𝑋𝑖+1

1 ) 𝑎2
2(  𝑋𝑖 →  𝑋𝑖+1

2 )

Figure 4: Mutation tree and acceptance probabilities for
a mutation depth of d = 2.

Although we have a candidate set of 2d samples, we
only need to trace the path for 2d − 1 of them. X i−1
is the first-chance rejection and therefore still the same
path as the result from the last iteration. By increasing
the size of the candidate set, we perform d iterations
in parallel on a set of ∼ N

2d−1 MLTs. So in addition to
more efficient tracing, we also expect a lower start-up
bias and faster convergence to the stationary distribu-
tion.

4.1 Variance reduction
Similar to previous methods [VG97, HKD14], we
want to minimize the variance of the generated image.
Therefore, we accumulate the expectation value of all
candidates instead of the chosen path only.

In contrast to computing the acceptance probability, we
need however not only consider the leaf level of the tree
as this would mean to skip all iterations except the last
one. Instead, we calculate the contribution at each level
of the tree, except the root node which was already ac-
cumulated in the last step. In our example with a depth
of 2, the contribution weight w for each path is:

w(X i−1) = (1−a1) · (2−a2
1)

w(X1
i+1) = (1−a1) ·a2

1
w(X i) = a1 · (2−a2

2)

w(X2
i+1) = a1 ·a2

2

(3)

Node that these always sum up to Σw = d, which is 2
in this example. Like in this example, the equations for
deeper trees are similar to the acceptance rates. The
only difference is that – with the exception of a1 as dis-
cussed before – all (1−ai

j) become (2−ai
j).

5 IMPLEMENTATION WITH CUDA
For the implementation of the speculative MLT, we ex-
tended our existing MMLT implementation in CUDA.
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The general process per iteration can be subdivided into
the following parts: First, we generate the candidate
mutations for the given depth d. Then we trace all new
paths. Finally, we compute the contributions and select
the surviving paths.

5.1 Mutation
The mutation step computes one candidate per thread.
From each current path p, we generate a set of 2d − 1
candidates. Each thread loops over the variables of p
in the primary sampling space. For each variable i, we
first load the corresponding one from p. By arranging
the variables in the path buffer at position p+ i ·N, we
access them with a stride of 1 and partial broadcasts.

Then each thread generates a random number represent-
ing the last mutation of variable i. To apply the muta-
tion to all relevant candidates, this number is stored in
shared memory. Starting from the first mutation, they
are applied to all relevant candidates per level using the
original mutation strategy [KSKAC02]. For all muta-
tions except the last one, the random number is fetched
from shared memory. Note that this is similar to a re-
duction using a binary tree in shared memory. The
only difference is that the accumulation is performed
towards the leaves and not towards the root. Figure 5
shows this process for an example depth of 2. Finally,
the new sampling space variables are again stored with
stride 1 access in the larger candidate buffer.

 𝑋𝑖−1

 𝑋𝑖−1
 𝑋𝑖

 𝑋𝑖
 𝑋𝑖+1
1  𝑋𝑖+1

2 𝑋𝑖−1

𝑇1 𝑇2 𝑇3

𝑀2,1 𝑀2,2

𝑀1,1

Figure 5: 3 threads are working on 3 mutations; muta-
tion depth of d = 2.

5.2 Tracing
After generating the candidates in primary sampling
space, we trace the paths using a ray scheduler based
on the wavefront path tracer [LKA13]. First all eye and
light segments are stored in a ray buffer. Then the in-
tersection points for these rays are determined using a
highly optimized trace kernel [Gut14]. The BRDF is
evaluated at the hit points and secondary rays are con-
structed based on the stored random numbers in the
candidate set. Finally, the shadow rays to connect the

path ends are constructed and again traced using the
same trace kernel.
While tracing will be divergent even for coherent paths,
ray construction is mostly non-divergent (except for
rays that exited the scene). Here again, the memory
layout of the candidate set leads to a coalesced stride 1
access into the candidate buffer.
Due to the ray restarting of the trace kernel, the perfor-
mance will gradually increase with the number of co-
herent rays. However, it will level once it reaches the
warp size of (currently) 32.

5.3 Selection
For selection, we could again start one thread per candi-
date and coordinate the work over shared memory. As
we still have a high amount of parallel MLTs, it is how-
ever more efficient to handle each selected path p with
its own thread.
While reading the sample state now has a stride of
2d − 1, the problem can be alleviated for the path con-
tribution. Each candidate path c stores RGB values
for the transported energy multiplied with the weight
from the balance heuristic [HKD14] and a pixel in-
dex for each pixel it contributes to. By combining
this data into a single float4, we only need a sin-
gle memory access and loose fewer bandwidth. The
pixel index is then accessed using the intrinsic func-
tions __int_as_float and __float_as_int.

6 RESULTS
We tested our implementation on an Intel Core i7-3720
quadcore CPU with 16 GB of RAM, paired with an
nVidia GeForce GTX Titan with 6 GB video memory.
As test cases we chose three scenes listed in table 1 to
evaluate different light transport scenarios.

Scene # Triangles # Vertices
Sponza 279,157 193,300
Sibenik 75,284 83,490
Conference 331,179 216,862

Table 1: Number of triangles and vertices per mesh.

Figure 6 shows the ground truth images of the views
we used for the evaluation. These images were gen-
erated using a bi-directional path tracer with 10 mil-
lion samples per pixel with a maximum of 10 bounces
and the pseudo-random Halton sequence. We added a
highly specular banner to the Sponza scene (cosine lobe
with an exponent of 105) to produce caustics and re-
flected caustics. These are especially visible in view 2.
The Sibenik cathedral is illuminated by the light shining
through the windows only, so only few paths contribute
to the image. This is even more the case in the final
example, the Conference scene. Here there is only indi-
rect light coming through the sunblind with at least two
bounces.
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Figure 6: Scenes and views (ground truth images) used
in the evaluation. From left to right and top to bottom:
Sponza view 1, Sponza view 2, Sibenik and Confer-
ence.

Each scene was tested with the same view and a screen
resolution of 1920× 1080 for all of the methods. We
compared the naively parallelized MMLT with our
speculative MLT using different mutation depths and
the reject chain MLT using different chain lengths.
Table 2 shows the number of parallel MLTs N and
the total number of parallel mutations. For the mutate
kernel, we thus launch 1024 blocks with 248 to 256
threads.

# MLTs (N) # mutations
naive 256 ·210 256 ·210

S2 85 ·210 255 ·210

S3 36 ·210 252 ·210

S4 17 ·210 255 ·210

S5 8 ·210 248 ·210

S6 4 ·210 252 ·210

RC2 128 ·210 256 ·210

RC4 64 ·210 256 ·210

RC8 32 ·210 256 ·210

RC16 16 ·210 256 ·210

RC32 8 ·210 256 ·210

RC64 4 ·210 256 ·210

Table 2: Number of parallel running MLTs and the
number of parallel mutations.

The results show an almost linear speedup with the
depth for our speculative parallelization, compared to
the naive approach of using independent MLTs. Ta-
ble 3 and Figure 7 show the linear growth of the per-
formance for both. The main reason for the speedup
is the increase in coherence that directly translates into
a higher trace performance. Once the set of coherent
paths grows beyond the warp size of 32, the perfor-
mance does not increase any more. This is as expected
since packets of at most 32 rays are fetched by the ray
tracer [ALK12].

In addition, we compare the peak signal noise ratio of
the generated images after rendering for 10 minutes in
Table 4. Depending on the scene characteristics, the

Sponza Sponza Sibenik Confe-
view 1 view 2 rence

naive 14.48 9.80 15.92 8.31
S2 15.61 10.44 16.40 8.90
S3 15.67 10.69 16.86 9.07
S4 15.87 10.86 17.11 9.47
S5 16.33 11.09 17.60 9.77
S6 16.42 11.10 17.63 9.78
RC2 15.49 10.36 16.41 8.68
RC4 15.84 10.98 17.51 9.19
RC8 16.89 11.40 18.18 9.65
RC16 17.66 11.99 18.38 10.19
RC32 17.67 12.39 19.24 10.63
RC64 17.76 12.53 19.36 10.64

Table 3: Million mutations per second for the naive par-
allelization, the speculative with depth d (Sd) and reject
chain with length l (RCl).

0%
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10%

15%

20%

25%

30%

1 2 4 8 16 32 64

Sponza view 1 SMLT

Sponza view 2 SMLT

Sibenik SMLT

Conference SMLT

Sponza view 1 RCMLT

Sponza view 2 RCMLT

Sibenik RCMLT

Conference RCMLT

Figure 7: Relative speedup of speculative MLT (SMLT)
and reject chain MLT (RCMLT) compared to naively
parallelized MMLT; on the x-axis are the sizes of can-
didate sets.

best results can be achieved with d = 2 (Sibenik, Con-
ference) to d = 3 (Sponza view 2). With increasing
depth, more paths are wasted and the quality gradually
drops. This is especially true for simple views, where
the acceptance probability is close to 1. In such cases,
e.g. view 1 of the Sponza scene, the naive paralleliza-
tion produces the best results. Note that the reject chain
approach never produces better images in the same time
than the naive one. This is due to the fact that the contri-
bution of the first additional candidates is almost always
below 1

4 and drops exponentially with further ones.

Figure 8 compares the generated images using the best
parallelization for each view with the naive approach.
The error and noise are especially reduced in difficult
cases. These are the reflected caustic in sponza view 2
and the indirect light illuminating the conference scene.
Note that for sponza view 2, neither of them has been
able to converge to the stationary distribution yet, so
the reflected caustic appears slightly too dark in both
images.
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Sponza Sponza Sibenik Confe-
view 1 view 2 rence

naive 28.61 17.27 28.50 12.44
S2 28.47 17.90 28.60 12.50
S3 28.00 18.10 27.64 12.20
S4 27.84 17.88 26.19 11.62
S5 27.56 17.72 24.80 11.09
S6 27.17 17.33 23.29 10.38
RC2 28.29 17.09 26.03 11.59
RC4 26.21 16.43 23.13 10.73
RC8 20.50 15.12 20.24 9.90
RC16 18.76 14.35 17.63 9.10
RC32 17.95 13.99 15.91 8.43
RC64 17.27 14.00 15.45 7.93

Table 4: Peak signal noise ratio comparison of differ-
ent parallelization strategies after rendering 10 minutes.
The best is marked in bold.

Figure 9 shows an equal time comparison for specula-
tive tree depths from 1 (naive) to 6. While the error
in the reflected caustic is decreasing with higher tree
depth, the overall error increases due to the decreasing
weights of deeper paths. This clearly shows that deeper
trees are suitable for paths that are difficult to sample.

7 CONCLUSION AND LIMITATIONS

We have proposed a novel approach for parallelizing the
Metropolis Light Transport algorithm on the GPU. Our
approach successfully utilizes the graphics hardware to
achieve a substantial speedup compared to naively par-
allelized MLT. This is mostly accomplished by evalu-
ating paths that are more coherent. This shows signif-
icantly better performance on GPUs where divergence
in both execution and memory access imposes a severe
penalty.

While our approach could be extended to other
Metropolis sampling algorithms, it requires that the
sample generation and evaluation can be decoupled.
This means that it must be possible to generate the
candidate X ′i without having evaluated the previous
sample X i−1. Therefore, our approach cannot be
applied to the original MLT algorithm where the path
is mutated directly.

