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COMPARING INDIVIDUAL MEANS IN THE 
ANALYSIS OF VARIANCE* 

JOHN W. TUKEY 

Princeton University 

The practitioner of the analysis of variance often wants to 
draw as many conclusions as are reasonable about the relation of 
the true means for individual "treatments," and a statement by 
the F-test (or the z-test) that they are not all alike leaves him 
thoroughly unsatisfied. The problem of breaking up the treatment 
means into distinguishable groups has not been discussed at much 
length, the solutions given in the various textbooks differ and, 
what is more important, seem solely based on intuition. 

After discussing the problem on a basis combining intuition 
with some hard, cold facts about the distributions of certain test 
quantities (or "statistics") a simple and definite procedure is 
proposed for dividing treatments into distinguishable groups, and 
for determining that the treatments within some of these groups 
are different, although there is not enough evidence to say "which 
is which." The procedure is illustrated on examples. 

2. DISCUSSION OF THE PROBLEM 

T ET US BEGIN by considering how the latest and most advanced sta- 
L tistical theory would approach this problem and then explain why 
such a solution seems impractical. To make things more precise, let us 
suppose as a fictitious example that seven varieties of buckwheat; 
Ay By CY D, E, F, and G have been tested for yield in each of 12 locations, 
and that our interest is in the average yield of the buckwheat varieties 
in a region of which the 12 locations are a respectable sample, and in 
years exactly like the one in which the experiment was made. We will 
then have a simple and straightforward analysis of variance into varie- 
ties, locations, 'and interaction. We shall be concerned with the seven 
observed variety means and with an unbiased estimate of their variance, 
which will be given by 1/12th of the interaction mean square, which is 
itself on 66 degrees of freedom. What can we say about the varieties 
under these conditions? 

We will wish to say, for example, that B and F yield better than 
A, C, and G, which yield better than D and E. Perhaps we might wish 
to add that A, C and G are not alike, although we do not know which one 
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yields better. The most modern approach would require us to proceed 
as follows: Write down all the possible conclusions to, which we might 
come-the one illustrated above is one of the 120,904 similar possibilities 
for seven "treatments." Then for each combination of seven true mean 
yields we should decide how much it would "cost" us to make each of 
these 120,904 decisions. Making the usual assumptions about the 
distribution of fluctuations in yield, we would have begun to state a 
mathematically well-posed problem. We are unlikely to get this far in a 
practical problem in my lifetime! Then we find, to our horror, that there 
are many competing methods of decision, and that which one risks the 
least will depend on the true variety yields, which we will never know. 
The problem is not as hopeless as it sounds, for Wald has taken a large 
step forward, and shown that any decision method can be replaced by 
one derived from a priori probability considerations without increasing 
the risk under any set of true variety yields. This is a great simplifica- 
tion-but the mathematical complications of dealing with 120,904 
functions of seven variables are still awe-inspiring. If we were able to 
carry through this program-to set the risks intelligently, to carry out 
the mathematics, and to choose wisely among the admissible decision 
functions-we would surely do much better than we can hope to do now, 
but for the present we need to adopt a simpler procedure. (Note. The 
case of 3 or 4 means has been attacked within the scope of Wald's theory 
by Duncan [7] using a different philosophy which emphasizes con- 
clusions about pairs of means.) 

At a low and practical level, what do we wish to do? We wish to 
separate the varieties into distinguishable groups, as often as we can 
without too frequently separating varieties which should stay together. 
Our criterion of "not too frequently" is a rough one, and may frequently 
be expressed by saying "at the 5% level" or "at the 17o level." The 
meaning of these words deserves a little discussion. To the writer they 
do not mean, "so that an entirely nonexistent effect will be called real 
once in twenty times, or once in a hundred times", but rather that 
"with the same sort of protection against false positives that I usually 
have when I make tests of significance on hypotheses suggested by the 
results tested, successive tests of hypotheses, tests of regression on 
selected variables, etc." For these reasons, working "at the 5%0 level" 
may involve the successive use of tests, each of which yields false posi- 
tives five times in a hundred, but, when used together, will yield seven, 
eight or nine false positives in a hundred. It is such a primitive and 
rough standard that we wish to combine with a primitively and roughly 
outlined desire to detect effects which are really there. From these 
primitive desires we are to seek a method. 
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3. THE STIGMATA OF DIFFERENCE 

When the real differences between variety means are large, how do we 
realize this fact? Three vague criteria come naturally to mind: 

(1) There is an unduly wide gap between adjacent variety means 
when arranged in order of size, 

(2) One variety mean struggles too much from the grand mean, 
(3) The variety means taken together are too variable. 

