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ABSTRACT
Traditional database systems are built around the query-at-a-time

model. This approach tries to optimize performance in a best-effort
way. Unfortunately, best effort is not good enough for many mod-
ern applications. These applications require response time guar-
antees in high load situations. This paper describes the design of
a new database architecture that is based on batching queries and
shared computation across possibly hundreds of concurrent queries
and updates. Performance experiments with the TPC-W bench-
mark show that the performance of our implementation, SharedDB,
is indeed robust across a wide range of dynamic workloads.

1. INTRODUCTION
Over the last decades, tremendous efforts have been invested into

query optimization with the goal of achieving the best possible per-
formance for each individual query in a query-at-a-time processing
model. To this end, sophisticated query compile-time techniques
(e.g., cost-based optimization [24]) and many kinds of database
operator implementations (e.g., [26]) have been developed. While
highly effective, unfortunately, all these approaches are not suffi-
cient to meet common requirements of modern database applica-
tions if used in a query-at-a-time model. Often, modern applica-
tions need to meet service-level agreements (SLAs) that involve a
maximum response time for, say, 99 percent of the queries. Further-
more, such SLAs may specify isolation levels and/or data freshness
guarantees for workloads that involve queries and updates. The
query-at-a-time processing model is not good to meet such SLAs
because it may result in resource contention and interference in
high load situations.

This paper describes a system, SharedDB, specifically designed
to meet SLAs in high load situations for complex and highly dy-
namic workloads. SharedDB is based on a new processing model
that batches queries and updates in order to share computation across
these queries and updates. The key idea of SharedDB can be best
described using an example involving two queries. The first query
asks for all orders of German customers. The second query asks
for all orders of Swiss customers in the Year 2011. SharedDB ex-
ecutes these two queries in a single customer-order join operation

joining all orders with the union of German and Swiss customers
and routing the results of the big join to the corresponding queries.

At a first glance, SharedDB looks like a bad idea. In the exam-
ple, SharedDB performs extra work when compared to a traditional
query-at-a-time approach. Specifically, SharedDB compares Swiss
customers and orders of the Year 2010 as part of its join; such a
combination is never considered when processing the two queries
individually and aggressively pushing down predicates below the
joins. Because of this, SharedDB is likely to perform poorly in low-
throughput situations. SharedDB, however, was designed to han-
dle high throughput with response time guarantees. If hundreds of
concurrent queries involving a customer-order join need to be pro-
cessed, then there will be a significant overlap between the sets of
customers and orders relevant for these queries. The more queries,
the higher the overlap, even if the queries involve totally different
kinds of predicates on the Customer and Order tables. Further-
more, SharedDB defines an upper bound for the amount of work
that needs to be carried out for a set of concurrent customer-order
join queries. In the worst case, the whole customer table needs to be
joined with the whole order table, independently of the number of
concurrent queries processed. In contrast, the effort of a traditional,
query-at-a-time system grows linearly with the number of queries.
This way, SharedDB is able to maintain response time guarantees
in high-throughput situations.

SharedDB adopts many ideas that were developed in the context
of multi-query optimization and data stream processing. In particu-
lar, SharedDB adopts some of the ideas developed as part of QPipe
[15], CJoin [3, 4] and DataPath [1]. These systems, however, are
only effective for certain kinds of queries and, thus, their applica-
tion is limited to OLAP workloads with complex queries. In con-
trast, this paper will show that the design principles of SharedDB
are general and can be applied to any kind of query and update. As
a result, SharedDB is able to process OLTP workloads in addition
to OLAP and mixed workloads. It is this generality and its ability
to meet SLAs in high load situations that distinguishes SharedDB
from its closest competitors. Technically, it is the batch-oriented
query processing model with a new way to share computation that
makes SharedDB unique.