Another problem of our approach is that the contribu-
tion of a sample exponentially decreases with the depth.
This leads to an optimal depth of 2 or 3 which in turn
only generated 3 or 7 coherent samples. On the other
hand, paths that are difficult to sample – like reflected
caustics – are better handled with a depth of 5 or even 6,
i.e. 31 or 63 coherent samples. In the future we there-
fore plan to evaluate other sampling strategies to gener-
ate larger sample sets without reducing the contribution
of some paths.

Figure 8: Equal time comparison (10 minutes on a
GeForce GTX Titan) using the naive parallelization
(upper image) and the best method for each (lower
image). The chosen method from top to bottom is:
naive, S3, S2 and S2 (c.f. Table 4). The error images
show high errors in red, medium in green and low in
blue/black.
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ABSTRACT
In this paper, a novel approach is presented for intrusion detection in the field of wide-area outdoor
surveillance such as construction site monitoring, using a rotatable stereo camera system combined with
a multi-pose object segmentation process.
In many current surveillance applications, monocular cameras are used which are sensitive to illumination
changes or shadow casts. Additionally, the object classification, spatial measurement and localization
using the 2D projection of a 3D world is ambiguous. Hence, a stereo camera is used to calculate a 3D
point cloud of the scenery which is nearly unaffected by illumination changes, therefore enabling robust
object detection and localization in the 3D space. The limited viewing range of the stereo camera is
expanded by mounting it onto a rotatable tripod. To detect objects in different poses of the camera, pose
specific Gaussian Mixture Models (GMM) are used. However, changing illumination outside the current
field of view of the camera or spontaneously changing lighting conditions caused by e.g. lights controlled
by motion sensors, would lead to false-positives in the segmentation process if using the brightness values.
Hence, segmentation is performed using the calculated point cloud which is demonstrated to be robust
against changing illumination and shadow casts by comparing the results of the proposed method with
other state of the art segmentation methods using a database of self-captured images of a public outdoor
area.

Keywords
Video Surveillance, Gaussian Mixture Model, Stereo Vision, Object Detection

1 INTRODUCTION
The usage of video systems for surveillance applica-
tions in public, industrial and private domains has
been increasingly popular in the last years. Ongo-
ing technological development led to smarter sys-
tems which enable automatic identification of crit-
ical situations or suspicious objects. The aim of
those so called Intelligent Video-System (IVS) is
to relieve the strain on human security guards of
these systems, because they are typically monitor-
ing multiple screens simultaneously and need to re-
liably detect salient behaviour. However, this is a
challenging task even if they just need to monitor

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

two screens at the same time due to the effects of
fatigue and hence, inattentiveness [LCK13]. IVS
can reduce the cost of video surveillance systems
and increase the productivity at the same time.
The vast majority of current outdoor video surveil-
lance systems uses monocular cameras in which the
process of image segmentation is challenging. The
cameras are sensitive to shadow casts of objects
and (spontaneously) changing illumination condi-
tions. Typical environments of outdoor surveil-
lance are influenced by effects of artificial lights
sources which may be (de)activated spontaneously.
Additionally, the real world position and true size
of detected objects cannot be determined unam-
biguously by using the 2D projection of the 3D
world. Nevertheless, these information may be rel-
evant for surveillance systems e.g. to locate objects
in an area accurately or to track their movement in
the real world. Additionally, objects can be classi-
fied using these informations as e.g. humans, an-
imals or trees to decrease the false-positive object
detection rate.
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In this paper, we present an approach for intrusion
detection in the field of wide area outdoor surveil-
lance, e.g. construction site monitoring by using a
multi-pose object segmentation process combined
with a rotating stereo camera.
The calculated 3D point cloud of the stereo camera
system is used to detect objects. The generation
of this point cloud is nearly unaffected by chang-
ing lighting conditions. For segmentation, a system
pose specific Gaussian Mixture Models (GMM) is
used to detect objects in a wider area without false-
positives caused by changing illumination outside
the current field of view.
It is shown that the 3D-segmentation process by
analysis of distance information instead of the
brightness values, which are very sensitive to
varying illumination conditions, is more robust
in cases of overlapping objects, changing lighting
conditions and shadow casts. The outdoor scene
image datasets generated for this work have been
made available online1.
This paper is structured as following: Section 2
gives an overview of related work on camera surveil-
lance applications. The proposed method for ob-
ject detection using the calculated 3D point cloud
is described in section 3. In section 4 the rotating
stereo system is shown and the segmentation pro-
cess is compared to other state of the art methods.
A conclusion of this paper and an overview about
further developments is given in section 5.

2 RELATED WORK
The field of camera based surveillance systems has
been broadly addressed in the last decades. For in-
stance Haritaoglu et al. [HHD98] presented a sys-
tem called W 4S which uses a stereo camera com-
bined with an intensity based model. They show
that the segmentation process is more robust in
case of overlapping objects using the distance in-
formation instead of the intensity values.
Another approach was presented by Douret and
Benosman [DB04]. They used a network of cameras
for an intelligent traffic control system to retrieve
the height of objects by assuming a plane ground
model. However, Kumar et al. [KMP09] showed
that a missing link between object and ground can
lead to inaccurate position information. There-
fore, they compared the result of their proposed
stereo localization procedure using two pan-tilt-
zoom (PTZ) cameras with a monocular approach.
With the PTZ cameras they are able to determine
the position of objects even when using different

1 https://mux.hs-emden-leer.de/lkl

zoom levels and in case of overlapping objects. This
is realized by using a neural network based inter-
polation method with an offline calculated look-up
table to rectify the images online. However, com-
pared to the rectification process of static stereo
camera systems, this procedure is more computa-
tional expensive.
Nevertheless, because of the flexibility of PTZ
camera and due to the need of observing even
greater areas than actual static and monocular
cameras can cover, much work has been done on
surveillance systems using (dual) PTZ cameras
[KMP09][ZWW10][ZOS13]. However, all of those
systems perform the image segmentation in the
2D space and localize the detected objects in the
world afterwards. The following work will present
a more robust segmentation method based on
the calculated distance information of the stereo
camera. A detailed overview of the current state
of the art of intelligent video systems is given by
Liu et al. in [LCK13].
The main task of a video surveillance system is in-
trusion detection. A robust segmentation of the im-
age into foreground and background is vital for this
task. The problem of image segmentation is widely
discussed in the field of image processing. Due to
this, there are several methods which can be used.
Sen-Ching and Kamath [SCK04] evaluate the re-
sult of Frame Differencing, Kalman Filter, Median
Filter and Mixture of Gaussian (MoG) using an ur-
ban video sequence. They showed that the result
of MoG (Gaussian Mixture Model (GMM) respec-
tively), which was proposed by Friedman and Rus-
sel [FR97] and extended by Stauffer and Grimson
[SG99], outperforms the other methods in many
cases, e.g. outdoor surveillance.
Due to this and because of the insensitivity to lo-
cal movement in the scene, e.g. swaying branches
and adaptation to changing illumination condi-
tions, the GMM is used in section 3.2, combined
with a 3D point cloud. The latter is provided by
a rotating stereo camera realising an even more ro-
bust segmentation, while at the same time covering
a greater area than a static monocular approach
without the computational complexity of handling
PTZ cameras.

3 INTRUSION DETECTION
3.1 Online calibration
Typically, cameras for surveillance applications are
mounted at elevated positions on walls or poles.
This leads to a typical constellation as shown in
Fig. 1. To directly measure the true size of detected
objects, the calculated point cloud using the stereo
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camera needs to be transformed from the cam-
era’s coordinate space C to the world coordinate
space W . This transformation is used to rotate
and translate the point cloud, so that the camera
is virtually located on the ground level and points
straight ahead. An online calibration method is
used in which the user needs to select the ground
of the scenery in the image.

WK Wx

Wz

Wy

Wh

CK
CzCy

Cx

P
n⃗P

Figure 1: Model of a surveillance camera mounted
at a wall or pole looking downwards.

At first, the normal C~nP of the plane (the selected
ground) in the camera’s coordinate space is esti-
mated using a method from Kovesi [Kov00] based
on RANSAC. Then, the rotation CΩW between
C~nP and the vector C~e= [0 1 0]T is calculated with
Rodigues’ rotation formula [Cor11]. Afterwards,
the translation vector CτττW of the camera relative
to the ground can be estimated. Therefore, a me-
dian point x̄ of the point cloud is calculated and
rotated using (1).

x̄′ = CΩW x̄ (1)

At least, the translation vector only consists of the
third part of the rotated median point (see (2)),
because it represents the height of the camera in
the world.

CτττW =

 0
0
−x̄′

2

 (2)

As already stated in the beginning, the system is
able to pan and tilt. Due to this, the calculated pa-
rameters become invalid if the system moves. To
overcome this, the user can define specific poses
ξ1, ..., ξn of the camera system for each of which
the described calibration method needs to be per-
formed once. Hence, a system pose ξi is defined by
(3).

ξi =
[

CΩW
CτττW

]
(3)

3.2 Object detection
In the following, the processing chain (see Fig. 2)
for object detection is described using the previ-
ously estimated parameters for the system poses.
We assume that the stereo camera is calibrated, so

3D point cloud

reconstruct 3D scene

transform (w.r.t pose ξi ) and filter

modified
3D point cloud

segment distance map
using GMM

combine regions
with point cloud

measure and locate

3D objects

rectified 
left image

rectified 
right image

3D regions

regions

Figure 2: Overview of the processing chain for de-
tecting objects based on the rectified stereo camera
images.

we start with the rectified images of the left and
right camera. First, the disparity map has to be
calculated. The Semi-Global Matching (SGM) al-
gorithm proposed by Hirschmüller is an established
method for this task. Based on the disparity map
the 3D point cloud of the scenery is reconstructed.
In the next step, this raw point cloud CP is trans-
formed with respect to the current system pose ξi

from (3) using (4) and the homogeneous coordi-
nates CP̃ of the point cloud CP.

W P = ξi ·
CP̃ (4)

The component of the point cloud representing the
height over the ground with respect to the input im-
age shown in Fig. 3a can be seen in Fig. 3b. Then,
a pre-segmentation step is applied using knowl-
edge about the application environment in order
to remove points outside the application specific
and user defined ranges, e.g. points belonging to
the ground or too far away and hence error-prone
points. In the case shown in Fig. 3a, the codomain
for each axis Wx,y,z is

Wz = {i|(i ∈ R)∧ (0.3≤ i≤ 4)}, (5)
Wx = {i|(i ∈ R)∧ (8≤ i≤ 60)},
Wy = {i|(i ∈ R)∧ (−20≤ i≤ 20)}

to remove points which height over the ground is
smaller than 0.3m, higher than 4m or with a dis-
tance to the camera less than 8m or greater than
60m. The horizontal interval Wy has been selected
to contain the entire field of view. The estimation
of the ranges for i from (5) is shown in section 4.2.

Journal of WSCG

Volume 24, 2016 11 ISSN 1213-6972

No.1



(a)

15
10
5
0
-5
-10
-15
-20

(b)

3.5

3

2.5

2

1.5

1

0.5

(c)
Figure 3: Presentation of the transformation and filtering process using the portion of the point cloud,
which represents the height over the ground in meter. (a) Rectified input image of the left camera, (b)
Raw point cloud, (c) Transformed point cloud using the calculated rotation and translation vector with
points outside the user defined range removed (marked as dark blue).

The result of the point cloud transformation fol-
lowed by the point cloud filtering is shown in Fig. 3c
where the points representing the ground are re-
moved (marked as dark blue).

