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Abstract 11 

In this paper we report on the detection of soft-rot in potatoes caused by the bacterium 12 

Pectobacterium carotovorum through the use of an array of low cost gas sensors. This disease results 13 

in significant crop losses in store (circa 5%) with associated negative financial impacts. At present, 14 

there is no commercial technological solution for soft rot detection in such stores, with store managers 15 

having to regularly inspect large volumes of potatoes. As soft-rot is associated with a strong odour and 16 

there is forced air movement through potato stores, our aim was to investigate the potential of an 17 

array of low-cost gas sensors to detect the disease. In laboratory conditions, 80 potatoes with and 18 

without soft rot (evenly split) were analysed by an array of 11 different gas sensors. These were tested 19 

at both pre-symptomatic and symptomatic time points. Results indicated that 100% detection 20 

accuracy could be achieved at both time points with only 3 sensors. The identified sensors therefore 21 

offer promise for an automated in-store monitoring system.  22 

Keywords: soft rot, potato disease detection, electrochemical gas sensors; nondispersive infrared 23 

gas sensors;  24 
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1. Introduction 28 

Bacterial soft rot disease caused principally by Pectobacterium carotovorum (Czajkowski et al., 2015) 29 

causes significant losses in UK potato stores, with approx. 5% of of the crop being destroyed each year 30 

(AHDB, 2012). At present, there is no technology available for monitoring this disease in commercial 31 

stores, but if soft rot could be detected early, the farmer/store manager can make an informed 32 

decision of how best to manage the infected crop (usually by selling into the food or animal feed 33 

markets, or by changing the storage conditions). Such early identification is not normally possible as 34 

potato stores are very large, the tubers are not easily accessible for visual inspection and the 35 

characteristic odour associated with soft rot is only detectable by the store manager when the disease 36 

is at an advanced stage. However, we believe that automated detection of soft rot could be achieved 37 

through modern gas analysis technology.  38 

This concept is not new, with early work being undertaken by Varns and Glynn (1979) followed by the 39 

study of Waterer and Pritchard (1984). These and subsequent studies used either GC (Gas 40 

Chromatograph) or GCMS (Gas Chromatograph Mass Spectrometer) in an attempt to identify the 41 

specific chemicals that were associated with soft rot (Ratti et al., 1995, Lyew et al. 2005, Kushalappa 42 

et al., 2001). This resulted in a large number of different potential biomarkers for the disease being 43 

reported; however due to a range of experimental differences, there is no consensus over their 44 

identity. This is not unexpected as it has been reported that plants produce around 200,000 volatiles 45 

before and after harvest (Dixon et al., 2002, Feihn, 2002).  46 

Though these studies are scientifically interesting, they do not provide a solution for practical disease 47 

monitoring in potato stores. GC and GCMS are expensive pieces of equipment that require trained 48 

staff and significant infra-structure making them unsuitable for a store environment. However, one 49 

alternative technology that could be applied is the so called “electronic nose” or “eNose” – an 50 

instrument designed to mimic the biological olfactory system. This instrument is already finding favour 51 

in precision agriculture, where there is a growing use of sensors and sensor systems to optimise and 52 

improve manufacturing in agriculture and forestry (Wilson, 2013). The eNose is relatively cost 53 

effective as it can be formed from an array of low-cost chemicals sensors (sub $50), it uses air as carrier 54 

gas, can be produced to be portable (even battery powered) and can provide a simple and quick 55 

answer to a chemical identification task. This is in stark contrast to higher-end analytical techniques, 56 

such as GC-MS. The number of agricultural applications for eNose that have been studied is 57 

considerable, from crop protection, floral odours, ecosystem management to wood management and 58 

beyond (Wilson, 2013). In relation to potato soft-rot analysis, there have only been a small number of 59 

researchers using eNoses (De Lacy Costello et al., 2001;  Biondi, 2014; Sinha et al., 2017). We 60 

previously demonstrated that early signs of soft rot infection could be detected using ion mobility 61 

spectrometry (specifically using an Owlstone Lonestar, UK) and a commercial electronic nose 62 

(AlphaMOS Fox 3000, France; Rutolo et al., 2014, 2016). Both of these studies have shown the 63 

potential of gas analysis, but have practical issues. The former, though sensitive, uses a technology 64 

that is well beyond the financial reach of the potato industry and also requires the use of clean air and 65 

a clean environment to operate. The work with the AlphaMOS system showed that it is possible to 66 

achieve similar results with an array of gas sensors. However, this system is no longer available 67 

