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ABSTRACT

We present a system that combines voxel and polygonal representations into a single octree acceleration structure
that can be used for ray tracing. Voxels are well-suited to create good level-of-detail for high-frequency models
where polygonal simplifications usually fail due to the complex structure of the model. However, polygonal
descriptions provide the higher visual fidelity. In addition, voxel representations often oversample the geometric
domain especially for large triangles, whereas a few polygons can be tested for intersection more quickly.

We show how to combine the advantages of both into a unified acceleration structure allowing for blending be-
tween the different representations. A combination of both representations results in an acceleration structure that
compares well in performance in construction and traversal to current state-of-the art acceleration structures. The
voxelization and octree construction are performed entirely on the GPU. Since a single or two non-isolated tri-
angles do not generate severe aliasing in the geometric domain when they are projected to a single pixel, we can
stop constructing the octree early for nodes that contain a maximum of two triangles, further saving construction
time and storage. In addition, intersecting two triangles is cheaper than traversing the octree deeper. We present
three different use-cases for our acceleration structure, from LoD for complex models to a view-direction based
approach in front of a large display wall.

Keywords

Visualization, Computer Graphics, Ray Tracing, Level-of-Detail, Voxelization, Octree, SVO

1 INTRODUCTION

In contrast to polygonal model descriptions, volumetric
descriptions are less sensitive to the scene’s complexity
and enable a progressive refinement — using e.g. oc-
trees, necessary for out-of-core rendering and Level-of-
Detail (LoD). However, if these Sparse Voxel Octrees

(SVOs) [LK11] are to have a visual quality that com-
pares to a polygonal description, they need a high reso-
lution and require much memory space. When arbitrary
scenes are voxelized, many voxels need to be created
for single triangles, possibly oversampling the geomet-
ric domain even though the polygonal representation is
more compact and provides the higher visual fidelity. In
addition, it is often cheaper to intersect a couple of tri-
angles compared to traversing an octree deeper. In this

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit

paper a hybrid approach is introduced where a SVO is
extended with triangle references in the leaf nodes. The
voxelization and construction of the structure is entirely

or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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performed on the GPU.

Having voxel and polygonal data in one acceleration
structure is beneficial because it minimizes manage-
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ment and storage cost compared to having two separate
structures. In addition, having triangle information in
the leaf nodes can reduce the size of the octree. The
construction is stopped for those nodes that contain a
maximum of two triangles. Two triangles building up
a leaf node are often cheaper to intersect than travers-
ing the structure deeper. In addition, they are common
for non-isolated triangles, i.e. the ones sharing an edge.
Non-isolated triangles form a solid surface and are not
crucial to direct geometric aliasing problems. However,
the polygonal information provides the higher visual fi-
delity.

Another benefit of the unified octree structure is that it
allows for a convenient smooth intra-level interpolation
and color blending between layers in the hierarchy and
faster image generation for parts of the scene for which
a coarse representation is sufficient.

We contribute by presenting a system to construct and
render triangles and voxels in a hybrid acceleration
structure. We show how to extend the voxelization
method proposed [CG12] and how to perform an in-
teractive construction of unified SVOs on the GPU. In
addition, we present a compact data layout allowing for
a fast traversal. Finally, we present three applications,
where having pre-filtered voxels along with the polyg-
onal information is beneficial and give benchmarks on
the construction and traversal times and memory sav-
ings by embedding triangle data.

2 RELATED WORK

Several methods have been introduced to create a vol-
umetric description out of a polygonal model, how to
construct octrees or multi-level grids and how to tra-
verse these structures.

One important step to generating unified triangle-voxel
data is the transformation of the parametric or polygo-
nal description of a model into a volumetric description
(voxelization). Early systems such as the Cube system
[KS87] try to rebuild a classical hardware-supported
rasterization pipeline in software. They use a 3D Bre-
senham line drawing algorithm to draw the polygonal
outline and perform a 3D polygonal filling step. These
systems are slow and difficult to implement, as rebuild-
ing an efficient hardware pipeline in software can be
challenging.

As dedicated graphics hardware became available to
the masses, systems for 3D rasterization using the
GPU hardware were proposed. Systems like Voxelpipe
[Panl1] and the one proposed by Schwarz and Seidel
[SS10] perform voxelization using an optimized
triangle/box overlap test on the GPU. The Voxelpipe
system allows an A-buffer voxelization where each
voxel stores a list of triangles intersecting it. However,
using only a triangle/box overlap test creates a binary
voxelization of the data, only specifying whether a

Volume 23, 2015
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voxel is on or off. This representation is not sufficient
for a LoD representation of textured models. Another
example is the system proposed by [EDO06] that gener-
ates a binary voxelization. However, to use a voxel as a
general rendering primitive, more information such as
colors and normals are necessary.

Other approaches for performing a surface voxelization
on the GPU using a GPU accelerated render pipeline
are [DCB104] and [ZCEP07]. Both approaches render
the scene from three sides, combining multiple slices
through the model into a final voxel representation.
However, rendering a scene multiple times has a neg-
ative impact on performance. OpenGL allows to write
to a 3D texture or linear video memory directly from
the fragment shader. In [CG12], this feature is used to
create a boundary voxelization of the model. In this ap-
proach, the model has to be rendered only once. More-
over, using the fragment shader means that colors and
normals for each voxel are instantly available.

Several methods have been introduced for fast octree
and multi-level grid construction. We focus on GPU
in-core methods. Each voxel’s position in a grid can be
represented by a Morton code, that can be used for a fast
bottom-up construction of the tree, e.g. in [ZGHGI11]
[SS10]. A way to create a two level grid is presented in
[KBS11]. The algorithm starts by computing pairs of
triangle-cell overlaps, sorts these pairs and then fills in
the pairs in the grid cells. However, this method must
sort the input data first and must be extended to more
then two levels.

Another approach is presented by [CG12]. By running
multiple shader threads, each voxel is written unsorted
top-down to a set of leaf nodes. If a leaf node is touched
by a fragment generated in the fragment shader, the
node is subdivided further level-by-level. We use a
similar approach, and extend it to get an A-Buffer vox-
elization as well as to construct our hybrid acceleration
structure out of it.

A few approaches combine voxel and point based mod-
els with polygonal data — one is FarVoxel [GMO5].
There, a voxel-based approximation of the scene is gen-
erated using a visibility-aware ray-based sampling of
the scene represented by a BSP tree. FarVoxels can be
used for out-of-core rendering of very large but static
models only — the construction of the tree is an offline
process. Another approach that combines rasterization
and sample-based ray casting is [RCBW12]. In this ap-
proach, all the polygonal data is subdivided into cubical
bricks, essentially performing a voxelization. However,
it is mainly used to speed up rasterization using ray
casting methods and not as a general rendering struc-
ture.

Sparse Voxel DAGs [KSA13] are an effective way to
compact voxel data since they encode identical struc-
tures of the SVO in a DAG. However, this method lacks

ISSN 1213-6972
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Triangles Extended Hybrid
Fragments Octree

) Voxelization 00:: Construction }“ﬁ\

<4
L 2
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Sum
Triangle Fragment Top-Down Bottom-Up
Processing Processing Phase Phase

Figure 1: Overview of the GPU-based construction
pipeline for the unified structure.

colors and normals for each voxel. If they were to be
included, most of the compactness would be gone since
colors and normals are unique for most parts of the
scene and cannot be easily compacted in a DAG.

3 TRIANGLE/VOXEL STRUCTURE
CONSTRUCTION

Our voxelization and octree construction process uses
an approach similar to [CG12] using programmable
shaders with GLSL. This approach is extended to gen-
erate the information on which primitives are touching
each non-empty voxel. We show how to use this infor-
mation to construct the unified acceleration structure on
the GPU. Fig. 1 shows the GPU construction pipeline.

MORTON CODE 8B
RGBA 4B
NORMAL 12B
PRIMITIVE ID 4B

Table 1: Structure of an extended fragment entry gen-
erated during voxelization, including each element’s
memory size in byte

Voxelization: The voxelization is performed using
OpenGL. The view port’s resolution is set to match the
voxelized model’s target voxel resolution. The view
frustum is set up to match the greatest extent of the
scene’s bounding box. After disabling depth writes and
backface culling, each triangle within the view frustum
creates a set of fragments accessible in the fragment
shader. To extend the projected area of the triangle with
respect to the view plane, the triangle is projected to
the view plane as if it had been rendered from another
side of the bounding box.

Since OpenGL samples each rectangular pixel during
the rasterization within the pixel’s center, the triangles
need to be extended slightly in the geometry shader
to ensure that each triangle intersecting a rectangular
pixel area covers the pixel’s center. This is performed
by applying conservative rasterization [HAMOOQS5]. Us-
ing the OpenGL Shading Language GLSL and atomic
counters, each fragment is written from the fragment
shader to a chunk of linear video memory.

Each of these extended fragments stores a position en-
coded in a Morton code. This enables us to perform

Volume 23, 2015
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a fast per-fragment traversal using bit shifts and a fast
comparison of fragments generated at the same spatial
position. In addition, the extended fragments store a
color, a normal and a triangle index, i.e. the fragment
index it originates from. To determine this index, we
use the built-in variable gl_PrimitiveID. Tab. 1
gives an overview on the memory layout of each ex-
tended fragments.

TrianglelndexArray|3|3 §|5|6|1|ﬂ|2|3|1|7|;|4|2‘

Nodes with two triangles Nodes with more than two triangles

Figure 2: Overview of the unified data structure stor-
ing triangles and voxels. Inner nodes (orange), empty
nodes (grey), leaf nodes containing a single triangle
(light blue), leaf nodes containing two triangles (pur-
ple), and leaf nodes containing more than two triangles
(green).

Data Structure: Fig. 2 shows the data structure. If a
leaf node contains only a single triangle or two trian-
gles, the tree does not need to be constructed for deeper
levels for these nodes. If it contains more than two tri-
angles, the node needs to be split. A single node can
store the reference to a single triangle alongside with
the voxel information. However, if it needs to encode
two or more triangles, they are stored in a triangle index
array.

ds ’LEAF|SPLIT| NEXT ‘

b 1b 30b

payload ’ PAYLOAD ‘

32b

Figure 3: Structure of a single node in the octree.

Each node of the data structure is encoded in two 32
bit fields (see fig. 3). A single bit is used to encode
whether the node is a leaf or not, another bit is used to
mark a node during construction if it needs to be split
further. The next 30 bits either encode the index of the
first child node, the id of the triangle if it is the only one
represented in the voxel or the index into the triangle in-
dex array. The other 32 bits payload hold a reference
to a voxel array storing the voxel’s color, its normal and
possibly user-defined fields e.g. material parameters.

ISSN 1213-6972
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Construction: The main idea during construction to
decide whether a node contains a single, two or more
than two triangles is to cache and compare triangle in-
dices in the 64 bit nodes.

The construction is a splatting process in which sev-
eral vertex shaders are executed repetitively spanning
an arbitrary number of threads using indirect draw calls.
First the tree is traversed per-fragment in parallel and
construction is done level-by-level. Afterwards the val-
ues from the inner nodes of the voxel structure and the
color information are written back to the tree nodes
bottom-up.

In the first top-down construction phase of the structure,
we store the individual triangle IDs from each fragment
in the node’s two 32 bit fields using atomic comp-and-
swap operations. If more than two triangles have to be
stored in a node, this node needs to be marked for fur-
ther splitting. In the next shader step new nodes and
voxel payloads for deeper levels are created and the tri-
angle IDs of those nodes that contain only two triangles
are written to the triangle index array. Now the first
stage is executed again.

Eventually, when the tree is created for the highest res-
olution, the number of triangles that fell into the leaf
nodes are counted using an atomic add operation in the
payload field. In this stage, each leaf node that has
not been already finalized in a earlier shader stage, since
it contained only up to two triangles, contains more than
two. Afterwards, the triangle counts stored in each leaf
node are written to a temporary triangle index count ar-
ray.

In the next step the prefix sum of the triangle index
count array is computed. Finally, the tree is traversed
once more and the primitive IDs in the fragment are
written to the final array locations in the triangle in-
dex array using the triangle index count array and the
nodes are relinked accordingly. In this phase we can
keep track of the individual primitive id locations in the
triangle index array by decrementing the values in the
triangle index count array using atomic add operations.

To decide whether a leaf node contains a single, two or
more triangles offsets are added to the indices, we store
in each leaf node’s next field. If a node stores an index
to a single triangle it encodes the triangle id directly. If
it holds an index to a node containing more than two
triangles it stores the maximal triangle id plus the index
in the triangle index array storing two triangle indices
consecutively. If it contains more than two triangles we
add the maximal triangle id, the length of the triangle
index array storing two triangles and the index. (See
fig. 2)

The bottom-up phase continues by filling in the voxel
colors, normals and primitive IDs for each node of the
tree. Therefore, the tree is traversed per fragment in
parallel. Once a shader thread reaches leaf node, the
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fragment’s color and normal must be averaged. This
is performed in a similar fashion as in [CG12]. Using
an atomic compare-and-swap operation in a loop, each
thread checks whether it can write its new summed and
averaged value into the voxel’s color field. For the nor-
mals a simple atomic add on the float components is
used. If normals sum up to a zero length normal, e.g.
for two opposing faces, the last valid normal is stored.

Finally the tree is processed bottom-up and level by
level. Inner nodes are filled by averaging colors and
normals and by normalizing the normals of all the child
nodes, since the latter resulted only in adding up the
normals in the step before.

4 TRIANGLE/VOXEL STRUCTURE
TRAVERSAL & INTERSECTION

Rendering of the data structure is performed using a
prototypical ray tracer using OpenCL. After the con-
struction, each OpenGL buffer is mapped to OpenCL.
These are the buffers containing the nodes, the voxels
and the triangle index array and all triangle data, as well
as the material information of the model.

Traversal: We decided to implement a traversal using
a small stack on the GPU. We set the active parametric
t-span of each ray that hits the scene’s bounding box
to the extent of this bounding box. The algorithm has
three phases:

1. If the current first hit voxel within the active t-span
is not empty, we traverse the tree deeper and push
the parent node with the current #,,,, onto a stack.
We set 1,4 to point to the end of the active voxel.

2. If the voxel is empty, we either need to process the
next sibling node of the active parent by setting i,
to the beginning of the next node within the 7-span
or,

3. if the node is not a sibling node of the active parent,
we need to pop nodes from our stack, reset #,,,,x to
the position stored on the stack until we can hit the
first possible neighboring voxel, and traverse the tree
deeper again.

If the traversal reaches a leaf, its triangles can be inter-
sected - either one, two or more. Therefore, the algo-
rithm looks at the index stored in the leaf’s next field.
Since the index is encoded using offsets, it can be de-
cided directly if the node references a single, two or
more triangles. The traversal code now determines the
closest hit point of the ray and all triangles lying within
that leaf node. If the closest triangle is hit and the in-
tersection is within the boundaries described by the leaf
node, the traversal returns a structure representing the
hit point. Otherwise the traversal is continued with the
next sibling node.

ISSN 1213-6972
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Full Octree Resolution
Scene Nodes | Triangles | Triangle Index Array | Voxel | Overall
Sponza 42.29 27.66 14.14 46.06 | 130.15
Urban Sprawl 18.32 75.19 19.31 20.38 | 133.21
Happy Buddha | 11.42 103.07 21.94 11.95 | 148.38
Forest Scene 30.41 156.25 34.58 33.29 | 254.53
Our Method
Scene Nodes | Triangles | Triangle Index Array | Voxel | Overall | Saved
Sponza 10.89 27.66 12.51 13.97 65.03 50.03%
Urban Sprawl 12.37 75.19 18.47 14.77 | 120.81 9.31%
Happy Buddha | 10.97 103.07 21.92 11.81 | 147.77 0.41%
Forest Scene 21.27 156.25 34.00 272 238.72 6.21%

Table 2: Size of the acceleration structure (MB). The upper part of the table shows the acceleration structure size
of the test scenes for a tree build for all octree levels. The lower part of the table shows our method, where the tree

is built only for nodes containing more than two triangles.

Inter-level blending: For the LoD selection and to en-
able a smoother blending between different levels of the
hierarchy we use Ray Differentials [Ige99]. Each ray is
represented by its origin and a unit vector describing
its direction. In addition, we store its’ differentials de-
scribing the pixel offset on the image plane in x and y
direction.

By using ray differentials, we can compute an estimated
pixel’s footprint in world space on the voxels. This
footprint can be compared with the size of an individ-
ual voxel at level /. If the pixel’s footprint is roughly
equal or smaller than the voxel, we can stop traversing
deeper.

In addition, we compute a value describing the under-
estimation i(/, f) of the size of the pixel’s footprint and
the actual size of nodes at level [ and / — 1 by computing

2-v() = f
Vi (1)

with vy, (I) being the length of a side of a voxel in world
space and f being the estimated length of the pixel’s
footprint at the ray’s hit point. This value can be used
as interpolation factor between the two subsequent lev-
els in the SVO. Since we traverse the tree using a small
stack, we can keep track of the voxel at level [ — 1 di-
rectly and use the interpolation factor during shading
and lighting computations.

i(l,f) =

5 BENCHMARKS

The benchmarks of our system were performed using a
Nvidia GeForce GTX Titan with 6GB video memory on
an Intel Core i7 system with 16GB RAM. Fig. 4 shows
the construction times of four different test scenes. The
forest test scene shows 13 highly detailed plant mod-
els on a small plane. As expected, increasing triangle
counts increase the run time of the construction. How-
ever, the pure triangle count is not the only parame-
ter when it comes to measuring construction times as
highly detailed textures and shaders extend the time it
takes to voxelize the model.
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Figure 4: Run times for each phase of the construction
as well as the overall construction time. Each scene was
voxelized with a resolution of 5123.

Voxel Triangle Hybrid
Scene
only only Structure
Sponza 573 fps | 18.2 fps 20.6 fps
Urban Sprawl | 40.3 fps | 13.3 fps 23.7 fps
Happy Buddha | 63.1fps | 10.1 fps 16.7 tps
Forest Scene 64.2 fps 2.4 fps 12.9 fps

Table 3: Avg. fps of four different scenes rendered with
aresolution of 1024 x 1024 using only primary rays and
phong lighting with simple shadows and a single point
light source. Each scene was voxelized with a resolu-
tion of 5123.

Table 2 shows the advantage of our method in com-
parison to a full build of the octree without stopping
the construction early in terms of size of the accelera-
tion structure. Both versions store the triangles in their
leaf nodes as a reference to the triangle index
array. We have included the size needed to store
the triangles themselves, which largely depends on the
scene. The triangle count in the Sponza scene is very
low. If one only considers the size of the nodes and the
voxel data, the overall saved space amounts to a larger
percentage for most scenes. The Happy Buddha scene
has many, but very small triangles. For this scene con-
struction can’t be stopped for most inner nodes result-
ing in only a small memory saving.

ISSN 1213-6972



No.2

We have rendered all scenes with a resolution of 1024 x
1024 using a typical fly through for about 700 frames
and averaged the run times. The results in tab. 3 show
the rendering times from the OpenCL renderer shooting
primary rays with phong lighting, a single point light
source and no texture filtering. Rendering only voxels
is fast but lacking visual quality. Traversing our struc-
ture displaying triangles only provides the highest vi-
sual quality but is slow an offers no LoD - aliasing can
occur. he hybrid structure provides a good trade-off in
speed and offers LoD.

However, measuring the frame rates for the hybrid
approach is non trivial since they increase drastically if
parts of the scene show the voxel data only. For scenes
like Sponza showing an atrium where a camera is
mostly "inside" the model, only a few camera positions
can make use of the voxel data, resulting in only a
small speed up. In the Forest- or the Urban Sprawl
scene parts of the model are in the distance more often.
Thus the voxel data is used more frequently resulting
in larger speed ups.

6 APPLICATIONS

Our hybrid structure is well-suited for applications that
need a general LoD scheme, since the regular voxel
description allows to create a representation for arbi-
trary input meshes. In principle the hybrid structure
can be seen as a multi level grid, omitting the fact that
this structure contains a color and a normal for each
grid cell. However, this additional information, is well
suited to some scenarios to reduce aliasing and speed
up rendering. We present three different applications:
a visualization of large outdoor scenes, urban environ-
ments and a view-direction based rendering approach
in front of a large tiled display wall.

The first application (cf. fig. 6a) uses the hybrid accel-
eration structure to render highly complex vegetated ar-
eas with LoD. Here far distant models project to only a
few pixels on screen creating aliasing artifacts. We use
an approach similar to [DMS06] [WHDS13]. On the
highest level a nested hierarchy of kd-trees over wang
tiles with Poisson Disc Distributions is used to repre-
sent plant locations resulting in instanced, but aperi-
odic repetitions. Each scene contains millions of highly
complex plant models reused throughout the scene.

The advantage of our hybrid representation over a
polygonal simplification is that, within a regular octree
structure, an approximation of high-frequency input
models such as trees with different LoDs can be gener-
ated. Polygonal simplification of such models usually
fails due to the complex foliage and branching structure
of the trees. Sample caching strategies in object space
that provide LoD are limited to single instances, e.g.
samples can’t be cached in the accelerations structure
of a single tree since it is reused. Therefore, it is
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beneficial to have pre-filtered voxel data at hand to
limit aliasing artifacts or to reduce the oversampling
needed to create smooth animations and crisp images.
In addition, this speeds up rendering. We can render
a scene with trillions instantiated triangles consisting
of 40Mio. trees at a resolution of 720p with about
5-7fps including direct shadows using our prototypical
OpenCL ray caster.

Another example where this LoD structure is benefi-
cial are urban scenes as shown in fig. 5a and fig. 5b.
Even though a polygonal simplification of such struc-
tures is not as challenging as for tree models, renderings
of such scenes from far away have to cope with high-
frequency aliasing. If this urban scene is viewed from a
distance, the highly varying z-depth of the scene gener-
ate geometric aliasing which can be reduced by having
a pre-filtered voxel structure. Moreover, voxel are inde-
pendent from the scenes local complexity. In addition,
possibly large triangles in such a scene further reduce
the size of the octree. Furthermore, the hybrid structure
allows for smoother transitions and color blending be-
tween different layers of the hierarchy (cf. fig. 5b) and
faster render times for highly detailed parts in the scene
that are viewed from the distance.

A further application is shown in fig. 6b. There the
structure is used for a view dependent rendering on a
large tiled display wall. Since coarse voxel representa-
tions can be renderer faster than highly complex polyg-
onal models, the voxel representation is mainly used to
speed up rendering.

The user’s central field of view is tracked and ren-
dered in high quality using the polygonal representa-
tion, whereas the surrounding is rendered using our
LoD approach. Therefore, we compute an intersection
of the tracked user’s view frustum with a virtual display
wall. Using the intersections an ellipsoid is generated.
Points within this ellipsoid are rendered with maximal
resolution using polygonal data. For points outside of
the ellipsoid the distance from the ellipsoid to the cur-
rent pixel is computed. This distance is use to decide
whether a deeper traversal of the hierarchy is necessary
or if traversal can be stopped early. The transitions be-
tween the layers of the hierarchy are blurred using a
post-processing step in image space.

7 DISCUSSION

We presented an approach to building a hybrid acceler-
ation structure storing voxels for inner nodes, stopping
construction of deeper levels if the number of primitives
within that node are not larger than two and storing the
full triangle list for each leaf node that represents the
finest voxelized level. This way, we generate a LoD de-
scription of the input geometry. The advantage of this
representation over a polygonal simplification is that,
within a regular octree structure, we generate a good
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(b

Figure 5: Rendering of an urban environment (5a) using our unified octree structure with voxel data in the back-
ground. Fig. (5b) shows a color coding. The red areas were rendered using polygonal data and the green regions

were rendered using voxels.

(a)

(b)

Figure 6: Rendering of instantiated tree models (6a) and a focus and context based rendering in front of a large

display wall (6b) using our unified acceleration structure.

approximation of high-frequency input models such as
trees. In addition, this speeds up rendering by provid-
ing a coarse representation for areas that are of minor
interest in a visualization or are not visible/noticeable
to the user. Since the construction on the GPU is per-
formed in-core, the resolution of the voxelization is lim-
ited. However, the system is fast enough to construct an
octree of a scene in real time doing a complete rebuild.

One problem targeted by further research is that an oc-
tree is not truly adaptive with respect to the scene’s
input geometry. If one has highly complex geometry
inside a single leaf voxel, traversing these parts of the
scene can have a huge impact on performance. Simply
building a tree deeper by a regular subdivision of these
parts, is often not sufficient to divide the model’s in-
put geometry. It would be better to either identify these
high resolution parts beforehand and voxelize them sep-
arately or automatically use truly adaptive acceleration
structures such as BVHs or kD-Trees for these parts of
the scene. However, since a coarser voxel representa-
tion is available, the renderer can decide to stop travers-
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ing these parts and display the coarse voxel representa-
tion to stay within a constant frame rate. In addition,
due to the regularity of the octree’s structure, more ad-
vanced optimizations such as e.g., a beam optimization
[LK11] could be applied. Moreover, for improved GPU
utilization, it might be beneficial to postpone the trian-
gle intersection from inside the octree traversal to sub-
sequent rendering passes.

Another aspect crucial to performance is memory man-
agement. Since the number of fragments generated by
the voxelizer, the size of the octree and the triangle in-
dex list are not known in advance, buffers must either be
preallocated with a maximal size, be used in a caching
scheme (e.g. [CNLE09]), or more advanced memory
management must be applied — though determining the
size needed for buffers, is a problem most grid construc-
tion algorithms have in common. However, once we
have generated the voxel’s extended fragment list, our
approach can stop the octree construction early when
too much memory is needed to construct deeper levels.
The system has been extended to perform an out-of-
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core voxelization and construction for parts of the scene
that have to be voxelized with a higher resolution.

Voxel structures have disadvantages which should be
targeted by further research. It is merely possible to
average different material informations inside a singe
voxel cell. Furthermore, due to their grid like struc-
ture, shadows are hard to implement because neighbor-
ing voxels tend to cast shadows on themselves. These
shadows create a high-frequency noise in the image
which is disadvantageous if one wants to use voxels to
reduce aliasing. Another issue is the size of the struc-
ture. However, we have shown that our structure is
compact enough to represent several dozens of mod-
els, voxelized with a high-resolution, in GPU memory
at once.
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ABSTRACT

Compressed sensing(CS) has shown great potential in speeding up magnetic resonance imaging(MRI) without
degrading images quality. In CS MRI, sparsity (compressibility) is a crucial premise to reconstruct high-quality
images from non-uniformly undersampled k-space measurements. In this paper, a novel multi-scale geometric
analysis method (uniform discrete curvelet transform) is introduced as sparse prior to sparsify magnetic resonance
images. The generated CS MRI reconstruction formulation is solved via variable splitting and alternating direction
method of multipliers, involving revising sparse coefficients via optimizing penalty term and measurements via
constraining k-space data fidelity term. The reconstructed result is the weighted average of the two terms. Simulat-
ed results on in vivo data are evaluated by objective indices and visual perception, which indicate that the proposed
method outperforms earlier methods and can obtain lower reconstruction error.

Keywords
Compressed sensing, magnetic resonance imaging, uniform discrete curvelet transform, variable splitting, alter-
nating direction method of multipliers.

1 INTRODUCTION basis; the reconstruction optimization problem can
be solved by using nonlinear method. In CS MRI,
incoherent random, radial and spiral sampling tra-
jectories are applied to obtain k-space measurements
[lustig2007sparse, chen2010novel, santos2006single].
The generally employed sparsifying methods in-
clude spatial finite-difference [lustig2007sparse,
huang201lefficient, huang2012compressed], dis-
crete wavelet transform(DWT) [lustig2007sparse,
huang201 lefficient, huang2012compressed], multi-
scale geometric analysis(MGA) methods (contourlet

Traditional scanning methods of magnetic resonance
imaging(MRI) spent plenty of time on data acquisition.
This brought negative influences for clinical diagnosis.
K-space undersampling provides one method to speed
up the imaging at the expense of introducing aliasing
for violating the Nyquist (Shannon) sampling theorem.