This filtered point cloud is further segmented using
a Gaussian Mixture Model [SG99], which is an es-
tablished method for this task. Therefore, the state
of a pixel in respect to foreground or background is
modelled by several Gaussian distributions which
is demonstrated in section 4.3.

As already stated in the introduction, instead of
performing the segmentation in 2D space, the com-
ponent of the point cloud representing the distance
to the camera is used as input for the GMM. The
reason for this approach is that the calculated point
cloud is nearly unaffected by (spontaneous) illumi-
nation changes which may occur on construction
sites through lights controlled by motion sensors.
Additionally, due to the ability of the system to
move between specific poses, the illumination of a
scene which is currently not in the camera’s field of
view, can change. This has great impact on GMM
training. Since the GMM would not be able to
adapt the background model to this change if inten-
sity values were used, this would lead to pixel mis-
classification. However, this does not occur when
using the point cloud for the previously mentioned
reason.

The result of the GMM is a binary mask M with
foreground pixels marked as 1 and background pix-
els as 0. By applying a morphological opening, the
noise in the resulting mask is reduced and fore-
ground regions R can be selected using blob colour-
ing. Nevertheless, there is still a chance that re-
gions are selected falsely, due to the noisy mask.
Therefore, small regions are discarded using (6)
with N (a) returning the number of pixels and ρ
as region size criterion. Using the empirically de-
termined value of ρ= 0.005 gives reasonable results.
For each region in R′ the corresponding data of the

3D point cloud P is aggregated, so that we have a
set of 3D regions U, see (7).

R′ = {x| x ∈R ∧N (x)> ρ ·N (M)} (6)
U =

{
P(r) | r ∈R′} (7)

However, it turns out that pixels around the
marked regions are occasionally selected in error.
Hence, those pixels need to be removed to enhance
the subsequent estimation of position and size. A
common statistical method for outlier elimination
is used in which a sorted set of values is divided
into four equal sized groups by determining the
quartiles (Q1,Q2,Q3) of the set, with Q1 as the
median value of the total set, Q2 as the median
value of the lower and Q3 of the higher subset.
Then, the interquartile distance I =Q3−Q1 is cal-
culated which is used to define the so called lower
fence FL =Q2−ηI and upper fence FU =Q3 +ηI
with η as spreading factor. Finally, values outside
the range of [FL;FU ] are considered as outliers
and removed from the dataset.
This method is used to create a set of 3D objects
O by estimating the position L(Ui) and size S(Ui)
of an object Ui.

O = {(L(u),S(u)) | u ∈U} (8)

The position is then defined by the distances to the
optical axis of the virtual left camera in each direc-
tion with L(Ui) = [dx,dy,dz] and the size describes
the width and height of the object S(Ui) = [w,h]
whereas dz = h. In case of the distance in the x
axis the previously described method is applied to
the subset Ui,x which mean value corresponds to
dx. All of those values in Ui,x which are marked as
outliers are also removed from the set Ui, so that
these values are ignored in the following calcula-
tions.
The width of the object Ui is defined as the differ-
ence between the left and right edge of the object.
These edges are estimated by calculating the mean
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of the subsets Ml and Mr of Ui,y with N(Ml,r)≥
0.1ηN(Ui,y), whereas Ml represents the subset for
the left and Mr for the right edge. Additionally
outliers of those subsets are removed using the pre-
viously described approach. This could on the one
hand lead to inaccurate width estimations in case
of high value changes, but on the other hand en-
sures that the edges are not defined by a single
value which might be inaccurate. This procedure
is also used to estimate the height h of an object
whereas the subset Ui,z is used. Finally, dy is de-
fined as the left edge of the object increased by half
the object’s width.
The last step in the processing chain is object track-
ing. Currently, only a naive method is used to com-
pare the currently detected 3D objects with already
known ones. Two objects are considered equal if the
size of the newly detected object is in the range of
two standard deviations from the already known
object’s size measurements and the location differ-
ence of the detected object to the known one is
in the range of two standard deviation from the
known object location changes. For that reason,
each 3D object contains a list of timestamped size
and location measurements.

4 EXPERIMENTS
4.1 Stereo camera system architec-

ture
To develop and evaluate the method presented in
the last section, a dataset of images is required and
this in turn requires a stereo camera system. As
already mentioned in the introduction, the camera
system is motorized to perform pan and tilt
movement. This is accomplished by mounting the
stereo camera, which consists of two monochrome
GigE cameras from TheImagingSource (model
DMK-23GM021) with a resolution of 1280× 920
pixel to a pan/tilt system of Invescience LC as
illustrated in Fig. 4. The pan/tilt actuators are
controlled with a custom application running on a
connected PC.

Stereo Camera

Switch

Gigabit-Ethernet

Host
Pan & Tilt

Tripod

RS232
µC

PWM

MAX232

UART

Figure 4: Architecture of the stereo camera surveil-
lance system.
4.2 Application model
Designing a stereo camera system for a specific ap-
plication or environment is a challenging task. This

is due to the fact that the system is influenced by
various factors, e.g. the baseline width, the im-
age resolution and the elevation of the camera’s
planned location [LSP+10]. Changing any param-
eter of the system directly impacts the field of view
of the stereo system or the precision of the calcu-
lated distance at a pixel [LSP+10]. Furthermore,
the range of disparity values also depends on the
target application. Additionally, determination of
minimum and maximum values of disparity reduces
the search space and processing times. Due to this,
a model was created which is used to simulate a
stereo camera system attached to a wall or pole for
a specific surveillance application (see Fig. 5).
With respect to the given application parameters,
the theoretically calculated disparity D of an ob-
ject at a specific distance Z (blue box in Fig. 5) is
calculated by (9) and the absolute depth estima-
tion error |δZ| is calculated using (10) as stated by
Chang and Chatterjee [CC92].

D = bfx

Z
(9)

|δZ|= bfx

D2 δD (10)

Here, fx is the focal length in pixels, b is the base-
line in meters, D is the disparity and δD is the
uncertainty of the estimated disparity in pixels,
which is assumed to be 1 in the model as a worst
case value. By changing the position of the object,
the relevant disparity range and the theoretical dis-
tance error can be estimated with respect to the
stereo system parameters. Additionally, this model
is used to estimate the application-specific ranges
used in section 3.2 for the pre-segmentation of the
point cloud. This model is made publicly available
on the Mathworks file exchange platform2.

4.3 Demonstration
Using the estimated parameters of the stereo cam-
era, stereo images for evaluation of the proposed
object detection method were acquired. In Fig. 6
the stereo system is shown with a baseline width of
15 cm. The datasets for evaluation were recorded
using a baseline width of 55 cm in order to decrease
the depth error.
The distance value of a specific pixel is representa-
tively monitored over 592 images (see Fig. 7a and
7b). The pixel’s state is modelled using three Gaus-
sian distributions, see Fig. 7c. In Fig. 7b three dis-
tinctive situations are shown which correspond to
Fig. 7d-7f showing objects crossing that pixel.

2 http://mathworks.com/matlabcentral/
fileexchange/55420-stereo-camera-application-model
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X-Limit 0 40
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Object size (w,h,d) 0.4 1.9 0.3

Object position [m] 35 0 0

Camera property

Height [cm] 500

Pole angle [°] 75
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Inner pan [°] 0

Distance range(min,max): (0.834 1067) FOV [hor, ver, diag]: 33.4 25.36 41.11

Figure 5: Model of a stereo camera attached to a wall or pole. Areas in blue and red represents the field
of view of the left and right cameras. Parameters of the system can be changed with the text fields on
the right side. Parameter-dependend informations are shown in the figure.

Figure 6: Stereo system with a baseline width of
15 cm and a motorized tripod head for pan and tilt
movement.

Table 1 shows the parameters of three distribu-
tions over 592 images, sorted by their fitnesses.
The dominant distribution is D1 with a mean of
15.686, variance of 0.084 and a fitness of 3.378 rep-
resenting the background state of the pixel. This
demonstrates the feasibility of robust foreground-
background segmentation using distance informa-
tion and a GMM, therefore enabling the perfor-
mance of object detection using this approach. Ad-
ditionally, it can be seen that D2 represents the
value range of the detected objects. This demon-
strates the ability of the GMM to perform multi-
modal background modelling.

4.4 Evaluation
The method proposed in this paper (in the fol-
lowing referred to as GMMD) is evaluated for use in
the field of outdoor surveillance, e.g. construction
site monitoring, which is influenced by changing
illumination and characterized by a dynamic back-
ground, by comparing it with other state of the art
methods.

Parameter D1 D2 D3

Variance 0.084 1.673 12.352
Mean 15.686 12.904 0.778
Weight 1 0.707 0.367
Fitness 3.378 0.546 0.104

Table 1: Parameters of the three distributions D1,
D2, D3 modelling the selected pixel’s state after
592 images.

A dataset of 3716 timestamped images with a frame
rate of 10 images per seconds is recorded. The
stereo camera system was placed at the first floor
of the Hochschule Emden/Leer covering the cam-
pus as already seen in Fig. 3a. This dataset in-
cludes situations with global illumination changes,
shadow casts and overlapping objects. The first
is caused by manual camera aperture manipula-
tion with varying speed to simulate global inten-
sity changes. From theses images, 15 situations are
manually labelled using the Interactive Segmenta-
tion Tools of McGuiness and O’Connor [MO10] for
the ground truth data. Thereby, even foreground
objects are marked which are already a part of the
scene from the beginning of the sequence and are
more or less static.
The result of the GMMD is compared with the re-
sults of the GMM using the greyscale image of the
left camera (GMM), Frame Differencing (FD) and Me-
dian Filter (MD). The learning rate of the GMMD and
GMM is set to 0.005 because of the image capturing
frame rate. Three distributions are used. The ini-
tial variances of the GMMD and the GMM are set to
0.5 and 0.2 respectively. This is due to the fact
that the distance estimation is assumed to be more
noisy than the grayscale image with values in the
range of [0,1]. Additionally, due to the frame rate
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Figure 7: Results of the background modelling process for one pixel over 592 images. (a) Image showing
the selected pixel. (b) Plot of the distance values, (c) Plot showing the probability of a distance to occur
overlaid with the three distributions of the GMM, (d)-(f) Images of the three distinctive situations.

the FD compares only each fourth image to ensure
movement in the image.
For each of the situations and methods, the
recall and precision value [SCK04] is calcu-
lated to quantify the results of the methods in
respect with their resulting foreground masks
MGMMD,MGMM,MFD,MMD and the ground
truth mask G using (11) and (12) respectively.

Recall(M) = |Mcorrect marked|
|Gmarked|

(11)

Precision(M) = |Mcorrect marked|
|Mmarked|

(12)

The results of the methods are shown in Fig. 8
whereas T is a threshold for classifying foreground
and background pixel with respect to the pixel
value changes. In general, methods performing well
have a high recall and precision value. However, it
is evident that none of the tested methods reach a
recall value greater than 62%, which in some ex-
tend depends on the ground truth masks. This is
due to the fact that static objects are also labelled
as foreground but can not be detected by the tested
methods. The results show the GMMD performing
reasonable well in all situations with an average
precision of 72.8% and a relatively low standard
deviation of 8.5%. No other method has shown be-
havior this robust (see table 2). For instance, the
precision of the GMM has a much higher standard
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Figure 8: Results for the manually labelled images

deviation (28.4%). In Fig. 9 five prominent situa-
tions are shown which describe the behaviour of the
GMM. The situation (3) corresponds to the rightmost
dataset of Fig. 8 with a precision of 5.24% because
of a sudden change in the global intensity which
results in an inverted foreground mask [SCK04].
The proposed GMMD however is unaffected by these
changes and produces a foreground mask with a
precision of 77% and a recall of 37%. The situa-
tions (2) and (5) in Fig. 9 show the classification
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Figure 9: Results of the methods for five prominent situations. (a) Rectified left image, (b) Ground truth
foreground mask, (c) Result GMM, (d) Result GMMD, (e) Result MF, (f) Result FD

of shadow casts as foreground pixels in the case of
the GMM. However, situation (1) and (2) shows an
advantage of the GMM over the GMMD because it even
detects far-away objects.

