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Abstract 
 

An important mechanism for insect pest control should be the use of fungal 

entomopathogens. Even though these organisms have been studied for more than 100 

years, their effective use in the field remains elusive.  Recently, however, it has been 

discovered that many of these entomopathogenic fungi play additional roles in nature. 

They are endophytes, antagonists of plant pathogens, associates with the rhizosphere, and 

possibly even plant growth promoting agents. These findings indicate that the ecological 

role of these fungi in the environment is not fully understood and limits our ability to 

employ them successfully for pest management. In this paper, we review the recently 

discovered roles played by many entomopathogenic fungi and propose new research 

strategies focused on alternate uses for these fungi.  It seems likely that these agents can 

be used in multiple roles in protecting plants from pests and diseases and at the same time 

promoting plant growth. 
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Introduction 

Global interdependence of markets for agricultural products have increasingly 

brought to the forefront the need to develop agricultural practices that mitigate adverse 

effects on the environment and that result in products that are safe for human 

consumption.  One major constraint to increased agricultural production is yield losses 

caused by insects, plant diseases, and weeds. These losses account for 40% of potential 

production (Thacker 2002) and despite a marked increase in pesticide use, crop losses 

have remained relatively constant (Oerke 2006). 

Since the late 1940’s, insect pest control has relied mostly on chemical 

insecticides, although in many industrialized nations, pest management strategies have 

been shifting to the use of transgenic plants expressing particular traits such as resistance 

to insect, fungi, herbicide, or viruses.  However, the replacement of chemicals with 

transgenic plants does not represent a fundamental change in approach.  In reality, it is a 

“like-for-like” replacement in which the tools are different but the “silver bullet” strategy 

is the same (Lewis et al 1997; Welsh et al. 2002).  A true paradigm shift would be a 

change from a dependence on chemicals to a total system approach (see Lewis et al. 

1997) or to ecological engineering (see Gurr et al. 2004a, b).  A basic component of both 

approaches is a better understanding of the various ecological components in an 

ecosystem, including biological control agents.  Among these, entomopathogenic fungi 

have been traditionally considered as important mortality factors for insects, but recent 

studies discussed below have shown that they have diverse and unexpected roles.  

Understanding the nature of these interactions could facilitate more effective exploitation 
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of entomopathogenic fungi for pest biocontrol strategies throughout the world, including 

countries where the use of other strategies might not be affordable. 

 The earliest studies with entomopathogenic fungi occurred in the early1800's and 

concentrated on developing ways of managing diseases that were devastating the 

silkworm industry in France.  Agostino Bassi (1773-1856) demonstrated that Beauveria 

bassiana (as Botrytis bassiana) was the infectious agent causing what was then known as 

the muscardine disease of silkworms.  The stimulus for the idea of using fungal insect 

pathogens to manage pest insects came largely from the ensuing silkworm-disease 

studies, after finding that the fungus also infected other insects (Audoin 1837).  

Subsequently, Pasteur (1874) and LeConte (1874) suggested that fungi could be used 

against insects.  In Russia, Elie Metchnikoff (1845-1916) conducted studies on an insect 

disease of wheat cockchafers that he called green muscardine, and he identified the 

infecting agent as Entomopthora anisopliae (= Metarhizium anisopliae).  This fungus 

was mass-produced by Krassilstick (1888) and used in the field against the sugar-beet 

weevil.   

However, the discovery and use of chemical insecticides in the 1940’s 

overshadowed the potential of entomopathogenic fungi and other microbial pest control 

agents, and created an inappropriate model by which the majority of microbial control 

agents are still judged and used, i.e. the chemical insecticides paradigm.  Thus, the use of 

entomopathogenic fungi has not been based on an understanding of their ecology but on 

mistakenly applying the chemical insecticide paradigm to biological control agents and 

creating false expectations of chemical-like efficacy (Waage 1998).  
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In 1983, a group of 23 specialists in plant and insect pathology, morphology and 

physiology met at The Rockefeller Foundation Bellagio Study and Conference Center in 

Italy to discuss Infection Processes of Fungi (Roberts & Aist 1984). The conference was 

organized to afford the opportunity for in depth discussions among plant pathologists and 

insect pathologists.  The participants recognized that there were many parallels between 

insect and plant pathogens as both need to invade via external waxy cuticular surfaces. In 

the 25 years since the 1983 meeting, major inroads have been made in understanding and 

manipulating the infection processes of insect pathogens, such as the discovery of the 

PR1 gene and its use in genetic modifications (St. Leger 2007).  Recently, molecular 

tools such as DNA sequence analysis have led to a new phylogenetic classification of the 