Compressed sensing(CS) [baraniuk2007compressive,
1614066] points out, sparse or compressible signal
can be reconstructed precisely from less number
of sampled data than those constrained by Nyquist g ngform  [1532309], nonsubsampled contourlet
sampling theorem.  Hence, CS provides theoreti- . cform [da2006nonsubsampled], sharp frequen-
cal feasibil.ity for highly un.dersampled MR images cy localization contourlet(SFLCT) [lu2006new],
reconstructlon.. The emerging approach is terme.d discrete curvelet transform wusing fast algorith-
Cs MRI [lustig2007sparse, 4472246]‘. The main m(FDCT) [candes2006fast] and discrete shearlet
principles of CS MRI are that the images to be  oncform(DST) [1im2010discrete]), dictionary learnt
reconstructed can be sparsely represented; mea-  fron intermediate reconstruction or fully sampled im-
surement matrix is irrelevant to sparse transform ages [ning2013magnetic, qu2012undersampled],
temporal sparsity along temporal axis for dy-
namic cardiac imaging [bilen2012high] and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and

the combination of some of these transform-
s [lustig2007sparse, huang201 lefficient]. The main
thoughts of reconstruction approaches are nonlinearly
the full citation on the first page. To copy otherwise, or re- reconstructing original signal accurately from a small
publish, to post on servers or to redistribute to lists, requires number of measurements. The generally used are
prior specific permission and/or a fee. greedy pursuit class (matching pursuit, orthogonal
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matching pursuit) for solving sparse coefficients [
regularization, provided that the sparsity of image is al-
ready known; linear programming (gradient projection,
basis pursuit) handling sparse coefficients /; regular-
ization at the cost of high computational complexity;
minimizing non-convex [, (0 < p < 1) quasi-norm such
as the recent one in [candes2008enhancing], which
doesn’t always give global minima and is also slow.
The widely used methods are based on augmented
Lagrangian for solving convex, non-smooth regular-
ization (total variation and [;) optimization. These
methods include YALL1 [yang201lalternating], FC-
SA [huang201 lefficient], split augmented Lagrangian
shrinkage algorithm(SALSA) [afonso2010fast] and
constrained split augmented Lagrangian shrinkage
algorithm(C-SALSA) [5570998], etc.

In this paper, a novel MGA method termed uniform
discrete curvelet transform(UDCT) (refer to [5443489]
for details) is adopted to sparsify MR images. In terms
of the alias free subsampling in frequency domain
they both employed, UDCT has similar properties as
wrapping-based FDCT, such as tight frame property,
highly directional sensitivity and anisotropy. Besides,
UDCT is superior than FDCT for its lower redundancy
of 4 and clear coefficients parent-children relationship.
Reconstruction model is proposed involving UDCT co-
efficients regularization term and k-space data fidelity
term. To solve the corresponding reconstruction model,
C-SALSA, i.e., variable splitting(VS) and alternating
direction method of multipliers(ADMM-2) [5570998]
is used. The proposed CS MRI method is termed
UDCSMRI

The paper is organized as follows. Section 2 describes
the existing CS MRI work, and then introduces UDC-
SMRI in detail including UDCT sparse prior and corre-
sponding reconstruction model handling the ill-posed
linear inverse problems. In section 3 UDCSMRI is
compared with current CS MRI methods in reconstruc-
tion performance. Then its ability of handling noise and
convergence performance is analyzed. Conclusions and
future work involving extending this work to dynamic
parallel MRI are explicit in section 4.

2 MATERIALS AND METHODS
CS MRI

Define x € C" is vector-version of 2D image to be
reconstructed. y = F,x denotes undersampling in k-
space, where F, € C™*™ means undersampled Fourier
Encoding matrix and y € C™ represents k-space mea-
surements. ¥ € C'*" represents analytical sparse trans-
form matrix or the inverse of a set of learnt signals. CS
reconstructs the underlying MR image x from measure-
ments y via solving the constrained linear inverse prob-
lem, denoted as Eq. (1)

min|[¥x]; s.t. [Fux—y|3<e (1
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where € € C™ controls the allowed noise level in recon-
structed image, /; enforces sparsity, I, constrains the
data fidelity. Finite-difference (total variation) is gen-
erally added to the objective to suppress the noise and
preserve images details simultaneously, then the prob-
lem is

min | ¥ + BTV (x) st. [Fuax—y[3<e (2

where § > 0 denotes weight of total variation(TV).
Rather than Eq. (1), most current methods handling lin-
ear inverse problems with convex, non-smooth regular-
ization (/; and TV) consider the unconstrained problem

. 1
min By x|, + BTV (x) + 5 [Fux -yl (3)

in which B;(;) > 0 is regularization parameter. The
commonly used techniques dealing with Eq. (3) are
VS and methods upon augmented Lagrangian, such as
TVCMRI [ma2008efficient], RecPF, FCSA, SALSA,
etc. However, Eq. (3) is not efficient for ignoring €,
which has a clear meaning (proportional to the noise
deviation) and is easier to set than parameter f3 ).
Additionally, numerous different reconstruction models
have been explored, such as NLTV-MRI incorporating
with nonlocal TV [huang2012compressed], reconstruc-
tion upon wavelet tree structured sparsity(WaTMRI)
studied in [NIPS20124630], reconstruction by using
dictionary learning(DL) [qu2012undersampled, n-
ing2013magnetic] and patch-based nonlocal operator
combined with VS and quadratic penalty reconstruc-
tion technique named PANO [qu2014magnetic], etc.
Besides, 3D dynamic parallel imaging has also been
proposed and is of great significance for practical MRI
applications. It is established on either sparsity along
temporal axis [bilen2012high] or structured low-rank
matrix completion [shin2013calibrationless]..

Proposed Method based on UDCT

In this paper, MR images are sparsified by MGA
method named UDCT. Efficient C-SALSA is intro-
duced to solve the generated CS MRI reconstruction
formulation under UDCT sparse prior. MR image x to
be reconstructed is initialized to one zero-filling image.
This zero-filling image is obtained from the result of
direct inverse Fourier transform to zero filled k-space
measurements, represented as Xo = FHy. Zero-filling
image serves as the original intermediate image. The
real and imaginary part of X¢ are decomposed into
J levels by using UDCT separately, 2k; directional
sub-bands for each level. CS MRI reconstruction prob-
lem comes down to solving the optimization problem
constrained by image transform sparsity and k-space
measurements fidelity (in an iterative process). The
solving process requires the definition of the Moreau
proximal maps of regularization term and fidelity term.
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Reconstruction result is the trade-off between the two
terms and then serves as the intermediate image for the
next iteration. This procedure is executed iteratively
until some stop criterion is satisfied. = Framework
of UDCSMRI in Fig.l1 demonstrates clearly the
implementation process.

Uniform Discrete Curvelet Transform

As is known, discrete wavelet basis only represents the
location and features of singular point with limited di-
rections. The generally used contourlet transform lack-
s shift-invariance and brings pseudo-Gibbs phenomena
around singular points. NSCT owns too high redundan-
cy and SFLCT cannot capture clear directional features
in spite of flexible redundancy. The needle-shaped el-
ements of FDCT allow very high directional sensitivi-
ty and anisotropy and are thus very efficient in repre-
senting line-like edges. But FDCT possesses too high
redundancy, which makes it sub-optimal in sparse rep-
resentation, either. UDCT has been proposed as an in-
novative implementation of discrete curvelet transform
for real-valued signals. Utilizing the ideas of FFT-based
discrete curvelet transform and filter-bank based con-
tourlet transform, UDCT is designed as a perfect multi-
resolution reconstruction filter bank(FB) but executed
by FFT algorithm. The number of UDCT coefficients
are fixed at each scale and sizes of directional sub-bands
are the same for each scale, which provides simple cal-
culation. UDCT can provide a flexible instead of fixed
number of clear directions at each scale to capture var-
ious directional geometrical structures accurately. Be-
sides, the forward and inverse transform form a tight
and self-dual frame with an acceptable redundancy of
4 to allow the input real-valued signal to be perfect-
ly reconstructed. UDCT has asymptotic approximation
properties: for image x with C? (C is a constant) sin-
gularities, the best N-term approximation xy (N is the
number of most important transform coefficients allow-
ing reconstruction) in the curvelet expansion is [can-
des2000curvelets]

[x —xn|[3 <CN“2(logN)* N = oo )

This property is known as the optimal sparsity. There-
fore, UDCT is considered as the preeminent MGA
method for CS MRI application.

Constrained Split Augmented Lagrangian Shrink-
age Algorithn

Define @ as regularization function, ¥ the UDCT ana-
Iytical operator, the sparse representation is defined as
a = Wx. The reconstruction model can thus be denoted
as

el
TV(EF‘a)

if & =1
ifO=TV (5

a.x

min® (o) :{

st [Fux—y[3 <&
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Eq. (5) is solved by C-SALSA. Different from the pre-
vious augmented Lagrangian based methods to solve E-
g- (3), C-SALSA has been proposed as a new augment-
ed Lagrangian based method, which directly solves the
original constrained inverse problem optimization ef-
ficiently. C-SALSA first translates the constrained E-
g- (5) into an unconstrained one via adding the in-
dicator function of the feasible set, the ellipsoid {x :
|[Fux — y||§ < g}, to the objective in Eq. (5). Then the
unconstrained problem can be denoted as

min 4@ (@) + 22-Z e 1y) (FuX) ©6)

In Eq. (6), parameters A; and A, measure the weight
of the regularization term and error constraint term, re-
spectively. The values linearly increase along with the
increase of iteration number (A;(3) <= PAia), p > 1
means linear growth factor). Eq. (6) is translated into
another constrained problem via VS, denoted as
ae@ﬁxrél(l:r{vecm M@ (@) + 12 Zeery) (V) st. v =Fyx

(N
Finally, ADMM-2 solves the two sub-problems con-
cerning & and v. The reconstruction result is obtained
in this way. In terms of sub-problem concerning the
regularization @, the Moreau proximal mapping func-
tion can be defined as

~ 1 ~
0y () :argmgniHa—aH;—i—ib(a) (8)

where @ is the result of mapping to @ according to the
mapping relation C' — C'. If ® (-) = |||, O is simply
a soft threshold. If @ is TV norm, Chambolle’s algorith-
m [chambolle2004algorithm] is available to compute
the involving problem. E(g,1,y) represents a closed &-
radius Euclidean ball centered at y. The Moreau prox-
imal map of Zf ¢ 1y) can be simply denoted as the or-
thogonal projection of v on the closed €-radius ball
centered at'y

_ . 2
yrepo iflv-ylh>e

9)
v flv-yli<e

®$E(E,I,y) (V) = {

The resulting algorithm is summarized in Algorithm C-
SALSA-2 [5570998].

3 EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Setup

The reconstruction performance of UDCSMRI for
various MR raw data, is analyzed from four aspect-
s. Experimental raw data include complex-valued
T2-weighted brain image (MR T2wBrain_slice27
of 256 x 256), water phantom [ning2013magnetic],
real-valued MBA_T2_slice006, randomly selected
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Figure 1. Framework of UDCT based CS MRI

AIDS dementia (slice 0-16), Brain Tumor (slice
0-23) and Normal aging (slice 0-53) (Courtesy of
http://www.med.harvard.edu/AANLIB/home.html).
Partial raw images and sampling schemes are shown
in Fig.2. Computations are performed on a 64-
bit Windows 7 operating system with an Intel
Xeon E5 CPU at 2.80 GHz and 8 GB memory,
MATLAB R2011b. Numerical metrics of quality
assessment for reconstructed images are peak signal-
to-noise ratio(PSNR) (in dB) and relative I norm
error(RLNE) [qu2012undersampled].

Comparison with Earlier Methods

The performance of UDCSMRI for images in Fig.2(a)-
(c) is compared with that of TVCMRI, FCSA and
WaTMRI. UDCT decomposition of J =1, 12 di-
rectional sub-bands for each scale is adopted by
Fig.2(a)-(b). For Fig.2(c), UDCT decomposition of
J = 3, 12 directional sub-bands for each scale is used.
The preset maximum iteration number for ADMM-2 is
K =170.

MR T2wBrain_slice27 reconstruction under 40%
Cartesian sampling scheme is exhibited in Fig.3. Fig.3
indicates that reconstructed images under wavelet
basis sparse regularization show severe pseudo-Gibbs
phenomena, edge blur and aliasing. Whereas UDC-
SMRI with & = [; (UDCSMRI(/;)), UDCSMRI with
& =TV (UDCSMRI(TV)) reconstructed images show
clear edge details, the least aliasing and the lowest
reconstructed error. Besides, UDCSMRI(TV) recon-
structed image obtains the highest PSNR (39.10dB)
and lowest RLNE(0.0684). These demonstrate that
UDCSMRI performs preeminently in reconstructing
T2wBrain_slice27.

For MBA_T2_slice006 reconstruction under Cartesian
sampling scheme at 0.40 sampling rate, the recon-
structed images PSNRs of TVCMRI, FCSA, WaTMRI,
UDCSMRI(/;) and UDCSMRI(TV) are 30.15dB,
31.08dB, 30.48dB, 36.01dB and 38.95dB, respectively.
RLNES are 0.1263, 0.1135, 0.1224, 0.0644 and 0.0459
separately. These indicate that UDCSMRI obtains the
least reconstruction error.
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Water phantom reconstructed results under 30.20%
pseudo radial sampling scheme in Fig.4 indicate that
TVCMRI, FCSA and WaTMRI can not reduce aliasing
efficiently. While UDCSMRI(/;) and UDCSMRI(TV)
reconstructed images obtain clear edge structures.
It is worth mentioning that reconstructed result in
Fig.4(d) has better rhombic texture features and more
clear directions than that in Fig.4(e). It means that
UDCSMRI(!;) performs better than UDCSMRI(TV) in
reconstructing water phantom.

AIDS dementia (slice0-16), Brain Tumor (slice0-23)
and Normal aging (slice0-53) reconstruction using
Cartesian sampling at 0.40 sampling rate are imple-
mented to further test the performance of UDCSMRI.
PSNR and RLNE curves versus slices of UDCSMRI
reconstruction, for AIDS dementia, Brain Tumor,
Normal aging separately, are compared with those of
TVCMRI, FCSA, WaTMRI. The comparison curves
are exhibited in Fig.5. The statistical results in Fig.5
show that UDCSMRI can reconstruct original MR
images from highly undersampled k-space with high
probability among all the compared methods.

Sampled Data with Noise

The ability of UDCSMRI for handling noise is tested
in this subsection. After random gaussian white
noise with standard deviation of 10.2 is added to
fully sampled k-space data, PSNRs for fully sampled
reconstructed T2wBrain_slice27, MBA_T?2_slice006
and water phantom are 29.87dB 28.94dB and 30.76dB
separately. RLNEs are 0.1980, 0.1451 and 0.0609
separately. Table 1 shows numerical metrics for re-
constructed T2wBrain_slice27 and MBA_T2_slice006
using sampling scheme in Fig.2(d) at 0.40 sampling
rate, and reconstructed water phantom using sampling
scheme in Fig.2(e) at 0.3020 sampling rate, respec-
tively. In Table 1, UDCSMRI reconstructed results
obtain the highest PSNR and lowest RLNE, indicating
that UDCSMRI can eliminate noise efficiently. TV
regularization constrained UDCSMRI performs better
that /; regularization constrained UDCSMRI in elimi-
nating noise in reconstructing images in Fig.2(a)-(b).
While for reconstructing image in Fig.2(c) under
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(a) (b) (c) (d) (e)
Figure 2. (a) MR T2wBrain_slice27, (b) MBA_T2_slice006, (¢) Water phantom, (d) Cartesian sampling
scheme and (e) Pseudo radial sampling scheme.

@ (®) © (d (© (®

(O] ) (9] U] (m)

Figure 3. T2wBrain_slice27 reconstruction with Cartesian sampling at 0.40 sampling rate. (a)-(f) Amplified
local regions of reconstructed images from TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TYV)
and fully sampled k-space data separately, (g)-(k) Difference image between fully sampled MR image and
TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) reconstructed images with gray scale of [0,
0.20], respectively. PSNRs of TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) reconstructed
images are 30.74dB, 31.29dB, 30.87dB, 36.41dB and 39.10dB and RLNEs of them are 0.1790, 0.1681, 0.1764,
0.0932 and 0.0684 separately.

(@ (b) © (d) © ®
Figure 4. Pseudo radial sampling at 0.3020 sampling rate. (a)-(f) Enlarged local regions of reconstructed
water phantom from TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) and fully sampled k-
space data separately.

noise, UDCSMRI(/;) performs slightly better than for maximum PSNRs and minimum RLNEs. Table
UDCSMRI(TV). 2 and Table 3 exhibit reconstructed numerical indices
using C-SALSA with & =/; and ® = TV separately.
Table 2 exhibits clearly that reconstruction based
on conventional sparse methods cannot efficiently
Influences of various sparse priors to C-SALSA recon-  eliminate artifacts and aliasing caused by Cartesian un-
struction performance without noise are discussed in  dersampling, particularly for wavelet and FDCT based
this subsection, for reconstructing T2wBrain_slice27  C-SALSA. MRSFLCT based C-SALSA reconstructed
and MBA_T2_ slice006 under Cartesian sampling images obtain slightly higher PSNRs and lower RLNEs
scheme at 0.40 sampling rate and water phantom under  separately than LRSFLCT based C-SALSA recon-
30.20% pseudo radial sampling scheme. C-SALSA  structed images, indicating that increasing redundancy
based on Daubechies wavelet basis, less redundant proper]y can improve the reconstruction qua]ity to
SFLCT(LRSFLCT) based C-SALSA, more redundant  some extent. While UDCSMRI reconstructed images
SFLCT(MRSFLCT) based C-SALSA, FDCT based  possess highest PSNRs and lowest RLNEs, indicating
C-SALSA and UDCSMRI reconstruction methods are  that UDCT performs best in sparsifying MR images
compared in our work. In simulation, regularization pa-  and thus can lead to lower undersampling rate while
rameters of compared methods are manually optimized

Influences of Various Sparse Priors
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Figure 5. Cartesian sampling at 0.40 sampling rate. (a)-(c) PSNR versus slices for AIDS dementia, Brain
Tumor and Normal aging, respectively. (d)-(f) RLNE versus slices for AIDS dementia, Brain Tumor and

Normal aging, respectively.

. . Methods

Tmages & Sampling schemes Indices =1 GMRI  FCSA  WaTMRI  UDCSMRI(;) UDCSMRI(TY)
.  PSNR(B) 2879  28.67 2838 31.84 32.24
T2wBrain_slice27 & Cartesian o) g " 02041 02272 0.2349 0.1577 0.1507
. — PSNR@B) _ 29.63 2957 2932 31.36 31.76
MBA_T2_slice006 & Cartesian o) \p " 01341 0.1351  0.1390 0.1099 0.1049
g PSNR(B)  12.62  9.43 9.38 33.03 32.80
Water phantom ¢ pseudo RLNE 0.4917  0.7102  0.7140 0.0469 0.0482

Table 1. Reconstructed images quality indices for sampled data with noise

Sparse priors

Images & Sampling schemes Indices  — echies wavelet LRSELCT MRSELCT _FDCT _ UDCT
- ~ PSNR(B) 32.01 33.79 3473 3334 3641
T2wBrain_slice27 & Cartesian b, \p 0.1395 01260  0.1131  0.1327 0.0932
.  PSNR(B) 31.49 31.15 32.19 3028 36.01
MBA_T2_slice006 & Cartesian o) \p 0.1083 0.1125  0.0998  0.1245 0.0644
AR PSNR(dB) 33.86 35.01 3528 3388 3574
water phantom c pseudo RLNE 0.0426 0.0374 0.0362  0.0425 0.0343

Table 2. Various sparse priors with /| regularization

obtaining high-quality reconstruction. Table 3 shows
similar reconstruction results in general. What worth
mentioning is that MRSFLCT and LRSFLCT based
C-SALSA (® = TV) obtain the same numerical
indices. Comparing Table 2 with Table 3, it can be
concluded that /; regularization performs better than
TV regularization for sparse transforms except UDCT.

Convergence Analysis

Convergence of UDCSMRI reconstruction is an-
alyzed in this subsection. MSE versus ADMM-2
iteration number for reconstructing Fig.3(d) and (e),
MBA_T2 slice006 under the same conditions and
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Fig.4(d) and (e) are exhibited in Fig.6. When iteration
number reaches 25, MSE has already fell into minimal
values. Conclusions are made that UDCSMRI(/;) and
UDCSMRI(TV) can obtain rapid convergence with
very small MSEs.

4 CONCLUSIONS AND FUTURE
WORK

A simple and efficient uniform discrete curvelet trans-
form sparsity based CS MRI framework has been pro-
posed in this paper. In this framework, UDCT ob-
tains optimal structural sparsity, laying the foundation
of high quality reconstruction from ill-posed linear in-
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Sparse priors

Images & Sampling schemes Indices  —  Fechies wavelet LRSFLCT  MRSFLCT _FDCT _ UDCT
. ~ PSNR(B) 28.45 31.40 3141 3082 3910
T2wBrain_slice27 & Cartesian b, \p 02331 01659 01658  0.1774 0.0684
: T PSNR(B) 26.80 30.44 3044 3008 3895
MBA_T2_slice006 & Cartesian ) \p 0.1857 01221 01221  0.1274 0.0459
T PSNR(AB) 3111 33.01 33.01 3301 3442

watet phantom & pseudo RLNE 0.0585 0.0470 0.0470  0.0470  0.0400

Table 3. Various sparse priors with TV regularization

——UDCSMRI(1)
——UDCSMRI(TY)

(@

©

Figure 6. MSEs decline versus iteration. (a) Fig.3(d) and (e) reconstruction. (b) MBA_T2_slice006 recon-
struction under the same conditions. (c) Fig.4(d) and (e) reconstruction.

verse problems. C-SALSA enforces optimized images
transform sparsity and data fidelity at fast convergence
speed. Experiments on various MR images illustrate
the proposed method can achieve low reconstruction
error among current CS MRI methods. The proposed
method obtains preeminent reconstruction performance
at the cost of doubling the amount of calculation due to
handling the real part and imaginary part of complex-
valued MR images separately, though. Thus, further
improvements on the proposed method are subjects of
ongoing research and can be made from the following
three aspects: (1) Test and optimize the method on more
datasets. (2) Expand the method to 3D dynamic M-
RI by adding sparsity regularization defined along the
temporal axis. (3) Use partially parallel imaging(PPI)
to accelerate imaging.
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ABSTRACT

Pictures and videos taken with smartphone cameras often suffer from motion blur due to handshake during the
exposure time. Recovering a sharp frame from a blurry one is an ill-posed problem but in smartphone applications
additional cues can aid the solution. We propose a blur removal algorithm that exploits information from subse-
quent camera frames and the built-in inertial sensors of an unmodified smartphone. We extend the fast non-blind
uniform blur removal algorithm of Krishnan and Fergus to non-uniform blur and to multiple input frames. We esti-
mate piecewise uniform blur kernels from the gyroscope measurements of the smartphone and we adaptively steer
our multiframe deconvolution framework towards the sharpest input patches. We show in qualitative experiments
that our algorithm can remove synthetic and real blur from individual frames of a degraded image sequence within

a few seconds.

Keywords

multiframe blur removal, deblurring, smartphone, camera, gyroscope, motion blur, image restoration

1 INTRODUCTION

Casually taking photographs or videos with smart-
phones has become both easy and widespread. There
are, however, two important effects that degrade the
quality of smartphone images. First, handshake during
the exposure is almost unavoidable with lightweight
cameras and often results in motion-blurred images.
Second, the rolling shutter in CMOS image sensors int-
roduces a small time delay in capturing different rows
of the image that causes image distortions. Retaking
the pictures is often not possible, hence there is need
for post-shoot solutions that can recover a sharp image
of the scene from the degraded one(s). In this paper, we
address the problem of blur removal and rolling shutter
rectification for unmodified smartphones, i.e., without
external hardware and without access to low-level
camera controls.

In the recent years, a large number of algorithms have
been proposed for restoring blurred images. As blur
(in the simplest case) is modeled by a convolution
of a sharp image with a blur kernel, blur removal is
also termed deconvolution in the literature. We distin-
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the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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guish between non-blind deconvolution, where the blur
kernel is known in advance, and blind deconvolution,
where the blur kernel is unknown and needs to be es-
timated first. The blur kernel can be estimated for in-
stance from salient edges in the image [Jos08, Cho(9,
Sunl3, Xul3], from the frequency domain [Goll2],
from an auxiliary camera [Tail0], or from motion sen-
sors [Jos10]. Kernel estimation from the image con-
tent alone often involves iterative optimization schemes
that are computationally too complex to perform on a
smartphone within acceptable time. Auxiliary hard-
ware might be expensive and difficult to mount, so ker-
nel estimation from built-in motion sensors seems the
most appealing for smartphone applications.

Unfortunately, even known blur is difficult to invert be-
cause deconvolution is mathematically ill-posed which
means many false images can also satisfy the equa-
tions. Deconvolution algorithms usually constrain the
solution space to images that follow certain properties
of natural images [Kri09]. Another common assump-
tion is uniform blur over the image which simplifies
the mathematical models and allows for faster restora-
tion algorithms. However, this is usually violated in
real scenarios which can lead the restoration to fail, of-
ten even lowering the quality of the processed image
[Lev09]. Handling different blur at each pixel of the im-
age is computationally demanding, so for smartphone
applications a semi-non-uniform approach might be the
best that divides the image to smaller overlapping re-
gions, where uniform blur can be assumed, and restores
those regions independently.
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Figure 1: Illustration of our gyroscope-aided multiframe blur removal algorithm. (a) First, piecewise uniform blur
kernels Kj;j along rows i and columns j of the image are estimated from the gyroscope measurements. (b) Next,
a blurriness map W is generated by measuring the spatial extent of the respective kernels. (c) Then, individual
patches are restored from multiple blurry input patches of B;j using natural image priors. (d) Finally, the sharp

output I is assembled from the deblurred patches.

We build our blur removal algorithm on the following
three observations: 1) The blurry image of a point light
source in the scene (such as distant street lights at night)
gives the motion blur kernel at that point of the image.
2) Smartphones today also provide a variety of sensors
such as gyroscopes and accelerometers that allow re-
constructing the full camera motion during camera ex-
posure thereby giving information about the blur pro-
cess. 3) Information from multiple degraded images of
the same scene allows restoring a sharper image with
more visible details.

Contributions

Based on the above observations we propose a new fast
blur removal algorithm for unmodified smartphones
by using subsequent frames from the camera preview
stream combined with the built-in inertial sensors (see
Figure 1). We assume a static scene and that blur is
mainly caused by rotational motion of the camera. The
motion of the camera during the shot is reconstructed
from the gyroscope measurements, which requires time
synchronization of the camera and the inertial sensors.
The information from multiple subsequent frames with
different blur is exploited to reconstruct a sharp im-
age of the scene. To the best of our knowledge, this
is the first application that combines blur kernel esti-
mation from inertial sensors, patch-based non-uniform
deblurring, multiframe deconvolution with natural im-
age priors, and correction of rolling shutter deformation
for unmodified smartphones. The runtime of our algo-
rithm is in the order of a few seconds for typical preview
frame size of 720 x 480 pixels.

2 RELATED WORK

The use of multiple blurry/noisy images for restoring a
single sharp frame (without utilizing sensor data) has
been proposed by Rav-Acha and Peleg [Rav05], applied
for sharp panorama generation by Lie et al. [Li10], and
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recently for HDR and low-light photography by Ito
et al [Itol4]. Combining camera frames and inertial
measurement units (IMU) has been successfully used
for video stabilization [For10, Hanl1, Karl1l, Bell4],
for denoising [Itol4, Rinl4] and also for blur re-
moval [Jos10, Parl4, Sinl14b].