Recall Precision
Dataset Mean Std. Dev. Mean Std. Dev.

GMM 0.194 0.164 0.551 0.284
GMMD 0.308 0.106 0.728 0.085
MF (T = 0) 0.452 0.086 0.301 0.137
MF (T > 0) 0.008 0.014 0.798 0.220
FD (T = 0) 0.492 0.055 0.109 0.039
FD (T > 0) 0.065 0.050 0.732 0.127

Table 2: Results of the experiment. The results
of MF and FD using a threshold greater zero are
merged.

5 CONCLUSION
In this paper an approach for object detection in
the field of outdoor surveillance for e.g construc-
tion site monitoring was presented which combines
an actuated stereo camera system with camera
pose specific Gaussian Mixture Models (GMM).
A novel processing chain for detection of objects
based on a calculated 3D point cloud and the cur-
rent camera pose was described. Additionally, the

actuated stereo surveillance system is described
and a model is presented for the estimation of
application-specific parameters which simplifies the
stereo camera system design process.
Furthermore, the presented approach is compared
to other state of the art methods using a self cap-
tured image database. With an average precision of
72.84% and a recall value of 30.82% it outperforms
the other methods. Additionally, it was shown that
the proposed method is robust against changing il-
lumination and shadow casts which often occurs
in outdoor surveillance applications like construc-
tion site monitoring even while moving the stereo
camera. However, overexposed pixels cause an in-
complete distance map due to the pixel correlation
process for the disparity calculation and hence lead
to an inaccurate segmentation and the detection
range of the method is limited by the stereo cam-
era’s distance calculation error.
For a more robust identification of objects, the
current naive matching and tracking method need
to be extended in future work. Additionally, for
1280×960 images, the current disparity map calcu-
lation time on a single threaded i7-3770 PC is 0.44 s
per image without hardware acceleration. Follow-
up works on GPU, FPGA [GEM09] or even on CPU
[SLAR14] should lead to a higher number of frames
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analysed per second. Additional performance gains
can be achieved by parallelization of the process-
ing chain presented in section 3.2 using a pipeline
architecture which is typically used in the field of
processor design.
Currently, the ground is assumed to be plane which
is typically not the case in the real world. Hence,
the ground selection phase of the online calibration
process need to be extended to build a more real-
istic model of the ground in order to improve the
object measurement and localization.
Furthermore, the application of the morphological
operation for noise reduction could split up objects
into multiple regions and hence multiple 3D ob-
jects which degrades the object detection rate. In
follow-up works this can be addressed by clustering
regions with respect to their 3D representation to
enhance the object detection process.
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ABSTRACT 
Since a fisheye lens can capture a wide angle scenery, it is broadly used for surveillance or outdoor sports. However, 

acquired images suffer from severe geometric distortions. Most of the existing distortion correction algorithms 

depend on linear features: images of linear features are first identified and then 2 dimensional warping is applied 

to make the curved images look straight. We propose a novel fisheye distortion correction method that estimates 

3 dimensional (3D) locations of a foreground first, and then projects them to an image plane by perspective 

projection. When we know approximate distance of the foreground object, as in cases of head mounted camera, 

we can assume the 3D object plane of the foreground, and then estimate the 3D location from image points after 

internal camera calibration. For head mounted camera, foreground is a face and body of a human, and distortion 

of human figure is quite unnatural and awkward. Moreover, human figures lack linear features which excludes the 

use of conventional 2D warping techniques. We present techniques to estimate the 3D position from a 

corresponding 2D image point, which enables calculation of 3D object location. And then apply perspective 

projection to the 3D object position to obtain a distortion-free image. We demonstrate the efficacy of the proposed 

method using fisheye camera images and the applicability of the proposed concept to real applications. 

Keywords 
Fisheye Lens, Lens Distortion Correction, Radial Distortion 

1. INTRODUCTION 
Fisheye lens can capture extremely wide view, 

therefore, it is useful for surveillance or outdoor sports 

camera. However, fisheye images have geometric 

distortion which is more severe toward the boundaries 

of the image. Moreover, depending on the position, 

foreground objects or a human is distorted severely, 

and then the fisheye image looks unrealistic. 

Therefore it is necessary to correct for the geometric 

distortion to restore natural and realistic figures. 

There are several methods on correcting fisheye lens 

distortion by processing on viewing spheres [Sha10a], 

[Cha13a], [Car09a], [Wei12a], [Kan06a]. Sharpless 

[Sha10a] and Chang [Cha13a] introduced two-step 

projection methods from viewing sphere which can 

map from wide angle images into image planes. 

Sharpless firstly maps the sphere image into 

equirectangular space and then rectilinear-projects by 

adjusting a scale controlling a distance between the 

center of the projection and the view plane. He applied 

the scale into azimuth angle and altitude angle and 

then obtained corrected image coordinates. It makes 

the regions to be horizontally compressed that are 

between the radial lines from the central vanishing 

point. This concept was based on the paintings of Gian 

Paolo Pannini and many painters of Italian Baroque 

period: they created the wide angle paintings using 

standard perspective projection, but the distortion of 

the projection was not shown in the paintings. 

Sharpless [Sha10a] adopted the method to correct for 

the distorted wide angle scenery. Chang [Cha13a] 

further developed Sharpless’ two step projection 

method  from the viewing sphere to an image plane in 

[Cha13a]. For an initial projection, Chang [Cha13a] 

introduced a swung surface which was created by 

finding parameters linearizing line segments, which 

were found in 6 faces obtained by box projection. 

After the initial projection to the surface, the surface 

was projected to image plane using perspective 

projection. Then, this method conserved the linearity 

of horizontal lines better than those of vertical 

direction. While two methods established projection 

models, Carroll [Car09a] and Wei [Wei12a] 

adaptively corrected for the fisheye lens distortion by 

using user inputs, such as line constraints that should 

be conserved as straight lines. Carroll [Car09a] used 

line constrains users entered and dealt with the 

straightness of them, neighbor pixels’ conformality 

and smoothness to warp each pixel in order to obtain 

natural images having little fisheye distortion. In other 
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words, for each pixel, they find a new image 

coordinates optimizing sum of several energies such 

as straightness, conformality and smoothness. In 

[Car09a], Carroll used static images, while Wei 

[Wei12a] utilizes video images of several frames. Wei 

[Wei12a] carried out the above process tracing input 

line constraints over consecutive frames. However, 

these methods could not work properly when the 

number of inputs were inadequate or the fisheye 

images were severely distorted. 

We propose a new fisheye lens distortion correction 

method using 3D position information with a prior on 

the distance, whereas current methods focus on 

conserving the linearity of straight lines, and mapping 

in 2D. In a situation of capturing an outdoor activity 

by a head mounted camera, the distance between the 

human and the camera is almost fixed, thus we can use 

the distance between them for distortion correction. If 

the foreground is assumed to be on a plane of known 

distance, we can calculate the 3D position of the 

foreground from images coordinates after inverse 

projection. Then, we can project these 3D coordinates 

using perspective projection, and reconstruct the 

foreground image without nonlinear geometric 

distortion. Usually, the foreground and camera is close 

and the solid angle covered by the object is 

considerable, which results in severe image distortion.  

Substantial distortion of human face or body is quite 

unpleasing, however, because there is no straight line 

features in human images, it is not possible to apply 

the existing distortion correction methods. The 

proposed algorithm does not apply 2D image warping; 

the novel method estimate the 3D position of the 

foreground object from a prior and the image position, 

and then apply perspective projection to the estimated 

3D location for generating distortion corrected images.  

In order to correct for the distortion of foreground in 

fisheye lens images, we firstly segment the foreground 

in captured images, estimate 3D coordinates of them 

assuming the distance to the foreground, and then 

project 3D coordinates into the image coordinates by 

perspective projection where the mapped coordinate is 

inversely proportional to the distance to the lens. 

The paper is organized as follows. Section 2 describes 

the proposed method which is estimating 3D location 

of foreground and then perspective projection of the 

foreground to an image plane. Section 3 shows the 

experimental results. Lastly, Section 4 presents 

conclusions and future work. 

 

 

Figure 1. Block diagram of the proposed method 

2. PROPOSED METHOD 
We describe an innovative concept of distortion 

correction: virtual 3D coordinates of foreground 

objects are estimated first and then re-project them to 

obtain distortion-free images. 

Figure 1 shows a block diagram of the proposed 

process. As shown in Figure 1, we initially segment 

the foreground object from an image, and then 

estimate 3D locations of the foreground using image 

coordinates assuming planar object plane. The 

distance and the orientation of the plane is assumed to 

be known. For head mounted cameras, the distance 

from the camera to the foreground is stable and the 

image distortion is not sensitive to perturbation of the 

distance, therefore, distortion correction can be 

accomplished. 

Once 3D coordinates are estimated, geometric 

distortion can be completely eliminated without linear 

features. We can apply perspective projection to 

generate an image without nonlinear distortion. 

2.1 Internal Calibration 

Fisheye camera lens model can be characterized as a 

function of image distance 𝒓 and an angle 𝜽, where 𝒓 

is the distance between the principal point and the 

image position 𝑝 (in Figure 2(b)) on the image plane, 

and 𝜽 represents the angle between the incoming ray 

from the 3 D point P (in Figure 2(b)) and the optical 

axis of the camera. Figure 2(a) shows curves of several 

fisheye lens models and Figure 2(b) represents an 

image plane (𝑥, 𝑦) and the camera lens coordinates in 

3D space (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐), which represents the lens model. 

Figure 2. (a) Various models of fisheye lens. Lens 

models can be represented as 𝒓 − 𝜽  curve with 

focal length  𝒇 = 𝟏 where 𝒓 is the distance from the 

principal point to a point 𝒑 in the image plane and 

𝜽 is an azimuth angle of object position 𝑷. (b) Fish-

eye camera model setup. The image point of the 

point 𝑷 is 𝒑 whereas it would be 𝒑′ by a pinhole 

camera [Kan06a]. 
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Figure 3. Fisheye image of a grid pattern for 

internal calibration captured by GoPro HERO4 

Silver. Optimized focal length and principal point 

are found by using the coordinates (𝒖, 𝒗)  of this 

image. 

We used GoPro HERO4 Silver camera model and we 

found that the orthographic model ((v) in Figure 2(a)) 

fits the distortion of the camera. In Figure 4, 𝜃 − 𝑟 

curves from experiment (red dot) and by orthographic 

lens model (blue line) are plotted together, which 

shows good agreement of the observed data and the 

orthographic model. The proposed method can be 

applied to any lens distortion model.  