It is these three criteria we are going to apply in order to break up an 
observed set of means. We need, then quantitative tests for detecting 
(1) excessive gaps, (2) stragglers, (3) excess variability. These must be 
used when the variance of an individual observed mean is not known 
exactly, but rather when it is estimated from some other line of an 
analysis of variance table. The tests which we use must therefore be 
Studentized tests. Exact tests for (2) and (3) are available, but for the 
present we shall confine ourselves to an approximate and conservative 
test for (1). 

If there are only two variety means, the largest gap between adjacent 
means is the same as the absolute value of the difference of the means. 
If ml > m2 , and s' is the estimated variance of a single mean, then 

MIl - M 

s821/2 

has one-half of a t-distribution and assuming normality, exceeds 2.447 
only 5% of the time when the two true means are equal and sm is based 
on 6 degrees of freedom. There are good reasons based on experimental 
sampling (Section 9) and numerical integration (Section 8) to believe 
that the one-sided 5%, 2%, 1% points of 

largest gap between adjacent means 
s82 1/2 

are smaller than the corresponding two-sided percentage points of t. 
If this is true we will be conservative to use this ratio and the two-sided 
percentage points of t as a test of excessive gapping. The reasons are 
discussed in a later section. 

The exact test of 

mI-m 
SM 

where ml is the largest mean and -m is the grand mean has been discussed 
for the case of normality by K. R. Nair [4] in a very recent number of 
Biometrika. Simple and satisfactory empirical approximation to the 
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upper percentage points (between 10% and 0.1%) can be obtained by 
treating 

(in1 - )1?log0k 

3(4+1) 
~(l>3 means) 

or 

3(4 + ) (3 means) 

as unit normal deviates, where Sm 1s based on n degrees of freedom. The 
adequacy of this approximation-which avoids the use of multiple entry 
tables-is also discussed in Section 6. 

The exact test of excessive spread in general will of course be the 
familiar F-test (or z-test). 

We propose to use these tests successively, and in the following order 
and manner. First, apply the gap test to break up the means into one 
or more broad groups. Second, apply the straggler test within these 
groups to further break off stragglers within groups. Third, apply the 
Fitest to these new subgroups to detect excess variability. It is hard 
to see how to find the frequency of false positives with the whole system 
analytically, but the writer conjectures that, if the same level, such as 
5%, is used in all three tests, the frequency of false positives will be 
between 1.2 and 1.6 times the level used (i.e., between 6%7 and 8%7 
when a 5% level is used). This is about where the frequency of false 
positives stands for many repeated and result-guided tests of significance 
now in actual practice. 

4. DETAILED PROCEDURE ILLUSTRATED BY EXAMPLES 

The two examples we ae going to use are those discussed by 
Newman [5] in connection with the use of the Studentized range. The 
advantages of continuing with the same examples may compensate for 
disadvantages of lack of simplicity, and in the case of the first example, 
lack of appropriateness. This first example is a 6 X 6 Latin square 
with potatoes, cited by Fisher [1] in Article 36 of The Design of Experi- 
ments. As first presented this example is stated to be six fertilizer treat- 
ments in a Latin Square, and Newman seems to have based his example 
on this discussion. Later on in the book (Article 64), Fisher points 
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out that these treatments were a 2 X 3 factorial design in nitrogen and 
phosphorus, so that there were specific individual degrees of freedom 
whose analysis was planned when the experiment was designed. These 
were not 6 treatments all on an equal footing, and overall analysis is not 
appropriate, but we shall proceed to analyze them as if they were six 
treatments about which there is no advance information. The six means 
were (A) 345.0, (B) 426.5, (C) 477.8, (D) 405.2, (E) -520.2, (F) 601.8, 
and the estimated standard deviation of a mean was sm = 15.95. 

Step 1. Choose a level of significance. For this example we shall choose 
5%. 
Step 2. Calculate the difference which would have been significant if 
there were but two varieties. 

The two-sided 5% point of t on 20 degrees of freedom is 2.086. For 
this example, then, this least significant difference is 2.086 (21/2)15.95 = 

47.0. 