Fungi that has challenged many of our assumptions about the relationships among 

entomopathogenic and other fungi.  This new phylogeny is already leading to significant 

new insights that should allow us to better understand the ecology of fungal 

entomopathogens.  In addition, it has been discovered recently that many 

entomopathogenic fungi play additional roles in nature, including their isolation as plant 

endophytes, antagonists of plant pathogens, beneficial rhizosphere-associates, and 

possibly even plant growth promoters.  These findings raise two important questions: 

Have we been overlooking important factors in our quest to develop these 

microorganisms solely as biopesticides against insects?  Can these agents be used in 

multiple roles to protect plants from insects and plant diseases and at the same time 

promote plant growth? Here we summarize recent findings and propose new research 

areas  
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Entomopathogenic fungi as biopesticides 

Entomopathogenic fungi are usually identified as such based on the fungal growth 

observed on insect cadavers.  Most research on entomopathogenic fungi has been aimed 

at developing them as inundative biological control agents of insects, mites and ticks, 

despite great potential for use in conservation and classical biocontrol strategies (Butt et 

al. 2001; Goettel et al. 2005; Vincent et al. 2007). This is normally achieved through a 

strategy in which pest control relies on the action of the released agent but not on 

successive generations of the fungus. Under this paradigm, over 170 products have been 

developed based on at least 12 species of fungi (Faria & Wraight 2007).  Despite there 

being an estimated 700 species of entomopathogenic fungi in approximately 90 genera 

(Roberts & Humber 1981), most of the commercially produced fungi are species of 

Beauveria, Metarhizium, Lecanicillium and Isaria that are relatively easy to mass 

produce.  Attention has focused predominantly on the technical aspects of biopesticide 

development, such as mass production and formulation, and the selection of strains with 

rapid kill.  Production requirements include reasonable cost, long-term stability, and, 

most importantly, consistent efficacy under field conditions. The prevalent methods 

involve production of diaspores (dispersal units) by induction of aerial conidiation on 

solid growth media, production of blastospores by yeast-like growth in liquid media or 

growth of hyphal biomass in liquid or solid media (Faria & Wraight 2007).  

For control of insect pests in the phylloplane, suspensions of aerial conidia 

including blastospores are applied in spray applications, e.g. M. anisopliae var. acridum 

for locust control in Africa (Langewald & Kooyman 2007).  The numerous, discrete, 

infective propagules provided by spore forms satisfy the requirement for complete 
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coverage of the foliar surface to ensure contact and infection of the insect host.  To 

improve dispersion, hydrophobic conidia are often formulated in oil or added to spray 

mixes containing wetting agents as adjuvants.  Spray preparations of hydrophilic 

blastospores can include wetting agents as adjuvants but are generally formulated as 

wettable powders or water-dispersible granules. Since propagule persistence of fungi on 

the foliar surface is affected by solar radiation, considerable effort has focused on the 

protection of these entomopathogens by incorporating solar blockers and sunscreens 

(Inglis et al. 2001).  However, to open up a wider array of biocontrol strategies there is a 

need to significantly improve our understanding of the ecology of entomopathogenic 

fungi outside of the insect host, especially fungal life history strategies and their role in 

the ecosystem.  

A number of recent discoveries suggest that current approaches to insect control 

with pathogenic fungi require revision.  For example, rhizosphere competence by strains 

of M. anisopliae is dependent on the plant community and not necessarily the presence of 

an insect host (Hu & St. Leger 2002) and strains of B. bassiana exist as endophytes in 

various plant species and exhibit the potential for insect and plant disease suppression 

(Vega 2008; Ownley et al. 2008b).  

 

Arthropod-associated fungi: evolution and nutritional associations 

 Entomopathogenic fungi infect their insect hosts by penetrating through the 

cuticle or through body openings (Tanada and Kaya 1993).  They have evolved 

specialized mechanisms for the enzymatic degradation of the integument and for 

overcoming insect defense compounds. The relationships by which different fungal 
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species obtain energy from their insect hosts (i.e., their econutritional mode) include 

biotrophy (nutrition derived only from living cells, which ceases once the cell has died), 

necrotrophy (utilization of dead tissues), and hemibiotrophy (initially biotrophic and then 

becoming necrotrophic).   

Recent phylogenetic studies indicate that the ability to utilize insects as a source 

of nutrition has arisen more than once among fungi (Spatafora et al. 2007).  Scale insects, 

particularly Coccidae and Aleyrodidae have the greatest diversity of fungal pathogens 

documented (Humber 2008); these insects occur in dense and mainly immobile 

populations feeding on plants.  The sustained proximity between these insects, fungi and 

other potential hosts may provide pathogenic fungi with the opportunity to move from 

plant to insect and beyond.  Indeed, scale insects and their pathogenic fungi provide 

model systems for studying the fundamental aspects of host-fungal pathogen interactions.  