By finding an optimized focal length and principal 

point for this model, we enhance the accuracy for 

estimating the 3D coordinates. For orthographic lens, 

projection can be described by the following equation, 

𝑟 = 𝑓 sin 𝜃, (1) 

where r is the image distance from the principal point 

(𝑢0, 𝑣0)  to an image point (𝑢, 𝑣) . We used a grid 

pattern perpendicular to the optical axis as shown in 

Figure 3. Then the tangent of angle  is 
ℓ

𝑑
 where d is 

the distance from the optical center to the center of the 

grid pattern (𝑥0, 𝑦0)  and ℓ  is the distance from 

(𝑥0, 𝑦0) to the grid point (𝑥𝑝 , 𝑦𝑝). The image positon 

of (𝑥0, 𝑦0)  corresponds to the principal point. We 

applied affine transform to establish a mapping of the 

center of the grid pattern and the principal point 

[Lee16a]. To find the optimized internal parameters, 

focal length and principal point, we find the minimum 

mean square error solution: 

where N is the number of data points. 

2.2 Estimating 3D Location of Foreground 

Once we have an equation of the foreground plane in 

3 D space, then we can find the 3D location of a point 

from a calibrated image point. The intersection of the 

optical axis and the foreground plane is (0, 0, d) and 

the tilt angle is 𝛼; the rotation axis of tilt is the  

 

Figure 4. Observed 𝜽 − 𝒓  curve (red dot) is 

obtained by calculating 𝜽  and 𝒓  using 36 image 

points which are 1cm apart horizontally from the 

principal point of the image (max 𝜽 = 𝟓𝟔. 𝟐° ). 

Theoretical 𝜽 − 𝒓 curve (blue solid line) is drawn 

from the orthographic lens model. 

y-axis (in Figure 5) for simplicity. We derive the 

3Dlocations of the foreground by finding the 

intersection of the image ray and the object plane. 

Figure 5 shows a 3D space with a surface and x, y, z- 

-axis. Also the center of the lens is shown as the origin 

𝑶 . As shown in this figure, we can derive the 

coordinates on the object surface (𝑥𝑝 , 𝑦𝑝)  when we 

know image coordinates (𝑢, 𝑣). 

Figure 5 also illustrates the relationship of the object 

surface coordinates and the image coordinates. The 

principal point 𝑶′ is (𝑢0, 𝑣0), and the angle  between 

a ray from the object center to a surface point P and a 

horizontal axis of the surface is 𝜑 which is obtained 

from the following equation, 

1 0

0

tan
( ) / cos





 

  
 

u u

v v
, (3) 

u and v are the image coordinates along the x-axis and 

y-axis of Figure 5, respectively. Since the foreground 

surface S is tilted by the angle α along the axis of y, 

we divide 0v v  by cos 𝛼  to compensate for the 

foreshortening. The direction angle 𝜑  on the 

foreground surface can be obtained from the image 

coordinates because we know the tilt angle of the 

foreground surface. The vertical axis of the surface is 

the same as that of the image plane, whereas the 

horizontal axis is rotated by α. And then, we can 

calculate the image distance 𝑟, 

𝑟 = √(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2, (4) 

which is the Euclidean distance from the principal 

point (𝑢0, 𝑣0) to an image point. Moreover, we can 

obtain the angle 𝜃,  in the 3D space, using the 

calibrated lens model of the equation 1. 

With the known angles 𝜑 , and 𝜃 , we are ready to 

calculate the distance ℓ which is  the distance from the 

center of the object surface to a point on the 

 

0 0

2

, ,
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arg min

i i

f u v i

r f

N
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Figure 5. (𝒙𝒑, 𝒚𝒑) of the foreground surface 𝑺 can 

be derived using the 3D relations in terms of the 

known priors, such as the distance 𝒅 between the 

center of the lens 𝑶 and the center of the surface 𝑶′ 
and tilt angle of the surface 𝜶, and parameters 𝜽 

and 𝝋  derived from image coordinates. Also the 

perspective projection is the mapping of each 3D 

coordinate to the image position depending on the 

value 𝒛. The depth 𝒛 is calculated from 𝓵 as in the 

figure because we know 𝝋 and 𝜶 already from the 

image. 

surface. The equation for ℓ can be derived as, 

2

2 2

sin ( sin cos )
, cos sin

cos

1d
w

w w

w

  
 



 
 




. (5) 

Since the image direction angle 𝜑  is obtained by 

equation 3, we could calculate the object image 

location (𝑥𝑝, 𝑦𝑝) on the surface plane by the following 

formula, 

(𝑥𝑝, 𝑦𝑝) = (ℓ cos 𝜑 , ℓ sin 𝜑) (6) 

In other words, the surface coordinates are 

reconstructed from the image coordinates and object 

surface information through equations 3 to 6. 

2.3 Rendering an Image without Distortion 

In order to render an image without distortion, we 

apply perspective projection to the surface coordinates 

(𝑥𝑝 , 𝑦𝑝). And then, perspective projected foreground 

is overlaid on the input image so that we can obtain a 

distortion corrected foreground over a wide angle 

background image.  

Firstly, we need to find the 3D coordinates of the 

object surface points so that we can apply perspective 

mapping. The 3D coordinates (𝑥, 𝑦, 𝑧) are derived by 

the following equation: 

the relation between an object image position (𝑥𝑝, 𝑦𝑝) 

which is the surface coordinates and the 3D camera 

coordinates (𝑥, 𝑦, 𝑧) are shown in Figure 5. 

Once we obtain the 3D position, we can calculate 

image coordinates which are finally mapped to the 

corrected image. At this stage, we adjust the range of 

𝑧 values because it controls the ratio of the sizes of the 

near and far foregrounds. 

We refer the parameter to adjust the range of 𝑧  as 

𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒, and the scaled 𝑧 values are represented 

with 𝑧𝑠 as in the following equation, 

𝑧𝑠 = (𝑧 − 𝑚𝑧)𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒 + 𝑚𝑧, (10) 

where 𝑚𝑧 is the minimum 𝑧 value of the foreground 

and 𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒  is the z-length of the foreground 

object. 

After finding 𝑧𝑠  for each (𝑥𝑝, 𝑦𝑝) , we derive a 

corresponding image coordinates (𝑢, 𝑣) which is the 

result of perspective projection by the following 

formula, 

0/ )(s z su g m z x u   (11) 

0/ ) y(s z sv g m z v  , (12) 

where g𝑠  controls the global size of the foreground 

object on the resulting image plane. The principal 

point 𝑢0 and 𝑣0 are added to shift the (0, 0) principal 

point of the camera model to the actual principal point 

on the image coordinates.  

3. EXPERIMENTS 
After finishing internal camera calibration which 

estimates internal parameters of the camera, such as 

the focal length and the principal point, we estimate 

the 3D coordinates of an object from image 

coordinates. In this section, we verify the accuracy of 

each step and analyze experimental results. 

3.1 Estimation of 3D Coordinates  

We applied the calibration process which is described 

in Section 2.1 by using an image of a tilted grid pattern. 

This tilted grid pattern image has distortions, therefore 

the same interval is shown differently depending on 

the position in the image as in Figure 6. However 

because the grid pattern shows the ground truth 

location, we can find the error of the estimated 

position easily. We verified that the derived equations 

for calculating the 3D object plane coordinates 

(𝑥𝑝 , 𝑦𝑝)  are accurate with the test results. In this 

experiment, we optimize the distance 𝑑 and the angle 

𝜃 by using 30 image coordinates of horizontal points 

on the tilted grid image of Figure 6. 

𝑥 = 𝑥𝑝 (7) 

𝑦 = 𝑦𝑝 cos 𝛼 (8) 

𝑧 = 𝑦𝑝 sin 𝛼 + 𝑑, (9) 
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Figure 6. A fisheye image of a tilted plane captured 

by GoPro HERO4 Silver. The plane is set up away 

from the lens by 30cm, and rotated horizontally by 

𝟑𝟎° (𝒅 ≈ 𝟑𝟎𝐜𝐦, 𝛂 ≈ 𝟑𝟎°). 

We can verify the accuracy of the calculated 

coordinates (𝑥𝑝 , 𝑦𝑝) because we know the true 

coordinates by the reading the graph and then compare 

with the calculated position. We represent a result 

showing both the true and obtained ℓ  which is the 

distance from the center of the foreground surface, and 

calculate an error between them as in Figure 7. We use 

Figure 6 for this task. It is an image of a grid pattern 

30 cm away and with 30° tilt. 

In Figure 6, horizontal 30 points of 1 cm interval are 

used for calculating foreground image position 

(𝑥𝑝 , 𝑦𝑝). The distances ℓ between the center of the 

grid paper (0,0)  and the coordinates (𝑥𝑝, 𝑦𝑝)  are 

shown with the corresponding ground truth 

coordinates in Figure 7. Also we calculate the 

maximum absolute error (MAE) and mean square 

error (MSE) for the 30 data points after optimizing the 

𝑑 and 𝛼. The errors show quite accurate results: the 

root mean square error of 30 points is 0.1 cm and the 

maximum error is 0.24 cm. Therefore the defined 

equations are reliable for calculating the 3D 

coordinates. Based on the fact that the derived 

equations can estimate the 3D positions with high 

reliability, we can reconstruct the 3D foreground 

surfaces from image coordinates of real scenes in the 

following subsection with high accuracy. 

3.2 Perspective Projection Method 

We apply a perspective projection for re-projecting the 

obtained 3D coordinates to the image plane to correct 

for the fisheye lens distortion of the foreground image. 

We use indoor/outdoor real images for finding 3D 

coordinates of foregrounds, and then reconstruct a 

distortion-free result image by the perspective-

projection method of section 2.3. 

We correct for the geometric distortion of a human 

figure in Figure 8(a). Firstly, a foreground object is 

segmented using MATLAB toolbox Image Segmenter. 

 

Figure 7. Calculated (blue ×) and ground truth 

(red ◌) distance 𝓵. 𝓵 is calculated by the proposed 

equations using the foreground information of the 

distance, the tilt angle, and the image coordinates. 

And then if we know the distance from the lens to the 

3D foreground surface and  the tilt angle of the 

foreground, then we can derive 3D coordinates of 

every foreground pixel from the extracted image 

coordinates and the prior. The reconstructed object 

surface from the original image is represented in 

Figure 8(b). The coordinates of the object plane is 

(𝑥𝑝 , 𝑦𝑝) as explained in Section 2.2. The recovered 

foreground is perspective projected and overlaid to the 

original image as shown in Figure 8(c). We can notice 

that the human figure looks more natural after the 

distortion correction using the proposed method. It is 

hard to find linear features in this human figure image, 

therefore, previous distortion correction cannot be 

applied to this class of images. We apply the 

correction method to Figure 9(a) and the resulting 

image, Figure 9(c), shows more familiar looking 

human figure with better proportions. The background 

of this image is window frames and floor, which can 

be approximated as two separate planes in 3D space. 

We applied the same correction algorithm to the 

background, and the result image is Figure 10. Input 

image Figure 9(a) is divided into the figure foreground, 

the floor background and the window frame 

background, and then 3D position of each object plane 

is recovered and then perspective projected separately. 

This result shows excellent correction of distortion of 

the human figure and the background. Merging of the 

foreground and background is not perfect yet, 

therefore, we notice mismatch between them. The 

performance of the proposed distortion correction 

algorithm heavily depends on segmentation and 

merging of the foreground.
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(a) (b) (c) 

Figure 8. (a) Original Image, (b) recovered foreground image, (c) overlay of the perspective projection of 

the foreground 

   

(a) (b) (c) 

Figure 9. (a) Original Image, (b) recovered foreground image, (c) overlay of the perspective projection of 

the foreground

4. CONCLUSION 
Most of previous researches corrected fisheye lens 

distortion by finding features of straight lines and then 

applied 2D warping to make the images of linear 

features straight. We propose a novel correction 

method for fisheye lens distortion. For cases where the 

distance between the lens and the foreground 

object/human is stable, for example head mounted 

cameras, we propose an algorithm to correct for the 

fisheye distortion by estimating 3D locations of the 

foreground. In order to fulfill this objective, we 

derived techniques for estimating 3D positions from 

image coordinates of the foreground and apply a 

perspective mapping to the estimated 3D coordinates 

to render a distortion-free image of the foreground. 