Step 3. Arrange the means in order and consider any gap longer than 
the value found in Step 2 as a group boundary. 

Arranged in order, the means are 345.0, 405.2, 426.5, 477.8, 520.2, 
601.8 and the differences 405.2 - 345.0 = 60.2, 477.8 - 426.5 = 51.3, 
and 601.8 - 520.2 =, 81.6 exceed 45.7, so that we have divided the 
varieties into four groups: 345.0 (A) by itself, 405.2 (D) and 426.5 (B) 
together, 477.8 (C) and 520.2 (E) together, and 601.8 (F) by itself. 

If no group contains more than two means, the process terminates. 
The first example having terminated, we must pass to another to illus- 
trate the continuance of the process. Snedecor [6] gives as Example 
11.28 on p. 274 (of the 4th edition) the results of a 7 X 7 Latin Square 
with potatoes. The means were (A) 341.9, (B) 363.1, (C) 360.5, (D) 
360.4, (E) 379.9, (F) 386.3, (G) 387.1 and sm on 30 degrees of freedom 
was 9.52. Choosing the 5% level, for which t on 30 degrees of freedom 
is 2.042, we find t(2'/2)5m = 27.5. In order, the means are 341.9, 360.4, 
360.6, 363.1, 379.9, 386.3, and 387.1 No difference between adjacent 
means exceed 27.5, so that there is only one group at the end of Step 3. 

Step 4. In each group of 3 or more means find the grand mean, the most 
straggling mean and the difference of these two divided by sm . Convert 
these ratios into approximate unit normal deviates by finding 

m- m 6 
_ . ( logl3 k 

Sm . ~~~~(ki > 3 means ini the group~), 
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In -i 1 
5m - 2 (3 means in the group). 

Separate of any straggling mean for which this is significant at the 
chosen two-sided significance level for the normal. 

For the Snedecor example we find -m = 368.5, and the most straggling 
mean is m = 341.9. The ratio is 26.6/9.51 = 2.80. Further log10 7 = 

.845 and we are to consider 

2.80 _ 845 
l 1) = y1 (2.80 - 1.01) = 2.10. 

Since the two-sided 5% level for the unit normal is well known to be 
1.96, we must separate 341.9 (A). 

Step 5. If Step 4 changed any group, repeat the process until no further 
means are separated in the old groups. The means separated off from 
one side of a group form a subgroup. If there are any subgroups of 
three or more when no more means are being separated from groups, 
apply the same process (Steps 4 and 5) to the subgroups. 

The old group in the Snedecor example now contains 6 means, and its 
grand mean has increased to m = 372.9. The most straggling mean is 
387.1 for which (387.1 - 372.9)/9.51 = 1.49. The approximate unit 
normal deviate is 60/51 (1.49 - 0.93) = 0.66, which is far from signifi- 
cance. Step 5 has produced no further effect. 

Step 6. Calculate the sum of squares of deviations from the group mean 
and the corresponding mean square for each group of or subgroup S or 
more resulting from Step 5. Using s', as the denominator, calculate 
the variance ratios and apply the F-test. 

In the Snedecor example, we have one group of six, for which the sum 
of squares of deviations is 829 and the mean square 166. The denomi- 
nator is (9.51)2 = 90.4 and the F-ratio 1.83 on 4 and 30 degrees of free- 
dom, which is near the 12% point. Thus there is no overall evidence of 
difference in yield for these six varieties. 

If varieties (B) 363.1, (C) 360.6, and (D) 360.4 had been known in 
advance to be different as a class from varieties (E) 379.9, (F) 386.3, and 
(G) 387.1, it would be fair to introduce a single degree of freedom for this 
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comparison, giving an analysis of variance (in terms of means) like this. 

Degrees of Mean 
Freedom Square 

BCD vs EFG 1 794 
Varieties within classes 4 35 
Error 30 90.4 

From this we could conclude that BCD and EFG were different, even at 
the 1% level. There is no valid basis for this particular conclusion unless 
the classes are uniquely known in advance of the experiment. (There 
are 20 ways to split six varieties into two classes of three varieties each, 
so that the apparent significance of the most significant split would be 
expected to be at a percentage level near 1/20th of the percentage level 
of the whole group. The actual figures are, approximately, 0.6% and 
12% and their agreement with the 1-to-20 ratio is unusually close.) 

