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 

Abstract—In this paper, an improved positioning algorithm is 

proposed for the long range asymmetric perimeter security system. 

This algorithm employs zero-crossing rate to detect the 

disturbance starting point, and then utilizes an improved empirical 

mode decomposition (EMD) to obtain the effective time-frequency 

distribution of the extracted signal. In the end, a cross correlation 

is used to estimate the time delay of the effective extracted signal. 

The scheme is also verified and analyzed experimentally. The field 

test results demonstrate that the proposed scheme can achieve a 

detection of 96.60% of positioning errors distributed within the 

range of 0~±20 m at the sensing length of 75 km, which 

significantly improves the positioning accuracy for the long range 

asymmetric fence perimeter application. 

 
Index Terms—Fiber optic distributed sensor, Asymmetric dual 

Mach–Zehnder interferometer (ADMZI), positioning algorithm, 

signal analysis, Empirical mode decomposition (EMD). 

 

I. INTRODUCTION 

s a new type of passive distributed sensing system 

distributed fiber optic sensing system is widely used in 

long-distance pipelines invasion, leak detection, border security, 

and other fields, etc. [1-8]. With the rapid development of 

optical fiber sensing technology, fiber security systems have 

been generated based on dual Mach-Zehnder interferometry 

(DMZI) vibration detection. Compared with the traditional 

security systems, the security system based on DMZI has the 

advantages of high sensitivity, anti-electromagnetic interference 

and low loss, etc. The key technology of obtaining disturbance 

position in Asymmetric Dual Mach-Zehnder Interferometer 

(ADMZI) systems is the positioning algorithm. Currently many 

cases have been reported regarding the positioning accuracy of 

the DMZI. 
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Yang An et al. proposed the use of cross-correlation function 

to estimate the arrival time difference of the two channels 

disturbance signals, together with applying simulated annealing 

as the control algorithm to reduce the locating error, which was 

not only complex to operate and difficult to implement, but also 

increased the cost of the system [9]. One study by Q. Chen et al. 

significantly improved the computational speed by using the 

zero-crossing method for detecting vibration starting point and 

extracting effective data components before the general 

cross-correlation function. Although the positioning accuracy is 

20m, the range is not large enough in some place [6]. Xie et al. 

used a Butterworth high-pass filter (HPF) to broaden the 3-dB 

bandwidth of the power spectrum of interference signal, and 

achieved a smaller locating mean square error (MSE) in the 

system [5], [10]. Although Xie’s algorithm analyzed and 

reduced the positioning error of DMZI sensor, it ignored the 

environment noise in the perimeter security. 

In order to solve the problems existing in the current 

equipment such as large positioning error, this paper 

theoretically analyzes the positioning error of the ADMZI 

sensing system. Based on the analysis of the theory, we propose 

an improved positioning algorithm with a low positioning error. 

Firstly, we achieve endpoint detection with the highest 

zero-crossing rate (ZCR) as the ZCR is easy and efficient to 

implement [11], [12]. Meanwhile, in order to obtain a valid 

signal disturbance and to reduce the computation time, we 

process the signal based on an improved empirical mode 

decomposition (EMD) method [13] which uses the correlate 

coefficient significant test to discard the low test value intrinsic 

mode function (IMF) components and reconstructs the rest of 

the signal. Finally, cross correlation is used to estimate the time 

delay based on the reconstructed signals [14], [15]. Compared 

to the other reported positioning algorithms, experimental 

results verify that our scheme has improved a higher positioning 

accuracy and achieved a smaller positioning error. 

II. SCHEMATIC OF THE ADMZI VIBRATION SENSOR AND 

POSITIONING PRINCIPLE 

The structure of an ADMZI by using two DFB (distributed 

feedback) lasers and matching DWDM (dense wavelength 

division multiplexing) [16] is shown in Fig. 1, where the two 

outputs of the lasers (λ1 and λ2)  are equally split by couplers C2 

and C3, respectively, then λ1 and λ2 propagate in opposite 

directions in the ADMZI. In clockwise (CW) MZI, the λ1 
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interfere with itself at the C3 after being split by C2. The 

propagation path of the λ1 passes though C1-C2-C3-C4, and is 

filtered by DWDM1 and detected by PD2 (photo-detector). As 

DWDM2 can remove the C-RB (clockwise propagated 

Rayleigh backscattering wave) noise of λ2 and let the C-PW 

(clockwise propagated primary wave) of λ1 go through perfectly, 

we can easily acquire the signal of C-PW with a high SNR 

(signal to noise ratio). Here we use two different wavelengths of 

λ1 and λ2 as the sources that are close to 1550 nm, and the 

difference between λ1 and λ2 are larger than the window 

separation of 0.8 nm. PC1 (polarization controller) and PC2 are 

used to compensate the visibility variation in each MZI. The 

situation in the counter-clockwise (CCW) direction MZI is the 

same. 