We have carried out comprehensive experiments using the TPC-
W benchmark, thereby comparing the performance of SharedDB
with that of MySQL and a top-of-the-line commercial relational
database system. The results show that SharedDB is able to sustain
twice the throughput of the top-of-the-line database system and al-
most eight times the throughput of MySQL. These results are sur-
prising since the traditional database systems are much more ma-
ture and were specifically tuned to achieve highest possible through-
put for benchmarks such as TPC-W. Furthermore, SharedDB does
not apply any of the recently developed optimizations to achieve
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particularly good performance for OLTP workloads (e.g., [27]). We
could not carry out experiments with QPipe, CJoin, or DataPath
because these systems are not publicly available. Furthermore, it
is not clear if and how the techniques used in these systems can be
applied to transactional workloads such as TPC-W. Nevertheless,
this paper contains a careful discussion of the differences and the
advantages of SharedDB as compared to these systems.

The remainder of this paper is organized as follows: Section 2 re-
visits related work. Section 3 presents the main ideas of SharedDB
and discusses in more detail the differences to other related ap-
proaches to share computation. Section 4 gives implementation de-
tails. Section 5 discusses the results of performance experiments.
Section 6 contains conclusions and avenues for future work.

2. RELATED WORK
As mentioned in the introduction, SharedDB is based on shared

computation that has recently been studied in several studies to op-
timize OLAP workloads. The idea of shared computation was first
devised in the Eighties in the context of multi-query optimization
(MQO) [11, 25]. The key idea of MQO is to detect common subex-
pressions in concurrently executed queries and to evaluate these
common subexpressions only once. One problem of MQO is its
limited applicability: In many workloads (in particular, transac-
tional workloads such as TPC-W), there are not many opportunities
to factor out common subexpressions. Another problem of classic
MQO is that it is quite costly to detect common subexpressions.
For these two reasons, MQO has been mostly applied to complex
OLAP queries that involve the processing of large amounts of data
and involve large common subexpressions (e.g., the scan of a fact
table in a data warehouse) so that the investment of detecting com-
mon subexpressions is offset by the benefits of shared computation.
As explained in the example of the introduction, SharedDB is able
to carry out shared computation without common subexpression
detection and is, thus, applicable to OLTP and mixed workloads.

Another problem of MQO is the synchronization of the execution
of queries with common subexpressions when queries are submit-
ted at different moments in time. To this end, the QPipe system de-
veloped a new query processing model that allows to exploit MQO
if the queries were executed within a certain time frame [15]. The
big advantage of this approach is that sharing does not slow down
queries if the queries arrive at different points in time. Another
contribution of the QPipe project is to differentiate between data
sharing and work sharing and to provide a comprehensive taxon-
omy on the different forms of sharing for different kinds of database
operators. Opportunities for data sharing arise in scan operations
through base data; i.e., shared scans. Opportunities for work shar-
ing in QPipe, however, only arise in the presence of common sub-
expressions. In order to unfold its full potential, therefore, QPipe
also relies on common subexpression detection and has, thus, only
been studied for OLAP workloads, just as classic MQO techniques.

Based on the QPipe work, two recent systems have exploited
work sharing without the detection of common subexpressions:
CJoin [3, 4] and DataPath [1]. SharedDB falls into this same class
of systems so that CJoin and DataPath can be viewed as SharedDB’s
closest competitors. Indeed, there are a number of similarities in
the design, but there are also fundamental differences. At the core
of CJoin and DataPath are special, dedicated join algorithms in
order to facilitate shared computation in a pipelined query exe-
cution model à la QPipe. In contrast, SharedDB is based on a
batched query execution model. Furthermore, SharedDB uses stan-
dard query processing techniques such as index nested-loops, hash-
ing and sorting for any kind of operator of the relational algebra
(e.g., joins, grouping, ranking, and sorting) whereas CJoin and Dat-