Fungi within the genus Hypocrella (Clavicipitaceae) form small stromata utilizing the 

nutrients available from one to a few scale insects under each stroma.  However, a few 

Hypocrella species produce gigantic stromata (Hywel-Jones & Samuels 1998), and these 

can only form with sustained nutrition from the plant after the insect host is destroyed.  

This is an extreme example of the nutritional adaptability that some insect pathogenic 

fungi exhibit, but it also highlights the diversity of nutritional modes and the ability of 

entomopathogenic fungi to switch between them.  

A critical question is whether species of Metarhizium, Beauveria, Lecanicillium 

and Isaria (Luangsa-ard et al. 2005; Sung et al. 2007) function in nature as ecologically 

obligate insect parasites or make use of additional sources of nutrition.  Meyling & 

Eilenberg (2007) considered Beauveria and Metarhizium to function primarily as insect 
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parasites but did not discount the possibility of additional nutritional modes.  Insect 

parasitism by these species is common in nature (Ormond et al. 2006; Meyling & 

Eilenberg 2007), but there is increasing evidence that they exhibit a more dynamic life 

history pattern than previously thought.  Based on the abundance of entomopathogenic 

fungi obtained from the surface of 1,700 individual arthropods captured in aspen-

dominated woodlands in western Canada (B. bassiana represented one-quarter of all 

isolates), it appears that entomopathogens are common components of the surface mycota 

of arthropods and are not necessarily restricted to diseased insects (Greif & Currah 2007). 

There is also increasing evidence that Beauveria, Metarhizium and related genera can act 

as mycoparasites and plant endophytes, as well as interact with plant roots (see below).  

Moreover Beauveria and Metarhizium may have evolved subtle ecological adaptations to 

insect parasitism in the soil that we are yet to discover and, central to this, is the influence 

of the plant (see below).  

Entomopathogenic fungi exhibit a diverse array of adaptations to insect 

parasitism.  These include the general ability to overcome insect immune defenses and 

obtain nutrition from insects but also less well-studied behavioral responses (Roy et al. 

2006).  Host-altered behavior by some fungi has been demonstrated (e.g., summit 

disease, in which infected insects exhibit climbing behavior), but there are considerably 

fewer examples with hypocrealean-infected insects than in entomophthoralean-infected 

ones (Roy et al. 2006).  However, we would caution against concluding that the scarcity 

of these adaptations in the entomopathogenic Hypocreales is evidence that these fungi are 

not highly specialized insect parasites, because much more basic ecological research is 

required.  Behavioral avoidance of entomopathogenic fungi also has been reported for 
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various insects: B. bassiana is avoided by Anthocoris nemorum (Meyling & Pell 2006) 

and C. septempunctata (Ormond et al. in prep.), while Coptotermes lacteus avoids M. 

anisopliae (Staples & Milner 2000).  Avoidance indicates recognition of the fungus by 

the insect, although the specific mechanism for avoidance is not known.   

A major handicap in the understanding of the ecology of entomopathogenic fungi 

has been a lack of phylogenetic information to explain the history of the interactions. 

Phylogenetic classifications based on DNA analysis has helped to improve and stabilize 

our understanding of fungal relationships (Blackwell et al. 2006, Hibbett et al. 2007). 

Phylogenetic studies have been important to understand insect fungi. For example, 

asexual fungi can now be placed among their nearest sexual relatives, and previously 

used terms such as Deuteromycota as a taxon have been abandoned completely. Insect 

parasites in the Hypocreales have been discovered to have convergent morphologies and 

moreover, different histories as symbionts. New taxa and lineages certainly will be added 

to the classification, because fungi are still under sampled in phylogenetic studies and, in 

fact, poorly known overall, but the additions will serve to test the classification as it 

continues to develop. The tree diagram (Fig. 1) shows the fungal phyla in the new 

classification.    

 The acquisition of a phylogeny allows us to hypothesize not only evolutionary 

patterns of organisms depicted in a phylogenetic tree, but also to predict traits based on 

relationships (Spatafora et al. 2007). We can determine if selection for certain 

morphological or physiological features, such as nutritional preferences, occurred in a 

lineage, and estimate fungal divergence times based on increasing knowledge of DNA 

divergence rates and the accuracy of fossil calibration points (Taylor & Berbee 2006).  It 
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also is possible to compare phylogenies of two groups of ecologically associated 

organisms in order to determine their mutual evolutionary history.    