In the Fisher example, the proposed procedure gave the following 
result: Variety A (345.0) is significantly lower than varieties D (405.2) 
and B (426.5), these in turn are significantly lower than C (477.8) and E 
(520.2), and in turn these are significantly lower than F (601.8). All 
significance statements are statistical, and are at the 5% level or better. 

In the Snedecor example, the proposed procedure gave the following 
result: Variety A (341.9) was significantly lower than some of the varieties C 
(360.1), D (360.4), B (363.1), E (379.9), F (386.3), and G (387.1) at the 
5% level or better, the group of 6 varieties showed no overall evidence of 
internal differences at the 5% level. 

These conclusions should be compared with those of Newman, who 
used the Studentized range to conclude in the first case that even taking 
ADB and CEF as two groups, neither was homogeneous. This is con- 
sistent with the result of the present analysis, but far less detailed. For 
the Snedecor example, Newman found that if either A or F and G 
together were made a separate group, the remainder seemed homogene- 
ous. This is again consistent, but less detailed, since the present process 
finds definite reason to suppose that it is A which is inhomogeneous. 
(How much stronger is the evidence we have against A than against F 
and G is another matter.) 

The writer feels that the proposed procedure is direct, reasonably 
simple, involves no new tables, and is ready to be used in practice and 
thereby put to the ultimate test. 
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5. THE DISTRIBUTION OF THE MAXIMUM GAP 

We are interested in the following problem: 

"Let a sample of k values (in our case means) be drawn from a normal 
distribution, of which we know only an independent estimate s of its 
standard deviation, based on n degrees of freedom. What is the distribu- 
tion of 

largest gap between ordered observed values 2" 

S 

The methods of Hartley, reviewed in detail by Nair [4], would allow us 
to solve this problem for finite n if we knew the answer for infinite n, 
that is for the case where we know a-, the standard deviation of the 
normal population. 

The problem of the distribution of the largest gap in a'sample of k 
values from a unit normal distribution can easily be attacked by experi- 
mental sampling (see Section 9). The fact' that the random normal 
deviates of Mahalanobis [3] are printed in blocks of five leads one to 
study k = 5 and k = 10 first. The first 1000 blocks of five in that table 
were used (skipping block 768, which was marked as an error in the copy 
available to the author). 

The results are shown below: 

TABLE 1 

UPPER PERCENTAGE POINTS OF THE LARGEST GAP IN AN 
ORDERED SAMPLE OF k FROM A UNIT NORMAL 

k =5 k = 10 
% k = 2 sample of sample of 

theory 1000 cases 500 cases 

10 2.33 1.86 <1.50 
5 2.77 2.13 1.68 
2 3.29 2.49 1.95 
1 3.64 2.77 2.42 

The theoretical values for k = 21/2 are values of t(2"2) and are accurate, 
the others are as found by experimental sampling and may deviate from 
accuracy by perhaps 1 or 2 in the first decimal. - They are sufficiently 
accurate, however, to indicate that the upper percentage point decreases 
as k increases. Thus if we use the values for k = 2 we will make a 
conservative test. This is true for n = oa, and by the nature of Hartley's 
expansion it will continue to hold for all reasonable values of n. 
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TABLE 2 

QUALITY OF APPROXIMATION OF PERCENTAGE POINTS FOR THE STRAGGLER TEST 

Normal percentage point 
minus accurate Occurs for Cases 

percentage point 

0.15 to 0.20 3 means, n < 15 6 

(5%, 3 or 4 means, n < 24 
0.10to 0.15 1%,4meansn < 11 33 

t1%, 3 means, n < 30 

r5%, 5 means n < 24 
0.05 to 0. 10 5%, 3 or 4 means, n < 60 21 

1%, 4 means, n < 11 
1%, 3 means, n < 120 

-0. 05 to +0.05 otherwise 154 

010%, all cases 
-0.10 to -0.05 5%, 9 means, n = 10, 11 20 

1%, 8 or 9 means, n = 20 

The discussion in Section 2 suggests, of course, that it would be cor- 
rect and wise to find accurately the percentage points of the largest gap 
for various values of k and then use the appropriate values of k. This is 
not being suggested for the present, because: 

(1) the necessary table does not exist, 
(2) it would complicate the procedure, 
(3) there are problems in choosing the appropriate value of k, 
(4) the simpler proposed procedure has not yet been used enough to 

show its characteristics. 