Assume that a disturbance is suited at a distance of x. From 

Fig.1, we can see that the time delay d between the distances 

from P to PD1 (CCW) and from P to PD2 (CW) is usually 

different. The time difference d can be calculated as:  

( 2 ) /d n L x c                                       (1) 

Where c is the velocity of lightwave in vacuum (3×10
8
 m/s), 

n is the effective refractive index of fiber optic core, L is the 

length of  the test cable. Here, c, n and L are all constant. From 

equation (1), we can deduce the disturbance position x from the 

time delay d. 

 However, there are different kinds of noises in ADMZI in 

practical applications, the AC components of the received 

noise-involved interference signal can be expressed as [5], [6]:                                                                                                              

1 1 1 1 1 1 1

2

2 2 2 2 2 2 2

1

( )
( ) [1 ( )] cos[2 ( ) ( ) ( )] ( ) ( )

( )
( ) [1 ( )] cos[2 ( ) ( ) ( )] ( ) ( )

a p b c

a p b c

l t
I t n t t n t n t n t n t

l t d
I t n t t n t n t n t n t





 


 



        




         


        (2) 

Where l(t) is the OPD (optical path difference) generated by 

vibration, λ1 and λ2 are the wavelengths of source1 and source2 

in the two MZIs. Polarization effect induces the visibility noise 

na1(t), na2(t) and the visibility noise nε1(t), nε2(t). The slight 

vibration induces the additional environment noise ξ1(t) and ξ2(t)  

in the system. np1(t) and np2(t) are the phase noise introduced by 

the frequency noise of the laser source, nc1(t) and nc2(t) are the 

additive circuit noise, respectively, nb1(t) and nb2(t) are the 

back-scattering noise coming from the mixture of interference 

signals between CC-RB in fiber a and b as well as the 

interference between CC-RB and CC-PW in the coherence area. 

According to the above analysis, the use of model (1) will 

lead to an inaccurate time difference d only with a simple cross 

correlation function. Thus we can add a restriction and make an 

assumption to solve this issue. 

Restriction: In order to assure that the ξ1(t) and ξ2(t) are 

almost constant during the time of experiment, we set each 

duration of experiment to a small value. 

Assumption: The additive circuit noises nc1(t) and nc2(t) can 

be regarded as white noise with small amplitude. 

On the basis of the above restrictions, as the np1(t) and np2(t) 

can be reduced by utilizing a narrow line-width laser and 

compensating the length difference between the two 

interferometer arms, we can neglect the phase noise. The effect 

of additive circuit noises nc1(t) and nc2(t) can also be neglected. 

Similarly, we can also adjust polarization state of the light to 

compensate na1(t) and na2(t), nε1(t) and nε2(t) [17-19]. Although 

the sensing range is long, the SNR still stays high and therefore 

RB noise nb1(t) and nb2(t) cannot be neglected [19]. Besides, we 

can easily suppress the RB noise and acquire the signal of 

CC-PW with a high SNR in the ADMZI structure [16]. 

Therefore, the alternating current components of the two 

output signals can be simplified as: 

1 1

2

2 2

1

( )
( ) cos[2 ( )]

( )
( ) cos[2 ( )]

l t
I t t

l t d
I t t

 


 



  




   


                (3)  

From the equation (3), we can see I1(t) and I2(t) are cosine 

functions. l(t) and l(t-d) are both functions depending on time t 

only. So, the frequencies of I1(t) and I2(t) are proportional to  the 

frequencies of l(t) and l(t-d) respectively. We can utilize the 

time-frequency distributions for the I1(t) and I2(t) instead of l(t) 

and l(t-d) to compute the time delay d. ξ1(t) and ξ2(t) are 

constant. 