Future work includes application of the proposed 

method when the 3D foreground is composed of many 

planes or curved surfaces. Estimation of the depth or 

distance to the foreground is also an interesting topic. 

 

Figure 10. Perspective projection of the 

background (the window frames and the floor) 

with the overlay of the perspective projection of the 

foreground human figure. 
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ABSTRACT

We propose a novel approach that enables a comparative visual exploration of the transport variability in ensembles

of 2D flow fields. To reveal when and where divergences in transport occur, we first present a new approach to

analyze the time-varying pairwise dissimilarities of ensemble trajectories, by using Gaussian Mixture Models

(GMMs) to identify the distribution modes and the Mahalanobis distance to refine the dissimilarity measures.

This enables drawing enhanced spaghetti plots, by using the color of the contour of each trajectory to encode the

temporal evolution of the member, and the opacity for its representativeness relative to the ensemble behavior. To

also allow a global view of the transport variability across selected sub-domains, we introduce a new graphical

abstraction based on the visualization of miniaturized versions of the enhanced spaghetti plots in a small-multiples

layout. To achieve this, we propose a new kind of downscaling that preserves the relevant trends in the transport

behavior. We have designed a user interface comprising multiple linked views to visualize simultaneously global

and local transport variations, as well as how similar the transport behavior of the ensemble members is.

Keywords
Uncertainty Visualization, Ensemble Vector Field Data, Time-varying Data.

1 INTRODUCTION

In many scientific disciplines, ensemble simulations are

used to estimate the uncertainty inherent in the de-

velopment of physical fields, by providing represen-

tative samples of the possible states that could evolve

out of perturbed initial conditions and different models.

Weather forecasting is one such example, where mul-

tiple forecasts are performed simultaneously to obtain

probabilities of occurrence of specific weather events.

Analyzing the temporal variability of an ensemble helps

determine when and where divergences occur, and, im-

plicitly, the locations where and the time intervals over

which a simulation is more or less reliable.

Analyzing the ensemble variability is, however, not

straightforward: Firstly, transport divergences occur

gradually over time, due to spatial variations of the

transport paths and the transport velocity along them.

Analyzing the flow variability requires new concepts

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

to determine these divergences and, in particular, when

the divergences started occurring. Secondly, visualiz-

ing the temporal variability of an ensemble – locally,

at a selected domain point, or globally, to compare the

transport across the domain – is challenging, since it re-

quires new graphical abstractions to show the complex

spatio-temporal ensemble evolution in an intuitive way.

Contribution: We propose a visual analytics approach

to address the aforementioned challenges and explore

the temporal variability of ensembles of vector fields.

We provide novel means to perform a local and global

visual analysis of the dissimilarities of ensemble mem-

bers across the domain.

To analyze the transport deviations over time statisti-

cally, we introduce the application of the Mahalanobis

distance on Gaussian Mixture Models (GMMs). Ap-

proximating the distributions of tracer particles at ev-

ery grid point with mixtures of Gaussian modes en-

ables the use of the Mahalanobis distance to assess the

pairwise member dissimilarities relative to the variabil-

ity allowed by each mode. To quantify the ensem-

ble divergence over time further, we define the diver-

gence count of an ensemble member per time step as

the (normalized) number of members dissimilar to it.

As members evolve, their pairwise dissimilarities and

divergence counts change, revealing the time steps and

locations of new (dis)similarities to others members.
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The information we derive from the pairwise dissimilar-

ities and divergence counts is then encoded graphically,

to enable an effective local and global visual analysis.

We propose the following novel approaches:

• Divergence Visualization: We enhance the

spaghetti plots of the ensemble trajectories by

encoding the transport evolution and divergence

counts over time; this shows when and where

ensemble members behave (dis)similarly, and is

especially effective in cases when trajectories ex-

hibit similar geometric shapes, but trajectory points

considered at the same time instant are dispersed.

• Small-Multiples: We compare the transport vari-

ability across selected sub-domains via a new graph-

ical abstraction based on miniaturized versions of

enhanced spaghetti plots in a small-multiples lay-

out. We present a new downscaling method that pre-

serves the relevant trends in the transport behavior.

• Similarity visualization: We cluster ensemble

members based on their flow similarity across the

domain and visualize the dynamical evolution of

the clusters using parallel sets.

The proposed approaches are combined into an inter-

active visual analytics tool, to give insight into the var-

ious aspects of the flow variability. We evaluate our

approach on several meteorological ensembles and in-

clude an assessment by domain experts.

2 RELATED WORK

Uncertainty visualization, one of the top challenges in

scientific visualization [Bon+14, PRJ12], is often esti-

mated by ensembles – representative samples of real-

izations of simulated phenomena, obtained by running

simulations with different initial conditions and mod-

els. Such data is typically spatio-temporal, multivari-

ate, and multivalued [KH13, LPK05], making its anal-

ysis and visualization difficult. Typical methods eval-

uate summary statistics and visualize these using color

maps, contours, surface deformation, opacity, boxplots,

or glyphs [Pot+09, LPK05, PMW13, PKRJ10].

For vector fields, Wittenbrink et al. [WPL96] propose

glyphs to show the magnitude and angular uncertainty.

Lodha et al. [LPSW96] show the flow uncertainty using

envelopes and animation. Pfaffelmoser et al. [PMW13]

present circular glyphs for the uncertainty of gradients

in mean and orientation in 2D scalar fields. Jarema

et al. [JDKW15] use lobular glyphs to visualize

multimodal distributions for 2D directional data. Other

local methods include texture mapping [BWE05]

and a reaction-diffusion model [SJK04]. Allendes

Osorio and Brodlie [AOB09] adapt LIC for 2D uncer-

tain steady vectors. For time-varying uncertain vector

fields, Hlawatsch et al. [HLNW11] introduce flow radar

glyphs. In the crisp case, Hlawatsch et al. [HSJW14]

downscale individual pathlines, while we downscale

ensembles of trajectories. To consider the transport

uncertainty, Otto et al. use particle density functions

to obtain an uncertain topological segmentation of

2D [OGHT10] and 3D [OGT11] Gaussian-distributed

steady vector fields; Schneider et al. [SFRS12] analyze

the transport uncertainty for unsteady vector fields.

Hummel et al. [HOGJ13] compare the material trans-

port in time-varying flow ensembles by computing

individual and joint vector field variances. We analyze

the transport variability based on trajectory dissimilari-

ties, rather than variances, which allows us to identify

when divergences occur.

Clustering is another method for dealing with large and

complex data [Jai10]. Bruckner and Möller [BM10]

propose density-based clustering to identify simi-

lar volumetric time sequences in physically-based

ensemble simulations. Bordoloi et al. [BKS04] per-

form realization- and distribution-based hierarchical

clustering of ensemble data. Hierarchical clustering

is also used to cluster trajectories, e.g., for blood

flow [Oel+14] or meteorological data [FBW16].

Hollister and Pang [HP16] cluster streamlines using

DBSCAN to derive scalar fields capturing cases when

ensemble members may exhibit strong separation along

trajectories, but a weak terminal separation. Although

our analysis is performed on trajectories, it clusters

trajectory positions and not the trajectories themselves.

Thus, we are able to determine not only whether

divergences occur along the trajectories, but also when

they occur. Jarema et al. [JDKW15] use GMMs to

cluster ensemble members based on the extent of their

directional similarity locally. We extend this method to

cluster ensemble members by their transport similarity,

where the dissimilarity of two members is obtained

by applying the Mahalanobis distance on the modes

identified by means of a GMM approximation.

GMMs have been used before in uncertainty visualiza-

tion. Correa et al. [CCM09] use GMMs to model un-

certainty in the visual analysis process, while Hollister

and Pang [HP13] apply GMMs to perform probability

distribution interpolation. Liu et al. [LLBP12] employ

multiple Gaussian components for a volume rendering

of stochastic fields. The Mahalanobis distance [Mah36]

has been used, e.g., for uncertain scalar fields, to assess

the positional uncertainty of isosurfaces [PRW11] or re-

veal the possible locations of critical points [MW14].

Other techniques for ensemble data include coor-

dinated multiple views, which study multivariate

relations via linking and brushing [KH13], and parallel

coordinates [HW13] or parallel sets [BKH05]. Nocke

et al. [NFB07], and Molchanov and Linsen [ML14]

use coordinated multiple views for climate ensem-
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Figure 1: Multiple linked views for an ECMWF (European Centre for Medium-Range Weather Forecasts) time-

varying ensemble. The spatial view (A) shows the aggregated flow variability over the domain and an enhanced

spaghetti plot at a user-selected location. For the selected region marked by a green square, the detail view (B)

shows downscaled spaghetti plots. View (C) shows the hierarchical clustering of the members with perturbed

initial conditions. View (D) shows the variability of the clustering solution at selected time steps.

bles. Piringer et al. [PPBT12] analyze 2D function

ensembles on three levels of details (member- and

domain-oriented, and surface plot).

3 OVERVIEW

Our method starts with a vector field ensemble given on

a 2D grid structure, and identifies at every grid point the

time steps and locations of dissimilar behavior. From

this, we derive measures for the temporal evolution of

the transport variability, to show the variability over the

domain (cf. background in Fig. 1(A)) and generate en-

hanced spaghetti plots at selected locations (cf. fore-

ground in Fig. 1(A)). The enhanced plots reveal the

flow variability even when particles follow geometri-

cally similar trajectories, but with significantly different

speeds, being temporally actually dispersed.

To explore and compare the flow variability at multiple

locations simultaneously, concurrent spaghetti plots

lead to massive clutter and occlusion. Hlawatsch et

al. [HSJW14] juxtapose miniaturized trajectory images

to overcome this limitation for crisp vector fields.

Our ensemble visualization builds upon the concept

of small-multiples [Tuf83], but includes the derived

transport variability to construct small-multiples

preserving the main trends of the particle trajectories

(cf. Fig. 1(B)). This is achieved by downscaling

trajectories based on a selection of salient time steps.

Finally, our method clusters members based on their

global transport similarity, and shows these clusters

via dendrograms (cf. Fig. 1(C)). The temporal evolu-

tion of clusters is encoded visually via parallel sets

(cf. Fig. 1(D)), from which splitting and merging events

over time can be deduced.

To quantitatively assess the flow variability, our

method determines when and where members behave

dissimilarly, without imposing any synthetic thresholds

beyond which the behavior is considered dissimilar

(cf. Sec. 4.1). This allows us to assess the spatial

variability at individual time steps or over a forecast

interval, and obtain the salient time steps for the small-

multiples layout (cf. Sec. 4.2). We also use the method

to cluster ensemble members based on their transport

similarity throughout the domain (cf. Sec. 4.3).

4 TRANSPORT VARIABILITY

To find out when and where changes in the transport be-

havior occur, we assess members as (dis)similar based

on their deviation at every time step, but without impos-

ing any artificial thresholds. For normally distributed

data, the Mahalanobis distance [Mah36] specifies natu-

ral thresholds. Due to its use of the covariance matrix, it

is scale-independent and unaffected by correlations be-

tween variables. Members are thus (dis)similar based

on their deviation relative to the data variability. En-

semble data is, however, often not Gaussian distributed.