6. THE STUDENTIZED EXTREME DEVIATE 

In his recent paper, Nair [3] has given the following upper percentage 
points for 3 to 9 samples: (A) the 10%, 5%, 2.5%, 1%, 0.5% points 
for n = c, (B) the 5% points for n from 10 to 20 and 24, 30, 40, 60, 120, 
c, (C) the 1% points for the same values of n. The accuracy of our 
rough approximation is most easily considered by transforming them 
into percentage points for the approximate unit normal deviates-these 
are what should be used for accuracy,-and comparing these with the 
percentage points of the normal-these are what we propose to use. 
Such a comparison has the following results, (Table 2). 
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Thus for about two-thirds of the cases tabulated by Nair, the error is less 
than 0.05, and is surely negligible in practice. 

In doubtful cases, a more precise approximate test may be made as 
follows. Let 

w = m r -M (m an extreme mean) 
Sm 

Then treat 

(k 1)/2 10(w - 1.2)) 

as a unit normal deviate and multiply the tail area by k if only one kind of 
straggler (high or low) could be considered, and by 2k otherwise. Thus 
if -m = 52, m = 43, s 4, k 13, n = 28 

143 -521 9 
W2 4 

(13\ 12( _ 10(1.05)2 1.041(2.25 - 0.13) = 2.20 

Now the probability of a unit normal deviate = 2.14 is 0.01390 (from 
any normal table, e.g. Fisher and Yates [2] Table IX where 98.610% 
corresponds to a probit of 7.1200). Multiplying by 11 gives 15.3% as 
the approximate significance, if only low means are of interest, while the 
level is 30.6% when either high or low means are involved. 

This approximation is discussed by Nair [4] for the case n =, where 
it is due to McKay. Nair shows that it is very good indeed. The effec- 
tiveness of the term in n-1 may be tested by calculating the true per- 
centage points for w - 3n-'(w - 1.2) from Nair's tables. 

TABLE 3 

UPPER PERCENTAGE POINTS FOR w - 10/3n (w - 1.2) 

5% points 1% points 

n k = 3 5 7 9 k = 3 5 7 9 

10 1.75 2.06 2.24 2.35 2.24 2.57 2.73 2.85 
15 1.76 2.08 2.26 2.39 2.27 2.62 2.81 2.93 
20 1.76 2.08 2.27 2.39 2.25 2.62 2.82 2.92 
30 1.75 2.09 2.27 2.40 2.25 2.61 2.82 2.93 
co 1.74 2.08 2.27 2.39 2.22 2.57 2.76 2.88 
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The errors involved in the use of the values at the bottom of the columns 
of Table 3 instead of those above them can hardly ever be of practical 
importance. 

The previous approximation is recommended for routine work since 
it involves less computation and no changing of significance levels. Both 
approximations are only good for upper percentage points in the signifi- 
cance test range. The latter approximation should meet all practical 
needs. 

The writer would rarely bother with the more precise approximation 
except possibly for the cases where the error of the rough test is between 
-0.10 and -0.05. The original experimental values are likely to be 
somewhat non-normal with large tails. An accurate allowance for this 
would be hard to compute, but it would increase the accurate percentage 
point slightly, more for smaller n. The rough approximation tends to 
compensate for this fact in most cases. 

7. THE DISTRIBUTION OF LONG GAPS IN A SAMPLE OF k FORM 
ANY POPULATION 

While we could concern ourselves with the distribution of the longest 
gap, the next longest gap, and so on, it seems theoretically better and 
practically simpler to do something somewhat different. We are going 
to calculate the expected number of gaps longer than a length G, which 
we denote by Pi . For the sort of test considered above, there is much 
reason to use Pi . For pi is the fraction of gaps per sample which will be 
falsely judged significant. If it is as bad to find two false gaps in a sam- 
ple as to find one false gap in each of two samples, then we should 
consider p' 

Now we shall take the definition of a gap starting at y to be that y is 
the left hand of the gap. If y is the left-hand end of a gap of length at 
least G, we have the following table of elementary probabilities: 

Event Probability 

One observation must fall between y and y + dy k dF(y) 

k - 1 observations must fall between and y 
or between y + G and + - {F(y) + 1 - F(y + G) }k-1 