(production stopped in 2016) and the exact manufacturers of the sensors are unknown. In addition, 68 

these units are constructed from an array of power-hungry, thick-film metal-oxide gas sensors. This 69 

severely limits their use in portable/battery powered applications.  70 

The challenge of developing a dedicated eNose system that can be deployed within a storage setting 71 

for the detection of soft-rot therefore still remains. To achieve this, it is important to understand how 72 

and which low-cost gas sensors respond to the disease and if they will map onto store environments. 73 



Furthermore, as most gas sensors are designed to detect inorganic gases (unlike previous work which 74 

focussed on organic compounds), new insights may be gained relating to the biomarkers released by 75 

the soft rotting bacterium itself or products associated with the enzymatic breakdown of the potato 76 

tissue (Smadja et al., 2004). Thus, the main aims of this paper were to identify low cost gas sensors 77 

that can detect soft-rot disease and which inorganic gases may play an important role as biomarkers 78 

for infection.  79 

2. Materials and Methods 80 

2.1 Electronic Nose system 81 

The majority of electronic nose instruments, in either a commercial or research setting, deploy an 82 

array of metal-oxide gas sensors, numbering 6 to 32. The reason for this is that metal-oxide sensors 83 

historically have had a higher sensitivity to a target gas than other sensors. However, the latest 84 

generation of electrochemical sensors are now achieving similar sensitivities, whilst offering many of 85 

the advantages of such sensors. Electrochemical gas sensors have found favour within the industrial 86 

safety market and more recently in both indoor and outdoor air quality applications (Mead et al., 87 

2014). Their key advantages include being relatively low-cost (under $50 per sensor), ultra-low power 88 

consumption (they generate energy as part of the detection process), room temperature operation 89 

and good tolerance to environmental changes (specifically changes in temperature and humidity).  90 

Furthermore, in this specific application, they map extremely well onto a low temperature potato 91 

store environment. Temperatures as low as 0oC result in a reduction in electrochemical sensor zero 92 

current (the output of the sensor when not being presented with a target gas) and results in a lower 93 

limit of detection. In addition, these sensors are tolerant to both wide ranges of humidity and to high 94 

humidity due to the way they are constructed.  95 

In this study, we used an in-house electronic nose called the WOLF 4.1 (Warwick OLFaction, with the 96 

number referring to the instrument being desktop). The nine sensors selected for testing (Table 1) 97 

were all from a special group that are commercially available and specifically designed for outdoor air 98 

quality monitoring and thus have very high sensitivity. This array was augmented with additional gas 99 

sensors to evaluate if other potential low-molecular weight biomarkers could be identified, specifically 100 

carbon dioxide and methane/hydrocarbons which cannot be easily detected using electrochemical 101 

means. The sensors were mounted inside a large case, which included fluidic components, valves 102 

(ETO-12, Clippard, USA) and flow sensors (Honeywell AWM-3300) and a single PC board. The sensors 103 

used commercial interface boards (either an ISB or Digital Transmitter Board, AlphaSense, UK) that 104 

produce either a voltage or current output. Any currents are converted to an output voltage and then 105 

the output of all the sensors was measured by a National Instrument DAQ card (USB-6009). The unit 106 

is controlled by a custom written LabVIEW program (version 2015, National Instrument, USA) that 107 

allows the sensor data to be stored to a file for later analysis.  108 

2.2 Sample preparation 109 

The potato variety chosen for all experimental work was ‘Maris Piper’, due to its widespread use in 110 

the industry. The P. carotovorum isolate (SBEU_08) used was originally isolated by Dr Glyn Harper 111 

(AHDB Potatoes, Sutton Bridge Crop Storage Research) from an infected potato tuber (variety 112 

Marfona) showing characteristic symptoms of bacterial soft rot. In pure culture, it caused pitting in 113 

Crystal Violet Pectate agar at 27 °C and identity confirmed as P. carotovorum by PCR (Pectobacterium 114 

specific primer sets courtesy of Dr J. Elphinstone, FERA, UK). A standard procedure was used for 115 

inoculating potato tubers with this P. carotovorum isolate in order to initiate disease reliably and 116 

reproducibly. Potatoes were first soaked in water for one hour before use and dried with a paper 117 



towel. Each tuber was then stabbed at the stolon end with a sterile 200 µl pipette tip. P. carotovorum 118 

was grown on nutrient agar at 25°C for 48h, after which 2 ml of sterile water was added and the 119 

colonies gently scraped using a sterile plastic loop to create a bacterial suspension. This bacterial 120 

suspension (20µl) was then used to inoculate individual potato tubers by pipetting into the stab 121 

wounds. A further set of healthy control tubers were stabbed at the stolon but not inoculated. After 122 

treatment, the potato tubers were placed in sealed plastic boxes at 25±1 °C in an incubator and 123 

suspended on a mesh over 400 ml of water, to create warm and high humidity conditions conducive 124 

to soft rot disease development. No determination of latent Pectobacterium infection was carried out 125 

on the potato tubers used, but controls were checked for infection throughout and at the end of the 126 

experiment.  127 

2.3 Experimental setup 128 

Prior to sampling, potatoes were placed each in turn into 1 L polytetrafluoroethylene jars (PTFE ; Fisher 129 