Joshi et al. [Jos10] presented the first IMU-based de-
blurring algorithm with a DSLR camera and exter-
nal gyroscope and accelerometer. In their approach,
the camera and the sensors are precisely synchronized
through the flash trigger. The DSLR camera has a
global shutter which makes the problem easier to han-
dle than the case of smartphones. They assume a con-
stant uniform scene depth, which they find together
with the sharp image by solving a complex optimiza-
tion problem. Bae et al. [Bael3] extend this method to
depth-dependent blur by attaching a depth sensor to the
camera. Ringaby and Forssen [Rin14] develop a virtual
tripod for smartphones by taking a series of noisy pho-
tographs, aligning them using gyroscope data, and av-
eraging them to get a clear image, but not targeting blur
removal. Kohler [Koh12] and Whyte [Why12] show
in their single-frame deblurring experiments that three
rotations are enough to model real camera shakes well.

Karpenko [Kar11], Ringaby [For10], and Bell [Bel14]
developed methods for video stabilization and rolling
shutter correction specifically for smartphones. An im-
portant issue in smartphone video stabilization is the
synchronization of the camera and the IMU data be-
cause the mobile operating systems do not provide pre-
cise timestamps. Existing methods estimate the un-
known parameters (time delay, frame rate, rolling shut-
ter fill time, gyroscope drift) from a sequence of im-
ages off-line via optimization. We have found that
the camera parameters might even change over time,
for example the smartphones automatically adjust the
frame rate depending on whether we capture a bright
or a dark scene. This is an important issue because
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it means we require an online calibration method. Jia
and Evans [Jial4] proposed such an online camera-
gyroscope calibration method for smartphones based on
an extended Kalman filter (EKF). The method tracks
point features over a sequence of frames and estimates
the time delay, the rolling shutter fill rate, the gyroscope
drift, the physical sensor offset, and even the camera in-
trinsics. However, it requires clean frames for feature
tracking.

Recently, Park and Levoy [Par14] compared the effec-
tiveness of jointly deconvolving multiple images de-
graded by small blur versus deconvolving a single im-
age degraded by large blur, and versus averaging a set
of blur-free but noisy images. They record a series
of images together with gyroscope measurements on
a modified tablet with advanced camera controls (e.g.,
exposure control, RAW data access) through the FCam
API [Parl1], and attach an external 750Hz gyroscope
to the tablet. They estimate the rotation axis, the gy-
roscope drift, and the time delay between the frames
and the gyroscope measurements in a non-linear opti-
mization scheme over multiple image segments. Their
optimization scheme is based on the fact that applying
two different kernels to an image patch is commutative.
This means in the case of true parameters, applying the
generated kernels in different order results in the same
blurry patch. The rolling shutter parameter is calculated
off-line with the method of Karpenko [Karl1]. They
report the runtime of the algorithm to be 24.5 seconds
using the Wiener filter and 20 minutes using a sparsity
prior for deconvolution, not mentioning whether on the
tablet or on a PC.

Closest to our system is the series of work by Sindelar
et al. [Sin13, Sinl4a, Sin14b] who also reconstruct the
blur kernels from the sensor readings of an unmodified
smartphone in order to make the deconvolution non-
blind. The first approach [Sin13] considers only x and
y rotations and generates a single kernel as weighted
line segments using Bresenham’s line drawing algo-
rithm. Unfortunately, their time calibration method is
not portable to different phones. They find the exact be-
ginning of the exposure by inspecting the logging out-
put of the camera driver, which might be different for
each smartphone model. They read the exposure time
from the EXIF tag of the captured photo, however, this
information is not available for the preview frames we
intend to use for a live deblurring system. Extending
this work in [Sinl4b] the authors generate piecewise
uniform blur kernels and deblur overlapping patches of
the image using the Wiener filter. They also account
for rolling shutter by shifting the time window of gyro-
scope measurements when generating blur kernels for
different rows of the image. The main difference in our
approach is the use of multiple subsequent images and
non-blind deblurring with natural image priors.
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3 BLUR MODEL

The traditional convolution model for uniform blur is
written in matrix-vector form as

-

B=AI+N (1)

where B,I,N denote the vectorized blurry image, sharp
image, and noise term, respectively, and A is the sparse
blur matrix. Camera shake causes non-uniform blur
over the image, i.e., different parts of the image are
blurred differently. We assume piecewise uniform blur
and use different uniform kernels for each image region
which is a good compromise between model accuracy
and model complexity.

The blur kernels across the image can be found by re-
constructing the camera movement, which is a path in
the six-dimensional space of 3 rotations and 3 transla-
tions. A point in this space corresponds to a particular
camera pose, and a trajectory in this space corresponds
to the camera movement during the exposure. From the
motion of the camera and the depth of the scene, the
blur kernel at any image point can be derived. In this
paper, we target unmodified smartphones without depth
sensors so we need to make further assumptions about
the scene and the motion.

Similar to Joshi et al. [Jos10], we assume the scene to be
planar (or sufficiently far away from the camera) so that
the blurred image can be modeled as a sum of transfor-
mations of a sharp image. The transformations of a pla-
nar scene due to camera movements can be described
by a time-dependent homography matrix Hy € R3<3.
We apply the pinhole camera model with square pixels
and zero skew for which the intrinsics matrix K con-
tains the focal length f and the principal point [cy, cy]T
of the camera.

Given the rotation matrix R; and the translation vector
Ty of the camera at a given time ¢, the homography ma-
trix is defined as

H,(d) = K(R, + éTIﬁBK‘l ®)

where 7 is the normal vector of the latent image plane
and d is the distance of the image plane from the cam-
era center. The homography H,(d) maps homogenous
pixel coordinates from the latent image I to the trans-
formed image I; at time ¢:

L ((ur,vi, 1)) =X (Hi(d) (uo,v0, 1)) (3)

The transformed coordinates in general are not integer
valued, so the pixel value has to be calculated via bilin-
ear interpolation, which can also be rewritten as a ma-
trix multiplication of a sparse sampling matrix A,(d)
with the latent sharp image TpasT, = A, (d )io in vector
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form. Then, we can describe the blurry image as the in-
tegration of all transformed images during the exposure
time plus noise:

Telose
> o

B /A,-idr+N=A-I+N )
topen

Note how this expression resembles the form of
(1). While for this formula the depth of the scene
is required, a common simplification is to assume
zero translation [Karll, Hanll, ForlO] because
rotation has a significantly larger impact on shake
blur [Kohl12, Whyl2, Bell4]. With only rotational
motion, equation 2 is no longer dependent on the depth:

H, = KR, K™' )

There are also other reasons why we consider only rota-
tional motion in our application. The smartphone’s ac-
celerometer measurements include gravity and are con-
taminated by noise. The acceleration values need to be
integrated twice to get the translation of the camera and
so the amplified noise may lead to large errors in kernel
estimation.

Handling pixel-wise spatially varying blur is computa-
tionally too complex to perform on a smartphone, so
we adopt a semi-non-uniform approach. We split the
images into R x C overlapping regions (R and C are
chosen so that we have regions of size 30 x 30 pix-
els) where we assume uniform blur and handle these
regions separately. We reconstruct the motion of the
camera during the exposure time from the gyroscope
measurements and from the motion we reconstruct the
blur kernels for each image region by transforming the
image of a point light source with the above formulas.
Once we have the blur kernels, fast uniform deblurring
algorithms can be applied in each region, and the final
result can be reassembled from the deblurred regions
(possibly originating from different input frames). An
overview of our whole pipeline is illustrated in Figure 2.

CRF
‘ Camera Input P‘ Inversion MP‘
Patch Kernel n Single-frame Y@ Patch
IMU Input Generation Deconvolution Decomposition
Camera-IMU @ .
‘D Calibration Alignment ‘
Patch  ¥@ Output
Reassembly Image

Figure 2: Overview of our blur removal pipeline

Color B Rolling Shutter
Conversion "™ & Correction

Multi-frame
Deconvolution

3.1 Camera-IMU calibration

Reconstructing the motion of the mobile phone dur-
ing camera exposure of a given frame i with timestamp
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t; requires the exact time window of sensor measure-
ments during that frame. This is challenging to find on
unmodified smartphones given that current smartphone
APIs allow rather limited hardware control. We denote
with 7; the delay between the recorded timestamps of
sensor measurements and camera frames which we es-
timate prior to deblurring.

In rolling shutter (RS) cameras, the pixel values are read
out row-wise from top to bottom which means ’top’
pixels in an image will be transformed with ’earlier’
motion than ’bottom’ pixels, which has to be taken into
account in our model. For an image pixel u = [uy, uy]”
in frame i the start of the exposure is modeled as

)T 0) = ti+1+ 1,2 ()
where ¢, is the readout time for one frame and 4 is the
total number of rows in one frame. The gyro-camera
delay ¢; is estimated for the first row of the frame, and
the other rows are shifted in time within the range [0, ?,].
We set the time of each image region to the time of the
center pixel in the region.

To find the unknown constants of our model, we
apply once the Extended Kalman Filter (EKF)-based
online gyro-camera calibration method of Jia and
Evans [Jial3, Jial4]. This method estimates the rolling
shutter parameter ?,, the camera intrinsics f, cx, ¢y,
the relative orientation of the camera and IMU, the
gyroscope bias, and even the time delay 7;. The
intrinsics do not change in our application, and the
relative orientation is not important because we are
only interested in rotation changes which are the same
in both coordinate systems. The gyroscope bias is
a small and varying additive term on the measured
rotational velocities which slightly influences the
kernel estimation when integrated over time. However,
for kernel estimation we consider only rotation changes
during single camera frames, and in such short time
intervals the effect of the bias can be neglected. For
example, in case of a 30 Hz camera and a 200 Hz
gyroscope we integrate only 200/30 =~ 6 values during
a single frame. = We perform the online calibration
once at the beginning of our image sequences and we
assume the above parameters to be constant for the
time of capturing the frames we intend to deblur. The
EKF is initialized with the intrinsic values given by the
camera calibration method in OpenCV.

The time delay t; was found to slightly vary over longer
sequences, so after an initial guess from the EKF, we
continuously re-estimate #; in a background thread. We
continuously calculate the mean pixel shift induced by
the movement measured by the gyroscope, and we also
observe the mean pixel shifts in the images. The current
t; is found by correlating the curves in a sliding time
window.
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The last parameter, the exposure time f, = fcip5e — topen
of a frame can be read from the EXIF tag of JPEG im-
ages like in [Sin13], but an EXIF tag is not available
for live video frames. Therefore, we lock the camera
settings at the beginning and capture the first frame as a
single image.

3.2 Kernel estimation from gyroscope
measurements

We generate a synthetic blur kernel at a given point in
the image by replaying the camera motion with a virtual
camera that is looking at a virtual point light source.
For any pixel u = [uy,uy] in the image, we place the
point light source to U = [(uy — cx)%7 (uy — cy)%,d} in
3D space. Note that the value of d is irrelevant if we
consider rotations only.

First, we need to rotate all sensor samples into a com-
mon coordinate system because the raw values are mea-
sured relative to the current camera pose. The chosen
reference pose is the pose at the shutter opening. Next,
the measured angular velocities need to be integrated to
get rotations. As described in section 3.1, we neglect
the effects of gyroscope bias within the short time of
the exposure. In order to get a continuous rendered ker-
nel, we super-resolve the time between discrete camera
poses where measurements exist, using spherical lin-
ear interpolation (SLERP). The transformed images of
the point light source are blended together with bilin-
ear interpolation and the resulting kernel is normalized
to sum to 1. Finally, we crop the kernel to its bounding
square in order to reduce the computational effort in the
later deblurring step.

3.3 Camera response function

The non-linear camera response function (CRF) that
converts the scene irradiance to pixel intensities has
a significant impact on deblurring algorithms [Tail3].
The reason why manufacturers apply a non-linear func-
tion is to compensate the non-linearities of the human
eye and to enhance the look of the image. The CRF is
different for each camera model and even for different
capture modes of the same camera [Xio12]. Some man-
ufacturers disclose their CRFs but for the wide variety
of smartphones only few data is available. The CRF of
digital cameras can be calibrated for example using ex-
posure bracketing [Deb97] but the current widespread
smartphone APIs do not allow exposure control. The
i0S 6, the upcoming Android 5.0, and custom APIs
such as the FCam [Par11] expose more control over the
camera but are only available for a very limited set of
devices. To overcome this limitation, we follow the ap-
proach of [Lil0] and assume the CRF to be a simple
gamma curve with exponent 2.2. While this indeed im-
proves the quality of our deblurred images, an online
photometric calibration algorithm that tracks the auto-
matic capture settings remains an open question.
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4 SINGLE-FRAME BLUR REMOVAL

Given the piecewise uniform blur kernels, we apply the
fast non-blind uniform deconvolution method of Krish-
nan and Fergus [Kri09] on each individual input patch
to produce sharper estimates (see Figure 3). The al-
gorithm enforces a hyper-Laplacian distribution on the
gradients in the sharp image, which has been shown to
be a good natural image prior [Lev09]. Assuming the
image has N pixels in total, the algorithm solves for the
image I that minimizes the following energy function:

N
argmin Y 2 (L= B (T )+ (L)1
i=1

where k is the kernel, and f, = [1 —1] and f, = [1 —1]T
denote differential operators in horizontal and vertical
direction, respectively. A is a balance factor between
the data and the prior terms. The notation Fl.dI =
(Ix f4); and K1 := (Ixk); will be used in the follow-
ing for brevity. Introducing auxiliary variables w; and
wly (together denoted as w) at each pixel i allows mov-
ing the FAI terms outside the |- |* expression, thereby
separating the problem into two sub-problems.

NoA
argmin | E(KiI—Bi)2+§HEXI_W?”% +
Lw =1 (8)
B
B e e

The B parameter enforces the solution of eq. 8 to con-
verge to the solution of eq. 7, and its value is increased
in every iteration. Minimizing eq. 8 for a fixed 3 can be
done by alternating between solving for I with fixed w
and solving for w with fixed I. The first sub-problem is
quadratic, which makes it simple to solve in the Fourier
domain. The second sub-problem is pixel-wise sepa-
rable, which is trivial to parallelize. Additionally, for
certain values of o an analytical solution of the w-
subproblem can be found, especially for o0 = %, %, 1,
and for other values a Newton-Raphson root finder can
be applied. We experimentally found that @ = % gives
the best results. For further details of the algorithm
please refer to [Kri09]. For smoothing discontinuities
that may produce ringing artifacts, we perform edge ta-
pering on the overlapping regions before deblurring.

S MULTI-FRAME BLUR REMOVAL

One of the main novelties of our method is to aid the
restoration of a single frame B with information from
preceding and/or subsequent degraded frames B;,1 <
j < M from the camera stream. We first undistort
each input frame using the RS-rectification method of
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Figure 3: Illustration of our piecewise uniform deblur-
ring method with R = 2 rows and C = 3 columns. The
regions are deblurred independently with the respective
kernels and afterwards reassembled in the final image.

Karpenko et al. [Karl1] which is a simple texture warp-
ing step on the GPU. We initialize the warping with the
same gyroscope data that is used for kernel estimation.
Next, we perform single-frame deblurring on every B;
as well as B to get sharper estimates I ; and I, respec-
tively.

After deblurring the single frames, we align all sharp-
ened estimates with I. For each ij, we calculate the pla-
nar homography H; that maps I; to I. To find the ho-
mographies, we perform basic SURF [BayO08] feature
matching between each estimate I j and Iina RANSAC
loop. Each homography is calculated from the inlier
matches such that the reprojection error is minimized.
We found that this method is robust even in the case of
poorly restored estimates (e.g., in case of large blurs);
however, the homography matching can fail if there are
many similar features in the recorded scene. Frames
that fail the alignment step are discarded.

Finally, we patch-wise apply the warped estimates I; as
additional constraints on I in our modified deblurring
algorithm. We add a new penalty term %,,,;;; to equa-
tion 7 which describes the deviation of the latent image
I from the M other estimates:

Hu & 2
Youlti = T Z .u'j||I_IjH2 (9)

2y =

The weights ; are chosen inversely proportional to the
"blurriness’ of the corresponding patch in image B;.
The blurriness is defined as the standard deviation (spa-
tial extent) of the blur kernel in the patch. Note that
the weights are recalculated for every patch in our non-
uniform deblurring approach. The benefit of calculat-
ing the weights for each patch independently from the
rest of the image is that we can both spatially and tem-
porally give more weight to sharper patches in the in-
put stack of images. This is advantageous if the same
part of the scene got blurred differently in subsequent
images. An example colormap of the weights (W) is
visualized in Figure 1 where each input image is repre-
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sented as a distinct color and W shows how much the
different input patches influence an output tile.

Analog to the single-frame case, we proceed with the
half-quadratic penalty method to separate the problem
into I and w sub-problems. In the extended algorithm,
we only need to calculate one additional Fourier trans-
form in each iteration which keeps our multi-frame
method fast. The step-by-step derivation of the solution
can be found in the supplemental material.

6 EXPERIMENTS

We have implemented the proposed algorithm in
OpenCV'! and the warping in OpenGL ES 2.0> which
makes it portable between a PC and a smartphone.
We recorded grayscale camera preview sequences of
resolution 720 x 480 at 30 Hz together with gyroscope
data at 200 Hz on a Google Nexus 4 smartphone and
we performed the following experiments on a PC. The
gyro-camera calibration is performed on the first few
hundred frames with Jia’s implementation [Jial4] in
Matlab.

6.1 Kernel generation

To test the accuracy of kernel generation, we recorded
a sequence in front of a point light grid, and also gen-
erated the kernels from the corresponding gyroscope
data. Ideally, the recorded image and the generated im-
age should look identical, and after (single-frame) de-
blurring using the generated kernels the resulting image
should show a point light grid again. Figure 4 illustrates
that our kernel estimates are close to the true kernels,
however, the bottom part is not matching perfectly be-
cause of residual errors in the online calibration.

Figure 4: Kernel generation example. Left: blurry
photo of a point grid. Middle: kernels estimated from
gyroscope data. Right: the deblurred image is close to
a point grid again. (Please zoom in for viewing)

6.2 Removing synthetic blur

Starting from a sharp image and previously recorded
gyroscope measurements of deliberate handshake, we
generated a set of 5 blurry images as input. In our
restoration algorithm, we split the 720 x 480 input im-
ages to a grid of R x C = 24 x 16 regions and for each

'http://www.opencv.org/
2 https://www.khronos.org/opengles/
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Figure 5: Removing synthetic blur. B is the main input
image and 4 neighboring images aid the blur removal,
I is our result. Bottom: 3 corresponding patches from
the 5 input images, and from the result.

region we individually generate the blur kernel from the
gyroscope data. Our multi-frame deconvolution result
is shown in Figure 5. The runtime of our algorithm on 5
input images is 18 seconds on a laptop with a 2.40 GHz
Core 17-4700MQ CPU (without calibration time).

Next, we test different deconvolution algorithms in our
piecewise uniform blur removal for restoring a single
frame. We test the Wiener filter, the Richardson-Lucy
algorithm, and Krishnan’s algorithm as our deconvo-
lution step. For comparison, we also show the results
of Photoshop’s ShakeReduction feature which is a uni-
form blind deconvolution method (i.e., can not make
use of our gyro-generated kernels). The quality metrics
PSNR (peak signal to noise ratio) and SSIM (structure
similarity index [Wan04]) of the images are listed in
Table 1. The Wiener filter (W) is the fastest method for

[ [ B | W | RL | KS | KM | PS |
PSNR | 22374 | 20613 | 23207 | 22999 | 24.215 | 21914
SSIM_| 0.616 | 0534 | 0657 | 0621 | 0.673 | 0.603

Table 1: Quantitative comparison of various deconvo-
lution steps in our framework. Blurry input image (B),
Wiener filter (W), Richardson-Lucy (RL), single-frame
Krishnan (KS), multi-frame Krishnan (KM) (3 frames),
Photoshop ShakeReduction (PS) (blind uniform decon-
volution)

patch-wise single-frame deblurring but produces ring-
ing artifacts that even lower the quality metrics. The
output of the Richardson-Lucy algorithm (RL) achieved
higher score but surprisingly remained blurry, while Kr-
ishnan’s algorithm (KS) tends to smooth the image too
much. We think this might stem from the fact that
the small 30 x 30 regions do not contain enough image
gradients to steer the algorithm to the correct solution.
However, Krishnan’s algorithm with our extension to
multiple input regions (KM) performs the best. Pho-
toshop’s ShakeReduction algorithm assumes uniform
blur [Cho09] so while it restored the bottom part of the
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image correctly, the people in the middle of the image
remained blurry. The images in higher resolution can
be found in the supplement.

Figure 6: Restoring B with the help of By 45, all de-
graded with real motion blur. We also added four mar-
ble balls to the scene that act as point light sources and
show the true blur kernels at their locations.

6.3 Removing real blur

Figure 6 shows the results of a real example with a static
planar scene close to the camera. We used 5 input im-
ages degraded by real motion blur. Selected patches il-
lustrate how our algorithm restores different parts of the
image by locally steering the deconvolution towards the
sharper input tiles. Note, however, that in the second se-
lected patch some details are missing that were present
in the sharpest of the input patches. This is because
our algorithm does not directly copy that patch from
B but applies it within the deconvolution of the corre-
sponding patch in B. A slight misalignment of the five
input tiles leads to smoother edges in the multi-frame
deconvolution result. The misalignment may stem from
the homography estimation which is prone to errors if
the single-frame deconvolution is imperfect or from the
rolling shutter rectification which is only an approxi-
mation of the true image distortion. Figure 7 shows
another example of restoring a sharp image from three
blurry ones.
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Figure 7: Restoring B with the help of B 3, all degraded
with real motion blur. The original misalignment is kept
and the rectified result is left uncropped for visualiza-
tion. (High-resolution images are in the supplement)

6.4 Discussion and limitations

As shown in the experiments, the proposed algorithm
is able to restore non-uniformly blurred images. How-
ever, there are limitations and assumptions we need to
keep in mind. Our non-blind deconvolution step as-
sumes a perfect kernel estimate so a good calibration
is crucial for success. The selected gyro-camera cali-
bration method is sensitive to the initialization values
which are not trivial to find for different smartphone
models. We need to assume that a short sequence with
detectable feature tracks for calibration before deblur-
ring exists. However, the calibration does not need to
be done every time but only when the camera settings
change. We expect that future camera and sensor APIs
like StreamInput® will provide better synchronization
capabilities that allow precise calibration.

Our blur model can generate rotational motion blur ker-
nels at any point of the image, but the model is incor-
rect if the camera undergoes significant translation or
if objects are moving in the scene during the exposure
time. In multiframe deblurring, the image alignment
based on feature matching might fail if the initial de-
blurring results are wrong. As we also know the camera
motion between the frames, image alignment could be
done with the aid of sensor data instead of pure feature
matching but then the gyroscope bias needs to be com-
pensated. The restriction to planar scenes and rotational
motion overcomes the necessity of estimating the depth
of the scene at each pixel.

Our algorithm was formulated for grayscale images.
Extending it to color images would be possible by solv-

https://www.khronos.org/streaminput/
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ing the grayscale problem for the RGB color chan-
nels separately, however, the color optimizations of the
smartphone driver may introduce different non-linear
CRFs for each channel, which needs to be handled care-
fully. The calibration of the per-channel CRFs using
standard methods will become possible with the up-
coming smartphone APIs that allow low-level exposure
control.

The runtime of the algorithm depends mainly on the
size of the input images. In fact, we perform R x C x M
non-blind deconvolutions on patches but as the patches
are overlapping, we process somewhat more pixels than
the image contains. Our tests were conducted off-
line on a PC but each component of our algorithm is
portable to a smartphone with little modifications.

7 CONCLUSION

We proposed a new algorithm for unmodified off-the-
shelf smartphones for the removal of handshake blur
from photographs of planar surfaces such as posters,
advertisements, or price tags. We re-formulated the fast
non-blind uniform blur removal algorithm of Krishnan
and Fergus [Kri09] to multiple input frames and to non-
uniform blur. We rendered piecewise uniform blur ker-
nels from the gyroscope measurements and we adap-
tively weighted the input patches in a multiframe de-
convolution framework based on their blurriness. The
distortion effects of the rolling shutter of the smart-
phone camera were compensated prior to deblurring.
We applied existing off-line and on-line methods for
gyroscope and camera calibration, however, a robust
on-line calibration method is still an open question. We
have shown the effectiveness of our method in qualita-
tive experiments on images degraded by synthetic and
real blur. Our future work will focus on fast blind de-
blurring that is initialized with our rendered motion blur
kernels so that less iterations are required in the tradi-
tional multiscale kernel estimation.
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ABSTRACT

Creating High Dynamic Range (HDR) images of static scenes by combining several Low Dynamic Range (LDR)
images is a common procedure nowadays. However, 3D HDR video acquisition hardware barely exist. Limitations
in acquisition, processing, and display make it an active, unsolved research topic. This work analyzes the latest
advances in 3D HDR imaging and proposes a method to build multiscopic HDR images from LDR multi-exposure
images. Our method is based on a patch match algorithm which has been adapted and improved to take advantage
of epipolar geometry constraints of stereo images. Up to our knowledge, it is the first time that an approach different
than traditional stereo matching is used to obtain accurate matching between the stereo images. Experimental

results show accurate registration and HDR generation for each LDR view.

Keywords

High Dynamic Range, Stereoscopic HDR, Stereo Matching, Image Deghosting

1 INTRODUCTION

High Dynamic Range (HDR) imaging is an increasing
area of interest at academic and industrial level, and one
of its crucial aspects is the reliable and easy content cre-
ation with existing digital camera hardware.

Digital cameras with the ability to capture extended dy-
namic range, are appearing into the consumer market.
They either use a sensor capable of capturing an inten-
sity range larger than the one captured by traditional
8-10 bit sensors, or integrate hardware and software
improvements to largely increase the acquired intensity
range. However, due to their high costs, their use is very
limited [BADCI11].

Traditional low dynamic range (LDR) camera sensors
provide an auto-exposure feature that can be used to
increase the dynamic range of light captured from the
scene. The main idea is to capture the same scene at
different exposure levels, and then to combine them to
reconstruct the full dynamic range.

To achieve this, different approaches have been pre-
sented [MP95, DM97, RBS99, MN99, RBS03], but
they are not exempt of drawbacks. Ghosting effects
may appear in the reconstructed HDR image, when the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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pixels in the source images are not perfectly aligned
[TA*14]. This is due to two main reasons: either cam-
era movement or objects movement in the scene. Sev-
eral solutions for general image alignment exist [ZF03].
However, it is not straightforward to consider such
methods because exposures in the image sequence are
different, making alignment a difficult problem.

High Dynamic Range content creation is lately mov-
ing from the 2D to 3D imaging domain introducing a
series of open problems that need to be solved. 3D im-
ages are displayed in two main different ways: either
from two views for monoscopic displays with glasses
or from multiple views for auto-stereoscopic displays.
Most of current auto-stereoscopic displays accept from
five to nine different views [LLR13]. To our knowl-
edge, HDR auto-stereoscopic displays do not exist yet.
We can feed LDR auto-stereoscopic displays with tone-
mapped HDR, but we will need at least five different
views.

Some of the techniques used for 2D applications
have been recently extended for multiscopic images
[TKS06, LC09, SMW 10, BRR11, BLV*12, OMLA13,
OMLA14, BRG"14, SDBRC14]. However, most of
these solutions suffer from a common limitation: they
need to rely on accurate dense stereo matching between
images which may fail in case of different brightness
between exposures [BVNL14]. Thus, more robust
and faster solutions for matching different exposure
images that allow an easy and reliable acquisition of
multiscopic HDR content are highly needed.
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(a) Non aligned

(b) Biitz et al. [BRG* 14]
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(c) Our Result

Figure 1: Set of LDR multiview images from the IIS Jumble data-set, courtesy of Bitz [BRG14]. The top row shows five
multiview exposure images, one exposure per view. The bottom row shows HDR images obtained without alignment (a), using
Bitz’s method (b) and using our proposed patch-match method (c).

In response to this need, we propose in this paper a so-
lution to combine sets of multiscopic LDR images into
HDR content using image correspondences based on
the Patch Match algorithm [BSFGO09]. This algorithm
has been used recently by Sen et al. [SKY112] to build
HDR images that are free of ghosting effects. The need
of improving the coherence of neighbour patches was
already presented in [FP10].The results were promis-
ing for multi-exposure sequences where the reference
image is moderately under exposed or saturated but it
fails when the reference image has large under exposed
or saturated areas.