aPath are limited to shared computation of joins and to cases in
which the particular CJoin and DataPath join methods show good
performance. Again, this constrained applicability of the CJoin
and DataPath techniques has limited these systems to process only
OLAP workloads so far, whereas SharedDB can be applied to trans-
actional (i.e., OLTP), OLAP, and mixed workloads such as those
modeled in the TPC-W benchmark. Furthermore, SharedDB can
give response time guarantees which QPipe and DataPath cannot
make. CJoin can only give response time guarantees under certain
circumstances; i.e., if the bulk of the work is carried out as part
of the Star join pipeline and not as part of other joins or as part
of grouping, sorting, or aggregation. Section 3 discusses the com-
monalities and differences between SharedDB and QPipe, CJoin,
and DataPath in more detail when the main ideas of SharedDB are
described. In addition, Section 3.5 contains a detailed discussion
of the advantages and disadvantages of SharedDB as compared to
these related systems.

A specific problem of shared computation is that it may result
in deadlocks in a pull-oriented query processor [6]. This problem
can be alleviated by a push-oriented query processing approach
which is the approach adopted by SharedDB. This push-based
processing model has its roots in data stream processing technol-
ogy; e.g., YFilter [8]. Even though it is applied to a totally dif-
ferent query processing paradigm, SharedDB has a number of ad-
ditional commonalities with the YFilter approach: Just as YFil-
ter, SharedDB compiles a set of queries into a single query plan
and continuously uses the same plan for different generations of
queries. In most applications, this approach becomes possible be-
cause the kinds of queries are known in advance and running an ap-
plication over time involves executing the same queries with differ-
ent parameter settings. The implementation of the TPC-W bench-
mark, for instance, involves about thirty different JDBC Prepared-
Statements that are executed with different parameter settings. The
idea of such an always-on-query plan for short-lived queries was
also adopted in the CJoin work [3] and is one of the commonalities
between SharedDB, CJoin, and DataPath.

A push-based, dataflow architecture for query processing has
also been adopted in the Eddies project [2]. While SharedDB and
Eddies are also similar in a number of other technical details, the
two systems were designed for totally different purposes. Eddies
were designed for run-time adaptivity in situations in which the
query optimizer cannot make good decisions at compile-time. Ed-
dies, however, cannot provide any response time guarantees. In
contrast, SharedDB is static and does not adapt the query plan at
runtime. As a result, SharedDB will not always achieve the best
possible response time for any given query, but SharedDB is able
to provide response time guarantees which is the primary goal of
this work.

Of course, there is a great deal of other related work on optimiz-
ing databases to meet SLAs in high-throughput situations. Exam-
ples include indexing, materialized views, and the design of advi-
sors to get the best physical database design for a given workload
[5]. Other examples include caching (e.g., [7]), reuse of query re-
sults (e.g., [18]), or optimization techniques that control the data
placement in a distributed system (e.g., [20]). Various aspects of
shared scans, one particular building block exploited in SharedDB
(and QPipe, CJoin, and DataPath), have been studied in [10, 29,
21, 28]. Finally, the idea of bounded computation for constant-time
query processing was pioneered in the Blink system [22].

3. SYSTEM OVERVIEW
This section presents the key ideas that combined provide the

unique performance and predictability characteristics of SharedDB
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Result Set with Redundancy (First Normal Form)

Row Id Name Other Attr. query id

143 John Smith ... 1
148 Kate Johnson ... 3
143 John Smith ... 2
148 Kate Johnson ... 2
143 John Smith ... 3

Compact Result Set (NF2)

Row Id Name Other Attr. query id

143 John Smith ... 1, 2, 3
148 Kate Johnson ... 2, 3

Figure 1: Query-Data Model Variants

for a large range of different workloads: the data-query model,
the global query plan, batched query execution, and shared oper-
ators. Furthermore, this section contains a detailed comparison of
SharedDB versus its closest competitors. Implementation details
of SharedDB are described in Section 4.