Scientific Ltd, UK) with inlet and outlet fittings added (1/8” push-fit, Pneu-store, UK) at both ends. The 130 

potatoes (both control and infected) were tested individually. Laboratory zero grade air was then 131 

flushed into one end of the container and into the electronic nose. The acquisition time was 120 sec, 132 

with a start injection of 20 s, injection time of 10 s, and flow rate of 300 mL/min. The use of different 133 

PTFE jars, for control or infected tubers, helped reduce cross-interference and all containers were 134 

regularly replaced with cleaned ones. For cleaning, the containers were thoroughly sterilized with 70% 135 

ethanol, washed with water, dried out and flushed with zero grade laboratory air for circa 5 min. 136 

Potato tubers were inoculated either 2 or 5 days prior to sampling and kept at 25°C in the sealed boxes 137 

as described above until sampling in the PTFE containers at laboratory temperature (20 ± 2°C), after 138 

which they were returned. After 2 days post-inoculation, tubers showed no visible signs of soft rot and 139 

hence this allowed the sensors to be evaluated for early pre-symptomatic disease detection. After 5 140 

days post-inoculation, tubers had begun to exhibit both visual and olfactory signs of infection that 141 

could be identified by a store manager; this material therefore tested the ability of the sensors to 142 

detect soft rot at an advanced symptomatic stage of disease development. Overall, 80 tubers (40 143 

inoculated, 40 uninoculated) were analysed for both the 2 day and 5 day post-inoculation time points 144 

(40 tubers per time point).  145 

2.4 Data Analysis 146 

A number of different feature extraction methods were considered and area of the response was 147 

found to be the most suitable pre-processing technique for electrochemical and NDIR gas sensors. 148 

This area is represented by the response time (exposure to odorant) above the baseline from the first 149 

point to the point of maximum response. This approach was chosen since there is a minimal recovery 150 

time for these types of sensors and their high selectivity to target chemicals is accurately represented 151 

by the area under the curve. For classification, the data were split 75% for training (using 10-folds for 152 

cross validation) and 25% for testing (stratified random split technique was used for selection of train 153 

and test sets)). Different analysis models were selected based on their diversity and degree of 154 

complexity: LDA, or linear discriminant analysis (Fisher, 1936), MARS, or multivariate adaptive 155 

regression spline (Friedman, 1991), Classification and Regression Trees (CART; Breiman, 1984), C5.0 156 

(Quinlan, 1993), Naïve Bayes (Kohavi, Kohavi &Becker, 1997), support vector machine, (SVM; Cortes 157 

& Vapnik, 1995; Steinwart & Christmann, 2008), ensemble CART and random forests (Breiman, 2001). 158 

In order to test the robustness of the various models, confusion matrices metrics were considered. Of 159 

particular interest was the conditional metric known as sensitivity, which is the rate at which the event 160 

of interest is correctly predicted for all samples in that event.  This metric is particularly useful for 161 

potential store deployment since if the event of interest were a healthy control tuber, sensitivity 162 

would indicate the ability of the model to accurately predict healthy controls, thus disregarding any 163 



other disease (or variation of disease or other confounding factors) in case other metrics were used 164 

(such as specificity). 165 

 166 

3. Results 167 

Initially, we simply considered the raw voltage output of the instrument in relation to healthy control 168 

and infected tubers (at both time points and without any features extraction). Figure 1 shows a typical 169 

instrument response to an infected tuber. Here the output of the sensors is displayed as an output 170 

voltage. Figure 2 shows the magnitude of the averaged sensor responses. From visual inspection, 171 

significant differences between the infected and control tubers could be identified at both the 5 day 172 

symptomatic time point and the earlier (pre-symptomatic) 2 day time point when there were no visual 173 

indications of disease.  174 

Features were then extracted from the raw sensor responses and a principal component analysis (PCA) 175 

undertaken using these extracted features for all 11 sensors (Figure 3). The plot shows that healthy 176 

control samples could be distinguished from infected tubers at both pre-symptomatic and 177 

symptomatic time points for the majority of cases. In addition, the analysis suggests that sensor output 178 

at the symptomatic time point is greater than at the pre-symptomatic time point. 179 