We propose to adapt this approach for multiscopic im-
age sequences (Figure 1), that answer to a simplified
epipolar geometry obtained by parallel optical axes (im-
ages not originally taken with this geometric configu-
ration can be later rectified). In particular, we reduce
the search space in the matching process and improv-
ing the incoherence problem of the patch-match. Each
image in the set of multi-exposed images is used as a
reference; we look for matches in all the remaining im-
ages. These accurate matches allow to synthesize im-
ages corresponding to each view which are merged into
one HDR image per view.

Our contributions into the field can be summarized as
follows:

e We provide an efficient solution to multiscopic HDR
image generation.

e Traditional stereo matching produce several artifacts
when directly applied on images with different ex-
posures. We introduce the use of an improved ver-
sion of patch-match to solve these drawbacks.
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e Patch-match algorithm was adapted to take advan-
tage of the epipolar geometry reducing its computa-
tional costs while improves its matching coherence
drawbacks.

2 RELATED WORK

Two main areas were considered in this work. The
following section presents the main state of the art re-
lated to stereo HDR acquisition and multi-exposed im-
age alignment for HDR generation.

2.1 Stereo HDR Acquisition

Some prototypes have been proposed to acquire stereo
HDR content from multi-exposure views. Most ap-
proaches [TKS06, LC09, SMW10, Rufll, BRG" 14,
AKCG14] are based on a rig of two cameras placed like
a conventional stereo configuration that captures differ-
ently exposed images. Troccoli et al. [TKS06] propose
to use cross correlation stereo matching to get a primary
disparity match. The correspondences are used to cal-
culate the camera response function (CRF) to convert
pixel values to radiance space. Stereo matching is ex-
ecuted again but now in radiance space to extract the
depth maps.

Lin and Chang [LCO09] use SIFT descriptors to find cor-
respondences. The best correspondences are selected
using epipolar constrains and used to calculate the CRF.
The stereo matching algorithm is based on belief prop-
agation to derive the disparity map. A ghost removal
technique is used to avoid artifacts due to noise or stereo
mismatches. Even though, disparity maps are not accu-
rate in large areas that are under exposed or saturated.

Riifenacht[Ruf11] compares two different approaches
to obtain stereoscopic HDR video content: a temporal
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approach, where exposures are captured by temporally
changing the exposure time of two synchronized cam-
eras to get two frames of the same exposure per shot,
and a spatial approach, where cameras have different
exposure times for all shots so that two frames of the
same shot are exposed differently.

Bonnard et al. [BLV*112] propose a methodology
to create content that combines depth (3D) and HDR
video for auto-stereoscopic displays. They use recon-
structed depth information from epipolar geometry to
drive the pixel match procedure. The matching method
lacks of robustness especially on under exposed or sat-
urated areas. Akhavan et al. [AYG13, AKCG14] offer
a useful comparison of the difference between dispar-
ity maps obtained from HDR, LDR and tone-mapped
images.

Selmanovic et al. [SDBRC14] propose to generate
Stereo HDR video from a pair HDR-LDR, using an
HDR camera and a traditional digital camera. In this
case, one HDR view needs to be reconstructed. Three
methods are proposed to generate an HDR image: (1)
to warp the existing one using a disparity map, (2) to
increase the range of the LDR view using an expansion
operator and (3) an hybrid of the two methods which
provides the best results.

Bitz et al. [BRG'14] present a framework with two
LDR cameras, the input images are rectified before the
disparity estimation. Their stereo matcher is exposure
invariant and use Zero-Mean Normalized Cross Cor-
relation (ZNCC) as a matching cost. The matching is
performed on the gray-scale radiance space image fol-
lowed by local optimization and disparities refinement.
Some artifacts may persist in the saturated areas.

2.2 Multi-exposed Image Alignment

In the HDR context, most of methods on image
alignment focus on movement between images caused
by hand-held capture, small movement of tripods
or matching moving pixels from dynamic objects
in the scene. One of the main drawbacks for HDR
video acquisition is the lack of robust algorithms for
deghosting. Hadziabdic et al. [HTM13], Srikantha et
al. [SS12] and Tursun et al. [TA™14] provide good
reviews and comparisons between recent methods.

Kang et al. [KUWSO03] proposed to capture video se-
quences alternating long and short exposure times. Ad-
jacent frames are warped and registered to finally gen-
erate an HDR frame. Sand and Teller [ST04] combine
feature matching and optical flow for spatio-temporal
alignment of different exposed videos. They search for
frames that best match with the reference frame using
locally weighted regression to interpolate and extrapo-
late image correspondences. This method is robust to
changes in exposure and lighting, but it is slow and ar-
tifacts may appear if there are objects moving at high
speed.
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Mangiat and Gibson [MG10] propose to use a method
of block-based motion estimation and refine the mo-
tion vectors in saturated regions using color similarity
in the adjacent frames of an alternating multi-exposed
sequence.

Sun et al. [SMW10] assume that the disparity map be-
tween two rectified images can be modeled as a Markov
random field. The matching problem is then posed as a
Bayesian labeling problem in which the optimal values
are obtained minimizing an energy function. The en-
ergy function is composed of a pixel dissimilarity term
(using NCC as similarity measure) and a smoothness
term which corresponds respectively to the MRF likeli-
hood and the MRF prior.

Sen et al. [SKYT12] present a method based on a
patch-based energy-minimization formulation that in-
tegrates alignment and reconstruction in a joint opti-
mization. This allows to produce an HDR result that
is aligned to one of the exposures and contains infor-
mation from all the rest. Artifacts may appear when
there are large under exposed or saturated areas in the
reference image.

2.3 Discussion

Stereo matching is a mature research field; very accu-
rate algorithms are available for images taken under the
same lighting conditions and exposure. However, most
of such algorithms are not accurate for images with im-
portant lighting variations. We propose a novel frame-
work inspired by Barnes et al. [BSFG09] and Sen et
al. [SKY™'12]. We adapt the matching process to the
multiscopic context resulting in a more robust solution.

3 PATCH-BASED MULTISCOPIC HDR
GENERATION

Our method takes as input a sequence of LDR images
(RAW or not). We transform the input images to ra-
diance space, all the rest of steps are performed using
radiance space values instead of RGB pixels. For 8-
bits LDR images a CRF per camera needs to be esti-
mated. An overview of our framework is shown in the
diagram of the Figure 2. The first step is to recover the
correspondences between the n images of the set. We
propose to use a nearest neighbor search algorithm (see
section 3.1) instead of a full stereo matching approach.
Each image acts like a reference for the matching pro-
cess. The output of this step is n-1 warped images for
each exposure. Which then are combined into an out-
put HDR image for each view through a second step
(see section 3.2).

3.1 Nearest Neighbor Search

For a pair of images I, and I;, we compute a Near-
est Neighbor Field (NNF) from I, to /; using an im-
proved version of the method presented by Barnes et
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Figure 2: Proposed framework for multiscopic HDR Generation. It is composed by three main steps: (1) radiance space
conversion, (2) patch match correspondences search and (3) HDR generation

al. [BSFG09]. NNF is defined over patches around ev-
ery pixel coordinate in image I, for a cost function D
between two patches of images I and /;. Given a patch
coordinate r € I, and its corresponding nearest neighbor
s € I;, NNF(r) =s. The values of NNF for all coordi-
nates are stored in an array with the same dimensions
as I,.

We start initializing the NNFs using random transfor-
mation values within a maximal disparity range on
the same epipolar line. Consequently the NNF is im-
proved by minimizing D until convergence or a max-
imum number of iterations is reached. Two candi-
date sets are used in the search phase as suggested by
[BSFGO9]: .

(1) Propagation uses the known adjacent nearest neigh-
bor patches to improve NNF. It converges fast but it may
fall in a local minima.

(2) Random search introduces a second set of random
candidates that are used to avoid local minima. For each
patch centered in pixel vg, the candidates u; are sampled
at an exponentially decreasing distance from v;:

u; :V0+WaiR[ (D)

where R; is a uniform random value € [-1,1], w is the
maximum value for disparity search and « is a fixed
ratio (1/2 is suggested).

Taking advantage of the epipolar geometry both
search accuracy and computational performances are
improved. Geometrically calibrated images allow to
reduce the search space from 2D to 1D domain, conse-
quently reducing the search domain. As an example,
using random search we only look for matches in the
range of maximal disparity in the same epipolar line
(1D domain), avoiding to search in 2D space. This
reduces significantly the number of samples to find a
valid match.

Typical drawback of the original NNFs approach
[BSFGO09], used in the patch match algorithm, is the
non geometrically coherency of its search results. This
problem is illustrated in Figures 3 and 4. Two static
neighbor pixels, in the reference image, match two
separated pixels in the source image (Figure 3).
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Figure 3: Patches from the reference image (Up) look for
their NN in the source image (Down). Even when destination
patches are similar in terms of color, matches may be wrong
because of geometric coherency problems.

To overcome this drawback we propose a new distance
cost function D by incorporating a coherence term to
penalize matches that are not coherent with the transfor-
mation of their neighbors. Both Barnes et al. [BSFG09]
and Sen et al. [SKY™12] use the Sum of Squared Dif-
ferences (SSD), described in equation 3 where T repre-
sents the transformation between patches of N pixels in
images I, and I;. We propose to penalize matches with
transformations that differ significantly form it neigh-
bors by adding the coherence term C defined in equa-
tion 4. The variable d, represents the Euclidean dis-
tance to the closest neighbor’s match and Maxgs, is
the maximum disparity value. This new cost function
forces pixels to preserve coherent transformations with
their neighbors.

D = 88D(r,s)/C(r,s) (2)
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SSD = i (I —T(L))? 3)

n=1

C(r,s) =1—d.(r,s)/Maxgisp )

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(h) Details in (f)
Figure 4: Matching results using original Patch Match
[BSFGO09] (Left) and our implementation (right) for two iter-

ations using 7x7 patches. Images in the *Art’ dataset courtesy
of [vis06]

(g) Details in (e)

Figures 4c and 4e show the influence of the coherence
problems described in Figure 3 in the matching results.
Figures 4d and 4f correspond to the results including
the improvements presented in this section. Figures 4c
and 4d show a color representation of the NNFs us-
ing HSV color space, magnitude of the transformation
vector is visualized in the saturation channel and the
angle in the hue channel. Areas represented with the
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same color in the NNF color representation mean simi-
lar transformation. Objects in the same depth may have
similar transformation. Notice that the original Patch
Match [BSFGO09] finds very different transformations
for neighbor pixels of the same objects and produces
artifacts in the synthesized image.

3.2 Warping Images and HDR Genera-
tion

The warping images are generated as an average of the
patches that contribute to a certain pixel. Direct warp-
ing from the NNFs is possible, but it may generate vis-
ible artifacts as shown in Figure 5. This is due mainly
to incoherent matches between the I, and I; images.
To solve this problems we use Bidirectional Similarity
Measure (BDSM) (Equation 5), proposed by Simakov
et al. [SCSIO8] and used by Barnes et al. [BSFG09],
which measure similarity between pairs of images. It is
defined for every patch Q C I, and P C I;, and a num-
ber N of patches in each image respectively. It consists
of two terms: coherence that ensures that the output
is geometrically coherent with the reference and com-
pleteness that ensures that the output image maximizes
the amount of information from the source image:

d(fomp/ eteness dmherence

1 . 1 .
d(I, 1) = Ny Qg'}ncl}:D(Q,P) + Ny P;IS glcl?rD(P, 0)
(%)

(a) Direct warping (b) Using BDSM

(c) Details in (c)

Figure 5: Images 5a and 5b are both synthesized from the
pair in Figure 4. Image 5a was directly warped using val-
ues only from the NNF of Figure 4c, which corresponds to
matching 4a to 4b. Image 5b was warped using the BDSM of
Equation 5 which implies both NNFs of Figures 4c and 4d.

(d) Details in (d)

This allows to improve both coherence and consistency
by using bidirectional NNFs (from I, to I; and back-
ward). It is more accurate to generate images using
three iterations in each direction than only six from /. to
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I;. Using BDSM also prevents artifacts in the occluded
areas.

Since the matching is totally independent for pairs of
images, it was implemented in parallel. Each image
matches all other views. This produces n-1 NNFs for
each view. The NNFs are in fact the two components of
the BDSM of equation 5. The new image is the result of
accumulating pixel colors of each overlapping neighbor
patch and averaging them.

The final HDR image per view is generated using a
weighted average [MP95, DM97, MN99] as defined in
Equation 6 and the weighting function of Equation 7
proposed by Khan et al. [KARO06]:

TN w(l (i, ) (L))

E(i,j) = L (o)) ©
wlh) =1~ (250 ~1)" ”

where I, represents each image in the sequence, w cor-
responds to the weight, f is the CRF, Az, is the exposure
time for the I'" image of the sequence.

4 EXPERIMENTAL RESULTS

Five data-sets were selected in order to demonstrate the
robustness of our results. For the set ’Octo-cam’ all
the objectives capture the scene at the same time and
synchronized shutter speed. For the rest of data-sets the
scenes are static. This avoids the ghosting problem due
to dynamic objects in the scene. In all figures of this
paper we use the different LDR exposures for display
purposes only, the actual matching is done in radiance
space.

The ’Octo-cam’ data-set are eight RAW images with
10-bit of color depth per channel. They were acquired
simultaneously using the Octo-cam [PCPD*10] with a
resolution of 748x422 pixels. The Octo-cam is a multi-
view camera prototype composed by eight objectives
horizontally disposed. All images are taken at the same
shutter speed (40 ms) but we use three pairs of neutral
density filters that reduce the exposure dividing by 2,
4 and 8 respectively. The exposure times for the input
sequence are equivalent to 5, 10, 20 and 40 ms respec-
tively [BLVT12]. The objectives are synchronized so
all images corresponds to the same time instant.

The sets ’Aloe’, ’Art’ and 'Dwarves’ are from the
Middlebury web site [vis06]. We selected images
that were acquired under fixed illumination conditions
with shutter speed values of 125, 500 and 2000 ms for
’Aloe’and ’Art’ and values of 250, 1000 and 4000 ms
for "Dwarves’. They have a resolution of 1390 x 1110
pixels and were taken from three different views. Even
if we have only 3 different exposures we can use the
seven available views by alternating the exposures like
shown in Figure 9.
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The last two data-sets were acquired from two of the
state of the art papers. Btz et al. [BRG'114] shared
their image data set (IIS Jumble) at a resolution of
2560x1920 pixels. We selected five different views
from their images. They where acquired at shutter
speeds of 5, 30, 61, 122 and 280 ms respectively. Pairs
of HDR images like the one in Figure 6, both acquired
from a scene and synthetic examples come from Sel-
manovic et al. [SDBRC14]. For 8-bit LDR data sets,
the CRF is recovered using a set of multiple exposure
of a static scene. All LDR images are also transformed
to radiance space for fair comparison with other algo-
rithms.

4.1 Results and discussion

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(g) Details in (e) (h) Details in (f)

Figure 6: Comparison between original Patch Match and
our implementation for two iterations using 7x7 patches. Im-
ages 6¢ and 6d show the improvement on the coherence of the

NNF using our method. Images cortesy of [SDBRC14]

Figure 6 shows a pair of images linearized from HDR
images courtesy of Selmanovic et al. [SDBRC14] and
the comparison between the original PM from Barnes et
al. [BSFGO09] and our method including the coherence
term and epipolar constrains. The images in Figures
6¢ and 6d represent the NNF. They are codified into an
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(a) Reference

(b) Source

(c) 1 iteration ours

(d) 1 iteration PM

Journal of WSCG

(e) 2 iteration ours (g) 10 iteration ours

(f) 2 iteration PM (h) 10 iteration PM

Figure 7: Two images from the "Dwarves’ set of LDR multi-view images form Middlebury [vis06]. Our method
with only two iterations achieve very accurate matches. Notice that the original patch match requires more itera-

tions to achieve good results in fine details of the image.

image in HSV color space. Magnitude of the transfor-
mation vector is visualized in the saturation channel and
the angle in the hue channel. Notice that our result rep-
resent more homogeneous transformations, represented
in gray color. Images in Figure 6e and 6f are synthe-
sized result images for the Ref image obtained using
pixels only from the Src image. The results correspond
to the same number of iterations (2 in this case). Our
implementation converges faster producing accurate re-
sults in less iterations than the original method.

All the matching and synthesizing process are per-
formed in radiance space. They were converted to
LDR using the corresponding exposure times and the
CRF for display purposes only. The use of an image
synthesis method like the BDSM instead of traditional
stereo matching allows us to synthesize values for
occluded areas too.

Figure 7 shows the NNFs and the images synthesized
for different iterations of both our method and the orig-
inal patch match. Our method converges faster and pro-
duce more coherent results than [BSFG09]. In occluded
areas the matches may not be accurate in terms of ge-
ometry due to the lack of information. Even in such
cases, the result is accurate in terms of color. After
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several tests, only two iterations of our method were
enough to get good results while five iterations were
recommended for previous approaches.

Figure 8 shows one example of the generated HDR cor-
responding to the lowest exposure LDR view in the IIS
Jumble data-set. It is the result of merging all syn-
thesized images obtained with the first view as refer-
ence. The darker image is also the one that contains
more noisy and under-exposed areas. HDR values were
recovered even for such areas and no visible artifacts
appears. On the contrary, the problem of recovering
HDR values for saturated areas in the reference im-
age remains unsolved. When the dynamic range dif-
ferences are extreme the algorithm does not provide
accurate results. Future work must provide new tech-
niques because the lack of information inside saturated
areas does not allow patches to find good matches. The
CRFs for the LDR images were calculated in a set of
aligned multi-exposed images using the software RAS-
CAL, provided by Mitsunaga and Nayar [MN99]. Fig-
ure 9 shows the result of our method for a whole set of
LDR multi-view and differently exposed images. All
obtained images are accurate in terms of contours, no
visible artifacts comparing to the LDR were obtained.
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(a) IIS Jumble data-set
(b) Lower exposure LDR (c) Tone-mapped HDR
(d) Details in (b) (e) Details in (c)

Figure 8: Details of the generated HDR image correspond-
ing to a dark exposure. Notice that under-exposed areas, tra-
ditionally difficult to recover, are successfully generated with-
out visible noise or misaligned artifacts.

Figures 10 show the result of the proposed method in
a scene with important lighting variances. The pres-
ence of the light spot introduce extreme lighting differ-
ences between the different exposures. For bigger ex-
posures the light glows from the spot and saturate pix-
els not only inside the spot but also around it. There
is not information in saturated areas and the matching
algorithm does not find good correspondences. The dy-
namic range is then compromised in such areas and they
remain saturated. Our method is not only accurate but
faster than previous solutions. [SKY"12] mention that
their method takes less than 3 minutes for a sequence of
7 images of 1350x900 pixels. The combination of a re-
duced search space and the coherence term effectively
implies a reduction of the processing time. In a Intel
Core 17-2620M 2,70 GHz with 8 GB of memory, our
method takes less than 2 minutes (103 &+ 10 seconds)
for the Aloe data set with a resolution of 1282x1110
pixels.

S CONCLUSIONS

This paper presented a framework for auto-stereoscopic
3D HDR content creation that combines sets of mul-
tiscopic LDR images into HDR content using image
dense correspondences. Methods that, when used for
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2D domain cannot be used for 3D HDR content cre-
ation without introducing visible artifacts. Our novel
approach is extending the well known Patch Match al-
gorithm, introducing an improved random search func-
tion that takes advantage of the epipolar geometry. Also
a coherence term is used for improving the matching
process. These modifications allow to extend the orig-
inal approach to work for HDR stereo matching, while
improving its computational performances. We have
presented a series of experimental results showing the
robustness of our approach, in the matching process,
when compared with the original approach and its qual-
itative results.
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ABSTRACT

Person recognition using ear biometric has received significant interest in recent years due to its highly
discriminative nature, permanence over time, non-intrusiveness, and easy acquisition process. However, in a real-
world scenario, ear image is often partially or fully occluded by hair, earrings, headphones, scarf, and other objects.
Moreover, such occlusions may occur during identification process resulting in a dramatic decline of the
recognition performance. Therefore, a reliable ear recognition system should be equipped with an automated
detection of the presence of occlusions in order to avoid miss-classifications. In this paper, we proposed an efficient
ear recognition approach, which is capable of detecting the presence of occlusions and recognizing partial ear
samples by adaptively selecting appropriate features indices. The proposed method has been evaluated on a large
publicly available database containing wide variations of real occlusions. The experimental results confirm that
the prior detection of occlusion and the novel selection procedure for feature indices significantly improve the
biometric system recognition accuracy.

Keywords
Biometric images, occlusion detection, ear recognition, partial occlusion, classifier selection, adaptive feature
selection.

1. INTRODUCTION etc. Information loss due to occlusion is irrevocable.
Unlike lightning or pose variations, where some image
enhancement techniques can be applied to retrieve
partially lost information, the occlusion information
loss results in a complete disappearance of a portion
of ear. Moreover, distortions of important global
features of ear biometrics such as shape and
appearance occur, which further undermine the overall
system recognition performance. For those reasons,
occlusion is one of the most detrimental degrading
factors of ear recognition. It has been reported that
consideration of un-occluded regions during matching
increases recognition accuracy [Yual2a], [Yual2b].
In order to determine the un-occluded portion of ear it
is necessary to detect occluded regions. However,
detection of occlusions in ear biometrics remained
understudied at present. Detection of real occlusions
is a very challenging problem since occurrence,
locations, proportion, and reasons of occlusion are
uncertain. For instance, different regions of an ear may
be occluded by different objects such as hair or
earrings at the same time. Also, during identification
stage, an ear sample may be occluded partially or
fully, or may not be occluded at all. In addition,
determining the proportion of occlusion is important
to make a decision whether the sample is sufficient for
recognition process or needs to be reacquired. Last but

Biometric authentication offers advantage over
traditional PIN (Personal Identification Number) or
password-based security since it is harder to forge,
steal, transfer, or lose biometric data. At present,
biometric based person recognition has enormous
demand in government services as well as commercial
sectors due to availability of biometric data, enhanced
recognition accuracy and non-invasive nature of
authentication. Over the last few years, ear biometric
has received growing attention and proven to be useful
for an automated person recognition [Cha03a],
[Che07a]. Unlike face biometrics, ear has no
sensitivity to facial expression changes [Kum12a] and
it remains almost unchanged throughout the lifetime
of a person [Yual2a]. Ear biometric is not only a
powerful feature to identify individuals, but also to
recognize identical twins [Nej12a]. Moreover, ear has
high user acceptance because of its nonintrusive
nature and a passive acquisition process [Jai99a].
Similar to other passive biometrics, the recognition
performance of ear biometrics may deteriorate
significantly due to natural constraints such as
occlusion, lightning, pose difference etc. [BuslOa].
Among all natural constraints, occlusion happens to be
the most common scenario, since ear is often partially
or fully occluded by hair, earrings, headphones, scarfs
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not the least, not every method performs equally on
different proportions and different regions of
occlusions. For example, global features such as
shape-based descriptor may perform well in cases of
partial occlusion by earrings, while local or block-
based features may work better on distorted shapes
due to occlusions by hair. Thus, prior detection of the
location and proportion of occlusion could help in
selecting the appropriate features as well as feature
extraction methods. For these reasons, it is important
to develop an ear recognition method that is capable
of prior detection of occlusion and can select
appropriate features for classification at identification
stage. In a recent review paper, Pflug and Busch
[Pfl12a] pointed out the lack of studies on real-world
ear occlusions. This paper fills this niche and provides
a solution to this problem by investigating how real
occlusion factors such as hair, accessories etc. affects
the recognition performance. The novel contributions
of this paper are three fold:

1. We propose a novel method for ear occlusion
detection and estimation of occlusion degree
using skin-color model.

2. We analyze the impact of real ear occlusions (hair
and accessories) on recognition performance.

3. We propose a novel index-based partial ear
recognition method that utilizes occlusion
information adaptively to obtain consistent
recognition rate.

The rest of the paper is organized as follows. Section
2 summarizes some existing researches on ear
recognitions. The proposed methodology for
occlusion detection and ear recognition is described in
Section 3. Section 4 demonstrates experimental results
of the performance and effectiveness of the proposed
method. Finally, concluding remarks and future works
are presented in Section 5.

2. RELEVANT WORK

Person identification using ear biometric has drawn
significant attention of many researchers over the last
decade. Ear biometric has the advantage of a non-
intrusive acquisition in a less controlled environment.
However, there has always been a tradeoff between
the non-invasiveness of image acquisition and its
impact on its quality. Restricting the acquisition
environment of ear biometric compromises its
noninvasive nature and wide acceptance of users.
Moreover, noninvasive biometrics are mostly
acquired by surveillance cameras, where environment
cannot be controlled. Therefore, instead of imposing
tight controls on the acquisition environment, the
recent research is focused on developing robust
biometric systems that can obtain high recognition
rates under less than ideal conditions. Occlusion has
been studied for face biometrics to some extent
[Lin07a], [Tajl3a]. However, occlusion conditions,
type, area, proportion etc. of ear are very different than

Volume 23, 2015

122

Journal of WSCG

face. There is a lack of study on real occlusions of ear
biometrics during identification stage. In this section,
we will discuss some contemporary ear recognition
methods.

In 2010, Bustard and Nixon [Busl0Oa] proposed a
robust method for ear recognition using homographies
calculated from the Scale Invariant Feature Transform
(SIFT) points. Authors also showed that performance
of this method degraded with an increasing proportion
of occlusions. However, the method did not include an
automated occlusion detection as well as proportion
calculation.  Experimentation was conducted on
simulated occluded conditions and the effect of real-
world occlusions remained uninvestigated. Efficient
feature extraction of an ear biometric has been
investigated in many recent works. For instance,
Huang et al. [Hual 1a] proposed Uncorrelated Local
Fisher Discriminant Analysis (ULFDA) method for
ear recognition, which obtained better performance
than benchmark Principle Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) [Mar0Ola]. In
2012, Kumar and Wu [Kuml2a] proposed an ear
recognition method based on gray-level shape features
which outperformed Gabor and log-Gabor based
methods. Sparse representation of local texture has
been proposed by Kumar and Chan [Kum13a] in 2013,
which obtained high recognition rates on different
databases. However, none of the aforementioned three
methods was evaluated under occluded conditions.

Occlusion has been considered by Yuan and Mu
[Yual2a], where a local information fusion method
was proposed to obtain robustness under partial
occlusion. In this work, experimentation was
conducted in the simulated occluded condition, i.e. a
specific amount of occlusion has been applied
artificially to a certain location of the ear images.
However, results showed that the recognition
performance of this method varied according to the
location as well as amount of occlusion. In another
work, Yuan et al. [Yual2b] proposed a sparse based
method to recognize partially occluded ears.
Experimentation was conducted by adding synthetic
occluded regions to the original unoccluded images.
Results showed that this method obtained 70%
recognition rate for 30% occluded regions, whereas
performance dropped below 15% with the increase of
the occluded portion up to 50%. In another recent
work, Morales et al. [Morl3a] showed that
performance of SIFT and Dense-SIFT based feature
extraction methods also degraded significantly due to
the presence of real-world occlusions. In their work,
recognition error rate of SIFT and Dense-SIFT
features were 2.78% and 2.03%, respectively on IITD
Database. However, the corresponding error rates
increased to 20.52% and 25.76% under real-world
occlusions on West Pomeranian University of
Technology Ear Database [WPUTED]. The above
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discussion demonstrates that existing ear recognition
methods lack the following:

1. Detection of occlusion remained uninvestigated,
although recognition rate highly depends on the
presence of occlusion.

2. Recognition rate varies with location and
proportion of occlusion. There is a lack of study
on automated localization and proportion
calculation of occlusion.

3. Existing methods are mostly experimented on
simulated or synthetically occluded ear samples
in predefined locations. The robustness of ear
recognition methods need to be evaluated under
real occlusions since type, location, and
proportion of real-world occlusions might be very
different than the simulated cases.

The above points indicate that there is a gap
between real-world occlusion detection and occluded
ear recognition methods. In this paper, our main goal
is to bridge the gap between occlusion detection and
occluded ear recognition by proposing a novel ear
recognition method that can detect real occlusions and
utilize occlusion information adaptively during
recognition stage.

