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Abstract Here we prove that for n ≥ 140, in every 3-coloring of the edges of K (4)
n

there is a monochromatic Berge cycle of length at least n −10. This result sharpens an
asymptotic result obtained earlier. Another result is that for n ≥ 15, in every 2-coloring
of the edges of K (4)

n there is a 3-tight Berge cycle of length at least n − 10.

Keywords Colored complete uniform hypergraphs · Monochromatic Hamiltonian
Berge-cycles

1 Introduction

Let H be an r -uniform hypergraph (a family of some r -element subsets of a set). The
shadow graph of H is defined as the graph �(H) on the same vertex set, where two
vertices are adjacent if they are covered by at least one edge of H. A coloring of the
edges of an r -uniform hypergraph H, r ≥ 2, induces a multicoloring on the edges of
the shadow graph �(H) in a natural way; every edge e of �(H) receives the color of
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all hyperedges containing e. We shall denote by c(x, y) the color set of the edge xy
in �(H). A subgraph of �(H) is monochromatic if the color sets of its edges have
a nonempty intersection. Let K (r)

n denote the complete r -uniform hypergraph on n
vertices.

In any r -uniform hypergraph H for 2 ≤ t ≤ r we define an r -uniform t-tight
Berge-cycle of length �, denoted by C (r,t)

� , as a sequence of distinct vertices
v1, v2, . . . , v�, such that for each set (vi , vi+1, . . . , vi+t−1) of t consecutive verti-
ces on the cycle, there is an edge ei of H that contains these t vertices and the edges ei

are all distinct for i, 1 ≤ i ≤ � where � + j ≡ j . This notion was introduced in Ref.
[3] to generalize Berge-cycles (t = 2,[1]) and the tight cycle (t = r see e.g. [11] or
[14]). A Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian
Berge-cycle. It is important to keep in mind that, in contrast to the case r = t = 2,
for r > t ≥ 2 a Berge-cycle C (r,t)

� , is not determined uniquely, it is considered as an
arbitrary choice from many possible cycles with the same triple of parameters.

In this paper, continuing investigations from Refs. [3,7,8] and [9], we study long
Berge-cycles in hypergraphs. In Ref. [3] (by generalizing an earlier conjecture from
Ref. [7]) the following conjecture was formulated.

Conjecture 1 For any fixed 2 ≤ c, 2 ≤ t ≤ r satisfying c + t ≤ r +1 and sufficiently
large n, if we color the edges of K (r)

n with c colors, then there is a monochromatic
Hamiltonian t-tight Berge-cycle.

In Ref. [3] it was proved that if the conjecture is true it is best possible, since for
any values of 2 ≤ c, t ≤ r satisfying c + t > r + 1 the statement is not true. The
conjecture was proved for r = 3 in Ref. [7]. The asymptotic form of the conjecture
was proved for r = 4 and t = 2 in Ref. [7] and for every r and t = 2 in Ref. [9]—in
both papers the Regularity Lemma was used. In this paper we apply an elementary
approach and we study the r = 4 case. We prove the conjecture in both cases (c = 3,
t = 2 and c = 2, t = 3) with a constant error term. It seems that the methods applied
in this paper fail for r ≥ 5.

Theorem 1 Suppose that a 3-coloring is given on the edges of K (4)
n , where n ≥ 140.

Then there is a monochromatic Berge-cycle of length at least n − 10.

This sharpens the asymptotic result obtained earlier for r = 4 in Ref. [7].

Theorem 2 Suppose that a 2-coloring is given on the edges of K (4)
n , where n ≥ 15.

Then there is a monochromatic 3-tight Berge-cycle of length at least n − 10.

2 Proofs

Proof of Theorem 1 Suppose that c is a 3-coloring on the edges of K = K (4)
n , where

n ≥ 140. Color i ∈ c(x, y) on the edge xy of G = �(K) is a good color if at least
3 edges of color i contain {x, y} in K. We consider G with a new coloring c∗ where
c∗(x, y) ⊆ c(x, y) is the set of good colors on xy. Assuming that

(n−2
2

)
> 6, i.e.

n > 6, every edge of K has at least one color in c∗.
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Suppose first that some edge xy of G = �(K) is colored (under c∗) with a single
color, say with color 1. We claim that there is a Hamiltonian Berge cycle in K in
color 1. Indeed, the definition of xy implies that at most four edges of K containing
{x, y} are not colored with 1. Since for n > 10 we have n − 6 > (n − 2)/2, the color
1 subgraph of H = G \ {x, y} satisfies Dirac’s condition (see Ref. [12]), and thus
one can easily find a Hamiltonian path P = {y1, . . . yn−2} of color 1 in H such that
there are two extra edges y1 yp and yn−2 yk of color 1 from the endpoints of P with
2 < p, k < n − 3. Now the cyclic ordering x, y1, y2, . . . , yn−2, y defines a Hamil-
tonian Berge-cycle in color 1 with the following edge assignments. For x, y1 assign
en = {x, y1, yp, y}. For y j , y j+1 (1 ≤ j ≤ n − 3) assign e j = {x, y, y j , y j+1}, for
yn−2, y assign en−2 = {yn−2, y, yk, x}, and finally for x, y we can assign en−1 as any
edge of color 1 containing x, y and different from all other ei -s.