3.1 Data-Query Model
SharedDB features a novel data-query model to represent (shared)

intermediary query results. This data-query model extends the re-
lational data model by adding an additional column which keeps
track of the identifiers of queries that are potentially interested in a
tuple. Specifically, the schema of an (intermediary) Relation R is
represented as follows in this data-query model:

{Ra, Rb, ..., Rn,query id}

Here, Ri are the (normal) attributes of R. The query id attribute
uniquely identifies each query that is currently active in SharedDB.
As will be shown in the following sub-sections, the query id
can be used in relational operators just as any other attribute; for
instance, it could be part of the join predicate between two relations
(Section 3.3).

In a traditional, “first normal form” relational database system,
the implementation of the data-query model would result in a great
deal of redundancy. If a tuple is relevant for multiple queries, mul-
tiple copies of this tuple would have to be generated and processed;
one for each relevant query. As a result, the complexity of query
processing and the main memory footprint would grow linearly
with the number of queries. The goal of SharedDB is to do bet-
ter. Therefore, SharedDB implements this column internally as a
set-valued attribute (i.e., using the NF2 model). As a result, an
operator (e.g., a predicate) must be applied to a tuple only once
independent of the number of concurrent queries and updates that
may have subscribed to that tuple. Furthermore, the main memory
footprint is reduced significantly. For illustration, Figure 1 shows
examples of both formats.

There is a question of how to implement set-valued attributes
most efficiently. In the literature, two data structures have been
proposed: (a) bitmaps and (b) lists. For SharedDB, we chose to use
a list-based implementation because that turned out to be the more
space and time efficient option in all our experiments.

3.2 Global Query Plan
Instead of compiling every query into a separate query plan,

SharedDB compiles the whole workload of the system into a sin-
gle global query plan. The global query plan may serve hundreds
or thousands of concurrent SQL queries and updates and may be
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Query SQL

Q1 SELECT COUNTRY, SUM(USER ID)
FROM USERS GROUP BY COUNTRY

Q2 SELECT * FROM USERS U, ORDERS O
WHERE U.USER ID = O.USER ID
AND U.USERNAME = ? AND O.STATUS = ’OK’

Q3 SELECT * FROM USERS U, ORDERS O, ITEMS I
WHERE U.USER ID = O.USER ID
AND O.ITEM ID = I.ITEM ID
AND I.AVAILABLE < ?

Q4 SELECT * FROM ORDERS O, ITEMS I
WHERE O.ITEM ID = I.ITEM ID
AND O.DATE > ?

ORDER BY I.PRICE

Q5 SELECT * FROM ITEMS I
WHERE I.CATEGORY = ?
ORDER BY I.PRICE

Figure 2: Example of a Global Query Plan

reused over a long period of time, possibly for the entire lifetime
of the system. As stated in Section 2, this approach was pioneered
in the context of continuous query processing in data stream pro-
cessing systems (e.g., YFilter [8]) and first applied to traditional,
short-lived queries as part of the CJoin system [3].

Figure 2 shows an example of such a global query plan. In this
example, four database operators are executed on three tables to
evaluate five different query types. Figure 2 shows how different
kinds of queries can share operators in different ways. For instance,
both Q2 and Q3 involve a join between the Users and Orders table;
consequently, this join is shared between queries of these two types
(denoted as 11 in Figure 2). Likewise, queries of types Q3 and Q4

share the join between the Orders and Lineitems table. The sort on
price can be shared between queries of types Q4 and Q5.

Just as important as sharing across different types of queries is
sharing within the same type of query. For instance, the plan shown
in Figure 2 could be used to execute hundreds of concurrent queries
of type Q4 (in addition to hundreds of concurrent queries of the
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other types), all with different parameter settings for the O.DATE
predicate. All these concurrent Q4 queries would share the same
join and sort operators so that only a single big join and sort would
be carried out for all these Q4 queries.