III. PRINCIPLE OF THE PROPOSED POSITIONING ALGORITHM  

Fig. 2 shows the consequence frame of the positioning 

algorithm. Firstly, we extract the endpoint of the disturbance 

signal based on zero-crossing technique. Then we use the 

improved empirical mode decomposition (EMD) method to 

discard the low test value IMF components and to reconstruct 

the rest of the signal. Finally, the cross correlation is used to 

estimate the time delay using the reconstructed signals. 

A. Endpoint detection based on ZCR 

ZCR is usually applied to discrete-time signals such as 

distinguishing the sounds of different frequencies [12]. ZCR can 

be expressed as: 

Endpoint Detection
An Improved 

EMD Method
Cross-Correlation

Intrusion Signal

 
 

Fig.2.  Framework of position algorithm. 

DAQ IPC

L

P
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Fig.1. Schematic diagram of ADMZI disturbance sensing system. C2, C3: 

3dB fiber coupler; C1, C4: Optical circulator; PD1, PD2: Photo-detector; 

PC1, PC2: Polarization Controller; DWDM1, DWDM2: dense wavelength 

division multiplexers; DAQ: Data Acquisition Card; IPC: Industrial Personal 

Computer; C-PW, CC-PW: the clockwise and counter-clockwise propagated 

primary wave. 
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ZCR x m x m n m
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 

 

  
 




　　　

　　　 

                           

(4) 

Note that N is the length of a selected frame. sgn[x] is a 

symbolic function. ( )n  is a rectangular window function. The 

principle of signal interception based on ZCR is: the 

undisturbed signal or noise signal differs from the disturbance 

signal in frequency domain so that the ZCR of disturbance 

signal is higher than that of the undisturbed signal or noise 

signal. Therefore we can pull out the disturbance signal from the 

undisturbed signal or noise signal easily. In order to improve the 

robustness of ZCR, it also needs to meet the requirement that 

vibration amplitude should exceed a certain threshold when the 

signal is calculated through ZCR. Signal higher than the 

threshold signal segment is identified as disturbing signal; on 

the contrary, signal lower than the threshold is regarded as the 

noise signal or interference signal.  

In order to fulfill the assumption and locate the zero-crossing 

point, we apply the double-threshold crossing method to 

eliminate the additive circuit noises. As the threshold might 

truncate the discrete-time signals if the differences between the 

threshold and successive samples have different algebraic signs. 

We set the two thresholds as δ1 and δ2, where δ1>0, δ2<0, and 

|δ1|=|δ2|. We note that, in order to eliminate the effect of 

additive circuit noises, the value of |δ1| should be larger than the 

amplitudes of noise. 

And we note that if a point is a zero crossing, it must meet 

three conditions: 

1) The amplitude of the point Zk (k=1,2,3…K) is zero.  

2) The product of the amplitude of Zk-1 (which is before Zk) 

and Zk+1 (which is after Zk) is less than zero. 

3) The amplitudes of Zk-1 and Zk+1 cross over the two 

thresholds δ1 and δ2 respectively. 

When a point meets the above three conditions at the same 

time, it can be located as one zero-crossing point. Then we can 

obtain the endpoint of the disturbance signal from the maximum 

zero-crossing. 

B. An improved EMD method 

The empirical mode decomposition is a self-adaptive 

decomposition method based on the local characteristics of the 

signal, which can effectively decompose the original 

time-domain signal into the intrinsic mode function with 

multi-scale time-frequency characteristics. EMD is usually 

applied to non-linear and non-stationary processes [20].  

Obviously, the disturbance signal of a long range asymmetric 

perimeter security system is an unsteady signal, which can be 

decomposed into a collection of IMF components. Each IMF 

should meet two conditions: (1) in the whole data set, the 

number of extrema and the number of zero-crossings must either 

equal or at most have one difference; (2) at any point, both the 

mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima are zero. 