Now we may assume that c∗ colors all edges of G with one of the four color sets:
12, 13, 23, 123.

Lemma 1 Assume that there is a monochromatic Hamiltonian cycle C in G under
coloring c∗. Then there is a Hamiltonian Berge-cycle in K under coloring c.

Proof Assume that C = x1, x2, . . . , xn is a Hamiltonian cycle of G in color 1 (under
c∗). Then, following the cyclic order of vertices on C , let A j be the set of edges of
K in color 1 containing x j , x j+1. Since each A j has at least three elements and no
element of A j covers more than three consecutive pairs of C , Hall’s theorem ensures
a one-to one correspondence from the consecutive pairs to the sets A j . This clearly
defines the required Hamiltonian Berge-cycle. ��

We need some observations on the structure of the coloring c∗. Let x be an arbitrary
vertex, define U12(x), U13(x), U23(x), U123(x) as the sets to which x is connected in
color sets 12, 13, 23, 123 respectively. When x is implicit, for simplicity we omit the
dependence on x . Define

Bi = {x ∈ V (G)|Ui j = Uik = ∅, U jk 
= ∅},

where i, j, k are the elements of {1, 2, 3} in some order. Observe that the Bi ’s are pair-
wise disjoint, within the Bi ’s every edge of G has color set { j, k} or 123, and for j 
= i ,
an edge of G from Bi to B j has color set 123. Set B4 = {x ∈ V (G)||U123| ≥ n/2}.
Lemma 2 Suppose that ∪4

i=1 Bi = V (G). Then there is a monochromatic Hamilto-
nian cycle G under the coloring c∗.

Proof Suppose w.l.o.g that |B1| ≤ |B2| ≤ |B3|. We show that there is a Hamiltonian
cycle in color 1. Denoting the degree of a vertex v in color i by di (v), we have that
d1(v) ≥ |B2| + |B3| ≥ |B2| + |B1| if v ∈ B1, d1(v) = n − 1 if v ∈ B2 ∪ B3 and
d1(v) ≥ n

2 if v /∈ ∪3
i=1 Bi (since in the latter case v ∈ B4). These conditions immedi-

ately imply—through either Pósa’s or Chvátal’s condition (see Ref. [12]) that there is
a Hamiltonian cycle. ��

Thus, we may assume that there exists x ∈ V (G) \ ∪4
i=1 Bi (otherwise Lemmas 1

and 2 would finish the proof). Set U = V (G) \ ({x} ∪ U123) and assume w.l.o.g.
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|U23| ≤ |U12| ≤ |U13|. Since x /∈ B2 we have U12 
= ∅ and x /∈ B4 implies that
|U | ≥ �n/2
.

We show that |U23| ≤ 1. Indeed, otherwise we may select two two-element sets
A23 ⊆ U23, A12 ⊆ U12 and a five-element set A13 ⊆ U13. (The condition |U | ≥ �n/2

implies that |U13| ≥ �n/2


3 ≥ 5 so A13 can be defined.) For every fixed u23 ∈ A23 there
are at most two edges of color 1 among the edges of K in the form {x, u23, x12, x13}
where x12 ∈ A12, x13 ∈ A13 are arbitrary. Repeating this argument for fixed u12, u13
we get that there are at most 4+4+10 = 18 edges of K in the form {x, x23, x12, x13}.
However, there are 2 × 2 × 5 = 20 such edges giving a contradiction.

Now we fix y ∈ U12, z ∈ U13 and define a graph H on the vertices of V (G) \
(U23 ∪ {x, y, z}) as follows. Let uv ∈ E(H) be an edge of H in the following cases:
(1) u ∈ U13, c({x, y, u, v}) = 1, in this case the edge is called an xy-edge; (2)
u ∈ U12, c({x, z, u, v}) = 1, now the edge is called an xz-edge. Set |V (H)| = N and
note that N ≥ n − 4.

Lemma 3 The graph H has a cycle C of length at least N − 6 in color 1.

Proof Set

T12 = U12 ∩ V (H), T13 = U13 ∩ V (H), T = U ∩ V (H), T123 = U123.

Consider an arbitrary vertex u ∈ T12 ∪ T13. Set w = z if u ∈ T12 otherwise set w = y.
Apart from at most four choices of v ∈ V (H) the edge {x, u, w, v} of K is of color
1. Thus, every vertex of T ⊆ V (H) has degree at least N − 5 in H . Consider the set
S ⊆ T123 of vertices whose degrees are at most 11 in the bipartite subgraph [T, T123]
of H . Observe that

|T |(|T123| − 5) ≤ |E[T, T123]| ≤ (|T123| − |S|)|T | + 11|S|
implying that |S| ≤ 6 if 66 ≤ |T | and this is true since |T | > �n/2
 − 4 > 65. Now
consider the subgraph F of H induced by T ∪ (T123 \ S). In fact, we may assume that
|S| = 6 since deleting 6 − |S| vertices does not influence the following observation:
each vertex v ∈ T has degree at least N − 11 in F and each vertex v ∈ T123 \ S has
degree more than 11. Now we can apply Chvátal’s condition (see Ref. [12]) to prove
that there is a Hamiltonian cycle in F ⊂ H . Indeed, with M = |V (F)|, we have to
show that dk ≤ k < M