Not all k - 1 observations can fall between- 

and y (F(y))k- 
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hence 

Pi = k . {(F(y) + 1 - F(y + G)k1- (F(y))k1} dF(y) 
co 

8. THE SYMMETRICAL CASE 

If the distribution of x is symmetrical about zero, we may count only 
the gaps with centers to the left of the origin and then double. The 
expression for Pi follows from: 

Event Probability 

One observation must fall between y and y + dy k dF(y) 

k - 1 observations must fall between - o and y 
or y + G and + o (F(y) + 1 - F(y + G))k-1 

Not all k - 1 observations can fall between -o 

and y or -y and + o -(2F(y))k-1 

Since y < - 'G, and since the result is to be doubled, we have 
1 2G 

P= 2k {(F(y) + 1 - F(y + G)k-1 -(2F(y)) `} dF( y) 

Making the substitutions u = F(y), h(u) = F(y) + 1 - F(y + G), this 
becomes 

Pi = 2k f hkl du -{2F(- G)}k 

For reasonably large G, the second term is fairly small and we can get 
an accurate value of Pi with a reasonable amount of labor. 

As an example, let us take the unit normal distribution and G = 2. 
Since h(u) is non-analytic near 1 and has a minimum at F(-1) = .1587, 
it is natural to break the integral up into parts as follows: 

f*0004 (.004 *04 

Pi= 2k hk-l du + 2k hk-l du + 2k 1 hk-l du 
O *~~~0004 *004 

*16 

+ 2k hk-l du - 0.0013(2k)(h(.1587))'` - (.3174)k 
*04 

Calculating h to four decimals, applying Simpson's rule to the range 
from 0 to .004, and the corresponding six-panel rule to the other three 
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ranges yields the following results, where the terms are given in the order 
of the formula above: 

k + + + + - _P 

2 .00151 .01168 .07875 .16781 .00165 .10074 .15736 
3 .00214 .01426 .06603 .08885 .00079 .03206 .13843 
4 .00270 .01553 .04227 .04224 .00032 .01014 .09228 
5 .00320 .01590 .03035 .01908 .00013 .00322 .06518 
6 .00363 .01567 .02635 .00835 .00005 .00102 .05293 
7 .00402 .01508 .01880 .00353 .00002 .00032 .04109 
8 .00436 .01426 .01342 .00154 .00001 .00010 .03347 
9 .00468 .01330 .00959 .00065 .00000 .00003 .02819 

10 .00493 .01230 .00691 .00029 .00000 .00000 .02443 

The value for k = 2 can of course be calculated directly as 

2(1 - F(21/2))= 2(.0787) = .1574 

The results are probably accurate to 1 or 2 in the fourth place. They 
can be conveniently stated as in the following table: 

TABLE 4 

NUMBER OF GAPS LONGER THAN 2.00 EXPECTED PER 100 SAMPLES OF k FROM THE 
UNIT NORMAL 

k 2 3 4 5 6 7 8 9 10 

gaps 
15.74 13.84 9.23 6.52 5.29 4.11 3.35 2.82 2.44 

100 samples 

9. RESULTS OF EXPERIMENTAL SAMPLING 

The results of the experimental sampling of 1000 sets of 5 from 
Mahalanobis' approximation to the unit normal are given in the follow- 
ing table, (Table 5). 

The approximate normality of (largest gap)2 in this sample, as indi- 
cated by the correspondence of the last two columns between the 2% 
points is striking. For comparison it seemed worthwhile to examine the 
normality of (largest gap)1/2 for k = 2, where the probability of a 
gap 2 G is 2N(G/2), where N(u) is the unit normal cumulative. This 
gives the following results, (Table 6). 
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TABLE 5 

RESULTS OF EXPERIMENTAL SAMPLING. DISTRIBUTION OF LARGEST GAPS IN 
1000 SAMPLES OF 5 

(gap)1/2 - 1.07 
Cell Number Cumu. Equiv. 