We thus model the distribution of 2D particle positions

(seeded at the same point) at every time step with a mix-

ture of Gaussians, and apply the Mahalanobis distance
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Figure 2: Pathline variability: (a) trajectories of 51 members; particle positions are shown at steps 137 and 199 with

green and orange markers, respectively, and different symbols for different clusters; (b) four singled-out members:

8 (green), 14 (orange), 28 (blue), and 2 (pink), with markers for all members and ellipses for the Gaussian modes

at steps 58 and 199; (c) grayscale encoding of the time step divergence count; as the divergence counts increase,

the stripes (d) fade to white in the enhanced spaghetti plot and (e) become less opaque in the downscaled version.

to assess pairs of members as (dis)similar relative to the

variability of the corresponding mode.

The intuition behind this fine-grained analysis is illus-

trated in Fig. 2(b) for four selected members of an en-

semble: members 2, 8, 14, and 28. Even though a

bimodal distribution is fitted only at step 137 and no

synthetic threshold is defined for the spread, member

8, initially an inlier, is, up to step 58, similar only to

member 28 relative to the local variability (step 58 is

marked by brown concentric ellipses for the Gaussian

mode and circles for the particle positions). Thereafter,

it also becomes and stays similar to member 14, both

following the downward trend. As the deviation be-

tween members 8 and 28 increases, the two become

dissimilar shortly after step 58; members 8 and 2 are

dissimilar from the very beginning, despite the spread

being initially very low. Actually, member 2 is dissim-

ilar for most of the time even to 28, although they both

show geometrically similar trajectories and follow the

upward trend. This happens because the particles travel

at different speeds (at, e.g., step 199, where the three

fitted modes are shown by concentric gray ellipses and

all members are marked with pluses, note that positions

are modeled by different modes).

4.1 Pairwise Dissimilarity Analysis

We consider flow field ensembles – collections of

n vector fields defined over the same grid structure.

Our approach is designed for both stationary and

time-dependent 2D vector fields, but the analysis can

be extended directly to 3D. We obtain the trajecto-

ries by numerical integration, e.g., using 4-th-order

Runge-Kutta methods. At every grid point, each of

the n trajectories comprises mi integration steps. To

make all trajectories of equal length m, we repeat the

final positions m−mi times, where m = maxi=1,n(mi).
Otherwise, members with similar trajectories, but of

slightly different lengths mi > m j, e.g., members 8

and 14 in Fig. 2(b), would be artificially dissimilar

in the mi − m j interval. Members with trajectories

of considerably different length and behavior are

dissimilar as soon as their deviations are large relative

to the allowed variability or the positions are modeled

by different modes, e.g., members 8 and 28 in the same

figure. Moreover, the (dis)similarity of two members

(i, j) is fixed after step max(mi,m j).

The pairwise analysis occurs in two stages, performed

at every grid point and integration step of the member

trajectories seeded at that grid point: In the first stage,

we use GMMs to model the distribution of particle po-

sitions at each time step. We determine both the num-

ber of modes and their shapes automatically, by adapt-

ing for 2D data the procedure described in [JDKW15]

for 2D directional data. Thus, unless the positions can

be assumed Gaussian distributed, an Expectation Max-

imization (EM) algorithm fits two Gaussian modes to

the positions and assigns each member to the mode that

is more likely to model the observation. The process

repeats until the members in each partition can be as-

sumed Gaussian distributed (cf. Fig. 2(b) for an exam-

ple of GMM partitions – shown using concentric el-

lipses – at several time steps). Depending on the initial

conditions, EM algorithms may lead to non-repetitive

solutions. To alleviate this problem, we run the GMM

algorithm several times with different starting values,

and use silhouettes – validation techniques for algo-

rithms that use random initial guesses – to select the

best solution from those having the most frequently met

modality.

A sample of 2D observations xi = [Xi,Yi], i = 1,n, is

modeled with a mixture of N Gaussian modes

f (x) =
N

∑
j=1

α jN (µ j,Σ j), α j > 0,
N

∑
j=1

α j = 1, (1)

where each Gaussian mode N (µ j,Σ j) has a weight α j

and is parameterized by its mean µ j and covariance ma-

trix Σ j. Each observation xi, i = 1,n, is modeled by

Gaussian mode j with probability p j,i, where j = 1,N

and ∑
N
j=1 p j,i = 1. The GMM creates a first partition-

ing of the members, depending on which mode is more
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Figure 3: Small-multiples displays for ensembles are significantly more cluttered when downscaled in (left) a

straightforward manner than (right) with sampling and variability encoding in opacity.

likely to model the observations. We use soft clustering,

where observations are dissimilar only if they belong

with high probabilities to different modes. Thus, obser-

vations located on the boundary of two modes are sim-

ilar to observations modeled by both modes, as shown

in Fig. 2(a): a bimodal distribution is fitted for the first

time at step 137 (cf. the green markers, of two types,

circles and pluses); a few members (with cyan dots in

the middle of the markers) are at the boundaries of both

modes and thus similar to all members. However, just

because only at this step there is enough proof for bi-

modality, this does not necessarily mean that members

now modeled by different modes have started diverging

at this step. Their deviation may have been large rel-

ative to the local variability already earlier, e.g., mem-

bers 8 and 28, or 8 and 2 in Fig. 2(b).

Thus, in the second stage, for every pair of similar

members (xi,x j), we compute the Mahalanobis distance

relative to the corresponding covariance matrix Σk

MD(xi,x j) =
√

(xi − x j)Σ
−1
k (xi − x j)T. (2)

Members are dissimilar if MD(xi,x j)> 2.3, which cor-

responds statistically to less likely deviations falling

outside one confidence region (68%) for a bivariate

Gaussian distributionN (µk,Σk). For boundary mem-

bers, we compute the distance relative to both modes

and take the higher value. Out of the six members in

the previous example, only the one in the upper mode

still exhibits similarities to members in the other mode.

This occurs because the covariance matrix allows more

variation in the vertical direction than in the horizontal

one. For the same reason, the member with a magenta

dot in the middle is dissimilar to all others.

4.2 Variability over the Domain

The analysis based on GMMs and the Mahalanobis dis-

tance identifies the pairwise (dis)similarities of the en-

semble members at every time step. To distinguish

between inliers and outliers within modes or among

all members, we define the member divergence count

(mdct
i) of ensemble member i at step t as the number

of dissimilar members at that instant, normalized by

the total number of members. For Gaussian distribu-

tions, positions closer to the mean have lower diver-

gence counts than those located further. For multimodal

distributions, the divergence counts generally increase

for both mode inliers and outliers.

To reveal the time steps and locations with higher flow

variability, we sum up and normalize the divergence

counts of all members at a time step tk to obtain a time

step divergence count (tdctk ). The aggregated time step

divergence count over a given time interval [t1, t2] is

median(tdctk)tk∈[t1,t2]. We use the median because it is a

robust measure of the central tendency of the data, but

other summary statistics could be used instead. More-

over, to distinguish between low and high divergence

counts, we define reference values, per member (the

median of the minimum divergence count at every grid

point (i, j), median(min(mdci, jt
k
)k=1,n, t=1,tmax

)), and per

time step (the median of the divergence counts at the

first time step, median(tdc1
i, j)).

We also use the divergence counts to find a selection of

time steps that preserves the transport behavior. Thus,

we downscale trajectories without obscuring the trans-

port trends and variability, as a straightforward down-

scaling would (cf. Fig. 3 (left)). For all members,

we keep the salient trajectory points – the steps with

changes in (dis)similarities. Other steps are sampled

regularly, the sampling rate being proportional to the

number of non-salient steps. While the information loss

in intervals with high curvature may lead to a coarser

curve approximation, the flow structure is qualitatively

well-preserved (cf. Fig. 3 (right)).

The time step divergence counts for the previous exam-

ple (with values in the [0.55,0.82] range) are encoded in

grayscale in Fig. 2(c). While there is not enough proof

for a departure from normality, the divergence counts

vary in the [0.55,0.61] range. A surge to 0.76 occurs

at step 137, when a bimodal distribution is fitted to the

data, succeeded by a small gradual decreases as more

particles follow the upward trend. Despite the geomet-

rical similarity of the trajectories going upwards, par-

ticles move at different speeds. This leads to a second

surge (0.81) at step 199, when three Gaussian modes

are fitted (cf. the orange markers in Fig. 2(a)). As par-

ticles approach their final positions (and since most of

them end up together, either in the bottom or the right

bundle), the divergence count decreases again, although

to values no lower than 0.69. During downscaling, the

non-salient time steps are sampled and around 60% of
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the trajectory points discarded, but the flow structure

and variability are retained (cf. Fig. 2(e)).

4.3 Flow-based Similarity

To analyze the transport similarity of the ensemble,

we extend the work of Jarema et al. [JDKW15], who

model directional data locally via GMMs and use the

modes to cluster members hierarchically based on their

local angular similarity over the whole domain. The bi-

nary similarity of any two members at a point depends

on the angular deviation relative to local variation of

their mode, and the global similarity measure is defined

as the percentage of similar locations out of the total

number of grid points. Here, we use the Mahalanobis

distance to determine deviations in particle positions

(rather than angles) that are statistically meaningful rel-

ative to the mode variability. Moreover, we perform

the clustering over a whole forecast interval to cluster

ensemble members based on their transport similarity

(rather than their local angular similarity).

5 VISUAL ANALYSIS OF THE TRANS-

PORT VARIABILITY

Our user interface (cf. Fig. 1) comprises four linked

views, two for the variability over the domain and an-

other two for the variability of the clustering solution.

5.1 Flow Variability over the Domain

The spatial view (cf. Fig. 1(A)) shows the ensemble

variability (here the aggregated time step divergence

count for the entire forecast interval and all members)

over the domain using a sequential grayscale colormap.

A time slider allows an interactive visualization of the

variability for single time steps or aggregated over time

intervals, either for a selection of members or the en-

tire ensemble (by using the time step divergence count).

Users can select locations where to display enhanced

spaghetti plots. Grayscale colormaps permit the use

of a colorblind-safe red-to-blue variation for the trajec-

tories, making them stand out against the background.

Nevertheless, they suffer from simultaneous contrast ef-

fects, which hinders the correct interpretation of the dis-

played data [War13]. To ease the variability evaluation,

we inform the user about the variability at the selected

location and show the global reference values.

Trajectory plots encode both the integration time and

the variability (member divergence counts). Each tra-

jectory is displayed as a curve stripe, the contour of

the stripe color-coding the time and the stripe itself

the variability. The color of each stripe is based on

that of its contour, fading to white as the member di-

vergence count increases relative to the local reference

value (the smaller value between the local minimum

and the global reference value). Thus, the stripe color

for members having divergence counts close to the local

Figure 4: In a straightforward downscaling (odd plots –

the first plot is the leftmost top plot) clutter and occlu-

sion obscure the flow trends and variability; downscal-

ing with sampling and variability encoding (even plots)

conveys the main flow patterns and variability.

reference value can hardly be distinguished from that

of the contour. As the divergence count increases, the

stripe color fades to white, making the trajectories of

members with higher variability stand out less against

the grayscale background than those with lower vari-

ability. The time information is nevertheless fully pre-

served in the color of the contours.