 Fungi exhibit two patterns of historical host associations. In a few cases patterns 

of coevolution can be identified (Currie 2003, Little and Currie 2008), but more often a 

pattern of host switching is evident. Although host switching is common among fungi, 

there have been relatively few studies of the phenomenon using taxon sampling designed 

to test the hypothesis. A study of Hypocreales, which contains fungi with diverse 

nutritional modes (insect, fungus, and plant parasites, woody plant saprobes and yeast-

like symbionts) is an exception. Spatafora et al. (2007) used phylogenetic analysis and 

ancestral character state reconstruction to examine the origin of the nutritional modes of 

the large monophyletic group. The study examined 54 strains of Clavicipitaceae (s.l.) and 

13 other isolates in Hypocreales. Analysis of six DNA loci indicated at least six 

interkingdom shifts had occurred among taxa in three distinct clades of fungal, plant and 

animal parasites (Fig. 2).  The “traditional” Clavicipitaceae (s.l.) have been revised to 

reflect the new phylogenetic findings, and two new families and several new generic 

taxa, replace some long-established names in the newly defined monophyletic groups 

(Sung et al. 2007; http://cordyceps.us).  It is clear from the study that members of 

Hypocreales arose from plant parasitic ancestors, although the nutritional mode of more 

immediate ancestors is sometimes ambiguous. Based on the phylogeny, Spatafora et al. 

(2007) concluded that Clavicipitaceae (s.l.) comprised a paraphyletic group and rejected 

the monophyly of Cordyceps (s.l.). Three lineages (A= Clavicipitaceae: Hypocrella, 

Regiocrella, Metacordyceps, Torrubiella s.l.; B= Ophiocordycipitaceae: 

Elaphocordyceps, Ophiocordyceps, Torrubiella s.l.; and C= Cordycipitaceae: 
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Ascopolyporus, Cordyceps s.s., Hyperdermium, Torrubiella s.s.) contained taxa 

previously included in Cordyceps (s.l.).  Plant, animal and fungus-based nutritional 

modes are found among two of the clades (Clavicipitaceae and Cordycipitaceae), while 

Ophiocordycipitaceae lacked plant associates in their study, but see below, Case Studies). 

Clavicipitaceae and Ophiocordycipitaceae were placed as sister taxa derived from a most 

recent lineage of insect parasites with the previous nutritional mode ambiguous. In the 

primarily animal-associated clade, Ophiocordycipitaceae, an unusual nutritional shift 

away from animal to hypogeous ascomycete hosts occurred in the lineage. Shifts away 

from parasitism apparently are rare, but within Ophiocordycipitaceae, yeast-like obligate 

symbionts of plant hoppers (YLS) appear to be derived from among insect parasites 

(Jones et al. 2000). The remarkable shift from necrotrophic parasite to obligate symbiont 

that is involved in sterol and nitrogen metabolism is one that calls for additional study.    

 Jumps to new hosts among organisms closely associated in a common habitat has 

been referred to as the “host habitat hypothesis” (see Nikoh & Fukatsu 2000). This 

hypothesis has been put forth to explain shifts to distantly related hosts of Hypocreales 

(Nikoh & Fukatsu 2000; Spatafora et al. 2007). There are several examples of extreme 

host shifts among members of Hypocreales (Fig. 2). Ophiocordycipitaceae that infect 

larval and pupal arthropod hosts in soil are the closest relatives of parasites of hypogeous 

fungi; species of Clavicipitaceae associated with hemipteran insect parasites have as their 

closest relative species with endophytic life styles. Additional detailed sampling will be 

profitable for the continuing development of hypotheses on the origin of fungal host 

associations and subsequent host shifts.   
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Additional roles for entomopathogenic fungi in nature 

Various unexpected roles have been reported for fungal entomopathogens, 

including their presence as fungal endophytes, plant disease antagonists, rhizosphere 

colonizers and plant growth promoting fungi.  These are discussed below, and detailed 

case studies are presented in an on-line Appendix. 

 

Fungal endophytes 

Endophytes infect above ground internal plant tissues without causing symptoms, 

and they are garnering increased attention because they are ubiquitous and have immense 

diversity and varied roles (see Saikkonen et al. 2006; Arnold & Lutzoni 2007). Some 

fungal endophytes protect host plants against pathogens and herbivores (Arnold et al. 

2003; Schulz & Boyle 2005; Arnold & Lewis 2005; Rudgers et al. 2007), and many fungi 

traditionally known as insect pathogens have been isolated as endophytes, including 

species of Acremonium, Beauveria, Cladosporium, Clonostachys and Isaria (Vega 2008; 

Vega et al. 2008).  

 

Plant disease antagonists 

In plant pathology, biological control most often refers to the use of natural or 

modified fungi or bacteria that are antagonists of plant pathogens. The term antagonism 

refers to a generalized mechanism by which the survival or disease-causing activity of a 

pathogen is reduced. Several mechanisms of antagonism against plant pathogens have 

been identified. These include production of various metabolites, such as antibiotics, 

bioactive volatile compounds (e.g., ammonia, hydrogen cyanide, alkyl pyrones, alcohols, 



 

 

16 

acids, esters, ketones and lipids) and enzymes. Other mechanisms are competition (for 

niche or infection site, carbon, nitrogen or various minerals), parasitism, hypovirulence, 

induced systemic resistance and increased plant growth response (Ownley & Windham 

2007). 