Norm. Dev. .23 

.185- .199 2 2 -2.88 (-2.70) 

.200- .299 9 11 -2.29 (-2.26) 

.300- .399 20 31 -1.87 -1.90 

.400- .499 28 59 -1.56 -1.57 

.500- .699 97 156 -1.01 -1.00 

.700- .899 141 297 -0.53 -0.52 

.900-1.099 172 469 - .08 - .09 
1.100-1.299 149 618 0.30 0.30 
1.300-1.499 126 744 0.66 0.68 
1.500-1.699 110 854 1.05 1.00 
1.700-1.899 56 910 1.34 1.34 
1.900-2.099 36 946 1.61 1.64 
2.100-2.299 24 970 1.88 1.90 
2.300-2.499 11 981 2.07 2.12 
2.500-2.699 8 989 2.29 (2.51) 
2.700-2.899 4 993 2.46 (2.77) 
2.900-3.099 4 997 2.75 (2.99) 
3.100-3.299 2 999 3.09 (3.20) 

4.000-4.099 1 1000 co 

Here the fit is good between the 10% points. This suggests that the 
(largest gap) 12 may be a convenient interpolation variable. 

The number of cases > 2.00 actually found was 68, while the number 
to be expected according to the last section was 65.2 less an allowance 
for large double gaps which might amount to one unit. Finding 68 
instead of 64 is a deviation of 0.5o, and is highly reasonable. 

For k = 10, the count was only made for gaps > 1.5, with the follow- 
ing results, (Table 7). 

The fit here is reasonably good out to the 5% point. Since theory 
predicts about 12.2 beyond 2.00 instead of 9 observed, there is no serious 
disagreement here. 

If we want to make real use of this (gap)112 variable, we may use the 
known percentages beyond 1.414, found for k between 2 and 10 in the 
last section to fix lines in the plane of the mean and standard deviation 
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TABLE 6 

CUMULATIVE FOR (LARGEST GAP)1/2 IN SAMPLES OF 2 FROM THE UNIT NORMAL 

(gap) 1/2 - .98 

% gap (gap)'/2 Equiv. Norm. 
Deviate .44 

1 .0177 .134 -2.33 (-1.95) 
2 .0357 .189 -2.05 (-1.80) 
5 .0891 .299 -1.64 (-1.55) 

10 .1781 .423 -1.28 -1.26 
20 .360 .600 -0.84 -0.86 
50 .960 .980 0.00 0.00 
80 1.825 1.353 0.84 0.85 
90 2.350 1.536 1.28 1.26 
95 2.794 1.672 1.64 (1.57) 
98 3.308 1.821 2.05 (1.91) 
99 3.650 1.914 2.33 (2.12) 

TABLE 7 

RESULTS OF EXPERIMENTAL SAMPLING 
DISTRIBUTION OF LARGEST GAPS IN 500 SAMPLES OF 10 

Equiv. (gap)1/2 - 0.85 
Cell Number Cumul. Norm. 

Deviate .24 

-1.499 454 454 1.33 1.38 
1.500-1.599 15 469 1.54 1.53 
1.600-1.699 9 478 1.71 1.68- 
1.700-1.799 9 487 1.94 1.82 
1.800-1.899 2 489 2.01 1.98 
1.900-1.999 2 491 2.10 2.08 
2.000-2.199 1 492 2.14 (2.39) 
2.200-2.399 2 494 2.26 (2.48) 
2.400-2.599 3 497 2.51 (2.93) 
2.600-2.799 2 499 2.88 (3.13) 

3.100-3.199 1 500 

of the approximation. A little bold, dashing, freehand, two-dimensional 
interpolation produces the following results: 
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TABLE 8 

TENTATIVE BEHAVIOR OF (LARGEST GAP)1/2 FOR SAMTIPLES OF k FROM THE UNIT 
NORMAL 

Parameters Levels for (gap)1/2 Levels for gap 
k m s 5% 2.5% 1% 5% 2.5% 1% 

2 0.98 0.43 1.69 1.82 1.98 2.8 3.3 3.9 
3 1.03 0.36 1.62 1.74 1.87 2.6 3.0 3.5 
4 1.06 0.27 1.50 1.59 1.69 2.3 2.5 2.8 
5 1.06 0.23 1.43 1.51 1.60 2.0 2.3 2.6 
6 1.06 0.22 1.42 1.49 1.57 2.0 2.2 2.5 
7 1.04 0.21 1.39 1.45 1.53 1.9 2.1 2.3 
8 1.02 0.21 1.37 1.43 1.51 1.9 2.0 2.3 
9 1.00 0.21 1.35 1.41 1.49 1.8 2.0 2.2 

10 0.99 0.22 1.33 1.40 1.48 1.8 2.0 2.2 

By a stroke of luck, the levels for the gap itself might be accurate to one 
or two tenths. These are, of course, unstudentized levels. 
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