3. PROPOSED METHOD

In this paper, we presented an automated approach of
occlusion detection, estimation, and un-occluded
region extraction. We also proposed a novel index-
based ear recognition method, which can efficiently
utilize the extracted un-occluded portion of ear. In the
real scenarios, enrolled or template images are mostly
obtained under human supervision. Therefore, if
occlusion occurs, human supervisor can direct the
person to reacquire the sample. On the other hand,
identification stage is mostly unsupervised and the
system process occluded image in case of the absence
of automated detection mechanism, which may
eventually lead to a false match. This is why we were
interested in  measuring  occlusion  during
identification stage. A basic flow diagram of the
proposed system is shown in Fig. 1. During enrollment
index-based features are extracted and stored in
feature database along with corresponding indices.
During test, occluded and un-occluded portion of the
ear are detected automatically. Next, index-based
features are extracted from un-occluded portion of test
ear sample and similarity is measured with the
corresponding features of enrolled images. The final
decision has been obtained from the maximum
similarity matching score of the test and enrolled
samples. Detailed explanation of the proposed method
can be found in the following subsections.

3.1 Types of Occlusion

Occlusion in ear images may occur anytime during
identification stage due to the presence of hair,
scarf/hat, earring, headphones, dust, and so on. Both
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shape and appearance of ear vary in a very different
way based on the type, location, and proportion of
occlusions.

Figure 1. Flow diagram of the proposed ear
recognition system.

One reason for the lack of investigation on real
occlusions is the unavailability of public database.
Researchers [Frel0a] of West Pomeranian University
of Technology have created an ear database containing
ear samples with different types of real occlusions to
facilitate proper validation of ear recognition
algorithms. Fig. 2 shows different occluded conditions
of ear samples from West Pomeranian University of
Technology Ear Database. From Fig. 2, one can see
that location, type, and proportion of occlusion are
very uncertain and cannot be predefined. Therefore,
proper detection of occlusion is indispensable to
extract un-occluded features from ear.

Figure 2. Different types of ear occlusions; a)
occlusions by hair; b) occlusions by earrings,
scarf, hat, headphones, etc. [WPUTED]

3.2 Ear Enrollment

In this paper, occlusion is considered during test phase
to resemble the identification stage. Generally,
enrollment is accomplished under human supervision.
If occlusion occurs during enrollment human
supervisor can reject the biometric sample and
reacquire it. Therefore, in this paper, we considered
the case that enrolled images are not occluded.
Initially, all enrolled images are preprocessed using
histogram equalization method and downsampled to
100x80 pixels. Each enrolled image is then partitioned
into 10x10 blocks, total 80 blocks. Fig. 3 shows a
visual representation of partitioning an ear image into
blocks. Next, we applied two-dimensional (2D) Haar

ISSN 1213-6972



No.2

Discrete Wavelet Transform (DWT) to extract local
texture features [Sull4a] from each block. Haar
wavelet transform decomposes an input block into
four sub-bands, one low frequency component (LL)
and three detail components (LH, HL, HH).
Decomposition to low frequency subband (LL)
smoothens image thus reduces noise. Decimated DWT
is a popular mathematical tool for image compression
since it efficiently reduces image dimensionality at
different levels, whereas ensuring seamless
reconstructions [DeV92a]. Thus, DWT preserves
important information of image while discarding
dimensionality. Moreover, DWT is computationally
efficient and less sensitive to illumination changes
[Sull4a]. The low frequency subband (LL) of DWT
contains most of the information of an image. In this
work, we applied 1% level Haar DWT to all blocks and
considered the low frequency subband of each block
as local features. The features of each block are then
stored along with its index in feature database.

Figure 3. An example of partitioning enrolled ear
into indexed-blocks.

3.3 Ear Occlusion Detection

Real-world occlusion detection is a very challenging
task because it is uncertain that when and what type of
occlusion would arise. There is also no certainty in
which portion and what proportion the occlusion
would occur. In this section, we propose a novel
method of ear occlusion detection and estimation
using skin color model. The process in outlined in
Algorithm 1.

In our method, the skin color regression model
[PaulOa] has been applied for occlusion detection.
We utilized skin color model for ear occlusion
detection because occlusion obscures skin color
information and detection of skin color will allow us
to separate occluded and un-occluded regions in ear.
The proposed occlusion detection method has four
steps: 1) conversion to chromatic color space » and g,
2) detection of skin regions in » and g color spaces
using skin color likelihood (eq. 5), 3) fusion of rand g
color space images and fill skin regions using
morphological operation, and 4) masking un-occluded
skin portion from original occluded image. A flow
diagram of the steps is depicted in Fig. 5.
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Algorithm 1: Occlusion detection and estimation.

Input: Test ear image Y of size M X N.

Output: (By;, 1)), un-occluded blocks in Y and
corresponding indices.

Step 1: Preprocess Y wusing histogram
equalization method and downsample M X N to
100x80.

Step 2: Transform image from RGB color space
to chromatic color space. Find the value of r and
g as follows [PaulOa]:

R

re n
G
9 = Rics 2)

Step 3: Find skin color distribution by 2-D
Gaussian model with the following mean vector 4
and covariance matrix C [PaulOa]:

A= G{x}[x=(rg)T] 3)
O-T'T UT
c=[or ool 4

Step 4: Estimate likelihood (L) of skin color using
the following equation [PaulQa]:

L="P(r,g) =exp[-05(x—A)T C 1 (x—A4)]
(O]

where, x = (1, g)7.

Step 5: Find the skin color regions of Y in

chromatic color r and g, denoted as P(r) and P(g).

Step 6: Fuse P(r) and P(g) to obtain resultant

binary image, Z = P(r) AND P(g)

Step 7: Perform morphological operation using
disk shape structuring element of radius 10 to fill
the skin regions in Z.

Step 8: Apply Z as a mask on Y to obtain image
X containing un-occluded skin portions.

Step 9: Partition X into 10x8 blocks each having
10x10 pixels and construct a block vector {Bj|i=
1,2,...,80}.

Step 10: Construct an index vector {I;ji=1,2,....,
m}, where Bjj contains skin regions (un-occluded)
and m is the total number of un-occluded blocks.

Step 11: Estimate total proportion of
. 27;1Blj

occlusion, E = S5 x 100 (6)
i=1Di

Step 12: If E>60%, discard Y and reacquire test
image.

Fig. 6 presents some outcomes of occlusion detection
of four ear samples from WPUT Ear Database. Fig. 6
(a) shows four original ear samples containing
different types of occlusions due to earring,
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headphones, and hair. The corresponding ear samples
after chromatic color space conversion are shown in
Fig. 6 (b). Fig. 6 (c) presents the resultant skin-regions
separated from occlusions. After separating occluded
and un-occluded regions, the ear image is partitioned
into 80 blocks, each containing 10x10 pixels. The
estimated occlusion has been calculated as the ratio of
the number of un-occluded blocks over total number
of blocks (eq. 6). The estimation of occlusion
facilitates auto-rejection of unreliable test images,
where most of the information is distorted due to
occlusion. In the proposed method, if the estimated
occlusion is below 60%, the test image will be used
for recognition, otherwise it has to be reacquired. In
this way, the proposed ear recognition system can
reduce false matches by discarding unreliable test
samples, automatically.

Figure 5. Flow diagram of the four steps of
occlusion detection using skin color model.

Figure 6. Examples of ear occlusion detection: a)
original occluded ears, b) conversion to chromatic
color space, c¢) detected unoccluded skin-regions.
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3.4 Partial Feature Extraction and
Matching

In the proposed method, partial features are extracted
from the detected un-occluded blocks of the test
image. 1% level of Haar DWT is applied to all un-
occluded blocks (By;), and four subbands images (LL,
LH, HL, HH) are obtained. The low frequency
subband (LL) of each block is considered as the local
features of corresponding block and converted to a
feature vector.

Finally, similarities between the partial features of test
ear and corresponding features of enrolled ears are
measured for recognition. Fig. 7 shows an example of
the corresponding blocks of a test ear and an enrolled
ear. The left image in Fig. 7 shows the blocks of skin
regions in test image and the right image shows
corresponding blocks in enrolled image. Unlike
existing methods, we matched the un-occluded blocks
of the detected skin regions to the corresponding
blocks of enrolled ears. The index vector (I;) is used to
fetch the corresponding blocks of enrolled ears from
feature database. A visual representation of the partial
feature extraction and similarity matching process is
shown in Fig. 8.

Figure 7. Block indexing, a) unoccluded blocks of
test ear, b) corresponding blocks of enrolled ear.

The similarities of the test and enrolled ears are
computed using Euclidean distance. Euclidean
distance of the indexed features of test ear (V) and
enrolled ear (U) can be calculated using the following
equation:

D = JE7 it — v’ g

where uj;, and vy, are the kth feature of jth block of U
and V, respectively, and m is the total number of un-
occluded blocks in V. However, a problem may arise
during the index-based matching if the indexed blocks
of the test ear do not overlap with the indexed blocks
of enrolled ear (in other words, if the test ear is shifted
to any direction). There are eight possible directions
of shift, which is shown in Fig. 9. We propose to solve
this problem by using a matching window in all
possible eight directions: By, B2, B3, B4, Bs, B¢, B7, Bs.
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Figure 8. Feature extraction and index-based partial feature matching of test and enrolled ears.

The set of all un-occluded blocks of the test ear is
considered as one region. Let us consider Tj; as the un-
occluded region of test image and R;j as the
corresponding region in the enrolled sample. The nine
similarity score are then calculated using eq. 8 to eq.
16.

So=1- D(Ti,j'Ri,j) ®)
S1=1=D(T,R;j41) ©)
S;=1- D(Ti,j' Ri+1,j+1) (10
S3=1—-D(T;j,Riy1)) (1)
Sy =1- D(Ti,j' Ri+1,j-1) (12)
Ss=1-=D(T;,R;j-1) (13)
Se =1—D(T;j,Ri—1,j-1) (14)
S, =1=D(T;,Ri_1) (15)
Sg =1—=D(T;j,Ri—1,j+1) (16)

The first similarity (So) score between the test and
enrolled sample is calculated by matching the blocks
of test region Ti; and corresponding enrolled region
Ri;. Next, we calculated the similarity score S; along
B, direction between the test region Tj and training
region Rjj+;. Then similarity score, S, is calculated
along B, direction between T;j and Rj+1+1. Similarly,
similarity scores S; to Sg are calculated along
directions B3 to Bg using eq. 11 to eq. 16. The reason
for calculating nine similarity scores is that if the test
sample is shifted to any of the possible directions,
matching score along that direction will be the highest.
Thus, calculating similarity scores in all possible
directions allow us to find the best matching indices
even under shifted condition. Fig. 10 shows pictorial
representation of the calculation of nine similarity
matching scores from So to Sg. In Fig. 10, Sy (in
middle) represents an example of the corresponding
blocks of an enrolled image. The shifted blocks in
eights possible directions are represented by S; to Sg
in Fig. 10. The shifted blocks were calculated by
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shifting the whole region (all blocks) towards the eight
possible directions as shown in Fig. 9.

Figure 9. Possible eight directions of image shift.

Figure 10. Nine similarity scores (So- Ss)
calculation by shifting the indexed region of
enrolled ear along different directions.

The best matching score is calculated in two ways.
First, the highest value among the nine scores is
considered as the overall maximum score, Si, (eq. 17).
Secondly, we calculated the block-wise maximum
score (Sp) among the nine similarity vectors.
Calculation of Sg can be shown as eq. 18:
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Sm = Maxs; 17)
Sg = max  §;; (18)

0<i<8,1<j<m,

where S;j is the similarity score of jth block of ith
similarity vector, m is the maximum number of un-
occluded blocks in test image.

4. EXPERIMENTAL RESULTS

Three sets of experiments were conducted to evaluate
the performance of the proposed ear occlusion and ear
recognition method. All experiments were carried out
on Windows 7 operating system, 2.7 GHz Quad-Core
Intel Core i7 processor with 16GB RAM. Matlab
version R2013a was used for implementation and
experimentation of the proposed method. We
evaluated our method on WPUT Ear Database
[WPUTED] since this is the largest publicly available
database containing ear images with wide variations
of real occlusions. A brief description of the database
is as follows:

WPUT Ear Database [Frel0a]: This database contains
2071 ear images of 254 women and 247 men, total 501
individuals of different ages. There are at least two
images per ear of each subject. 15.6% of the images
were taken outside and some of them were taken in the
dark. 80% of the images are recorded as deformed due
to the presence of real occlusions. Ear images of 166
subjects are covered by hair and the presence of
earrings are recorded for 147 subjects. The other forms
of real-world occlusion in this database are glasses,
headdresses, noticeable dirt, dust, birth-marks, ear-
pads etc. Many of the samples are simultaneously
occluded by different types of occlusion in different
proportions.

For our experimentation, the whole database is
partition into training and test sets. The training
database is created using comparatively un-occluded
ear samples. We have single training sample per
subject. The occluded images are randomly selected
for testing. Each experiment is performed five times
and the average recognition accuracy is considered as
the recognition performance of the proposed method.
Identification rate of the proposed method is analyzed
by plotting Cumulative Match Characteristics (CMC)
curve. CMC curve is the cumulative probability of
obtaining the correct match in the top r positions
(ranks). The final matching scores of the test and
enrolled images can be obtained in different ways such
as block-wise maximum score, overall maximum
score, block-wise average score, and overall average
score. Therefore, in the first experiment, we compared
the performance of the proposed method using
different similarity scores to obtain the best
performing method of calculating the final similarity
score. Fig. 11 shows the CMC curves of the proposed
method using block-wise maximum similarity, overall
highest similarity, block-wise average score, and
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overall average similarity scores. From Fig. 11, we can
see that the highest performance of the proposed
method was obtained by using block-wise maximum
similarity score. Consideration of the highest score
among the nine scores obtained the 2" highest
performance. Fig. 11 also shows that block-wise
average scores performed better than overall average
score. However, consideration of the maximum scores
are more discriminative than consideration of average
scores. The reason for this that not all the similarity
scores will find the best match among the test and
training blocks and averaging all scores may fade
away the best match. Fig. 11 shows that correct
matching probabilities of the block-wise maximum
similarity, overall maximum similarity, block-wise
average similarity, and overall average similarity at
rank 1 are 73%, 65%, 57%, and 51%, respectively.
Therefore, from the first set of experiments, we found
that block-wise maximum score obtained the best
results for the proposed method.

Figure 11. CMC curves of the proposed method
using different similarity scores.

In second set of experiments, we compared the
performance of the proposed method with a baseline
Haar discrete wavelet transform-based method. For
the baseline method, ear features were extracted using
Haar discrete wavelet transform from test sample
without applying any occlusion detection mechanism
and the features were matched with the enrolled
samples regardless of indices. The CMC curves for
the proposed method and the baseline methods are
plotted in Fig. 12. From Fig. 12, we can see that the
rank 1 recognition rate for the proposed method is
73%, whereas for the baseline method obtained 60%
recognition accuracy. Also, 91% recognition rate was
obtained by the proposed method within rank 10. The
CMC curves in Fig. 12 demonstrate the effectiveness
of prior occlusion detection and index-based matching
of occluded features.
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Figure 12. Recognition performance improvement
by the proposed method on WPUT database.

In the final set of experiment, we evaluated
performance of the proposed method on different
amount of occlusions. Amount of occlusion is
estimated as the ratio of the occluded blocks over total
number of blocks in an ear sample. Fig. 13 shows how
the performance of the proposed method varied with
different proportion of occlusion. From Fig. 13, we
can see that the proposed method can obtain
recognition rate as high as 85% with 10% estimated
occlusion. Also, the recognition performance
remained nearly 80% under 30% occlusion, which is
a better result than reported by previous studies. The
performance of the proposed method was at 67% even
with the 50% of ear image occluded! However, there
is simply not enough features for high precision of ear
recognition when over 60% of an ear is occluded and
in this case ear sample needs to be reacquired.

Figure 13. Performance of the proposed method
with different degrees of occlusions.

From the above experiments, we can summarize the
performance improvement of the proposed method as
follows. First of all, automated occlusion detection
and estimation allowed us to decide upon whether an
ear sample is good enough to be recognized or it is
needed to be reacquired. In this way, the proposed
method can improve recognition rate by reducing false
matches of overly occluded images. Secondly, unlike
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existing methods where occluded regions were
predefined, localization of unoccluded portion in our
method is automated. Therefore, the system can
adaptively decide upon which portion of the image is
unoccluded and good for feature extraction. Thirdly,
during recognition, features are extracted from only
unoccluded portion of the ear image and matched with
corresponding portion of the enrolled samples, which
reduces the probability of unreliable matching of the
occluded portion. Finally, the problem of shifted
indices is solved by using the best block-wise
matching scores in eight different scores. For these
reasons, the proposed method is capable of obtaining
a reliable recognition performance under real
occlusions of ears during identification stage.

5. CONCLUSION

A completely automated approach to ear occlusion
detection and estimation using skin color model has
been proposed in this paper. We also proposed a novel
index-based ear recognition method to recognize
partially occluded ears effectively. The most
important advantage of the proposed method is it can
estimate occlusion on ear samples during
identification stage and adaptively wuse this
information to select proper indices of the features for
recognition purpose. There is a scarcity of occluded
ear samples in biometric community and only few
publicly available databases contain occluded ear
samples. However, the adaptive decision making
process of the proposed method doesn’t depend on any
learning or training of occlusions and thus can be
applied to any database. The proposed method of
handling ear occlusion was proved to be a very
effective in the real world scenarios. Our experiments
on real occluded ear images validated the
effectiveness of occlusion detection and index-based
feature matching for partial ear recognition. Future
research will look into incorporating weights into an

occlusion estimation process to improve the
recognition even further.
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ABSTRACT

Convolution-based techniques for volume rendering are among the fastest in the on-the-fly volumetric illumination
category. Such methods, however, are still considerably slower than conventional local illumination techniques.
In this paper we describe how to adapt two commonly used strategies for reducing aliasing artifacts, namely
pre-integration and supersampling, to such techniques. These strategies can help reduce the sampling rate of the
lighting information (thus the number of convolutions), bringing considerable performance benefits. We present a
comparative analysis of their effectiveness in offering performance improvements. We also analyze the (negligible)
differences they introduce when comparing their output to the reference method.

These strategies can be highly beneficial in setups where direct volume rendering of continuously streaming data is
desired and continuous recomputation of full lighting information is too expensive, or where memory constraints
make it preferable not to keep additional precomputed volumetric data in memory. In such situations these strate-
gies make single pass, convolution-based volumetric illumination models viable for a broader range of applications,

and this paper provides practical guidelines for using and tuning such strategies to specific use cases.

Keywords

Volume Rendering, Global Illumination, Scientific Visualization, Medical Visualization

1 INTRODUCTION

In recent years different medical imaging technologies,
such as computed tomography, ultrasonography and
microscopy [5], became capable of generating real-time
streams of volumetric data at high frame rates. To vi-
sualize such data, volume raycasting [2, 10], capable of
displaying surfaces from volumetric data without pre-
processing, is often used. This happens in particular in
situations where inspection of the acquired data is use-
ful already during the acquisition, such as in 4D Echog-
raphy where volume rendering of real-time data is em-
ployed even for guiding interventions. In these cases
conventional direct volume rendering techniques that
employ local illumination models are generally used,
as they are efficient enough to keep up with the incom-
ing data rate when executed on modern GPU hardware,
even when not high end. However, just like in polygo-
nal rendering, rendering volume data using an illumina-
tion model that approximates global illumination bet-
ter than simple local shading models is important for
numerous reasons, as recent user studies have demon-
strated [11, 17]. Researchers have therefore been very
active in the last years in proposing efficient and realis-
tic approximations of global illumination, comprehen-
sively covered in a recent survey by Jonsson et al. [7].
Despite the advances in this field, volumetric illumina-
tion methods that offer the best performance rely on ex-
pensive preprocessing steps to speed up the rendering
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by reusing precomputed information. Such preprocess-
ing is not applicable in a number of situations, like, for
example, when the volume data to be rendered change
continuously, but also when memory constraints (e.g.,
in the case of portable devices or large datasets) make
it preferable not to store an additional precomputed il-
lumination volume.

There is, however, a category of techniques that ap-
proximate volumetric lighting (single and sometimes
multiple scattering) in the same pass used to gener-
ate the image, without the need for preprocessing or
storing the whole illumination volume. Nonetheless
even the fastest methods in this category are on av-
erage six to eight times slower [18, 13] than conven-
tional GPU-based direct volume rendering methods us-
ing ray-casting and local illumination models such as
Phong shading. This performance penalty can be a se-
rious issue where there are constraints on the compu-
tational capacity of the system, or when the rendering
pipeline includes additional computationally expensive
stages such as volume denoising.

In this paper we focus on convolution-based volumetric
illumination models [8, 9, 15, 16, 13], a subcategory of
single pass volumetric illumination methods built upon
slice-based rendering, that operate by iteratively diffus-
ing the lighting information slice after slice using con-
volutions. Since the geometry setup using ping-pong
buffers is a costly operation and, moreover, the convo-
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Figure 1: Volume rendering of the carp dataset. (a) Raycasting using Phong shading. (b) Instant convolution
shadows (ICS) with sampling distance of 0.33 voxels (reference). (c¢) ICS with sampling distance of 1 voxel.
(d) Supersampled convolution shadow (SCS) with a slice distance of 1.3 voxel and 4 tissue subsamples. (e)
SCS with a slice distance of 1.5 voxels and 5 subsamples (tissue sampling distance of 0.25voxel). (f) A closeup
highlighting how 1.5 voxels slice distance introduces aliasing artifact despite the dense tissue supersampling. The
SCS method, however, allows to increase the inter-slice distance considerably, with an almost linear performance
increase. Computation times from left to right: 43ms, 202ms, 88ms, 84ms, 79ms .

lution is performed for every pixel of the view-aligned
slices, the sampling distance (and thus the number of
slices used for the rendering) and the time necessary
for rendering every frame are linearly dependent.

In this paper we analyze the impact of the sampling dis-
tance on the performance of this approach in generating
aliasing-free images, and incorporate and evaluate the
effect of two commonly used strategies to lower this
distance: pre-integration [3] and supersampling. The
contribution of this paper is therefore twofold. First,
we introduce two methods to adapt pre-integration and
volume supersampling to convolution-based volumet-
ric illumination techniques, which allow decoupling the
sampling rates of the lighting information from the one
of the volume. Then we provide a quantitative eval-
uation of the effects that these strategies have on the
performance and practical guidelines for choosing al-
gorithm parameters in order to achieve the best perfor-
mance without compromising the image quality. We
demonstrate that using such strategies can lead to con-
siderable speedups (over 170% in the average case)
compared to the standard convolution-based illumina-
tion, and, in certain cases, can achieve performance
comparable to conventional local illumination methods
(see Figure 1 for an example). These performance gains
can be instrumental in bringing advanced illumination
to volume rendering of streaming data, especially on
computationally limited devices, or where the compute
unit is used for other computationally expensive steps
which are required for the rendering. These strategies
can also be beneficial in presence of static data but
when, for example, the amount of graphics memory is
limited, and precomputing volumetric light information
is not preferrable.

2 RELATED WORK

In the area of interactive volume rendering different
lighting models to approximate global illumination
have been proposed. A thorough overview of such
techniques has been provided by Jonsson et al. [7]. In
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their survey, the authors classify the various techniques
in five categories: local-region-based, slice-based,
light-space-based, lattice-based and basis-function-
based. Each of these categories describe the underlying
paradigm used for calculating volumetric lighting
information. The authors also provide a comprehensive
analysis of the individual methods, their memory
requirements, and their computational costs. The
computational costs have been further subdivided
into the cost for rendering an image, and the cost for
updating the data, the transfer function or the light
direction.

For scenarios in which the data is continuously varying
we are mostly interested in whether the total time nec-
essary to render the data for the first time exceeds the
data rate or not. We therefore adopt a simpler classi-
fication here, depending on whether a method requires
substantial pre-computation or whether it can produce
the final image at interactive frame rates calculating the
illumination information on-the-fly. We refer to Jons-
son et al. with respect to methods that fit the first of
these two classes. In the second class we have splatting-
based methods, slice-based methods, and image-plane-
sweep-based methods. Splatting was extended to sup-
port volumetric lighting by Nulkar and Mueller with
the shadow splatting method [12]. This method require
an additional pass and the storage of the shadow vol-
ume, so it is not an on-the-fly method. However, Zhang
and Crawfis [19, 20] later extended the method relaxing
these constraints. Still, splatting remains more suitable
for sparse or unstructured grids than for dense cartesian
grids.

Most of the work in on-the-fly volume illumination can
be found in the slice-based category, since synchroniza-
tion is one of the main issues in calculating the light
propagation, and performing slice-based volume ren-
dering implicitly synchronizes the ray front, simplify-
ing the problem. The first method introducing volu-
metric lighting using this rendering paradigm was half-
angle slicing, presented by Kniss et al. [8, 9]. The key
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Figure 2: Illustration of our modified schemes for pre-integration (left) and supersampling (right). Correct pre-
integration should include in the lookup table also the entry and exit light value. We propose to approximate
it performing only tissue pre-integration and sampling the light at S1 position. We also propose to use linearly
interpolated light values from the two previous light buffers to calculate the illumination for supersampled tissue

samples.

concepts of this method were the implementation of a
backward-peaked phase function by iterative convolu-
tion and the selection of the slicing direction half-way
(hence the name) between viewing and light direction.
Schott et al. [15] later presented the directional occlu-
sion shading method, constrained to headlight setups
to use view-aligned slices, and the same technique to
implement the backward-peaked phase function via it-
erative convolution. However, unlike half-angle slicing,
directional occlusion shading does not need two render-
ing passes per slice. This method was later extended by
Soltészovi et al. [16], to allow variable light directions
while keeping view-aligned slices. The authors called it
multidirectional occlusion shading, and also illustrated
the advantages of using view-aligned slices in terms of
image quality as opposed to half-angle slicing. This
method was further improved by Patel et al. [13] with
their instant convolution shadows method, by using an
optimized convolution kernel and allowing the integra-
tion of polygonal geometry, making it suitable for vol-
umetric detail mapping to geometrical models.

In the last category, the first and currently only method
presented was by Sunden et al. [18], with the image
plane sweep volume illumination technique. In this
method ray-casting is chosen over slice-based render-
ing, and the rays are not traversed simultaneously, but
serialized in a sweep over the image plane. The sweep
direction is dependent on the light direction so that the
ray direction is orthogonal to the light and subsequent
rays can make use of light contributions from previous
rays. In their paper the authors show that the perfor-
mance of their method is similar to half-angle slicing.
In this work we focus on slice-based iterative convolu-
tion methods.

The last aspect to discuss is how to analyze the results
of volume rendering techniques. One of the goals that
we have in this work is to improve performance while
maintaining the generated images free of aliasing. We
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identify the optimal parameter setting for the different
sampling distances (that is, the most efficient setting
that yield aliasing-free images) in a qualitative man-
ner. However, quantitative theoretical models to evalu-
ate the amount of error in volume rendering due to dis-
cretization also exist, like the one proposed by Etiene et
al. [4], or the method to determine proper sampling fre-
quency of function compositions proposed by Bergner
etal. [1]. Performance-wise it has been a common prac-
tice to compare different methods on the same viewport
size, sampling distance and transfer function, averag-
ing the rendering times over several frames from differ-
ent viewing direction [14, 18]. In this work we adopt
the same strategy. Timings are averaged over several
frames and the viewport size is always fixed to 512x512
pixels.

3 METHOD

To explain how to adapt supersampling and pre-
integration for a convolution-based volumetric
illumination model, we can use the Instant Convolution
Shadow (ICS) method [13] as the reference model.
The basic idea of ICS is that each volume sample
on a slice acts as light occluder but also as shadow
receiver. This means that every sample which, after
classification, maps to a non-fully transparent color,
will cast shadows onto the next slice. To compute the
amount of light that is transmitted from slice n to a
position on slice n + 1, the incoming light on slice # is
first attenuated by the opacity of the samples on slice n,
and then this outgoing light is convolved with a kernel
k(x). This operation is iterated for every pixel on every
slice, and the iterative process propagates the lighting
information to the end of the scene.