In addition to activity against insects, there is substantial evidence that some 

entomopathogenic fungi, including Beauveria bassiana (Ownley et al. 2004; Ownley et 

al. 2008a, 2008b) and species of Lecanicillium (Askary et al. 1998; Benhamou & 

Brodeur 2000, 2001; Kim et al. 2007, 2008) also are antagonistic to plant pathogens. 

Mechanisms of antagonism utilized by B. bassiana may include antibiosis (Renwick et 

al. 1991; Reisenzein & Tiefenbrunner 1997; Bark et al. 1996; Veseley & Koubova 1994; 

Lee et al. 1999), competition (Ownley et al. 2004) and induced systemic resistance 

(Griffin et al. 2006; Ownley et al. 2008b). In addition to utilizing mechanisms of induced 

systemic resistance and antibiosis (Benhamou & Brodeur 2000, 2001), Lecanicillium 

species are parasitic on fungal plant pathogens (Askary et al. 1998). 

 

Rhizosphere colonizers and plant growth promoting fungi 

Entomopathogenic fungi in the Hypocreales are ubiquitous members of the soil 

microbiota. The entomopathogenic fungal species most frequently isolated from soils in 

temperate regions belong to the genera Beauveria, Isaria (Cordycipitaceae) and 

Metarhizium (Clavicipitaceae) (Meyling & Eilenberg 2007). As an environment, soil 

presents opportunities and challenges to entomopathogenic fungi. It protects from 

damaging solar radiation and acts as a buffer against extremes of temperature and water 

availability (Gaugler et al. 1989; Inglis et al. 2001; Roberts & Campbell 1977; Rangel et 
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al. 2005).  Furthermore, it is a habitat for many potential insect hosts, some of which 

occur at high densities; continuity in proximity to potential hosts is a factor in the 

evolution of fungal entomopathogenicity (Humber 2008).  However, soil is also infused 

with antimicrobial metabolites secreted by microbes that can impair the ability of 

entomopathogenic fungi to infect their hosts. For example, Groden & Lockwood (1991) 

identified a significant trend of lower mortality of Colorado potato beetle by B. bassiana 

with increased soil fungistasis levels.  A dead or dying insect infected by an 

entomopathogenic fungus represents a potential source of energy for other, opportunistic 

soil microorganisms.  Some species of hypocrealean entomopathogens produce 

secondary metabolites within their insect hosts that are postulated to help the fungus 

outcompete opportunists during the saprotrophic phase of insect utilization (Strasser et al. 

2000). 

Species of Beauveria and Metarhizium that have infected and killed an insect in 

soil produce only limited somatic growth from the fungus-infected cadaver.  This has 

been taken as evidence that these fungi rely predominantly on the insect rather than on 

the soil for carbon (Inglis et al. 2001; Pereira et al. 1993; Gottwald & Tedders 1984).  

However, in the rhizosphere free carbon is abundant and there is evidence that 

entomopathogenic fungi interact with plant roots for growth or survival (St. Leger 2008). 

Between 10 and 40% of carbon assimilated by a plant is transferred into the soil in the 

form of exudates, mucilage, sloughed root cells and lysates (Andrews & Harris 2000; 

Bardgett 2005).  This carbon is exploited by a diversity of saprotrophic microorganisms 

in the rhizosphere (Cooke & Whipps 1993; Whipps 2001).  In most cases, it is still not 

clear whether this is purely a one way interaction benefiting only microbial saprotrophs 
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or whether a mutualistic interaction has evolved in which the plant also benefits from the 

provision of mineral nutrients or protection from parasites and herbivores (Singh et al. 

2004).  Studies on plant parasitic nematodes and their microbial antagonists have 

demonstrated that nematode control is greatest on roots that support the highest 

rhizosphere colonization of Pochonia chlamydosporia, a facultative fungal pathogen of 

nematodes.  The extent of rhizospere colonization by P. chlamydosporia varies on 

different plant cultivars and between different isolates of the fungus (De Leij & Kerry 

1991; Bourne et al. 1996; Kerry 2000).  These studies clearly demonstrate a relationship 

between rhizosphere competence and a functional role such as biological control. 

 Metarhizium anisopliae increased stand density and fresh weight of field corn 

after conidia were applied to corn seeds prior to planting, in an attempt to reduce damage 

caused by wireworms (Kabaluk & Ericsson 2007).  The mechanism for this effect on 

yield remains unknown.   