Fig. 2(d) shows the enhanced spaghetti plot for the pre-

vious example. The stripes begin to fade rapidly, as par-

ticles tend to spread out from an early stage. However,

up to step 137, when a bimodal distribution is fitted to

the data, the color of most stripes, albeit suggestive of

the proximate split, has yet to fade completely. There-

after, the stripes of several trajectories going upwards

fade to white, because particles travel at considerably

different velocities and member divergence counts are

high. Despite the geometrical similarity of the trajec-

tories, the fading reveals the flow variability (the in-

creasing dispersion of the particles and number of par-

titions). Also, the stripes fade less for most trajectories

in the lower bundle; their flow behavior is more simi-

lar, even if from their geometry alone they appear more

dispersed than the trajectories in the upper bundle.

5.2 Flow Variability over Subdomains

To allow the concurrent visualization of enhanced

spaghetti plots across selected subdomains with sig-

nificantly less clutter and occlusion, we propose a

small-multiples layout with miniaturized plots, where

the downscaling preserves the salient flow trends.

The detail view (cf. Fig. 1(B)) shows a predefined num-

ber of downscaled plots, computed at regular intervals

in the domain. A straightforward downscaling may ob-

struct the flow trends and variability (cf. Fig. 4). For ex-

ample, in the first plot, the ending spiraling structures of

several pathlines obscure the stable flow pattern at the

beginning. Instead, we determine a selection of time

steps that preserves the transport behavior (cf. Section

4.2). We also encode the integration time directly in

the color of the stripes and the variability in the opacity,

so that the main flow trends are clearly discernible in

the miniaturized versions. Notice how the opacity use
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and the dense sampling of the spiraling parts (where the

flow variability hardly changes anymore) in the second

plot in Fig. 4 help bring out both the flow patterns and

the variability.

To enable a comparative visual analysis of the down-

scaled plots, all plots have the aspect ratio of the origi-

nal domain and the same domain section (shown in the

main spatial view by a purple rectangle). The area oc-

cupied by the detail view is displayed by a green square.

To preserve context information, the green square (cor-

respondingly scaled) is also shown in each downscaled

plot, along with a green anchor ball that marks the seed-

ing point of the trajectories. The initial domain section

is the bounding box containing all spaghetti plots, but

can be adjusted interactively (as was done in Fig. 1(A)).

5.3 Flow-based Similarity Visualization

The hierarchical clustering of the ensemble (based on

the global flow similarity over the whole time interval)

is summarized as a dendogram (cf. Fig. 1(C)). The en-

semble members are shown on the horizontal axis and

the clustering levels on the vertical axis. The dissimilar-

ity levels increase as subclusters are merged, joins be-

ing represented graphically as inverted U lines. Neigh-

boring larger subclusters are shown in different colors,

to make partitions stand out. Users can select (groups)

of members in the dendogram (or as text input) to visu-

alize their spatial variability.

Insight into the dynamical evolution of the

clustering solution is gained using parallel

sets [BKH05] (cf. Fig. 1(D), with a selection of

time steps along the horizontal axis and the cluster

ids along the vertical one). We perform a hierarchical

clustering at every selected time step. For the sake of

uniformity and simplicity, we partition the members

into at most three clusters, and track how the clustering

solution varies over the selected time steps. We sample

the time steps more densely at the beginning, e.g., in

powers of two, because we noticed that the divergence

counts and local clustering solutions vary more earlier

in the integration (due, e.g., to changes in flow regime

occurring early). The clustering variability is shown

using branches connecting clusters at consecutive

selected steps, the thickness of each branch depending

on the corresponding number of members. Clusters are

ordered so as to support id continuity from one step

to another. Thus, we compute the number of common

members for every pair of clusters at consecutive time

steps, and assign cluster ids in decreasing order. To

facilitate tracking the split and join events, bars starting

from the same cluster have the same color: green,

orange, and purple for the first, second, and third

cluster, respectively.

This encoding reveals how the clustering solution varies

from one time step to another, but not how the cluster

memberships vary. To gain insight into this kind of vari-

ability, we determine, for the members in each branch,

the cluster ids at the previous step and compute their

cardinalities. We then map the ratio of the largest cardi-

nality to the number of members, to the opacity of each

branch. The more opaque the branch is, the less the

cluster componence has changed. To shed further light

onto the clustering variability, users can select a branch

to view the clustering evolution over all selected steps

for the members in the selected branch (cf. Fig. 6).

6 RESULTS

We illustrate our framework on two ECMWF (Euro-

pean Centre for Medium-Range Weather Forecasts) en-

sembles of dimensions 101 × 41, each comprising a

control run and another 50 members with perturbed

initial conditions. Details on the system are available

in [LP08].

6.1 Transport Variability Analysis

The first ensemble is a time-varying wind forecast at

a pressure level of 850 hPa, initiated on October 15,

2012. The geolocated variability field (aggregated over

the entire forecast interval for all members) is shown

in Fig. 1(A). Locations where data was not available at

this pressure level have been marked as “Not a Num-

ber (NaN)”. We noticed that pathlines seeded over het-

erogeneous color regions (cf. Fig. 1(B)) exhibit dissim-

ilar flow behavior, as opposed to those seeded over ho-

mogeneous areas. The detail view enables a compara-

tive visual analysis of the pathlines, revealing the nu-

merous changes in flow patterns and variability across

the subdomain. In Fig. 1(B), for instance, trajecto-

ries seeded in the bottom line (to the left), where most

pathlines go southwards, display aggregated divergence

counts similar to the time step reference value (0.55).

The variability increases to the right (to 0.65) as more

particles go northeastwards, and decreases again further

to the right, where most pathlines show no change of

regime. In the next row (to the left), most particles fol-

low a northeastward trend, but with various velocities

and increasing dispersion, in spite of the geometrical

similarity of the trajectories (values are around 0.7).

The variability increases further (close to 0.8) in the

third row, where the trajectories bifurcate geometrically

as well.

The clustering solution of the ensemble is shown in

Fig. 1(C) for the members with perturbed initial con-

ditions. At first, we performed a hierarchical clustering

of all members. However, because the control run was

very similar to the majority of the other members, the

large cluster forming around the dendogram hindered

the identification of natural divisions in the hierarchical

tree. Upon excluding the control run, we could detect

natural groupings in the dendogram, which revealed an
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Figure 5: Spatial view for stationary ECMWF ensem-

ble showing the variability at the (top) first time step

and (middle) over the whole time interval. (Bottom)

Detail view with downscaled streamline plots.

interesting pattern that should be further explored to-

gether with domain experts: ensemble member i was

typically considerably more similar to ensemble mem-

bers i+20 and, if available, i+40, than to other mem-

bers. Notice that, in the dendogram, groupings of two

or three members predominate at the low levels, larger

clusters forming at distinctly higher levels.

The second ensemble is a stationary wind forecast en-

semble at the same pressure level, valid on October 19,

2012. The geolocated variability for all members is dis-

played over the entire domain in Fig. 5, for the first time

step (top) and aggregated over the whole forecast inter-

val (middle). The isocontours of the geopotential height

field of the control run are shown as black contours. Ini-

tially, regions of high variability are found mostly at the

pressure centers, but their extent increases over time, as

particles seeded in regions of lower variability enter re-

gions of higher variability. This is also noticeable in

the detail view (bottom), where, at all locations, most

streamlines follow the southeastwards-northeastwards

trend of the isocontours before they begin to spread

out. In fact, the variability in this region remains rel-

atively low for much longer than in other regions. In

the end, the regions with low variability occupy much

smaller extents, e.g., the low-frequency elongated re-

gion of high pressure in the bottom left corner.

The clustering solution for this ensemble considers all

members. Fig. 6 (top) shows its time variability at seven

Figure 6: (Top) Clustering variability at selected time

steps (cluster ids on the vertical axis, time steps on the

horizontal axis). (Bottom) Membership variability for

selected subcluster.

selected time steps. The clustering solutions appear

quite stable at the first two steps, but the variability in-

creases afterwards. The opacity of the branches gives a

first insight into the cluster membership variability. For

instance, the thickest of the orange branches, joining

the second clusters at selected steps 16 and 32, is quite

transparent, implying that the members in the branch

are a mixture of those in the previous green and orange

branches. The orange branch joining the second and

third clusters is, however, opaque, as the componence

of its members has not changed from the previous step.

To gain further insight into the membership variability,

users can select branches to see how the cluster mem-

berships of their members vary at the selected steps.

Fig. 6 (bottom) shows an example for the green branch

joining the second cluster at step 16. Observe that, ex-

cept for a temporary split towards the end, the members

in the branch are always clustered together.

6.2 Implementation, Performance Analy-

sis, and Scalability

We ran our tests on a standard desktop PC, equipped

with an Intel i7-4790 quad-core processor running at

3.6 GHz and with 12 GB RAM. Fitting GMMs and

computing the pairwise (dis)similarities using the Ma-

halanobis distance can be performed in parallel at every

time step and every grid point. The operations can thus

be parallelized in a straightforward way on the GPU, re-

sulting in computation times of under five seconds for

all datasets. As shown in the accompanying video, we

are able to handle the comparative analysis session at

interactive frame rates.

Our approach is scalable for ensembles larger than

those used in our examples. Although the readability

of the dendogram may suffer if the number of members
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is larger than a certain limit, 51 ensemble members,

like in our case, is a typical number for meteorological

ensembles. Similarly, the readability of the parallel

coordinates depends on the number of selected time

steps and may require focus and context techniques,

such as zooming and panning, which are part of our

future work. An increase in the grid dimensions affects

neither the two views for the clustering variability, nor

the detail view, since the number of downscaled plots

displayed is fixed, but only the spatial view, where the

size of the pixel of each grid point decreases.

7 CONCLUSION AND EVALUATION

In this paper, we proposed a novel framework that en-

ables an interactive comparative visual analysis of the

transport variability of ensembles of 2D vector fields.

We showed that our approach is able to determine the

pairwise (dis)similarities of the ensemble members at

every time step, without imposing artificial thresholds

for the deviations. To achieve this, we computed the

pairwise dissimilarities using the Mahalanobis distance

on the Gaussian components identified by a GMM algo-

rithm. Based on this fine-grained analysis, we proposed

means to convey the variability of the spatio-temporal

evolution of an ensemble and its clustering solution.

In developing our techniques, we collaborated closely

with domain experts from meteorology, and provide

herewith a summary of their informal feedback. The

experts found the proposed methods useful in gaining a

fast insight into the flow predictability over the domain

and the time interval over which the forecasts can be

trusted. They also described the techniques as useful

in determining regions of different qualitative flow and

highly appreciated our small-multiples approach that

displayed the flow behavior at several locations concur-

rently. Nevertheless, they were initially puzzled about

certain neighboring locations where the flow looked

similar, but the variability values were quite different.

Detailed inspections of such cases revealed the dissim-

ilarities in flow behavior that had lead to the different

variability values, although occasionally the differences

were caused by a suboptimal partitioning of the GMM

algorithm. The experts were also surprised by the

spread of particle positions along geometrically simi-

lar trajectories and commended the enhanced spaghetti

plots for bringing out the variability in the flow. Re-

garding the clustering solution, they were interested to

further investigate the reason for the pattern present in

the clustering solution for the time-varying data.

In the future, we plan to enrich the possibilities of ex-

ploring the variability of the clustering solution and the

dynamics of the ensemble. We also intend to extend our

analysis to 3D vector data. While the mathematical ex-

tension is straightforward, novel graphical abstractions

are necessary to reveal the ensemble variability that re-

duce the clutter and occlusion problems inherent to 3D.
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