3.1 Pre-integrated ICS

Pre-integration [3] works by assuming linear variation
between two consecutive volume samples. It is then
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Figure 3: Assessment of the largest sampling distance to produce aliasing-free images for one scene. The transi-
tions where noticeable aliasing appeared are shown in red. Using pre-integration produced identical images and,
as expected, allowed to significantly increase the sampling distance while still preventing aliasing.

possible to precompute the volume rendering integral
between all possible combination of data values, and
store it in a 2D lookup table. During rendering, a sim-
ple 2D texture lookup is used. In practice, this approach
enables to use of much higher sample distances with-
out noticeable artifacts [3]. However, the basic pre-
integration method does not consider illumination, as
the resulting increase in dimensionality of the lookup
table would make the approach impractical. Previous
work [6] showed how to combine local gradient shad-
ing with pre-integration by combining two 2D look-up
tables. In case of non-local volumetric lighting this is
not possible, as the light information depends on the
neighborhood of a fragment (see Figure 2).

For this reason we suggest to use standard pre-
integration and ignore lighting in the pre-computation.
This requires only the conventional 2D lookup table. In
this approximation the light propagation proceeds as in
the conventional ICS, but the opacity used to attenuate
the light comes from the pre-integrated value. We
analyze the effect that this approximation has on the
image quality, and to what extent it allows us to reduce
the inter-slice distance in Section 5.

3.2 Supersampled ICS

The second strategy to increase the distance between
slices (and hence, the number of convolutions per-
formed), while still sampling the volumetric function at
a sufficiently high rate is to acquire additional volume
samples between consecutive slices. The rationale
behind this approach is that the color and opacity
contributions between consecutive slices are still
taken into account, but the illumination propagation is
performed at a lower frequency. Such a strategy has
pros and cons as compared to pre-integration, where
the color is calculated using a finer integration step, but
on approximated scalar field values, varying linearly
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between the front and the back sample. However,
these two strategies can also be combined. In order
to adapt supersampling to a slice-based renderer with
convolution-based lighting, it is necessary to define
what light contribution these additional samples col-
lected in between two subsequent slices should receive.
The correct solution is illustrated in In Figure 2 on the
right (blue convolution). Since this convolution is not
possible to calculate due to missing data, we propose
an approximation scheme for the light contribution
on the additional samples by using their position o
in between the slices (see Figure). We then linearly
interpolate the light contribution of the current and
previous light using this position as the weight.

4 TECHNICAL REALIZATION

Both of these strategies have been shown to be effec-
tive in reducing aliasing artifacts, indirectly allowing
larger sampling distances. In the specific case of volu-
metric lighting by convolution shadows, our proposed
adaptations blend in the algorithm and are compatible
with additional features such as variable light direction,
multiple light sources (which can greatly benefit from
lower sampling distances), non-white lights or chro-
matic shadows.

To quantify the benefits that pre-integration and super-
sampling can provide, we integrated them into a refer-
ence implementation of the ICS method. We chose this
method because it introduces a number of optimizations
over similar methods previously published [16, 15],
both from a performance and from an image quality
point of view, as discussed in Section 2. The ICS
method can be therefore considered one of the most
efficient convolution-based volumetric shadows tech-
niques available at the moment.

The necessary adaptations consists of two main ingre-
dients: a loop in the fragment shader to collect the ad-
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Figure 4: (a) Evaluation of the 2D parameter space for
supersampled ICS. On the x-axis the inter-slice distance
and on the y-axis the number of subsamples are shown.
Due to the integral number of possible subsamples, we
use x-increments of 0.2 voxels to keep the volume sam-
pling distance identical on the diagonal. Note how in-
creasing the number of substeps does not prevent alias-
ing anymore after exceeding a certain slice distance.
Note that the zoomed views have been desaturated and
auto-leveled to enhance the aliasing artifacts, making
them easier to see in print. (b) Rendering of the whole
dataset. (c¢) The transfer function used to geneate these
images (same as in Figure 3. (d) Absolute differences
between the bottom left and the bottom right view (mul-
tiplied by a factor of 10 for better visibility). Quantita-
tive measurements are given in Table 1.

ditional samples and an additional color attachment to
carry ahead the value of 2 light buffers. However, it
should be noted that, if we discard refraction effects that
change the color of the light when it propagates in the
media, the additional color attachment is not necessary
as the light attenuation, even for non-white light, could
be approximately described by a single scalar value.

S RESULTS

5.1 Analysis setup

We carried out a thorough analysis of the different ICS
compositing strategies in order to obtain quantitative
performance results. To analyze the speedup that these
strategies have, we used the average frame rendering
time over 100 frames from different view points for dif-
ferent illumination techniques. We compared conven-
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# Samples 0 1 ) 3
Distance
0.2 569ms | 572ms | 575ms | 578ms
04 311ms | 312ms | 314ms | 315ms
0.6 225ms | 225ms | 226ms | 227ms
0.8 180ms | 181ms | 181ms | 182ms
0.2 0.0 0.0033 | 0.0041 | 0.0045
04 0.0060 | 0.0030 | 0.0034 | 0.0035
0.6 0.0118 | 0.0065 | 0.0055 | 0.0054
0.8 0.0187 | 0.0102 | 0.0089 | 0.0083

Table 1: Performance and error analysis for Fig.4. The
first table illustrates the necessary time to generate a
frame. The second table shows the average pixel differ-
ence between the image in the bottom left corner and
every other. Pixels have normalized values in the [0,1]
interval.

tional ICS, ICS with supersampling only for the vol-
ume, which from now on will be referred to as Super-
sampled Convolution Shadows (SCS), pre-integrated
ICS and pre-integrated SCS. As a baseline, we also in-
cluded a conventional volume ray caster with and with-
out local illumination (Phong shading) in the compar-
ison. We conducted our experiments using five differ-
ent dataset/transfer function combinations. These were
a CT dataset of a carp (see Figure 1), a CT dataset of
a human head, used with two different transfer func-
tions, one to reveal the skin and one to reveal the skele-
ton, a CT dataset of a human abdomen revealing the
skeleton and the vessels due to contrast agent, and fi-
nally a cardiac ultrasound dataset. The dimensions of
these volumes are given in Figure 5. The goal of this
analysis was to evaluate the performance of each of
these techniques in producing artifact-free images. We
ran the tests on a workstation equipped with an Intel
Core2Quad 2.5GHz CPU, 12GB of RAM and an nVidia
Quadro K5000 GPU with 4GB of VRAM. The size of
the viewport was fixed to 512x512 pixels.

5.2 Parameter Space

We designed the analysis as a two-stage process. In
the first analysis stage we estabilished the largest sam-
pling distance for the intensity volume that would still
produce aliasing-free pictures using the raycaster, the
ICS renderer and the pre-integrated ICS renderer, and
used this parameter later on as reference in the perfor-
mance measurements. This distance was not always
the same for the raycasting technique and the ICS tech-
nique (slice-based), as these two methods exhibit dif-
ferent aliasing patterns. In particular, and as expected,
pre-integrated ICS could consistently tolerate a larger
inter-slice distance, which provide an advantage over
standard ICS in terms of performance (see Figure 5).
This distance was also dependent on the dataset and
the transfer function used, so we defined it separately
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Figure 5: Performance comparison between different rendering methods for five different scenes, depicted on top
of each group. On the bottom the size of the volumes in voxels.

for each scene. Figure 3 exemplifies this step for one
of the five analyzed scene, in which we qualitatively
assessed the larger inter-slice distance that would pro-
vide aliasing-free results (for methods to quantitatively
assess the amount of aliasing in a rendered image see
Section 2).

After the baseline inter-slice distance was identified, we
generated the reference images for each of the scenes.
In the second step of the analysis we explored the 2D
parameter space for the SCS method, in which one
dimension is the the inter-slice distance (or the volu-
metric illumination sampling distance), and the other
is the volume sampling distance. However, since our
method for integrating supersampling into convolution-
based techniques is not able to freely decouple these
two parameters (we can only use an integer number of
equidistant subsamples between two consecutive sam-
pling slices), we decided to use the number of subsam-
ples as the second parameter in this space. The volume
sampling distance can be determined using the formula
SampleDistance = ,m%. Figure 4 shows the
result of this exploration for one particular scene using
non-preintegrated SCS. This stage was meant to iden-
tify the setting of these two parameters that would en-
able the generation of images identical to the reference
most efficiently. After this second stage, optimal pa-
rameters for the raycaster, ICS, SCS, pre-integrated ICS
and pre-integrated SCS were available, and the perfor-
mance measurement described in Section 5.1 were con-
ducted using the determined values.

5.3 Analysis results

Figure 5 illustrates the performance that each technique
is able to achieve in producing aliasing-free images.
When comparing to standard ICS, these results show
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Figure 6: Chart of the performance impact with increas-
ing number of subsamples. In our experiments the slice
distance did not play a role, but using pre-integration
caused the performance to drop much faster, while reg-
ular supersampling comes almost for free for up to 3-4
subsamples.

an average performance increase of 137% for SCS. The
worst case scenario for the SCS method has been the
CT abdominal scene, where it could offer only a 90%
speed increase. In other scenes, in particular in pres-
ence of sharper transfer functions such as with the carp
dataset or the cardiac ultrasound dataset, the perfor-
mance increase exceeded 200%.

When using pre-integration, the performance increase
over standard ICS is slightly lower despite the usage
of same inter-slice distance as SCS in most cases, and
even the gathering of only one additional sample as
compared to standard ICS (versus the two or three of
the SCS method). This behavior can be explained
by the fact that sampling a 2D pre-integration table is
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Figure 7: Effect of supersampling a cardiac ultrasound dataset. (a,d) ICS with different slice distances. (b,e,c)
SCS with 1.34 , 2 and 3 voxel slice distances. (f) Phong shading for comparison. Note how shadow details on
the surfaces progressively disappear with increased sampling distances while shadows casted far away remain the

same.

more costly, as the plot in Figure 6, which graphs the
penalty for each additional sample for both SCS and
pre-integrated SCS, also shows.

Finally, when using both pre-integration and supersam-
pling we could increase the inter-slice distance further
without causing aliasing or getting noticeable artifacts
in the shading. This combination almost always pro-
vided the best performance, except for the cardiac ul-
trasound dataset, where the inter-slice distance for pre-
integration could not be increased as much as in the
other scenes. From this analysis we could conclude
that, in the average case, the volumetric lighting sam-
pling frequency can be at least halved, when compared
to tissue sampling frequency. This possibly due to the
lower frequency of the illumination function compared
to the post-classified volumetric data. Furthermore we
also noticed that the ratio of shadow sampling distance
/ tissue sampling distance can be further increased in
presence of sharper transfer functions.

6 DISCUSSION AND CONCLUSION

Convolution shadow methods and other single pass vol-
umetric illumination techniques can be the only vi-
able option to enable volumetric illumination in a num-
ber of application scenarios like real-time 4D echog-
raphy. Such methods are however constrained on the
volume sampling rate by the distance between consecu-
tive slices, requiring a high number of slices for transfer
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functions containing high frequencies, which consumes
a large amount of off-chip GPU memory bandwidth,
impacting negatively on the performance. In this work
we showed that, by decoupling the sampling rate of the
volume from the one of the illumination, we can ex-
ploit the fact that illumination is typically less sensitive
to lower sampling rates.

We adapted and analyzed two techniques, pre-
integration and supersampling, to lower the inter-slice
distance and, with some constraints, decouple the two
sampling rates. We showed how decoupling these two
sampling rates allows less frequent costly convolu-
tion operations, bringing a substantial performance
increase.

We also discovered that the performance increase us-
ing this strategy grows with steeper transfer functions.
Both of the strategies analyzed in this paper proved ef-
fective, and the most interesting aspect is that, except
for one case, they work better when combined. We
also experienced that, in certain situations (see Figure
7 for an example), lowering the inter-slice distace be-
yond what produces images identical to the reference
does not immediately introduce aliasing, but the qual-
ity of the shading decreases and differences become no-
ticeable. This could however be an acceptable compro-
mise in some situations, in exchange of an additional
performance gain.
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Abstract

The planning of human body movements is highly predictive. Within a sequence of actions, the anticipation of a
final task goal modulates the individual actions within the overall pattern of motion. An example is a sequence of
steps, which is coordinated with the grasping of an object at the end of the step sequence. Opposed to this property
of natural human movements, real-time animation systems in computer graphics often model complex activities by
a sequential concatenation of individual pre-stored movements, where only the movement before accomplishing
the goal is adapted. We present a learning-based technique that models the highly adaptive predictive movement
coordination in humans, illustrated for the example of the coordination of walking and reaching. The proposed
system for the real-time synthesis of human movements models complex activities by a sequential concatenation
of movements, which are approximated by the superposition of kinematic primitives that have been learned from
trajectory data by anechoic demixing, using a step-wise regression approach. The kinematic primitives are then
approximated by stable solutions of nonlinear dynamical systems (dynamic primitives) that can be embedded
in control architectures. We present a control architecture that generates highly adaptive predictive full-body
movements for reaching while walking with highly human-like appearance. We demonstrate that the generated
behavior is highly robust, even in presence of strong perturbations that require the insertion of additional steps
online in order to accomplish the desired task.

Keywords

computer animation, movement primitives, motor coordination, action sequences, prediction.

1 INTRODUCTION

A central problem in computer animation is the
online-synthesis of complex behaviors that consist of
sequences of individual actions, which have to adapt to
continuously changing environmental constraints. An
example is the online planning of coordinated walking

polation between motion-captured example actions
[WP95, GSKJ03, AFOO03]. Other approaches are
based on learned low-dimensional parameterizations of
whole body motion, which are embedded in mathemat-
ical frameworks for the online generation of motion
(e.g. [HPPOS5, SHP04, RCB9S8, WFHO08, LWSO02]).
Several methods have been proposed that segment

and reaching, when the position of the reaching goal is
dynamically changing.

A prominent approach for the solution of this
problem in computer graphics is the adaptive inter-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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action streams into individual actions, where mod-
els for the individual actions are adapted online in
order to fulfill additional constraints, such obstacle
avoidance or the correct positioning of end-effectors
([KGP02, RGBC96, PSS02)). The dependencies
between constraints in such action sequences have
been recently exploited to generate more realistic
animations. In [FXS12] captured motion examples
are blended according to a prioritized "stack of con-
trollers". In [SMKB14] the instantaneous blending
weights of controllers are pre-specified differently for
different body parts involved in the current action and
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the priority of the different controllers is governed
by their sequential order. In [HKI14] the synthesis
of locomotion plus arm pointing at the last step is
carried out by blending of captured actions determining
the weights by "inverse blending optimization". In
this study arm pointing was blended with the arm
swinging motion of the last step. The choice of the the
arm pointing primitives depended on the gait phase,
according to an empirical rule introduced by authors.

Physics-based animation is another approach for the on-
line generation of motion (e.g. [STOS, FP03]). Com-
plex action sequences are segmented into individual
actions, which are characterized by solutions of opti-
mization problems, derived from mechanics and ad-
ditional constraints (contact, friction, or specified via-
points) ([AMJ07, LHPO5, MLPP09]). While these ap-
proaches generate highly adaptive behavior for indi-
vidual actions, the problem to generate natural-looking
transitions between the individual actions is non-trivial.
As consequence, artifacts (e.g. hesitation, jerky move-
ment) can emerge at transition points, (e.g. [WZ10]).

Opposed to these approaches skilled human motor be-
havior has been shown to be highly predictive. Within
complex activities, action goals and the associated con-
straints influence actions that appear already a long time
before the constraint within the behavioral stream, and
thus allows the generation of smooth and optimized be-
haviors over complex action sequences. This was in-
vestigated, for example, in a recent study on the co-
ordination of walking and reaching. Human subjects
had to walk towards a drawer and to grasp an object,
which was located at different positions in the drawer.
Humans optimized their behavior already significantly
before object contact, consistent with the hypothesis of
maximum end-state comfort during the reaching action
[WS10, Ros08], and steps prior to the reaching were
modulated in order to accomplish the goal.

Whole body movements of humans and animals are
organized in terms of muscle synergies or movement
primitives [Ber67, FHOS5]. Such primitives characterize
the coordinated involvement of subsets of the available
degrees of freedom in different actions. An example
is the coordination of periodic and non-periodic
components of the full-body movements during
reaching while walking, where behavioral studies
reveal a mutual coupling between these components
[CG13, CMCH96, Ros08, MBO1]. The realism and
human-likeness of synthesized movements in robotics
and computer graphics can be improved by taking such
biological constraints into account [FMJ02].

We present a learning-based framework that makes
some of these properties applicable for realtime
animation in computer graphics. The underlying
architecture is simple and approximates complex full-
body movements by dynamic movement primitives
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that are formulated in terms of nonlinear dynamical
systems [GMPT09, PMSG09]. These primitives
are constructed from kinematic primitives, that are
learned from trajectory sets by anechoic demixing
in an unsupervised manner. Similar to the related
approaches in robotics [GRILOS, BRIO6], the method
generates complex movements by the combination
of a small number of learned dynamical movement
primitives [0G11, GMPT09]. We demonstrate this
approach by the highly adaptive online generation of
multi-step sequences with coordinated arm movements.

The paper is structured as follows: After the description
of the animation system in section 2, we present some
example results section 3, followed by a conclusion.

2 SYSTEM ARCHITECTURE

Our work is based on motion capture data from a sin-
gle human subject performing a drawer opening task. In
the following, this data set is described briefly. Then the
different key elements of the proposed algorithm are in-
troduced: movement generation by dynamic primitives,
modeling of coordination by step-wise regression, and
the algorithms for online blending and control.

2.1

Our system was based on motion capture data from a
single human subject that executed a drawer opening
task, walking towards a drawer and then reaching for
an object in the drawer. The distance of the subject
from the drawer and the position of the object was var-
ied [LRSS13] (Fig. 1). These training sequences con-
sisted of three subsequent actions or movements: 1) a
normal walking step; 2) a shortened step with the left-
hand starting to reach towards the drawer. This step
showed a high degree of adaptability, and was typically
adjusted in order to create an optimum distance from
the drawer (maximum comfort) for the reaching move-
ment during the last action; 3) the drawer opening and
the reaching of the object while standing. The object
position in the drawer was indicated to the participants
at the beginning of each trial. (See [LRSS13] for further
details). (See video [Demo!].)

The analysis of the distances between the pelvis and
the drawer or the object in these action sequences re-
veals the predictive nature of human movement plan-
ning, as shown in Fig. 2 where the distances ordered
according to the initial walking distance to the drawer.
While the length of the first step and the distance from
the drawer in the last step are relatively constant, a
major distance adjustment is made in the second step.

Motion capture data

www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v1.avi

ISSN 1213-6972



No.2

Figure 1: Illustration of the human behavior. The figure
illustrates important intermediate postures (normal walking
step, step with initiation of reaching, standing while drawer
opening, and object reaching).

Samples are sorted according to the initial distance to the drawer
st action Dist. to drawer  Dist. to object

o
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Figure 2: Predictive planning in real human trajectories. Dis-
tances from the pelvis to the front panel of the drawer (green,
yellow, red), and the distance between the front panel and the
object (blue) for different trials. Mainly the second action is
adjusted as function of the initial distance from the goal.

The length of the first step is not significantly cor-
related with the initial distance to the drawer (linear
regression: R? = 0.08, p = 0.429), while the correla-
tions with the distance to the drawer after first step,
and the length of the second step are highly significant
(R*=0.95,p=1.4-1079).

2.2 Real-time synthesis of movements by
learned dynamic primitives

The modeling of the individual actions within the
sequence exploits a learning-based approach, which
we implemented successfully before for locomotion
as well as to other complex human body movements
[GMP"09]. The system architecture is illustrated in
Fig. 3.

Based on the motion capture data, we learned spatio-
temporal components of the three actions in an un-
supervised way, applying anechoic demixing [OGl11,
CdEG13]). We have shown before that this method
leads to highly compact approximations of human tra-
jectories, reaching almost perfect approximations of of-
ten with less than five learned source functions. The
skeleton model of the animated characters had 17 joints.
The joint angle trajectories were represented by normal-
ized quaternions (exploiting an exponential map repre-
sentation, c.f. [Mai90], with 3 variables specifying each
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Figure 3: Architecture for the online synthesis of body
movements using dynamic primitives.

quaternion). The angles were approximated by an ane-
choic mixture model of the form:

5,~(t)=m,-+ E W,'ij(t—Tl'j) (1)
~—~ ] ————
angles sources

The index i specifies the joint-angle component, and the
index j the source signals s;. The parameters w;; and
T;; specify the mixing weights and time delays of the
source decomposition model, which are estimated to-
gether with the other parameters by the demixing algo-
rithm. The parameters m; specify the means of the joint
trajectories.

In order to generate movements online, the source func-
tions are generated by mapping the solutions of a non-
linear dynamical system (canonical dynamics) onto the
source functions s;. For mathematical convenience, we
chose a limit cycle oscillator (Hopf oscillator) as canon-
ical dynamics. It can be characterized by the differ-
ential equation system (with @ defining the eigenfre-
quency), for the pair of state variables [x(¢),y(¢)]:

x(t)
(1)

[1— (2 (1) + (1)) ]x(2) — oy(1) + k(xp (1) —x(1))
[1 = @2(1) +% (1)) ]y(2) + ox(r) + k(yp (1) = ¥(1))

The last terms specify coupling terms to a pair of
input signals x,(¢) and y,(t), and k is the coupling
strength. For k = O this equation produces a stable
limit cycle. The state space variables x and y are
mapped onto the source functions s; by nonlinear
mapping functions fj(x,y), which were learned by
support vector regression (using a radial basis function
kernel and the LIBSVM Matlab® library [CLO1]). The
learned source functions s;(r) and corresponding states
[x(¢),y(¢)] from the attractor solution of the limit cycle
oscillator were used as training data.
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Figure 4: Comparison of approximation quality for different
methods for blind source separation as function of the number
of sources, using a step-wise regression approach (residuals
after subtraction of the contribution of the non-periodic source
signal). Solid lines: Approximation quality for trajectories
of all three actions as a function of the number of (periodic)
source functions for anechoic demixing (blue) and principle
component analysis (PCA) (green). The purple dotted line
shows the approximation quality for the first action, fixing the
delays across trials. The red dashed line shows approximation
quality when 2 additional sources (with fixed delays) were
included in order to model the remaining residuals. Circles
mark the chosen numbers of sources in our implementation.

The coupling term (for £ > 0) allows the coupling of
different dynamic primitives, if they are specified by the
state variables of another oscillator. We have discussed
elsewhere that this form of coupling, with appropriate
constraints for the parameters, allows to guarantee the
stability of the solutions of networks of such primitives.
The relevant stability conditions can be derived using
Contraction theory [LLS98, PMSGO09].

In our architecture we used one leading oscillator, and
the other oscillators were coupled to this leading oscil-
lator in the described form (star topology of the cou-
pling graph, where couplings are unilateral from the
center to the leaves of the star). The stability proper-
ties of this form of coupling were studied in detail in
[PMSGO09], and it can be shown that this dynamics has
only a single exponentially stable solution. The state of
the leading oscillator was also used for the control of
the non-periodic source functions.

From the source signals that were generated online, the
joint angles were computed using equation (1). Exploit-
ing the fact that the attractor solution of the Hopf oscil-
lator lies on a circle in state space, the delays can be
replaced by an appropriate rotations of the variables of
the state space (x,y). In this way, we obtained a dy-
namics without explicit time delays, avoiding difficul-
ties with the design of appropriate controllers. Different
motion styles were generated by blending of the mixing
weights w;; and the trajectory mean values m;.

2.3 Stepwise regression approach for the
modeling of the individual actions

In order to model the step sequences with coordinated
walking and reaching we approximated the training
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data by the described anechoic mixtures, using a
step-wise regression approach that introduced different
types of source functions for the three different compo-
nent actions.

Reaching is a non-periodic movement and therefore
requires the introduction of a non-periodic source
function. In order to generate such a function online,
the phase of the leading Hopf oscillator was derived
from the state variables according to the relation-
ship ¢(r) = modyy(arctan(y(z)/x(¢))), (ensuring
0 < ¢ < 2m). The non-periodic source signal was
defined by so(¢) = cos(¢(¢)/2), and the corresponding
delay was set to zero.

The three actions of the training sequences were
modeled as follows:

1st action: The weights of the non-periodic sources
were determined in order to account for the non-
periodic part of the training trajectory. Then this
component was subtracted from the trajectory data, and
the periodic source functions were determined by ane-
choic demixing, using an algorithm from [CdEG13],
which had been modified in order to constrain all time
delays belonging to the same source function to be
equal. This constraint simplifies the blending between
different motion styles, since then the delays of the
sources are identical over styles, so that they do not
have to be blended. Compared to the unconstrained
anechoic model, this constraint requires the intro-
duction of more sources for the same approximation
quality (see Fig. 4). The first step could be modeled
with sufficient accuracy using three periodic sources in
addition to the non-periodic one.

2nd action: In order to model the second highly
adaptive step, five periodic sources were required. The
first three periodic sources were identical with the ones
used for the approximation of the first action, and also
the corresponding delays. The weights were optimized
in order to minimize the remaining approximation
error. The contributions of these three periodic sources
(and of the non-periodic sources), then were subtracted
from the training data, and two additional periodic
sources were learned from the residuals (with constant
delays across trials).

3rd action: In order to approximate this action, we
used the same non-periodic and five periodic source
signals, with the same time delays, that were identified
for the modeling of the second action, while the
weights of these sources were re-estimated.

The estimated source functions are shown in Fig. 5.
The dotted curve illustrates the non-periodic source.
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- 1. -
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Figure 5: The source signals extracted by anechoic de-
mixing algorithm. a): three periodic source signals extracted
from the first action and non-periodic source signal (dashed
line). b): two additional periodic source signals that were
used for the modeling of the second and the third actions.

The source functions illustrated in the upper panel were
used for the approximation of all three actions, and the
two in the lower panel only for actions two and three.

Fig. 4 shows the approximation quality as a function
of the number of source functions for the first and the
second action, comparing normal anechoic demixing
[OG11], our algorithm with constant delays over the
different conditions [CdEG13], and a reconstruction us-
ing PCA. The measure for approximation quality was
defined as 0 = 1 — (||X — X|[7)/1X |7, where X is the
matrix with the samples of the original signal, and X is
the reconstructed signal, || - |2 is the squared Frobenius
norm. Especially, the model without constraints for the
delays still achieves significantly better approximation
quality than PCA. The reconstruction error for the first
action (purple circle on Fig. 4) is 95.6%, while the one
with the two additional sources, used for actions 2 and
3, 18 96.7% for the whole dataset (red circle).

The absolute values of the amplitudes of the weights
for a single trajectory are depicted at Fig. 6, separately
for the two source signals that carried the maximum
amount of variance. This is the non-periodic source
and the periodic source with the lowest frequency. The
figure shows that the primitives clearly contribute to the
different degrees of freedom of the human body. The
non-periodic source primarily contributes to the joint
angles of the arm, while the periodic source function
strongly influences the hip and the leg joints. This
clearly reflects the organization of human full body
movements in terms of movements primitives. The
figure also shows that the contribution of the sources
changes between the steps. In the first action the con-
tribution of the first periodic source is dominant, while
in the second and last action the non-periodic source
function makes a dominant contribution, reflecting the
non-periodic reaching movement.

2.4 Online blending of the mixing weights

As illustrated in Fig. 6, the mixing weights change be-
tween the different actions within the sequence. For
the modeling of a smooth transitions between the differ-
ent actions the mixing weights thus had to be smoothly
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The distribution of the amplitudes of sources weights

Periodic source 1 Non-periodic source

L Shoulder
L Elbow

L Wrist

R Shoulder
R Elbow

R Wrist

L Hip

L Knee

L Ankle

R Hip

R Knee

R Ankle

Actions: 1 2 3 1 2 3

0

Figure 6: Absolute values of the weights for an example
trajectory of the data set. The computed mixing weights are
shown from the different actions within the sequence for the
periodic source function with minimum frequency and for the
non-periodic source. The color code is the same for both pan-
els.

interpolated in an online fashion at the transitions be-
tween the individual actions.