To understand the execution model of SharedDB, it is impor-
tant to define what concurrent means. As mentioned in Section
2, SharedDB facilitates the sharing of operators in a very differ-
ent way than QPipe, CJoin, DataPath, and other related systems
that support operator-level sharing of computation. These systems
start executing each query as soon as it arrives. Unfortunately, this
approach limits the opportunities to share computation for many
database operators as observed in [15]. In order to overcome these
limitations, CJoin and DataPath devise specific join methods. In
contrast, SharedDB batches queries and updates; it is this batching
that enables SharedDB to exploit shared computation in a scalable
and generic way, thereby making use of traditional, best-of-breed
algorithms to implement joins, sorting, and grouping.

SharedDB batches queries and updates in the following way:
While one batch of queries and updates is processed, newly ar-
riving queries and updates are queued. When the current batch
of queries and updates has been processed, then the queues are
emptied in order to form the next batch of queries and updates.
Metaphorically, SharedDB works like the blood circulation: With
every “heartbeat”, tuples are pushed through the global query plan
in order to process the next generation of queries and updates. For
OLTP workloads, these heartbeats can be frequent in the order of
one second or even less.

The queueing of queries is fine-grained per input relation and
query operator: In the example of Figure 2, queries of Type Q1, Q2,
and Q3 would queue for reading the Users relation, queries of Type
Q2, Q3, and Q4 would queue for reading the Order relation and so
on. Then User tuples (generated for all three query types) would
queue for the Γ and 11 operators which in turn would process
these tuples in batches so that all User tuples belonging to a spe-
cific query are processed within a single batch. Pipelines are only
created for certain operators; for instance, an operator can stream
its output into the build phase of a hash join and even then, tuples
are processed in batches following a vector model of execution for
better instruction cache locality [14, 17] (Section 4).

SharedDB works particularly well if most query types are known
in advance; e.g., as part of JDBC PreparedStatements. In this case,
SharedDB can generate a global query plan for all the query types
known in advance and exploit sharing in the best possible way for
these queries. Ad-hoc queries need to be processed individually.
Nevertheless, even ad-hoc queries can take advantage of sharing.
For instance, an ad-hoc query that asks for the ten users that have
placed the most orders could share 11 with all queries of type Q2

and Q3 in the global plan of Figure 2. The Top 10 operation of that
ad-hoc query, however, would have to be compiled and executed
separately just as in any other traditional database system. In some
sense, all operators of the global plan can be regarded by the query
compiler as materialized views which are available to speed-up the
processing of ad-hoc queries. This observation has also been made
in the QPipe project [15].

3.3 Shared Join Plans
One of the key innovations of SharedDB is the way it processes

joins, sorts, and group-bys. Figure 3 shows how SharedDB pro-
cesses joins for three different queries (Q1, Q2, Q3). All three
queries involve a join between tables R and S, but each query has
separate predicates on the S and R tables. In the first step, each
query is parsed and compiled individually, thereby pushing down
predicates. This step is typically referred to as logical query op-

Q1

SELECT *
FROM R,S 
WHERE 
  R.id = S.id
  AND R.city = ?
  AND S.date = ?

SELECT *
FROM R,S 
WHERE 
  R.id = S.id
  AND R.name = ?
  AND S.price < ?

SELECT *
FROM R,S 
WHERE 
  R.id = S.id
  AND R.addr = ?
  AND S.date > ?

Traditional Query Processing

Set of Queries

Shared Query Processing

R S

σ σ
R.id = S.idQ1 Q1

Q2

R S

σ σ
R.id = S.idQ2 Q2

Q3

R S

σ σ
R.id = S.idQ3 Q3

σ
Q1

σ
Q2

σ
Q3

σ
Q1

σ
Q2

σ
Q3

R S

UU

Γquery_id

Q1, Q2, Q3

R.id = S.id &&

R.query_id = 

S.query_id

Figure 3: Shared Join

timization [13]. The result of this logical optimization, one plan
for each query, is shown in the middle of Figure 3. In the sec-
ond step, the three individual query plans are merged into a single
global plan. That is, rather than processing three small joins (one
for each query), one big join is executed that meets the require-
ments of all three queries. Technically, the union of all R and S
tuples that the three queries are interested in are considered as part
of the join. Furthermore, the join predicate is amended, thereby
considering the query id. This way, an R tuple that is only rele-
vant for Query Q1 does not match an S tuple that is only relevant
for Query Q2. Finally, the routing of the join results to the relevant
queries is carried out using a grouping operator (Γ) by query id.