 

A new paradigm for entomopathogenic fungi, and future research needs 

Despite the publication of approximately 7,000 papers on topics related to 

entomopathogenic fungi since 1983 (S. Wilzer, National Agricultural Library, pers. 

commun.), there is still limited success in solving agricultural problems with 

entomopathogenic fungi. The following proposed research areas should lead to a new 

paradigm for entomopathogenic fungi that should refocus our efforts and hopefully lead 

to exciting new findings that will bring success to the field.  
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Endophytes 

Associations between fungal endophytes and plants could be useful in designing 

studies aimed at better approaches for using entomopathogenic fungi.  Many research 

areas need to be addressed: (1) Which specific physiological mechanisms do 

entomopathogenic fungi rely on to enter the plant? (2) Do these mechanisms vary when 

introductions are attempted via the roots, stem, leaves, or flowers? (3) Are different 

diaspores (e.g., conidia, blastospores, microsclerotia) better suited to infect the plant? (4) 

Does identity of fungal isolate influence endophyte success? Why? (5) Do isolates have 

different survival rates once inside the plant? Why? (6) Are entomopathogenic fungi part 

of the air spora, or are they acquired vertically via seeds, or through conidia present in the 

soil/root interphase or both? Are insects ever involved? (7) Could plants that harbor 

endophytic entomopathogens provide nutritional clues that could be used for improving 

methods of mass production?  (8) How do endophytic entomopathogens affect their host 

plants and the insects feeding on these plants?  (9) Do endophytic entomopathogens 

produce metabolites in planta?  (10) Could insects become diseased after feeding on 

plants containing endophytic entomopathogens?  Answers to these questions will allow 

for novel approaches aimed at using entomopathogenic fungi in agriculture.  

 

Plant disease antagonists 

Although the potential for biological control of plant pathogens has been clearly 

demonstrated with certain entomopathogenic fungi, the key to successful exploitation of 

these organisms in agriculture is identifying and understanding the operative mechanisms 
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of biocontrol activity. New evidence suggests that B. bassiana and Lecanicillium species 

employ multiple mechanisms that vary with plant pathogen, but may also vary with plant 

host species or cultivar. In addition, efficacy will be affected by a myriad of abiotic and 

biotic environmental factors. Using model plant systems, profiles of global gene 

expression in response to endophytic or rhizosphere colonization can be examined in the 

absence of other variables. In addition to expected changes in expression profiles of 

recognized plant defense response genes, genome-wide expression arrays could reveal 

novel plant genes that respond to colonization by entomopathogenic fungi. Naturally 

occurring nonpathogenic epiphytic and endophytic microorganisms will also influence 

the efficacy of entomopathogenic fungi against plant pathogens. Identifying beneficial 

and deleterious relationships with other microorganisms may allow manipulation of 

agricultural systems to enhance the positive influences. Likewise, identification of abiotic 

factors, such as soil characteristics that enhance or inhibit biological control of soilborne 

plant pathogens, would allow manipulation of these factors and improvements in 

efficacy. Such abiotic factors may include minerals needed as cofactors for production of 

bioactive compounds involved in biological control mechanisms of entomopathogenic 

fungi. By gaining a greater understanding of all of the interacting factors related to 

mechanism, significant improvements in efficacy against plant pathogens with 

entomopathogenic fungi should be possible. 

 

Rhizosphere colonizers and plant growth promoting fungi 

Up to now, there has been little unequivocal evidence of true rhizosphere 

competence (growth of the fungus within the root zone utilizing plant carbon) in 
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Metarhizium and related entomopathogenic fungi.  The mechanism of interaction 

between fungus and plant root needs to be elucidated.  It should be possible to examine 

hyphal growth within the rhizosphere using entomopathogenic fungi expressing the GFP 

gene (as used by Hu & St. Leger 2002).  The use of fluorescence in situ hybridization 

(FISH) with taxon-specific probes in combination with microautoradiography following 

14CO2 pulse labeling of a plant would also indicate whether the fungus is able to grow on 

rhizodeposited material (Singh et al. 2004).  In vitro gene expression technologies could 

also be used to determine whether cell-cell signaling occurs between plant and fungus.   

Studies on the interaction between soil dwelling entomopathogenic fungi and the 

root zone have tended to use applications of inoculum well above the levels found in 

natural communities.  In these experiments, it is possible that the applied fungus is able to 

outcompete other functional groups of microbes for the duration of the experiment as a 

consequence of high density.  It will be important, therefore, to investigate whether 

natural rhizosphere colonization occurs and considerably more research is needed before 

new strategies using entomopathogenic fungi as rhizosphere colonizers could be 

considered.  