Following evaluation of the loading values (data not shown) and the raw sensor responses (Figure 2), 180 

a small number of sensors could be identified that provided most of the variance in the PCA plot. 181 

These sensors were CO (carbon monoxide), ETO (ethylene oxide) and NO (nitric oxide). Further PCA 182 

analysis with just these three sensors (Figure 4) showed that there were again clear differences 183 

between the infected and healthy control groups, with a similar separation as for the 11 sensor 184 

analysis (Figure 3).  185 

Machine learning models were then applied to the data. The data set was partitioned into stratified 186 
random splits (75% for training and 25% for testing) and CV (cross validation) was carried out with a k 187 
fold of 10. After training, the generated models were evaluated with the test data set. Results 188 
indicated a sensitivity of 100 % across many models for all the sensors comprising the original array 189 
and also for the selected subset (with the exception in this latter case of lower percentage for the C5 190 
algorithm).  In table 2 are reported the values for sensitivity (number of samples with event and 191 
predicted to have the event of interest / number of samples with the event of interest) and specificity 192 
(number of samples without event and predicted as ‘non-events’ / number of samples without the 193 
event of interest) metrics of the confusion matrices for the selected time points for both all and the 194 
shortlisted sensor subset (carbon monoxide, ethylene oxide and nitric oxide). This indicates that all 195 
techniques with similar initial conditions and pre-processing can be employed as suitable models for 196 
the data set comprising the selected set of sensors. However, a lesser degree of model performance 197 
was found for the C5 algorithm, indicating that other sensors may contribute in minor part to disease 198 
identification when this technique is employed. 199 
 200 
 4. Discussion 201 

The United Nations Food and Agriculture Organization estimates that between 40 to 50 % of root and 202 

tuber crops, fruits and vegetables produce is wasted each year (FAO, 2013). In the UK, one of the 203 

major losses of potato tubers in store is due to bacterial soft rot caused by Pectobacterium spp. In this 204 

paper, we used an in-house electronic nose instrument (WOLF 4.1) to test an array of commercially 205 

available low-cost sensors based on electrochemical and optical detection methods and identify those 206 

that have good potential for early detection of soft rot in potato stores.  207 



Results indicated that soft rot could easily be detected at both pre-symptomatic and symptomatic 208 

stages of infection. In addition, almost the same selectivity could be achieved with just three sensors, 209 

specifically carbon monoxide, ethylene oxide and nitric oxide. Interestingly, the separation of disease 210 

and control samples was slightly better with all the sensors over the subset. This suggests that the rest 211 

of the sensor array provides a small amount of additional information that can aid separation of the 212 

diseased and healthy sample datasets.  213 

One potential limitation of this study is that experiments were carried out at a higher temperature, at 214 

lower humidity and higher chemical concentrations than are routinely found in potato stores where 215 

conditions of 3-10°C and >90% RH are maintained to extend storage times and prevent the tubers 216 

drying out (Cunnington & Pringle, 2012). However, the electrochemical sensors used in this study map 217 

well onto this store environment. Lower temperatures will result in higher sensitivities (through lower 218 

zero current) and these sensors are either tolerant to very high humidity levels (as they are 219 

constructed with a humidity barrier) or can have their electrolyte concentration altered to make them 220 

tolerant. In terms of the sensitivity required, potato tubers are stored in large volumes, either loose 221 

or in 1 tonne boxes, with a store containing many hundreds of tons of tubers. This will therefore result 222 

in a substantial dilution of the chemical biomarker components. However, as these sensors were 223 

developed for environmental monitoring applications, we believe they will have the required 224 

sensitivity as their detection limits are as low as single figure parts per billion for most molecules. 225 

These questions related to practical application are currently being addressed in the next phase of this 226 

work which is focussed on in-store experimentation. 227 

None of the chemicals detected above (carbon monoxide, ethylene oxide and nitric oxide) have been 228 

identified previously as being associated with soft rot disease in previous studies with GC-MS. Of 229 

specific interest is the substantial sensor response to carbon monoxide uniquely associated with 230 

diseased tubers. This raises an additional issue of health and safety in food storage. It is also interesting 231 

to note the lack of responses to the two NDIR sensors, namely carbon dioxide and methane. Carbon 232 

dioxide is known in the industry as being associated with tuber respiration and is monitored in store. 233 