As stated in the introduction, this way to process joins sounds
like a bad idea at first glance: It is usually better to process a few
small joins than to process one big join. This approach only be-
comes advantageous if there are many (possibly hundreds) of con-
current queries and there is overlap in the tuples that need to be
processed for a set of queries. One particularly nice way in which
the global join plan of Figure 3 supports scalability with the num-
ber of concurrent queries is by making the query id part of the
join predicate. This way, the query id can be indexed; for in-
stance, a hash join could be used that builds a hash table on the
query id of S (see below). This observation shows nicely how
SharedDB achieves scalability by turning queries into data that can
be processed using traditional query processing techniques. This
is another key idea that SharedDB has adopted from data stream
processing systems.

Another crucial advantage of the global join plan of Figure 3
is that any join method can be used; e.g., hashing, sorting, index-
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based, and nested-loops. In particular, any parallel or cache-aware
join methods can be used (e.g., [19]). Furthermore, as observed
in the previous paragraph, either R.id = S.id or R.query id =
S.query id can be used as primary join predicates. If the latter, a
set-based join is carried out as studied in [16]. In our implemen-
tation, we use a simple hash table that maps a query id to a set
of pointers that reference the corresponding tuples. Again, this set
of pointers is implemented using a list data structure because this
particular join method is only beneficial if these sets are small. It
is even possible to use multi-dimensional join methods which are
commonly used in spatial and temporal database systems; e.g., [9].
In summary, SharedDB can always make use of the best-of-breed
algorithms. In contrast, the processing model of CJoin and DataP-
ath constrains the use of join methods used: In some cases, using
the dedicated join method of DataPath might show good perfor-
mance; in other cases, however, its performance may be terrible.
SharedDB makes use of multiple join methods for the same rea-
sons as traditional database systems.

In addition to supporting multiple join methods, SharedDB does
not constrain join ordering thanks to its flexible data-query model.
In Figure 2, for instance, the Orders / Items join (12) of Q3 could
be carried out before or after the join with Users (11). As a result,
the following join odering for Q3 would also be possible:

(Users 1 Orders) 1 Items

This join order for Q3 would also enable sharing 11 with Q2 and
12 with Q4, in the same way as the original join order for Q3

depicted in Figure 2. To share a join across queries, SharedDB
only fixes the join method and the inner and outer relation of the
join for all queries that are share the join.

Studying the details of the SharedDB query compiler and opti-
mizer is beyond the scope of this paper. Developing a sophisticated
cost-based optimizer is an important avenue for future work. We
believe that the two-step optimization approach shown in Figure
3 (i.e., determine join orders for each query individually and then
merge the plans for the individual queries into a single global plan)
will perform well for many workloads. However, it is conceivable
that an approach that optimizes the global plan for all queries in a
single pass results in better performance in certain cases.

3.4 Other Operators: Scan, Sort, Group-by
The idea shown in Figure 3 to process shared joins can also be

applied to process any other operator of the relational algebra. Fig-
ure 4 illustrates the principle for a shared sort using two example
queries and a few tuples of a Users table. Again, in theory, it is
better to have a few small sorts than one big sort, but sharing may
more than offset this effect. In this example, it is more efficient to
do one sort with four tuples than to do two sorts with three tuples
each. Obviously, the overlap increases with the number of queries.

The Top-N operator is an extension of the sort operator and can,
thus, benefit from sharing in a similar way as the sort operator.
In the SharedDB implementation, the shared Top-N operator first
sorts all the tuples that are relevant for all the active queries; thus,
the sorting is shared. Then, it filters the Top N results for each
query individually.