For the weights associated with the periodic
sources, the corresponding weight matrices were
linearly blended according to the relationship
W(t) = (1 — a(t))Wprey + &(t)Wpost, Where Wprey
is the weight matrix in the step prior to the transition
and W5t the one after the transition. The mean values
for each of the angle trajectories were morphed accord-
ingly: m(t) = (1 — & (t))mprev + (1) Mpost, Where mprey
is the mean value in the step prior to the transition and
Mpos; 18 the one after the transition. The time-dependent
blending weight o(z) was constructed from the phase
variable ¢(¢) of the leading oscillator. Identifying the
transition point, where the weights switch between the
subsequent actions with the phase ¢ = 0, the blending
weight was given by the equation (here, regarding only
two adjunct actions, we use convention: ¢ € [—2m;0]
for a previous action, and ¢ € [0;27[ for a next one):

0 ¢<_Bv
at) =4 (1+sin()/2 ¢ [-B:Bl, ¢ ()
1 ¢>p

The parameter § = n/5 determines the width of the
interpolation interval and was chosen to guarantee
natural-looking transitions. This value was derived
in previous work, optimizing transitions for other
scenarios [GMPT09].

The weights associated with the non-periodic source
had to be treated separately since they can have
different signs before and after the transition. Since
the timing of this source is completely determined by
the phase ¢ (¢) of the leading oscillator, we constrained
the blending by allowing sign changes for these
weights only at the point where this phase crosses
zero (¢(¢) = 0). The ramp-like non-periodic source is
normalized in a way so that s9(0) = 1 and 50(7T) = —1
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Figure 7: Learned nonlinear mappings between action length
and duration and the mixing weight of the 1st source for hip

flexion angle: a) 1st action, b) 2nd action.

(T being the duration of an oscillation of the leading os-
cillator in the attractor state). The following morphing
rule W(1) = sign(@(1))[(e(t) — 1)Wprev + 0(1) Woul
ensures a smooth transition that make the
weights for this source converge at the bound-
aries between the actions against the value
étmns = (mprev + mpost)/2 + (Wpost - Wprcv)/z-

2.5 Learning of mappings between step
parameters and mixing weights

In order to make the generated behavior highly adap-
tive for conditions that were not in the training data
and for dynamic changes of the environment, we de-
vised an online control algorithm for the blending of
the weights W, separately for each action. For this
purpose, we learned nonlinear functions that map the
step lengths and the duration of the steps onto the mix-
ing weights. For the learning of this highly nonlin-
ear mapping we used locally weighted linear regression
(LWLR, [AMS97]). Fig. 7 shows some example for the
weights of the first periodic source.

The required step lengths are computed online from
the total distance to the drawer. The length of the step
of the second action was optimized in order to generate
an optimum (maximally comfortable) distance for the
third action, which was estimated from the human
data to be about 0.6m. The total distance between the
start position and the drawer D was then redistributed
between the first two actions using a linear weighting
scheme, specifying the relative contributions by the
weight parameter y. The remaining distance D — 0.6m
was then distributed according to the relationships
D) =(D—0.6m)yand D, = (D—0.6m)(1 — y), where
we fitted ¥ = 0.385 based on the human data. This
approach is motivated by the hypothesis that in humans
predictive planning optimizes end-state comfort, i.e.
the distance of the final reaching action [LRSS13].

We extended the algorithm in addition by a method
that introduces additional normal steps (corresponding
to action 1), in cases where the goal distance exceeds
the distance that can be modeled without artifacts by a
three-action sequence. If the distance between the goal
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Figure 8: Two synthesized trajectories, illustrated in parallel
for two conditions with different initial distance of the charac-
ter from the drawer. Both animations look highly natural even
though these goal distances were not present in the training
data set.

and the agent was too short for the introduction of long
steps, instead a variable number of short steps as in ac-
tion 2 were introduced.

3 RESULTS

Two example sequences of concatenated actions gener-
ated by our algorithm, for distances to the goal object
that were not in the training set are shown in Fig. 8. An
example video can be downloaded from [Demo?].

A more systematic evaluation shows that the algorithms
can, without introducing additional steps, create nat-
ural looking coordinated sequences for goal distances
between 2.34 and 2.94 m [Demo?]. If the specified
goal distance exceeded this interval our system intro-
duced automatically additional gait steps, making the
system adaptive for goal distances beyond 3 meters.
This is illustrated in [Demo®] that presents two exam-
ples of generated sequences for goal distances 3.84 and
4.62 m. With 3 actions the largest achievable range of
goal distances without artifacts was about 60 cm, while
adding another step increases this range to about 78 cm.
Adding two or more normal gait steps our method is
able to simulate natural-looking actions even for goal
distances longer than 5 m. The next [Demo’] illustrates
the sequence of three actions of first type followed by
actions 2 and 3 for the goal distance 5.3 m.

Fig. 9 illustrates that, like in humans, the posture at the
transition between the second and third action depends

www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v2.avi
www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v3.avi
www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v4.avi
www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/vS.avi
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Figure 9: Postures at the transition between actions 2 and 3
for different lengths of the second action (red: 0.53 m, green:
0.39 m). Even though the distances to the drawer are the same
in the last action the postures differ due to the predictive plan-
ning of the second action.

Figure 10: Online perturbation experiment. The goal
(drawer) jumps away during the approaching of the charac-
ter. The online planning algorithm introduces automatically
an action of type 2 (short step) to adjust for the large distance
to the goal.

on the previous step. In one case the step lengths for ac-
tion 2 were 0.53m and 0.39m, while the distance in the
last step was identical (0.6m). This illustrates that in
fact the posture for the reaching is modified in a predic-
tive manner over multiple steps, where the predictive
planning modifies the posture at the beginning of the
last action even if the distance to the goal object for this
action is identical. A planning scheme that is not pre-
dictive would predict here the same behaviors for the
last action since the relevant control variable (distance
from the object) is identical for both cases.

An even more extreme demonstration of this online
adaptivity is shown in movie [Demo®]. Here the drawer
jumps away during the approaching behavior by a large
distance so that it can no longer be reached with the
originally planned number of steps. (Fig. 10). The on-
line planning algorithm adapts to this situation by au-
tomatically introducing an additional step so that the
behavior is successfully accomplished. Again the be-
havior has a very natural appearance even though this
scenario was not part of the training data set.

www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v6.avi
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4 CONCLUSIONS

We have presented a method for the online animation of
multi-step human movements that was inspired by con-
cepts derived from biological systems. The proposed
system realizes a predictive planning of multi-step
sequences, including periodic an non-periodic move-
ments that reproduce critical properties observed in
experiments on human motor planning. The planning
is predictive and optimizes the ’comfort’ during the
execution of the final action. The proposed system
exploits the concept of movement primitives in order
to implement a flexible and highly natural-looking
coordination of periodic and non-periodic behaviors
of the upper and lower limbs, and to realize smooth
transitions between subsequent actions within the
sequence. For the first time, our architecture is im-
plemented for generation of goal-directed movements.
Our approach differs from the whole-body motion
blending approach presented in [HK14], where, in
order to increase naturalness of the transitions, it was
necessary to introduce empirical rules that depend on
the gait phase. Future work will extend our approach
to other classes of movements, including, for instance,
adaptive arm reaching movements accomplished while
walking. In addition, we plan a systematic evaluation
of the realism of the generated motions, including
psychophysical studies.
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ABSTRACT

This paper introduces a new 3D skeleton-based gait recognition method for motion captured by a low-cost con-
sumer level camera, namely the Kinect. We propose a new representation of human gait signature based on the
spatio-temporal changes in relative angles among different skeletal joints with respect to a reference point. A se-
quence of joint relative angles (JRA) between two skeletal joints, computed over a complete gait cycle, comprises
an intuitive representation of the relative motion patterns of the involved joints. JRA sequences originated from
different joint pairs are then evaluated to find the most relevant JRAs for gait description. We also introduce a
new dynamic time warping (DTW)-based kernel that takes the collection of the most relevant JRA sequences from
the train and test samples and computes a dissimilarity measure. The use of DTW in the proposed kernel makes
it robust in respect to variable walking speed and thus eliminates the need of resampling to obtain equal-length
feature vectors. The performance of the proposed method was evaluated using a Kinect skeletal gait database.
Experimental results show that the proposed method can more effectively represent and recognize human gait, as
compared against some other Kinect-based gait recognition methods.

Keywords

Gait recognition, Kinect v2, joint relative angle (JRA), DTW-kernel, motion analysis.

1 INTRODUCTION

Over the past ten years, biometric recognition and au-
thentication has attracted a significant attention due to
its potential applicability in social security, surveillance
systems, forensics, law enforcement, and access con-
trol [1, 2]. A biometric system can be defined as a
pattern-recognition system that can recognize individ-
uals based on the characteristics of their physiology or
behavior [3, 4]. Gait is one of the very few biometrics
that can be recognized at a distance without any direct
participation or cooperation of the user. Gait recogni-
tion involves identifying a person by analyzing his/her
walking pattern. Since human locomotion is a com-
plex and dynamic process that comprises movements of
different body limbs and their interactions with the en-
vironment [5], disguising one’s gait or imitating some
other person’s gait is quite difficult. As a result, gait
recognition is particularly useful in crime scenes where
other biometric traits (such as face or fingerprint) might

be obscured intentionally [6]. The non-invasive nature
and the ability to recognize individuals at a distance
makes gait an attractive biometric modality in security
and surveillance systems [7, 8]. In addition, gait analy-
sis has many applications in virtual and augmented re-
ality, 3D human body modeling and animation [9, 10],
motion and video retrieval [11], health care [12]), etc.

In this paper, we present a new Kinect-based gait recog-
nition method that exploits the relative motion patterns
of different skeletal joints to represent the gait features.
The proposed method encodes the relative motion be-
tween two joints by computing the joint relative angles
(JRA) over a complete gait cycle. Here, JRA is defined
as the angles formed by the corresponding two joints
with respect to a reference point in a 3D space. Rele-
vance of a particular joint pair in gait feature represen-
tation is then evaluated based on an intuitive statistical
analysis that reflects the level of engagement of a par-
ticular joint pair in human walking. Finally, we intro-
duce a new dynamic time warping (DTW)-based ker-

nel, which is used to compute the dissimilarity between
the collection of JRA sequences obtained from two gait
samples. The performance of the proposed method is
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fee provided that copies are not made or distributed for profit
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evaluated using a 20-person skeletal gait database cap-
tured using the Kinect v2 sensor. The experimental
analysis shows that the proposed method can represent
and recognize human gait in a more effective manner,
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as compared against some existing Kinect-based gait
recognition methods.

2 RELATED WORK

Different gait recognition methods found in literature
can be divided into two categories: i) model-based ap-
proaches and ii) model-free approaches [13]. In model-
based approaches, explicit models are used to represent
human body parts (legs, arms, etc.) [14]. Parameters
of these models are estimated in each frame and the
change of the parametric values over time is used to rep-
resent gait signature. However, the computational cost
involved with model construction, model fitting, and
estimating parameter values makes most of the model-
based approaches time-consuming and computationally
expensive [14]. As a result, they are unsuitable for a
wide range of real-world applications. One of the early
parametric gait recognition methods was proposed by
BenAbdelkader et al. [15], where they estimated two
spatiotemporal parameters of gait, namely stride length
and cadence as two distinctive biometric traits. Later,
Urtasun and Fua [16] proposed a gait analysis method
that relies on fitting 3-D temporal motion models to
synchronized video sequences. Recovered motion pa-
rameters from the models are then used to character-
ize individual gait signature. A similar approach pro-
posed by Yam et al. [17] models human leg structure
and motion in order to discriminate between gait signa-
tures obtained from walking and running. Although this
method presents an effective way to view and scale in-
dependent gait representation, it is computationally ex-
pensive and sensitive to the quality of the gait sequences
[18].

Instead of modeling individual body parts, the model-
free approaches utilize the silhouette as a whole in or-
der to construct a compact representation of walking
motion [14]. Gait energy image (GEI) [19] and mo-
tion energy image (MEI) [20] are two of the most well-
known model-free gait recognition methods. The ba-
sis of the MEI representation is a temporal vector im-
age. Here, each vector point holds a value, which is
a function of the motion properties at the correspond-
ing sequence image [20]. On the other hand, GEI ac-
cumulates all the silhouette motion sequences in a sin-
gle image, which preserves the temporal information as
well [19]. Many of the recent model-free gait recog-
nition methods extend GEI to a more robust represen-
tation. For example, Chen et al. [21] proposed frame
difference energy image (FDEI), which utilizes denois-
ing and clustering in order to suppress the influence
of silhouette incompleteness. Li and Chen [22] fused
foot energy image (FEI) and head energy image (HEI)
in order to construct a more informative energy im-
age representation. Although model-free approaches
are computationally inexpensive, they are sensitive to
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view and scale changes and therefore, not suitable in
uncontrolled environments.

While biometric gait recognition has been studied for
the past twenty years, the recent popularization and low
cost of Kinect has contributed to the spike in the in-
terest in gait recognition using Kinect data. Kinect is
a low-cost consumer-level device made up of an ar-
ray of sensors, which includes i) a color camera, ii) a
depth sensor, and iii) a multi-array microphone setup.
Figure 1 shows different data streams that can be ob-
tained from the Kinect. In addition, Kinect sensor can
track and construct a 3D virtual skeleton from human
body in real-time [23] (as shown in Figure 2), which
renders the time consuming video processing steps un-
necessary. All these functionalities of Kinect have led
to its application in different real-world problems, such
as home monitoring [24], health care [25], surveil-
lance [26], etc. The low computation real-time skeleton
tracking feature has encouraged some recent gait recog-
nition methods that extract features from the tracked
skeleton model. One of the pioneer studies conducted
by Ball et al. [7] used Kinect for unsupervised clus-
tering of gait samples. Features were extracted only
from the lower body part. Preis et al. [27] presented
a Kinect skeleton-based gait recognition method based
on 13 biometric features: height, the length of legs,
torso, both lower legs, both thighs, both upper arms,
both forearms, step-length, and speed. However, these
features are mostly static and represent individual body
structure, while gait is considered to be a behavioral
biometric, which is more related to the movement pat-
terns of body parts during locomotion. Gabel et al. [28]
used the difference in position of these skeleton points
between consecutive frames as their feature. However,
the proposed method was only evaluated for gait param-
eter extraction rather than person identification.

In this paper, we investigate Kinect-based gait recog-
nition by the means of a new feature, namely the joint
relative angle (JRA). The motivation is to capture the
relative motion patterns of different joint pairs by ex-
amining how the corresponding relative angle between
them varies over time. We also introduce an extension
of the dynamic time warping (DTW) method, namely
the DTW-based kernel that evaluates a collection of
JRA sequences for the recognition task.

3 PROPOSED METHOD

The proposed new gait recognition method utilizes the
3D skeleton data obtained from the Kinect v2 sensor.
Robustness to view and pose changes are the main ad-
vantages offered by the proposed method. Released in
mid-July 2014, Kinect v2 offers a greater overall pre-
cision, responsiveness, and intuitive capabilities than
the previous version [29]. The v2 sensor has a higher
depth fidelity that enables it to see smaller objects more
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Figure 1: Different data streams obtained from the Kinect v2 sensor.

clearly, which results in a more accurate 3D object con-
struction [29]. It can track a total of six people and 25
skeletal joints per person simultaneously [29]. In ad-
dition, while the skeleton tracking range is broader, the
tracked joints are more accurate and stable than the pre-
vious version of the Kinect [29].

There are several steps involved in the proposed gait
recognition method. The first step is to detect a com-
plete gait cycle from the video sequence captured using
the Kinect sensor. Since gait is a cyclic motion, detec-
tion of a complete gait cycle facilitates consistent fea-
ture extraction. Next, joint relative angle (JRA) features
for different joint-pairs are computed over the complete
gait cycle. One of the main advantages of using angle-
based feature representation is that it is scale and view
invariant. As a result, recognition is not constrained by
a fixed distance from the camera or individuals walking
only towards a specific direction in front of the cam-
era. In order to assess the relevance of a particular
JRA feature in gait representation, we employ a statis-
tical analysis that evaluates the corresponding joint pair
based on their involvement in gait movement. Only the
most relevant joint pairs are considered in the proposed
JRA-based gait feature representation. Once the feature
representation is obtained, the proposed dynamic time
warping (DTW)-based kernel is used for the classifi-
cation task. The proposed kernel takes a collection of
the most relevant JRA sequences from both the training
and test samples as parameters and computes a dissim-
ilarity measure between them. One particular advan-
tage of the proposed kernel is that, it can match vari-
able length JRA sequences originated due to variable
walking speed in different videos of the same person,
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1. Head 6. ElbowLeft 11. ThumbRight
2. Neck 7. ElbowRight 12. HandLeft

3. SpineShoulder 8. WristLeft 13. HandRight

4. ShoulderLeft 9. WristRight 14. HandTipLeft
5. ShoulderRight | 10. ThumbLeft 15. HandTipRight

16. SpineMid 21. KneeRight
17. SpineBase 22. AnkleLeft
18. HipLeft 23. AnkleRight
19. HipRight 24. FootLeft
20. KneelLeft 25. FootRight

Figure 2: 3D skeleton joints tracked by the Kinect v2
sensor.
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thus eliminating any need of pre-processing steps, such
as resampling. Figure 3 shows the overview of the pro-
posed gait recognition method.

3.1 Gait cycle detection

The first task of any gait recognition method is to iso-
late a complete gait cycle so that salient features can be
extracted from it. Regular human walking is considered
to be a cyclic motion, which repeats in a relatively sta-
ble frequency [14]. Therefore, features extracted from
a single gait cycle can represent the complete gait sig-
nature. A gait cycle is composed of a complete cycle
from rest (standing) position-to-right foot forward-to-
rest-to-left foot forward-to rest or vice versa (left food
forward followed by a right foot forward) [30]. In order
to identify gait cycles, the horizontal distance between
the AnkleLeft and AnkleRight joints was tracked over
time, as shown in Figure 4. A moving average filter was
used to smooth the distance vector. During the walking
motion, the distance between the two ankle joints will
be the maximum when the right and the left leg are far-
thest apart and will be the minimum when the legs are
in the rest (standing) position. Therefore, by detect-
ing three subsequent minima, it is possible to find the
three subsequent occurrences of the two legs in the rest
position, which corresponds to the beginning, middle,
and ending points of a complete gait cycle, respectively
[31].

3.2 Gait feature representation using
joint relative angle (JRA)

The skeleton constructed by the Kinect v2 sensor com-
prises a hierarchy of 25 skeletal joints, where a con-
nection between two joints forms a limb. Therefore,
the raw data provided by the Kinect for gait is time se-
ries of 3D positions of these joints. However, this data
lacks properties like invariance against view and scale
changes, which makes direct use of this data as features
infeasible. We present a new gait feature representation
that processes this raw data and extracts the joint rel-
ative angles (JRA) formed by different pairs of joints
with respect to a reference point. JRA between two
joints p; and p, can be defined as the angle formed by
p1 and p, with respect to a reference point r. Given the
coordinates of 3 points p;, p2, and r in a 3-D space,
the angle ®,, ,, formed by p; — r — p> using the right
hand rule from r can be calculated as:

ik "
[llizz1]

Here, pif = r — p1, 7p5 = p» — r, the dot(.) represents
dot product between two vectors, and ||pi#|| and ||7p3||
represent the length of pi# and 7p3, respectively. The
SPINE_BASE joint was selected as the reference point,
since it remains almost stationary during walking.

0p, p, = cos
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JRAs computed over time provide an intuitive represen-
tation of the relative movements of the joints involved.
The advantages of using joint relative angle features are
two-fold: firstly, the computed JRA features are view
and scale independent. This means that, the feature
values will not be affected by the variation of the dis-
tance of the subject from the camera or the direction
of the subject’s walking. Secondly, according to [7],
joint distance-based features proposed in recent works
[27], [28] are found to vary over time significantly. As
aresult, consistent feature extraction is difficult in some
cases. On the other hand, although the distances of the
joints vary over time, angles formed by the joints re-
main unaffected.

In this study, we consider JRAs originated from a par-
ticular joint-pair as a small fragment of a person’s gait
signature, where the full gait signature is defined as a
collection of JRA sequences originated from different
joint-pair combinations over a complete gait cycle. For
the 25 skeletal joints, there is a total of 300 possible
joint-pair combinations, which is a high-dimensional
feature space. In addition, not all joint-pair is relevant
in gait feature representation. For example, JRAs be-
tween the SpineShoulder and the SpineMid joints does
not represent any information related to human gait,
since both these joints remain almost stationary when a
person walks. Therefore, identifying the skeletal joint-
pairs that are relevant to human gait motion is impera-
tive for the proposed gait recognition method.

3.3 Selection of the most relevant JRA
sequences

Since not all skeletal joints engage during human lo-
comotion, not all JRA features are relevant in gait rep-
resentation. Relevance of a JRA sequence originated
from a particular joint pair can be evaluated intuitively
by analyzing human walking. In this paper, we present
a statistics-based relevant joint pair selection approach,
that utilizes histogram of JRA features to evaluate the
level of engagement of the corresponding joint pair.

For joint pairs that has high relative motion during gait,
the joint relative angles computed over the full gait cy-
cle should have high temporal changes. On the other
hand, joint pairs that remains stationary or moves lit-
tle during gait should have little variation of JRA over
the full gait cycle. This can also be represented us-
ing histogram of JRA values. For a particular joint
pair that has high relative motion during gait, the his-
togram should have a wide distribution. On the other
hand, for joint pairs that has little relative movement,
the JRA values will occupy only a few number of
bins in the histogram. Figure 5 shows histogram of
JRA values computed for different joint pair combi-
nations for 4 different participants. It can be observed
that, for some joint pairs ({ SpineShoulder, SpineMid},
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Figure 3: Overview of the proposed gait recognition method.
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Figure 4: Detection of a complete gait cycle by tracking the distance between the left and right ankle joints.

{ShoulderLeft, ShoulderRight}, {HipLeft, HipRight}),
the temporal change of JRA values over the complete
gait cycle is really small and therefore, the distribu-
tion of JRA values in the histogram is really narrow
(occupying only 2 or 3 bins). On the other hand, for
joint pairs like {AnkleLeft, AnkleRight}, {Shoulder-
Left, AnkleLeft}, and {ShoulderRight, AnkleRight},
the JRA values occupy a large number of bins in the
histogram. Based on this observation, we argue that,
the number of bins occupied in a JRA histogram of a
particular joint pair is an important measure to quantify
the level of engagement of the corresponding joint pair
in human gait. This, in turn, quantizes the relevance of
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the corresponding joint pair in the gait movement. In
this paper, we use the number of occupied bins in the
JRA histogram of a particular joint pair to represent the
relevance of that joint pair in gait feature representa-
tion. A high number of occupied bins represents a high
relevance, while a small number represents a low rele-
vance.

3.4 DTW-kernel for gait recognition

Joint relative angles (JRA) for different joint-pairs com-
puted over a full gait cycle essentially represent se-
quences of time-series data. Alignment of such tem-
poral gait data is a challenging task due to variation of
walking speed, which might result in variable length
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Person 3 Person 4

Figure 5: Histogram of JRA values for different joint pairs and persons. It can be observed that, some joint pairs
have a wide distribution of JRA values in the histogram, while some other joint pair JRA values occupy only a

small portion of the histogram bins.

JRA sequences for the same person. Therefore, ap-
plying traditional classifiers in this scenario requires
extra pre-processing steps, such as resampling to ob-
tain equal-length feature vectors. However, resampling
of time-sequence data involves deletion or adding new
data, which might affect the recognition performance.
On the other hand, non-linear time sequence alignment
techniques can effectively reduce the effect of variable
walking speed by warping the time axis. Dynamic time
warping (DTW) is a well-known non-linear sequence
alignment technique. Originally proposed for speech
signal alignment [32], recent DTW applications are
mostly verification-oriented, such as offline signature
verification [33]. In this paper, we propose to utilize
DTW to design a kernel for gait recognition that takes
a collection of JRA time series data originated from
different joint pairs as the parameter and outputs the
dissimilarity measure between two given gait samples.
Use of DTW allows the alignment of different length
JRA sequences, which enables to match gait samples
without any intermediate resampling stage.

Given the set of all joint relative angles JRA =
{61,6,,...,6,}, where each 6; represents JRAs for two
particular joints with respect to the reference point
computed over a full gait cycle, we first obtain a subset
of the most relevant JRA sequences:

0=1{6]i=1,2,...M where 6, JRA} (2)

Let, 6:4in and 6.5 are two JRA sequences from the
same joint-pair computed over a complete gait cycle,
where the length of 6,4, and 6.5 are represented as
|6;14in| and |By5 |, respectively.
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Here, a; and b, are the JRA values of 0,4, and 6.y
at time ¢, respectively. Given these two time series,
DTW constructs a warp path W = wy,wp,w3,...,wr,
where max(' etrainlz |9test |) <L< |9train‘ + |9test | Here,
L is the length of the warp path between the two JRA
sequences. Each element of the path can be repre-
sented as w; = (x,y), where x and y are two indices
from the 6,4, and 6., respectively. There are a num-
ber of constraints that DTW must satisfy. Firstly, the
warp path must start at w; = (1,1) and end at w, =
(16r4in|,|Brest|)- This in turn ensures that, every index
from the both time series is used in path construction.
Secondly, if an index i from 6;,,;, is matched with an in-
dex j from 0Oy, it is prohibited to match any index > i
with any index < j and vice-versa. This restricts the
path from going back in time. Given these restrictions,
the optimal warp path can be defined as the minimum
distance warp path dist,psimar (W ):

L
distoprimar(W) = min ) _{dist(w;;,w;;)} (5)
=1
Here, w;; and wy; are two indices from 6,4, and 6y,
respectively and dist(w;;, w; ;) is the Euclidean distance
between wy; and wy;.

We extend this basic DTW formulation to a kernel in
order to compute the dissimilarity between a training
and a testing gait sample, each of which is a collec-
tion of JRA sequences of different joint-pairs. The pro-
posed DTW-kernel aligns the training and testing JRA
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Figure 6: Proposed classification scheme based on the
DTW-Kernel and the collection of the most relevant
JRA sequences.

sequences of the same joint-pair with each other and
computes a match score between them. Summation of
all the match scores obtained from the different joint-
pair JRA sequences from the training and testing sam-
ples is treated as the final dissimilarity measure. For-
mally, the proposed DTW kernel A for JRA-based gait
representation can be defined as:

M L
A6,8") =Y {min Y {dist(Wpii,wmsj)}}  (6)
=1

m=1

Here, 6 = {61,6,,...6y} and 0’ = {6],65,...,6;,}
are collections of JRA sequences from M different
joint-pairs and minZlel{dist(me,-,me )} represents
the minimum warp path distance between the m-th
joint pair JRAs of 6 and 6’.

For the classification task, we first apply the DTW-
kernel to compute the dissimilarity score and rank the
candidates accordingly. We use this ranklist for a ma-
jority voting scheme where the top N+ 1 (N is the num-
ber of classes) candidates are considered. Figure 6 il-
lustrates the proposed method.

4 EXPERIMENTS AND RESULTS

4.1 Experimental setup and dataset de-
scription

The performance of the proposed method is evaluated

using a Kinect skeletal gait database, provided by

the SMART Technologies, Calgary, Canada. The
gait database comprises 20 participants (14 male, 6
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female), from around 20 to 35 years old. For each
person, a series of 3 videos was recorded in a meeting
room environment. The position of the Kinect was
fixed throughout the recording session. Each of
the video scenes contains a participant entering the
meeting room, walking toward a chair, and then sitting
on the chair. Figure 7 shows a frame of a sample
video from the gait database. We conducted a 3-fold
cross-validation in order to evaluate the effectiveness of
the proposed method. In a 3-fold cross-validation, the
whole dataset is randomly divided into 3 subsets, where
each subset contains an equal number of samples from
each category. The classifier is trained on 2 subsets,
while the remaining one is used for testing. The
average classification rate is calculated after repeating
the above process for 3 times. Since the database
comprises 3 videos per person, in each fold, two videos
were used for the training and the remaining one was
used for testing.