The lack of response for CO2 could be caused by the experimental technique adopted here (dynamic 234 

headspace sampling) and further experiments in store will help answer this question. At this stage of 235 

the research, it is still not clear what metabolic processes might be involved with the chemical 236 

compounds detected by the sensors.  237 

5. Conclusions  238 

In this paper, we report on the use of gas analysis equipment to detect and investigate odours 239 

associated with bacterial soft rot of potatoes. Past research on the early detection of potato storage 240 

diseases by gas analysis has been conducted over many years, dating back to the 1970s. However, 241 

there is currently still no cost effective, non-destructive, reliable and practical approach for soft rot 242 

detection in commercial storage facilities. In previous work, the authors presented the case for the 243 

use of a commercial electronic nose, using metal-oxide sensors for soft rot detection. Here we have 244 

identified other gas sensing technologies that could be employed as a viable solution for deployment 245 

in store. Electrochemical and infrared commercial technologies offer the advantage of a high degree 246 

of selectivity and fast response time to the chemical of interest. The results show that a subset of 247 

these sensors, namely carbon monoxide, ethylene oxide and nitric oxide can be employed for both 248 

the symptomatic and pre-symptomatic detection of soft rot under laboratory conditions.  249 
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 336 

Sensor Name Manufacturer Responsive to: Type of sensor  

Cirius CH4 NDIR Clairair Ltd Methane NDIR  
(Nondispersive 
infrared) 

Cirius CO2 NDIR1 Clairair Ltd Carbon Dioxide NDIR  
(Nondispersive 
infrared) 

CO-B4 AlphaSense Ltd Carbon Monoxide Electrochemical 

ETO-A1 AlphaSense Ltd Ethylene Oxide Electrochemical 

H2-AF AlphaSense Ltd Hydrogen Electrochemical 

H2S-B4 AlphaSense Ltd Hydrogen Sulphide Electrochemical 

NO-B4 AlphaSense Ltd Nitric Oxide Electrochemical 

NO2-B4 AlphaSense Ltd Nitrogen Dioxide Electrochemical 

O2-A2 AlphaSense Ltd Oxygen Electrochemical 

OX-B431 AlphaSense Ltd Ozone Electrochemical 

SO2-B4 AlphaSense Ltd Sulphur Dioxide Electrochemical 

Table 1: Chemical Sensors used inside the WOLF 4.1 instrument for detection of potato soft rot. 337 
  338 



 Model Sensor 

Array Accuracy 

Measures  

(95 % 

Confidence 

Interval) 

LDA C5 CAR

T 

MAR

S 

Naive 

Bayes 

SVM 

(Radial 

Basis) 

RF  

- Ensemble 

CART 

- Ensemble 

Symptomatic 

Sensitivity 100% 80% 100% 100% 80% 100% 100% 100% All 

 

Specificity 100% 100% 100% 100% 100% 100% 100% 100% 

Sensitivity 100% 60% 60% 100% 80% 100% 100% 80% Selected 

Specificity 80% 100% 100% 100% 100% 100% 100% 100% 

Pre-Symptomatic 

Sensitivity 100% 60% 80% 80% 80% 80% 100% 80% All 

Specificity 100% 100% 100% 100% 100% 100% 100% 100% 

Sensitivity 100% 80% 80% 80% 60% 80% 80% 80% Selected 

Specificity 100% 100% 100% 100% 100% 100% 100% 100% 

Table 2: Confusion matrices metrics for symptomatic and pre-symptomatic detection time points for 339 

all sensors and the selected sensor subset (CO, ETO, NO). 340 

 341 
  342 



 343 

Figure 1: Raw sensor response of sensors within the WOLF 4.1 instrument to a potato tuber infected 344 

with P. carotovorum. Sample injection occurred after 20 seconds and the injection period was 10 345 

seconds. The legend refers to the target gas as specified by the supplier. 346 

  347 



 348 

 349 

 350 

Figure 2: Bar graph showing the averages of the raw sensor responses for healthy control tubers 351 
(sample size 40) and tubers infected with P. carotovorum at 2 days (pre-symptomatic – sample size 352 
20) and 5 days (symptomatic – sample size 20) time points. 353 
 354 
  355 



 356 

 357 
 358 

Figure 3: PCA of the sensor responses from the WOLF 4.1 for healthy control tubers and tubers 359 
infected with P. carotovorum at 2 days (pre-symptomatic) and 5 days (symptomatic) time points. 360 
 361 
  362 
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 364 
 365 

Figure 4: PCA of the sensor responses for CO, ETO and NO sensors for healthy control tubers and 366 
tubers infected with P. carotovorum at 2 days (pre-symptomatic) and 5 days (symptomatic) time 367 
points. 368 
  369 
 370 
 371 