 The correlate coefficient is the most common measurement 

to evaluate the correlation between variables. Generally 

speaking, the small correlate coefficient means the low 

correlation between the variables; and vice versa. However, the 

increase in the length of signals makes the correlate coefficient 

become lower and the error get larger. Therefore it is obviously 

inaccurate to only apply the correlate coefficient to evaluate the 

correlation between investigated signals. Alternatively, we 

apply t test which is one of the significant test of correlate 

coefficient to evaluate the significant of correlate coefficient 

between the concerned signals based on statistics principles 

[21]. The steps of the significant test are following: 

1) Decompose the vibration signal into a collection of IMFs ci 

(i= 1,2,3…M). Calculate the correlate coefficient
i

  for 

each IMF component with the original signal by formula 

(5):  

j

1

2 2

1 1

( )( ( ) ( ))

( ) ( ( ) ( ))

R

ij i

j

i
R R

ij i j

j j

c c x t x t

c c x t x t




 

 



 



 

             (5) 

Where the i th is the IMF component. M is the number of the 

IMF components. R is the total number of points.  

2) The t test value of the correlate coefficient
i

 is expressed 

as:  

                      
2

2

1

i

i

i

R
t









                                        (6) 

3) Check the t distribution table to obtain the critical value 

/ 2t  based on the given significance level  and 

freedom degrees (R-2). If /2it t , 
i  is considered to 

be insignificant in statistics, therefore the corresponding 

IMF components will be eliminated. Otherwise, it is 

considered to be significant, and corresponding IMF 

components will be reserved. 

Reconstruct the remaining IMF components after sweeping t 

distribution, and we can obtain the time-frequency information 

of the disturbance signal. 

C. Time delay estimation based on cross-correlation 

Assuming that the correlated noises are stationary in a short 

period, we can directly estimate the time delay between the 

selected signals after obtaining time-frequency information of 

the disturbance signal. The time delay estimation based on the 

cross-correlation signal - noise model is [22]: 

1 1

2 2

( ) ( ) ( )

( ) ( ) ( )

I t s t n t

I t s t n t

 


  
                                         (7) 

Where s(t) is the delay signal, n1(t) and n2(t) are the additive 

white Gaussian noise. Assuming that s(t), n1(t), n2(t) are 

zero-mean random stationary process, and s(t), n1(t), n2(t) are 

independent, the cross-correlation function between them is 
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approximately zero. After I1(t) and I2(t) calculated based on 

cross-correlation, we can have: 

1 2 2 1 1 21 2
( ) ( ) ( ) ( ) ( )

( )

ss s n s n n nI I

ss

R t R t R t R t R t

R t





    

 
           

(8) 

Where ( )ssR t   is the autocorrelation function of s(t). 

According to the nature of the autocorrelation function, when 

t=-τ, we can obtain the maximum of autocorrelation function. 

Therefore the time delay d can be estimated by locating the peak 

position of cross-correlation function
1 2

( )I IR t . 

IV. FIELD EXPERIMENTS AND ANALYSIS 

The practical experiment setup is shown in Fig 1. The length 

of the sensing cable is 75 km with single mode fibers. The two 

laser sources λ1 and λ2 are 1549.95nm and 1550.74nm 

distributed feedback laser respectively with a power of 5 mW 

and a line-width of 50 kHz (corresponding to the coherence 

length of 6 km). The central wavelengths of DWDM1 and 

DWMD2 are 1550.12 nm and 1550.92 nm respectively and with 

the pass-band width of ±0.22 nm to match λ1 and λ2. The two 

light beams propagate CW directions (C1-C2-C3-C4) and CCW 

directions (C4-C3-C2-C1) respectively. The synchronous 

sampling rate of DAQ card and the sampling time of a frame 

signal are set to be 10 MS/s and 0.3 s respectively. We have 

conducted 500 sets of in-field experiments in the system, the 

intrusion is generated at the distance x = -45041m by knocking 

the fence. 

A. Endpoint detection 

Firstly, we obtain the endpoint of the vibration signal based 

on ZCR after the vibration signal is noise-filtered. The vibration 

signal of knocking cable and disturbance extraction section are 

shown in Fig. 3 (b). And Fig. 3 (c) shows the zero-crossing rate 

distribution of the vibration signal. 

Fig. 3(a) and (b) show the interference signals and 

undisturbed signal. From the figures, it can be seen that the 

phase change induced by the intrusion event varies much more 

fiercely than the environment noise. We can also see different 

signal densities at different time periods, and the output 

intrusion signal shows great irregularity. Besides, the large 

amount of acquisition points will lead to a long time operation if 

signal is decomposed by EMD subsequently. It is important for 

selecting a valid signal region. 