4.2 Results and Discussions

The first step in our experimental analysis is to detect
the most relevant joint pairs in order to represent the
gait. For this purpose, we use the methodology pro-
posed in section 3.3. For the 25 skeletal joints tracked
by the Kinect v2 sensor, we construct a 25 X 25 matrix
for each video sequence, where each cell corresponds
to the number of bins occupied in the histogram of JRA
values for a particular joint pair. Since our database
comprises 20 participants and 3 videos per participant,
we obtain a total of 60 matrices. For further analysis,
we compute the average matrix from the 60 matrices.
A heat map of the obtained 25 x 25 average matrix is
shown in Figure 8. The heat map is symmetric on the
both side of the diagonal, since the JRA values beween
joints {J1, J2} and {J2,J1} are same. This map pro-
vides a comprehensive representation of the relevance
of a particular joint pair in gait representation, where
high value corresponds to high relevance and low value
corresponds to a low relevance.

Based on this representation of joint pair relevance, we
select subsets of JRA sequences for different thresholds
and evaluate the recognition performance. For a thresh-
old value of ¢, only the joint pair combinations with at
least ¢ bins occupied in the JRA histogram were se-
lected for feature representation. Figure 9 shows the
recognition performance of the proposed method for
different subsets of JRA sequences selected for differ-
ent threshold values. It can be observed that, increasing
the number of bins excludes some of the less relevant
joint pairs in the classification task, thus increasing the
recognition performance. The highest recognition rate
of 93.3% is obtained for JRA sequences that occupy
more than or equal to 20 bins in the corresponding JRA
histogram. Increasing the number of selected bins fur-
ther results in a sharp decrease in the recognition perfor-
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Figure 7: Sample video frame from the gait database captured using Kinect v2 sensor.
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1. Head 6. ShoulderRight
2. Neck 7. ShoulderLeft
3. SpineShoulder 8. HipRight

4. SpineMid 9. HipLeft

5. SpineBase 10. ElbowRight

1. WristRight
12. HandRight
13. HandTipRight
14. ThumbRight
15. ElbowLeft

16. WristLeft
17. HandLeft
18. HandTipLeft
19. ThumbLeft
20. KneeRight

21. AnkleRight
22. FootRight
23. KneelLeft
24. AnkleLeft
25. FootLeft

Figure 8: Heat map of the 25 x 25 average matrix ob-
tained for the average number of bins occupied for dif-
ferent JRA histograms for all participants. Here, each
point (i, j) represents the average number of occupied
bins in the JRA histogram obtained for joint pair {7, j}.

mance. For the number of occupied bins > 20, Figure
10 shows a heat map representation of the selected joint
pairs. Here, the dark points correspond to the excluded
joints, while points with high heat corresponds to a rel-
evant joint pair. This map is also symmetric. Therefore,
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Figure 9: Performance of the most relevant JRA-based
gait recognition for different number of occupied bins.
The correct matching rate is obtained from 3-fold cross-
validation.

only considering upper left triangle or lower right trian-
gle formed by the diagonal (line from (1, 1) to (25, 25))
should be considered.

Finally, we compare the performance of the proposed
method against some recent Kinect skeleton-based gait
recognition methods. We have selected two studies and
tested their performance on our gait database. Details
of the selected two methods can be found in [7] and
[27]. Table 1 shows the recognition performance of
these methods. From the experimental results, it can
be said that, gait recognition based on the collection
of JRA sequences and DTW-kernel is more robust and
achieves higher recognition performance than some of
the existing gait recognition methods. The superiority
of the proposed method is due to the utilization of view
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Figure 10: Heat map for the most relevant joint pair
combinations found in our experiments. The dark re-
gion corresponds to the all joint pair combinations that
are excluded from the final feature representation.

and pose invariant relative angle features coupled with
arelevance evaluation and non-linear alignment of vari-
able length feature sequences using the DTW-kernel.

Method Recognition Rate
(%)

Collection of the most | 93.3

relevant JRA sequence +

DTW-Kernel

Ball et al. [7] 66.7

Preis et al. [27] 84.2

Table 1: Recognition rates of different methods for 3-
fold cross-validation.

5 CONCLUSION

This paper presented a new Kinect-based gait recogni-
tion method that utilizes the 3D skeleton data in order
to compute a robust representation of gait. We intro-
duced a new feature, namely the joint relative angle that
encodes the relative motion patterns of different skele-
tal joint pairs by computing the relative angles between
them with respect to a reference point. To evaluate the
relevance of a particular JRA sequence in gait feature
representation, we constructed histograms of JRA fea-
tures that can effectively be used to quantize the level of
engagement of different joint pairs in human walking.
Finally, we propose a dynamic time warping (DTW)-
based kernel that takes the collection of the most rele-
vant JRA sequences from both the train and test sam-
ples as parameters and computes a dissimilarity mea-
sure. Here, the use of DTW makes the proposed kernel
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robust against variable walking speed and thus elimi-
nates any need of extra pre-processing. Experiments
using a Kinect skeletal gait database showed excel-
lent recognition performance for the proposed method,
compared against some recent Kinect-based gait recog-
nition methods. In the future, we plan to extend the
proposed method for action recognition and motion re-
trieval.
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ABSTRACT

We present an efficient interactive tool for separating collectively segmented bones and bone fragments in 3D
computed tomography (CT) images. The tool, which is primarily intended for virtual cranio-maxillofacial (CMF)
surgery planning, combines direct volume rendering with an interactive 3D texture painting interface to enable
quick identification and marking of individual bone structures. The user can paint markers (seeds) directly on
the rendered bone surfaces as well as on individual CT slices. Separation of the marked bones is then achieved
through the random walks segmentation algorithm, which is applied on a graph constructed from the collective
bone segmentation. The segmentation runs on the GPU and can achieve close to real-time update rates for volumes
as large as 5123, Segmentation editing can be performed both in the random walks segmentation stage and in a
separate post-processing stage using a local 3D editing tool. In a preliminary evaluation of the tool, we demonstrate

that segmentation results comparable with manual segmentations can be obtained within a few minutes.

Keywords

Bone Segmentation, CT, Volume Rendering, 3D Painting, Random Walks, Segmentation Editing

1 INTRODUCTION

Cranio-maxillofacial (CMF) surgery to restore the fa-
cial skeleton after serious trauma or disease can be both
complex and time-consuming. There is, however, evi-
dence that careful virtual surgery planning can improve
the outcome and facilitate the restoration [27]. In addi-
tion, virtual surgery planning can lead to reduced time
in the operating room and thereby reduced costs.

Recently, a system for planning the restoration of skele-
tal anatomy in facial trauma patients (Figure 1) has been
developed within our research group [25]. As input, the
system requires segmented 3D computed tomography
(CT) data from the fractured regions, in which individ-
ual bone fragments are labeled. Although a collective
bone segmentation can be obtained relatively straight-
forward by, for instance, thresholding the CT image at
a Hounsfield unit (HU) value corresponding to bone
tissue, separation of individual bone structures is typ-
ically a more difficult and time-consuming task. Due to
bone tissue density variations and image imprecisions
such as noise and partial volume effects, adjacent bones

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Figure 1: Example of a patient who has suffered com-
plex fractures on the lower jaw and the cheekbone. The
individual bone fragments in the CT image have been
segmented with our interactive 3D texture painting tool
to enable virtual planning of reconstructive surgery.

and bone fragments in a CT image are typically con-
nected to each other after thresholding, and cannot be
separated by simple connected component analysis or
morphological operations. In the current procedure, the
bones are separated manually, slice by slice, using the
brush tool in the ITK-SNAP software [30]. This pro-
cess takes several hours to complete and is the major
bottleneck in the virtual surgery planning procedure.
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1.1 Contribution

Here, we present an efficient interactive tool for sep-
arating collectively segmented bones and bone frag-
ments in CT volumes. Direct volume rendering com-
bined with an interactive 3D texture painting interface
enable the user to quickly identify and mark individual
bone structures in the collective segmentation. The user
can paint markers (seeds) directly on the rendered bone
surfaces as well as on individual CT slices. Separation
of marked bones is then achieved through the random
walks segmentation algorithm [12]. A local 3D editing
tool can be used to refine the result. In a preliminary
evaluation of the bone separation tool, we demonstrate
that segmentation results comparable with manual seg-
mentations can be obtained within a few minutes.

1.2 Related Work

Model-based segmentation techniques have been used
for automatic segmentation of individual intact bones
such as the femur and tibia, but are not suitable for seg-
mentation of arbitrarily shaped bone fragments. Au-
tomatic bone segmentation methods without shape pri-
ors have been proposed [10][18][2] but are not general
enough for fracture segmentation.

Manual segmentation can produce accurate results and
is often used in surgery planning studies. However, it
is generally too tedious and time-consuming for routine
clinical usage, and suffers from low repeatability. An-
other problem with manual segmentation is that the user
only operates at a single slice at the time and thus may
not perceive the full 3D structure. This tends to produce
irregular object boundaries.

Semi-automatic or interactive segmentation methods
combine imprecise user input with exact algorithms
to achieve accurate and repeatable segmentation
results. This type of methods can be a viable option
if automatic segmentation fails and a limited amount
of user-interaction time can be tolerated to ensure
accurate results. An example of a general-purpose
interactive segmentation tool is [6]. Liu et al. [22]
used a graph cut-based [4] technique to separate
collectively segmented bones in the foot, achieving an
average segmentation time of 18 minutes compared
with 1.5-3 hours for manual segmentation. Fornaro
et al. [9] and Fiirnstahl et al. [11] combined graph
cuts with a bone sheetness measure [7] to segment
fractured pelvic and humerus bones, respectively.
Mendoza et al. [23] adapted the method in [22] for
segmentation of cranial regions in craniosynostosis
patients. The TurtleMap 3D livewire algorithm [16]
produces a volumetric segmentation from a sparse set
of user-defined 2D livewire contours, and have been
applied for segmentation of individual bones in the
wrist. It is, however, not suitable for segmentation of
thin bone structures such as those in the facial skeleton.
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Segmentation of individual wrist bones has also been
investigated in [15][24].

In all the semi-automatic methods listed above, the user
interacts with the segmentation via 2D slices. A prob-
lem with using slice-based interaction for bone segmen-
tation is that it can be difficult to identify, mark, and
inspect individual bone structures and contact surfaces,
particularly in complex fracture cases.

Texture painting tools [17][29] enable efficient and
intuitive painting of graphical models (3D meshes)
via standard 2D mouse interaction. Mouse strokes in
screen space are mapped to brush strokes in 3D object
space. Mesh segmentation methods [20] utilize similar
sketch-based interfaces for semi-automatic labeling
of individual parts in 3D meshes. Biirger et al. [5]
developed a direct volume editing tool that can be used
for manual labeling of bone surfaces in CT images.
Our proposed 3D texture painting interface extends this
concept to semi-automatic segmentation.

2 METHODS

Our bone separation tool combines and modifies several
image analysis and visualization methods, which are
described in the following sections. In brief, the main
steps are (1) collective bone segmentation, (2) marking
of individual bone structures, (3) random walks bone
separation, and (4) segmentation editing.

2.1 Collective Bone Segmentation

A collective bone segmentation is obtained by thresh-
olding the grayscale image at the intensity value f,y,
(see Figure 2). The threshold is preset to 300 HU in
the system, but can be adjusted interactively, if needed,
to compensate for variations in bone density or image
quality. The preset value was determined empirically
and corresponds to the lower HU limit for trabecular
(spongy) bone. Noisy images can be smoothed with a
3 x 3 x 3 Gaussian filter (o = 0.6) prior to threshold-
ing. The Gaussian filter takes voxel anisotropy into ac-
count and can be applied multiple times to increase the
amount of smoothing, although usually a single pass is
sufficient. Both the thresholding filter and the Gaussian
filter utilize multi-threading to enable rapid feedback.

2.2 Deferred Isosurface Shading

We use GPU-accelerated ray-casting [19] to render the
bones as shaded isosurfaces. The isovalue is set to e,
so that the visual representation of the bones matches
the thresholding segmentation. Similar to [14] and [13],
we use a deferred isosurface shading pipeline. A 323
min-max block volume is used for empty-space skip-
ping and rendering of the ray-start positions (Figure 3a).
We render the first-hit positions (Figure 3b) and surface
normals (Figure 3c) to a G-buffer via multiple render
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Figure 2: Left: Coronal slice of a grayscale CT volume of the facial skeleton. Right: Collective bone segmentation
obtained by thresholding the CT volume at a Hounsfield unit (HU) value corresponding to trabecular bone.

targets (MRT), and calculate shadows and local illu-
mination in additional passes. Segmentation labels are
stored in a separate 3D texture and fetched with nearest-
neighbor sampling in the local illumination pass.

Local illumination (Figure 3e) is calculated using a nor-
malized version of the Blinn-Phong shading model [1].
To make it easier for the user to perceive depth and spa-
tial relationships between bones and bone fragments,
we combine the local illumination with shadow map-
ping to render cast shadows (Figure 3f). The shadow
map (Figure 3d) is derived from an additional first-hit
texture rendered from a single directional light source’s
point of view. The shadows are filtered with percentage
closer filtering (PCF) [26] and Poisson disc sampling
to simulate soft shadows. It is possible to disable the
shadows temporarily during the segmentation if they
obscure details of interest.

Ambient lighting is provided from pre-filtered irradi-
ance and radiance cube maps [1]. Unlike the traditional
single-color ambient lighting commonly used in medi-
cal visualization tools, the color and intensity variations
in the image-based ambient lighting allow the user to
see the shape and curvature of bone structures that are in
shadow. The image-based ambient lighting also enables
realistic rendering of metallic surfaces, e.g., metallic
implants that have been separated out from the bones
as part of the planning procedure. To enhance fracture
locations, we modulate the ambient lighting with a lo-
cal ambient occlusion [21] factor, which is computed
on-the-fly using Monte-Carlo integration.

2.3 3D Texture Painting Interface

As stated in Section 1.2, a problem with 2D slice-based
interaction is that it may be difficult to identify, mark,
and inspect individual bone structures. Even radiolo-
gists, who are highly skilled at deriving anatomical 3D
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structures from stacks of 2D images, may find it dif-
ficult to locate and mark individual bone fragments in
complex fracture cases. To overcome this issue, we im-
plemented a 3D texture painting interface that enables
the user to draw seeds directly on the bone surfaces.

Our 3D brush (Figure 4a) is implemented as a spher-
ical billboard and uses the first-hit texture (Figure 3b)
for picking and seed projection. The brush proxy fol-
lows the bone surface and can only apply seeds on sur-
face regions that are visible and within the brush ra-
dius (in camera space). To prevent the brush from leak-
ing through small gaps in the surface of interest, we
compute a local ambient occlusion term from a depth
map derived from the first-hit texture, and discard brush
strokes in areas where the ambient occlusion value at
the brush center exceeds a certain threshold. The radius
of the ambient occlusion sampling kernel corresponds
to the radius of the brush.

Additional tools include a label picker, an eraser, a
floodfill tool, and a local editing tool (Section 2.6).
A 3D slice viewer enables the user to mark occluded
bones or place additional seeds inside the bones. The
latter can be useful when the boundaries between the
bones are weak or when the image is corrupted by
streak artifacts from metal implants. We also provide
interactive clipping tools that can be used to expose
bones and contact surfaces. Both the 3D slice viewer
and the clipping tools are useful during visual inspec-
tion and editing of the segmentation result.

2.4 Random Walks Bone Separation

Given the collective binary bone segmentation, the next
step is to separate the individual bones and bone frag-
ments. We considered two graph-based segmentation
algorithms, graph cuts [4] and random walks [12], for
this task. In the end, we selected the random walks

ISSN 1213-6972



No.2

(2)

(@

(b)

(e)

Journal of WSCG

©)

®

Figure 3: Deferred isosurface shading pipeline: (a) ray-start positions; (b) first-hit texture; (c) surface normals; (d)
shadow map derived from an additional first-hit texture rendered from a directional light source’s point of view;
(e) local illumination; (f) local illumination with shadows.

algorithm since it is robust to noise and weak bound-
aries, extends easily to multi-label (K-way) segmenta-
tion, and does not suffer from the small-cut problem of
graph cuts. The main drawback and limitation of ran-
dom walks is its high computational and memory cost
(which, to be fair, is also a problem for graph cuts).
For interactive multi-label segmentation of volume im-
ages, this has traditionally limited the maximum vol-
ume size to around 2563, which is smaller than the CT
volumes normally encountered in CMF planning. Our
random walks implementation overcomes this limita-
tion by only operating on bone voxels.

We construct a weighted graph G = (V, E) from the col-
lective bone segmentation and use the random walks
algorithm to separate individual bones marked by the
user. Figure 4 illustrates the segmentation process. For
every bone voxel, the random walks algorithm calcu-
lates the probability that a random walker starting at the
voxel will reach a particular seed label. A crisp segmen-
tation is obtained by, for each bone voxel, selecting the
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label with the highest probability value. The vertices
v € V in the graph represent the bone voxels and the
edges e € E represent the connections between adjacent
bone voxels in a 6-connected neighborhood. The num-
ber of neighbors can vary from zero to six. Each edge
e;j between two neighbor vertices v; and v; is assigned
a gradient magnitude-based weight w;; [12] defined as

wij =exp(—B(gi—gj)*) +&, (1)

where g; and g; are the intensities of v; and v; in the
underlying grayscale image, and f3 is a parameter that
determines the influence of the gradient magnitude. We
add a small positive constant € (set to 0.01 in our imple-
mentation) to ensure that v; and v; are connected, i.e.,
wij > 0. Increasing the value of 8 makes the random
walkers less prone to traverse edges with high gradi-
ent magnitude. Empirically, we have found = 3000
to work well for bone separation; however, the exact
choice of B is not critical and we have used values in
the range 2000-4000 with similar results.
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Figure 4: 3D texture painting interface for interactive random walks segmentation: (a) 3D brush used for painting
seeds directly on the bone surfaces; (b) marked bones; (c) bone separation obtained with random walks.

As proposed in [12], we represent the weighted graph
and the seed nodes as a sparse linear system and use
an iterative solver (see Section 2.5) to approximate the
solution for each label. By constructing the graph
from the bone voxels in the collective segmentation,
rather than from the full image, we simplify the ran-
dom walks segmentation task from separation of mul-
tiple tissue types to bone separation. Moreover, we re-
duce the memory and computational cost substantially
(by ~ 90% in our test cases). The head CT volumes en-
countered in CMF planning typically contain between
3 and 8 million bone voxels, which is a small fraction,
~ 10%, of the total number of voxels. Combined with
fast iterative solvers, this enables rapid update of the
segmentation for volumes as large as 5123,

A problem with constructing graphs from collective
bone segmentations is that the sparse matrix A in the
linear system becomes singular if some of the bone vox-
els are isolated (which, due to noise, is often the case.)
This prevents the iterative solver from converging to a
stable solution. The problem does not occur for graphs
constructed from full images, where every voxel has at
least one neighbor. To remove the singularity, we sim-
ply add a small constant weight k¥ = 0.001 to the diag-
onal elements in A. The value of k is set smaller than €
to not interfere with the gradient weighting.

2.5 Iterative Solvers

We compute the random walks probability values itera-
tively using the Jacobi preconditioned conjugate gradi-
ent (CG) [28] method. The CG solver consists of dense
vector operations and a sparse matrix-vector multipli-
cation (SpMV), where SpMV is the most expensive op-
eration. Although the Jacobi preconditioner improves
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the convergence rate, we found a single-threaded CPU
implementation to be too slow for our problem sizes.
Hence, to enable an interactive workflow, we followed
the suggestion in [12] and implemented multi-threaded
and GPU-accelerated versions of the solver. The multi-
threaded solver was implemented in OpenMP and uses
the compressed sparse row (CSR) matrix format for
SpMV. The GPU-accelerated solver was implemented
in OpenCL and supports two sparse matrix formats:
CSR and ELLPACK [3]. ELLPACK has a slightly
higher memory footprint than CSR, but enables coa-
lesced memory access when executing the SpMV ker-
nel on GPUs, which usually leads to better perfor-
mance [3]. Our OpenCL SpMV kernels are based on
the CUDA implementations in [3]. A benchmark of the
implemented solvers is presented in Section 3.

2.6 Segmentation Editing

The user can edit the initial random walks segmenta-
tion by painting additional seeds on the bone surfaces
or individual CT slices and running the iterative solver
again. To enable rapid update of the result, the previous
solution is used as starting guess [12]. Visual inspec-
tion is supported by volume clipping (Figure 5). The
editing process can be repeated until an acceptable seg-
mentation result has been obtained.

Further refinement of the segmentation can be achieved
with a dedicated 3D editing tool (Figure 6), which up-
dates a local region of the segmentation in real-time and
allows a selected label to grow and compete with other
labels. The tool is represented as a spherical brush and
affects only voxels within the brush radius r. A voxel p;
marked with the active label will transfer its label to an
adjacent voxel p; in a 26-neighborhood if the editing
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Figure 5: To support visual inspection and editing of bone fragments and contact surfaces, a segmented region
(a) can be hidden (b) or exposed (c) via volume clipping . The clipping is performed by temporarily setting the
grayscale value of the segmented region to #;,,. — | and updating the grayscale 3D texture.

(@) (b)

© (d)

Figure 6: Segmentation editing performed with the local 3D editing tool.

weight function W;; exceeds a given threshold. W;; is
defined as a weighted sum of the active label ratio, the
gradient, and the Euclidean distance to the brush center.

2.7 Implementation Details

We implemented the segmentation system in Python,
using OpenGL and GLSL for the rendering, PySide for
the graphical user interface, and Cython and PyOpenCL
for the image and graph processing.

3 CASE STUDY

To demonstrate the efficiency of our tool, we asked two
non-medical test users to perform interactive segmen-
tations of the facial skeleton in CT scans of three com-
plex CMF cases. The first user, who had prior experi-
ence of manual bone segmentation and virtual surgery
planning, was a novice on the system and received a
15 minutes training session before the segmentations
started, whereas the second user (the main author) was
an expert on the system. The CT scans were obtained
as anonymized DICOM files. Further details about the
datasets are provided in Table 1. Figures 7a—7c show
the collective bone segmentations obtained by thresh-
olding. Bone separation was carried out in three stages:

1. Initial random walks segmentation of marked bones.

2. Interactive coarse editing of the segmentation result
by running random walks multiple times with addi-
tional seed strokes as input.
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3. Fine-scale editing with the local 3D editing tool.

We measured the computational time and the interac-
tion time required for each stage and asked the users
to save the segmentation result obtained in each stage.
Additionally, one of the users segmented case 1 manu-
ally in the ITK-SNAP [30] software to generate a refer-
ence segmentation for accuracy assessment. The man-
ual segmentation took ~5 hours to perform and was in-
spected and validated by a CMF surgeon.

To assess segmentation accuracy and precision, we
computed the Dice similarity coefficient
2|ANB]

Al +B|
DSC measures the spatial overlap between two multi-
label segmentations A and B and has the range [0, 1],

where O represents no overlap and 1 represents com-
plete overlap.

DSC = 2

The interactive segmentations (Figures 7d—7f) took on
average 14 minutes to perform. As shown in Figure 8,
most of the time was spent in the local editing stage
(stage 3). DSC between the final interactive case 1 seg-
mentations and the manual reference segmentation was
0.97782 (User 1) and 0.97784 (User 2), indicating over-
all high spatial overlap. The inter-user precision (Ta-
ble 2) was also high and improved with editing.

Figure 9 shows a benchmark of the implemented CG
solvers. The bars show the execution times (in sec-
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Case Region Description #Labels Dimensions Threshold #Bone voxels
1 Head Multiple fractures 15 512x512x337 260 4426530
2 Head Multiple fractures 12 512 x512x301 300 4769742
3 Head Tumor 6 230 x512x 512 300 2787469
Table 1: Details about the CT images used in the case study.
(a) Case 1 (b) Case 2 (c) Case 3
(d) Case 1 (e) Case 2 (f) Case 3

Figure 7: Top row: Collective bone segmentations. Bottom row: Separated bones.

onds) for computing an initial random walks solution
on a graph with 4.6M bone voxels and 15 labels. The
fastest GPU-based implementation had an average ex-
ecution time of 0.4 seconds per label, which is a 14x
speedup compared with the single-threaded CPU im-
plementation and a 7x speedup compared with the
multi-threaded CPU implementation.

4 DISCUSSION

Overall, we found the performance of the bone separa-
tion tool to be acceptable for surgery planning. Minor
differences between segmentations generated by differ-
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ent users and between interactive and manual segmen-
tations were expected due to the complex boundaries of
the bone structures and the interactive editing.

Local editing (stage 3) is the most time-consuming part
of the segmentation. The editing tool is of great aid for
cleaning up the random walks segmentation and refin-
ing contact surfaces between separated bones or bone
fragments, but will sometimes grow the active label too
far or produce isolated voxels. Further modifications
of the weight function could prevent this. Using con-
nected component analysis for removing small isolated
components in the segmentation could also be useful.
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Figure 8: Interaction times (in minutes) for the two users.

Case DSC

Stage 1 Stage2 Stage 3
1 0.9199  0.9955 0.9971
2 0.9533  0.9968 0.9971
3 0.9832  0.99 0.9915

Table 2: Inter-user precision for the interactive segmentations.

4.6M bone voxels, 15 labels

i5-4690K 3.5GHz (CPU)
(Single thFEadEd, CSR) . i
i5-4690K 3.5GHz (CPU)

(OpenMP' 4 thrEBdS, CSR) I 187

NVIDIA GTX 970 (GPU) 9.6
(OpenCL, CSR) :

Ms.s

0 20

NVIDIA GTX 970 (GPU)
(OpenCL, ELL)

mm Total

B Per label (average)
40 60 80 100
Execution time (s)

Figure 9: Benchmark of the CPU- and GPU-based Jacobi preconditioned CG solvers. The graph shows the timings
(in seconds) for computing the initial random walks solution on a graph with 4.6M bone voxels and 15 labels. The
number of iterations per label ranged from 45 to 136 (mean 83). Solver tolerance was set to 3- 1073,

A limitation of our current approach is that the initial
thresholding segmentation either tend to exclude thin
or low-density bone structures or include noise and soft
tissue. However, with minor modifications, the system
should be able to display and process collective bone
segmentations generated with other segmentation tech-
niques. Postprocessing could potentially fill in holes.

S CONCLUSION AND FUTURE
WORK

In this paper, we have presented an efficient 3D tex-
ture painting tool for segmenting individual bone struc-
tures in 3D CT images. This type of segmentation is
crucial for virtual CMF surgery planning [25], and can
take several hours to perform with conventional manual
segmentation approaches. Our tool can produce an ac-
curate segmentation in a few minutes, thereby removing
a major bottleneck in the planning procedure. The re-
sulting segmentation can, as demonstrated in Figure 10,

Volume 23, 2015

be used as input for virtual assembly [25]. Our tool is
not limited to CMF planning, but can also be used for
orthopedic applications or fossil data (Figure 11).

Next, we will focus on improving the efficiency of the
local editing tool. We will also investigate if the ac-
curacy of the random walks segmentation can be im-
proved by combining the gradient-based weight func-
tion with other weight functions based on, for example,
bone sheetness measure [7] or local edge density [22].
Finally, we will apply our segmentation tool on a larger
set of CT images and perform a more extensive evalua-
tion of the precision, accuracy, and efficiency.
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(a)
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Figure 10: Haptic-assisted virtual assembly of one of the segmented cases, performed with the HASP [25] system.

Figure 11: Our tool is not limited to head and neck CT scans; it can be used for rapid segmentation of individual
bone structures in other regions such as the wrist, lower limbs, and pelvis. Another potential application (shown in
the right image) is segmentation of fossils in fCT scans. Total segmentation time for these four cases was < 1 h.

fibula scans are courtesy of the OsiriX DICOM repos-

itory

(http://www.osirix-viewer.com/datasets/), and the

fossil uCT scan is courtesy of [8].
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