2 implies that dM−k ≥ M − k where d1 ≤ d2 ≤ · · · ≤ dM

is the degree sequence of F . This is immediate because the number of vertices with
possibly small degrees (i.e. v ∈ T123 \ S) is at most

|U123| − 6 ≤
⌊n

2

⌋
− 6 ≤

⌊
N + 4

2

⌋
− 6 =

⌊
M + 10

2

⌋
− 6 =

⌊
M

2

⌋
− 1. (1)

Indeed, let us take a k for which dk ≤ k < M
2 . 11 < dk ≤ k implies that k > 11. But

then from (1) we get

dM−k ≥ d� M
2 � ≥ N − 11 ≥ M − 11 > M − k,

as desired. ��
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To finish the proof of Theorem 1, observe that the cycle C obtained from Lemma 3
defines a Berge-cycle if its xy-edges and xz-edges are extended (with {x, y} or with
{x, z} to edges of K. Thus, we have a Berge-cycle of length N − 6 ≥ n − 10 as
required. ��
Proof of Theorem 2. Suppose that a 2-coloring c is given on the edges of K = K (4)

n .
Let V be the vertex set of K and observe that c defines a 2-multicoloring on the com-
plete 3-uniform hypergraph T with vertex set V by coloring a triple T with the colors
of the edges of K containing T . We say that T ∈ T is good in color i if T is contained
in at least two edges of K of color i (i = 1, 2).

Lemma 4 Let G = �(K). Every edge xy ∈ E(G) is in at least n − 4 good triples of
the same color.

Proof Consider an edge xy in G and the edges of K containing both x and y. Coloring
c induces a 2-coloring c′ on W = V \{x, y}. Applying a result of Bollobás and Gyárfás
[2], there exists a subgraph H with at least |W | − 2 = n − 4 vertices such that H is
2-connected and monochromatic under c′, say in color 1. In particular, every vertex
of H has degree at least two in color 1. Thus, for every vertex z of H , {x, y, z} is a
good triple in color 1. ��

Using Lemma 4, we can define a 2-coloring c∗ on the shadow graph G = �(K) by
coloring xy ∈ E(G) with the color of the (at least n − 4) good triples containing xy.
Using a well-known result about the Ramsey number of even cycles ([4,15]) there is
a monochromatic even cycle C of length 2t where 2t = � 2n

3 � − 6 or 2t = � 2n
3 � − 7.

(In fact there is a bit longer cycle, but that is too long for our purposes.) Assume that
C is in color 1. Label the edges of C as e j = {p j , p j+1}, j = 1, 2, . . . , 2t . We use
here index arithmetic mod 2t .

We will find a large Berge-cycle in color 1 with a greedy procedure as follows. By
Lemma 4, for each i ∈ [2t] there is a set Ai ⊂ V such that |Ai | ≥ n − 4 and the triple
Ti = {pi , pi+1, x} is good in color 1 for every x ∈ Ai .

We claim that we can find a set {v j ∈ A2 j−1 \ V (C)} of t distinct vertices for
j ∈ [t] with the following property: for every j ∈ [t],

v j ∈ A2 j−2 ∩ A2 j−1 ∩ A2 j . (2)

To prove the claim, assume that for some h, 1 ≤ h < t we have a set R =
{v1, . . . , vh} of h distinct vertices such that {v j ∈ A2 j−1 \ V (C)} for 1 ≤ j ≤ h,
satisfying (2) and there are at least seven vertices in S = V \ (V (C) ∪ R). We show
that vh+1 can be defined so that property (2) is preserved. Indeed, each of the three
sets A2h, A2h+1, A2h+2 intersects S in at least |S| − 2 elements, therefore |S| ≥ 7
implies that U = S ∩ A2h ∩ A2h+1 ∩ A2h+2 
= ∅. Thus, we can select vh+1 ∈ U . Now
we only have to observe that at each step of the whole process defining {v1, . . . , vt },

|S| ≥ n − 3t ≥ n − 3

2

(⌈
2n

3

⌉
− 6

)
≥ 7,

and the claim is proved.
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Now we finish the proof by claiming that the cyclic permutation

P = p1, v1, p2, p3, v2, p4, . . . , p2t−1, vt , p1

determines a Berge-cycle. Indeed, from the definition of v j , every triple of three con-
secutive vertices on P is good in color 1. Therefore, at least two edges K of color 1 are
available to cover a consecutive triple. However, no edge of K can cover more than
two consecutive triples of P . Thus, by Hall’s theorem, there is a matching from the
consecutive triples of P to the set of color 1 edges of K containing them. The length
of this Berge-cycle is 3t ≥ 3

2 (� 2n
3 � − 7) ≥ n − 10. ��
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