There are a number of critical questions relating to plant-fungus-insect 

associations in the soil. These center on whether plants and entomopathogenic fungi have 

been involved in a dynamic process of co-evolution, for example through the endophytic 

colonization of roots or saprotrophic growth on plant exudates.  Key questions include: 

(1) Do plants benefit from the presence of entomopathogenic fungi in the rhizosphere, 

(e.g., as the parasitism of root feeding pests) and have plants evolved mechanisms that 

encourage the survival and development of fungi in the rhizosphere? (2) Is the 
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“bodyguard” concept (van Damm et al. 2003; see below) relevant in the soil?  (3) It is 

highly likely that insect pathogenicity evolved independently in some of the different taxa 

of the anamorphic ascomycetes (Spatafora et al. 2007; http://cordyceps.us/), in which 

case, do different phylogenetic entities of entomopathogenic fungi display different 

strategies with respect to their association with plants?  (4) What is the role of soil 

dwelling entomopathogenic fungi in interactions between above ground and below 

ground ecosystems? (5) Are the yield increases in field corn reported by Kabaluk & 

Ericsson (2007) due to rhizosphere colonization by M. anisopliae?  What is the exact 

mechanism for the positive effects observed?  Does M. anisopliae protect the plant 

against fungal pathogens that might infect the seedlings, as well as herbivores feeding on 

the roots?  Would other entomopathogenic fungi have the same effects?  Finally, (5) how 

does plant diversity impact fungal biodiversity at landscape and local scales, and what is 

its impact on natural pest control as an ecosystem service?  Addressing these questions 

will contribute to improvements in biological control.  

 

The bodyguard hypothesis 

The bodyguard hypothesis states that plants have evolved mechanisms to 

favor/retain natural enemies of their herbivore pests and thereby protect themselves from 

damage (Elliot et al. 2000). It is unknown whether plants provide nutrients of particular 

value to entomopathogenic fungi, but it would seem to be an evolutionary advantage for 

the plant to do so.  

Plants also produce semiochemicals that are induced in response to herbivore-

induced damage (Chamberlain et al. 2001).  The semiochemicals are a component of the 
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induced resistance mechanism of plants and act as specific cues for beneficial arthropods 

to detect the presence of hosts (Dicke & Bruin 2001).  There are few examples of 

beneficial microbial agents, such as entomopathogenic fungi, that use herbivore 

associated--plant derived cues to identify host presence and adapt their activity.  One 

example, however, has been described for the aphid pathogenic entomophthoralean 

fungus Pandora neoaphidis.  Germination of conidia is faster in the presence of 

herbivore-damage induced plant volatiles, although not sufficiently faster to increase 

aphid mortality under the experimental conditions (Baverstock et al. 2005).  Most of the 

examples relate to volatiles produced in response to foliar damage but they also are 

recorded in roots (Koske 1982) as part of the pathways for induced plant resistance and 

therefore, are active in the soil.  Although there is increasing interest in above-below 

ground interactions and the relationships between communities associated with roots and 

foliage, entomopathogenic fungi within the soil microbial fauna have not been considered 

in this context.   

Cory & Hoover (2006) reviewed plant-mediated effects on insect pathogen 

interactions with particular emphasis on interactions on the phylloplane and the role of 

phytochemistry and other natural enemies in modulating the efficacy of 

entomopathogens.  Plants are thought to recruit insect parasitoids and predators as 

bodyguards against insect herbivores (Sabelis et al. 1999).  Whether plants manipulate 

entomopathogenic fungi in a similar way remains to be demonstrated (Elliot et al. 2000); 

the use of entomopathogenic fungi as ‘bodyguards’ by plants would require variation in 

selectable plant traits influencing pathogen efficacy and increased plant fitness.  Such 

traits are yet to be demonstrated but it is clear that insect pathogens are affected by 
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tritrophic interactions and that complex multitrophic relationships do exist (Cory & 

Hoover 2006).  

Work by St. Leger (2008) and by Bruck (2005) demonstrated that persistence of 

M. anisopliae conidia is higher in the rhizosphere than in bulk soil but it remains to be 

seen whether this is a by-product of plant biology concerned with other life history traits 

or is an evolved response.  Cory & Hoover (2006) also raised the issue of whether 

entomopathogen populations become specialized on different host plants.  There is 

evidence that the population structure of species of Beauveria, Isaria and Metarhizium 

interact with habitat type. For example, in agroecosystems in the UK, Isaria is confined 

mainly to hedgerows and is rare in field crops, while two of the deeply rooted clades of 

Beauveria differ significantly in their preference for hedgerow as opposed to open field 

habitats (Chandler, unpubl.). Examining whether these fungi show specialization for 

different host plants should be a priority for future studies. 

 

Production strategies for fungal biocontrol agents  

Both the rhizosphere and the phylloplane present unique challenges to biological 

control with living fungal agents.  The environmental and ecological variations within 

agro-ecosystems have made consistent insect pest management with fungal pathogens 

difficult to achieve on a commercial level. The use of a generalized approach to the 

formulation and application of microbial biocontrol agents has, in part, led to this 

inconsistency in control. A more detailed understanding of the pathogen-insect ecology 

as well as other environmental and ecological interactions is needed to improve the 

consistency of control for these living microbial pest control agents.   
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For insect pests of the rhizosphere, fungal biological control agents are typically 

applied as granules containing hyphae or spore-hyphae preparations. Granules may 

contain infective conidia or rely on primary growth and in situ secondary sporulation for 

the formation of infective conidia. The conidia-containing granules must be adequately 

dispersed and remain viable in the soil to insure contact with foraging insect pests.  