Like Top N, the Group-By operator is carried out in two phases.
In the first phase, the input tuples are grouped. Again, this phase
can be shared so that all the tuples that are relevant for all active
queries are grouped in one big batch. Also, any kind of grouping
algorithm (e.g., hashing or sorting) can be used for this purpose. In
the second phase, HAVING predicates and aggregation functions are
applied to the tuples of each group. Just as for Top N, this second
phase must be carried out for each query individually. Fortunately,

Shared Sort Queries
Query A: SELECT * FROM USERS

WHERE BIRTHDATE > 1980.01.01
ORDER BY NAME

Query B: SELECT * FROM USERS
WHERE ACCOUNT > 1000
ORDER BY NAME

Relation: USERS

Name Account Birthdate Query Ids
John Smith 3,000 1980.03.05 A, B

Kate Johnson 800 1976.04.11
Bill Harisson 1,230 1978.03.02 B

Nick Lee 540 1982.02.09 A
James Meyer 2,300 1981.03.09 A, B

Sorted Output

Name Account Birthdate Query Ids
Bill Harisson 1,230 1978.03.02 B
John Smith 3,000 1980.03.05 A, B

James Meyer 2,300 1981.03.09 A, B
Nick Lee 540 1982.02.09 A

Figure 4: Shared Sort

grouping is the most expensive part so that sharing can be applied
to reduce the cost of the most performance critical operation.

The storage manager of SharedDB provides two operators for
accessing tables: shared table scans and shared index probes. We
do not claim any novelty here. Shared table scans have been studied
extensively in previous work ([10, 29, 21, 28]) and SharedDB uses
the ClockScan algorithm proposed in [28]. Shared index probes
have also been studied in the past (e.g., [12]) and SharedDB simply
adopts the well established techniques in that domain, too. Both op-
erators generate tuples in the data-query model such as those shown
in Figure 1.

3.5 Discussion
This section summarizes the main advantages and disadvantages

of SharedDB in comparison to traditional, query-at-a-time systems
and other systems that exploit shared computation.

SharedDB vs. “query-at-a-time”. The main disadvantage
of SharedDB is that it adds latency to each query due to its batch-
based execution model. In contrast, traditional database system
start processing queries as soon as they are submitted by an appli-
cation. In the worst case, batching increases latency by a factor of
2: one cycle of queuing and one cycle of actual query processing.

The biggest advantage of SharedDB is that it is able to bound
computation and scales with the number of concurrent queries and
updates. In the worst case if there are many concurrent queries that
involve all the tuples of the whole database, SharedDB joins and
sorts the whole relations as part of the global query plan, indepen-
dent of the number of concurrent queries. This way, SharedDB can
give response time guarantees which is critical for many modern
applications to meet SLAs. For instance, if SLAs specify that all
queries must be processed within 3 seconds, then SharedDB would
provision enough CPU cores such that a batch of queries can be
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processed in at most 1.5 seconds in the worst case. All this is pre-
dictable and can be planned upfront: There is no interference and
resource contention between concurrent queries because SharedDB
schedules the data flow and the utilization of cores at compile-time
as part of its global plan. In contrast, the work carried out by tradi-
tional database systems grows linearly with the number of concur-
rent queries. Furthermore, traditional database systems allocate a
separate thread for each query and these threads might compete for
shared resources (e.g., the main memory bus or processor caches)
in an unpredictable and uncontrollable way.