From Fig. 3 (c) we can obtain the distribution of the 

disturbance signal and easily find the peak position of the curve. 

On the basis of the positioning theory [6], a high ZCR of the 

signal segment means a large bandwidth with high positioning 

accuracy. Therefore we detect the peak position of the ZCR 

curve and extract 50k samples which are around the peak as the 

effective signal region. 

B.  An improved EMD method 

From Fig. 4 we can see the vibration signal is decomposed 

into IMF components by empirical mode decomposition. The 

disturbance signal can be expressed as: 

( ) ( ) ( )
1

M
x t c t r t

i Mi
 


                           (9) 

 From Fig. 4 we can visually see that although each IMF 

component is decomposed by the original signal, the relevance 

between each IMF component and the original signal is 

different, therefore, the redundant IMF components with a low 
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Fig. 3.  Undisturbed signal and interference signals. (a) No intrusion. (b) 

Knocking cable. (c) ZCR of the knocking cable. 

1.0
1.0

S

EMD of Intrusion Signal

-1.0
1.0

i1

-1.0
1.0

i2

-1.0
1.0

i3

-0.5
0.5

i4

-0.5
0.5i5

-0.5
0.5

A
m

p
lit

u
d

e
(V

)
  

  
  

  
  

  
i6

  
  

  
  

  

-0.5
0.5

i7

-0.2
0.2

i8

-0.2
0.2

i9

-0.5
0.5

i1
0

-0.5

0.5

re
s
.

 
 

Fig. 4.  EMD decomposition. 
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Fig. 5.  Reconstruct the signal. (a) One channel signal. (b) Another channel 

signal. (c) Correlation coefficient of the two channel signal.  
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correlation can be removed. 

According to (5), (6), the absolute value of the t test 
it  and 

the correlation coefficients 
i  of each IMF are shown in Table 

I. 

We set  to 0.05, 2 4998R    and get 
/2 1.9604t  by 

checking the t-distribution table. Comparing 
it to the 

t-distribution at
/2 1.9604t  , if the former is larger, the 

corresponding IMF components is retained, otherwise is 

discarded. Here we eliminate IMF9, IMF10 and reserve the rest. 

Finally, we reconstruct the disturbed signal by preserving IMF 

components to obtain the time-frequency information of the 

disturbed signal, which is shown in Figure 5 (a), (b). 

C. Location based on cross-correlation 

After reconstructing the disturbed signal based on the 

improved EMD method we can get time-frequency information 

of the disturbed signal. And then the correlation curve of the two 

channel signal is obtained, which is shown in Fig. 5 (c). From 

Fig. 5 (c), we can obtain the time delay estimation by simply 

using the cross-correlation algorithm. 

 As a comparison, the experiment based on endpoint detected 

and cross-correlation (ZCR-CC) without EMD is also 

conducted. TABLE II shows position error statistics of 500 sets 

experiments using the proposed method and ZCR-CC without 

EMD method. 

From the TABLE II, compared to ZCR-CC without EMD 

(MAE =31.622 m, SD =52.3317 m), the proposed method 

(MAE = 4.7360 m, SD = 7.7376 m) can significantly reduce the 

SD and MAE of the location error, and can improve the 

positioning accuracy in the long range asymmetric fence 

perimeter system. 

According to the experimental results, we can see that the 

proposed method can detect up to 96.60% of positioning errors 

distributed within ±20m. Especially, 84.80% of the location 

error distributes within ±10 m can be detected, which is very 

close to the theoretical precision limit. That means that only a 

minor part of error is outside the range of ±20 m. 

V.  CONCLUSIONS 

This paper proposes an improved positioning algorithm in 

long range ADMZI vibration sensors. We have theoretically 

analyzed the principle of the positioning in the long range 

optical fiber perimeter security system by taking into account all 

types of noises. According to the theoretical analysis, we 

applied ZCR to extract the endpoint of the intrusion signal. 

Then we used an improved EMD method to eliminate low 

redundant IMF components and to obtain a valid signal 

disturbance. Finally, the cross correlation function was used to 

estimate the time delay of the reconstructed signals. The field 

experiments demonstrate that the proposed approach can 

achieve the detection of 96.60% of positioning errors 

distributed within the range of 0~±20 m at the sensing length of 

75 km, which has a good potential in practical long range 

asymmetric perimeter security systems. 
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