Recently, M. anisopliae was shown to be capable of producing sclerotia in liquid culture 

fermentation (Jaronski & Jackson 2008; Jackson & Jaronski in press).  Sclerotia are 

overwintering structures formed by many plant pathogenic fungi that sporulate to 

produce infective conidia when environmental conditions are suitable for infection of 

their host plant.   

The ability of M. anisopliae to form sclerotia may be important for rhizosphere 

competence following a pattern seen in phytopathogenic fungi. The use of sclerotial 

preparations for granular application of M. anisopliae in soil and the use of conidia or 

blastospores in foliar applications for phylloplane insects are examples of how the 

ecology of the fungus – insect interaction directs the production and use of appropriate 

infective propagules. Likewise, the use of endophytic entomopathogenic fungi for insect 

control will require an understanding the ecological factors that enhance the fungus’s 

ability to become endophytic. Awareness of these ecological factors will guide the 

development of production and formulation technologies that deliver optimally infective 

fungal propagules.   
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Formulation of fungal propagules 

 The formulation of propagules of fungal entomopathogenic fungi for use in 

biocontrol has been guided by the need to improve product shelf life, biocontrol efficacy, 

and/or the physical characteristics of the product for application (Wraight et al. 2001).  

Undoubtedly, these goals are often conflicted with ecological considerations. For control 

of insect pests of the phylloplane, spore suspensions are applied in spray applications. 

The numerous, discrete, infective propagules provided by spore forms satisfy the 

requirement for complete coverage of the foliar surface to ensure contact and infection of 

the insect host.  Formulations that improve spore desiccation tolerance or shelf life such 

as cryoprotectants or oils may inhibit spore germination or intimate contact of the spore 

with the insect host, resulting in reduced biocontrol efficacy.  

Recently, research has been initiated to analyze the surface chemistry of spores of 

entomopathogenic fungi, an important contribution towards understanding their ecology.  

For example, Isaria fumosorosea blastospores were found to have a basic, monopolar, 

hydrophilic surface with an isoelectric point of 3.4 (Dunlap et al. 2005).  The isoelectric 

point is the pH at which a surface or compound has a neutral charge.  At a pH higher than 

3.4, the surface charge of I. fumosorosea is negative and at a more acidic pH the surface 

is positively charged.  Therefore, the pH of the environment or of the formulation can 

affect the charge of the spore surface and its ability to adhere to the insect cuticle  or 

other surfaces. Similar work on the characterization of the surface chemistry of 

Beauveria bassiana spore forms has also been reported (Holder et al. 2007). A directed 

approach to formulation for improved biocontrol efficacy should include an 

understanding of the fungal spore – insect surface chemistries and how they interact to 
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enhance adhesion and fungal infection. Understanding how the insect pest or the 

microbial pathogen interacts or survives in a given ecological environment is critical in 

directing  the use of appropriate formulations.  

 
 

Future prospects  

 Future research on entomopathogenic fungi should focus on trying to understand 

the ecology of the fungi in a context that focuses on their roles as endophytes, plant 

disease antagonists, rhizosphere colonizers, and plant growth promoters.  These areas 

could lead to (1) a better understanding of the disparate ecological niches occupied by 

entomopathogenic fungi; (2) improved deployment for better pest control; and (3) 

improved production and formulation to enhance their efficacy.  We believe that insights 

gained from these studies will result in the effective use of these promising organisms as 

an integral part of agricultural systems throughout the world.  
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Figure Legends 

Figure 1. Phyla of fungi based on (Hibbett et al. 2007) indicate that Fungi are more 

diverse than previously appreciated. Major changes include separation of groups with 

flagellated cells (“Chytrids”) in three phyla and separation of zygosporic fungi 

(“Zygomycetes”) in at least three lineages. Numbers of described fungal phyla from Kirk 

et al. (2008) and for the outgroup from The IUCN Red List of Threatened Species 

(http://www.iucnredlist.org/static/stats, Table 1).  

 

Figure 2. Phylogenetic tree showing interkingdom host jumping among members of 

Hypocreales. Stalked stromata among sexually reproducing, animal parasitic taxa are the 

result of convergent evolution, and acquisition of a well resolved phylogeny has resulted 

in numerous taxonomic changes at family and generic level, some of which are shown on 

the tree; clades a-c are identified as originally published (Spatafora et al. 2007, 

http://cordyceps.us/Systematics ). Note especially the restricted use of Cordyceps, and 

new names Elaphocordyceps and Ophiocordyceps. 
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