As mentioned in Section 3.3, SharedDB might result in extra
work if the load on the system is light and there is little or no over-
lap in the data processed by the queries that share a common op-
erator. With an increasing load, however, the overlap increases. In
theory, if each Query Qi needs to process ni tuples, there are k
concurrent queries, n = Σk

i=1ni, and o is the number of tuples that
at least one query needs to process (o ≤ n), then SharedDB will
save work for an operator with complexity O(f(n)) if:

f(o) < Σi=1kf(ni)

For operators with linear complexity (e.g., table scans and joins un-
der certain circumstances, this equation is always fulfilled (unless
o = n which is the worst case for SharedDB). For operators with
a complexity of f(n) = n ∗ logn (e.g., sorts and certain joins),
the advantage of SharedDB depends on o and n: In such cases,
SharedDB will result in extra work in the worst case (o = n).
But, even in these bad cases, SharedDB maintains its property of
bounded computation and predictable performance.

SharedDB vs. “pipelined sharing”. The most significant
disadvantage of SharedDB as compared to other, recent approaches
to effect shared computation (e.g., QPipe, CJoin, and DataPath)
is again that SharedDB adds latency due its batched processing
model. In contrast, QPipe, CJoin, and DataPath have a continu-
ous query processing model. The big advantage of this batched
processing model in concert with the special way in which joins
and other operators are processed, is its generality to any kind of
operator of the relational algebra, any kind of algorithm (e.g., join
method), and to the processing of updates. This generality enables
SharedDB to process any kind of workload (OLTP, OLAP, and
mixed) without any special tuning, whereas QPipe, CJoin, and Dat-
aPath have so far only been shown to work well for OLAP work-
loads with queries that each involve processing a large portion of
the entire database. As observed in the QPipe work [15], the kinds
of sharing are limited depending on the query operator in a contin-
uous query processing model. As a result, CJoin and DataPath rely
on specific, dedicated join methods in order to carry out shared join
computation; other operators (e.g., sorting and grouping) need to be
carried out for each query individually in these systems. Further-
more, these dedicated join methods only show good performance
for specific kinds of workloads. Just as a traditional database sys-
tem, SharedDB supports multiple join methods in order to adapt to
different kinds of workloads.

A specific advantage of SharedDB as compared to QPipe and
DataPath is its ability to meet SLAs and bound the response time
of queries. Predictable performance is also supported in CJoin, but
only for star-join queries. Another advantage of the batched pro-
cessing model of SharedDB is that it supports concurrent updates
and strong consistency (e.g., Snapshot Isolation). Section 4 gives
more details on how updates are processed in SharedDB. Again,
updates and transaction processing have not been studied in the
context of QPipe and DataPath; CJoin does support concurrent up-
dates, but the model is more complicated than in SharedDB.

4. IMPLEMENTATION DETAILS
This section describes a number of implementation details of

SharedDB that will help the reader get a better understanding of
the system.

4.1 Query Model
As described in Section 3, SharedDB evaluates queries using a

data flow network of always-on database operators. There are no
individual query plans and instead a global plan is always active.

Every SharedDB query describes an acyclic path in the data flow
network. As an example, Figure 5 shows a possible representation
of Q1 of Figure 2. In this example, the GroupBy operator receives
a query from the Output operator. In order to execute it, another
query is issued to the TableScan operator. Result tuples are gener-
ated by the TableScan, passed to the GroupBy operator and finally
sent to the clients.

Operator Configuration
1. TableScan USERS WHERE LAST LOGIN > 2011.01.01

2. GroupBy GROUP(USERS.COUNTRY)

SUM(USERS.ACCOUNT)

3. Output Network, TCP Port 5843

Figure 5: An Example of a Query in SharedDB

4.2 Operators
Shared operators are designed to evaluate a number of queries

concurrently by processing them in cycles. Every cycle evaluates
the set of active queries or subqueries. Any additional queries that
arrive after the cycle has started, are queued and will be evaluated
during the next cycle.

Algorithm 1 shows an abstract SharedDB operator that processes
queries in cycles. At the beginning of the cycle, the operator de-
queues the pending queries and activates them by issuing their sub-
queries to the respective operators. Then it receives the generated
result tuples they generated, processes them and forwards the pro-
cessed output to the issuers of the queries. For example, in the case
of a filter operator, like SQL LIKE, the ProcessTuple function
tests the tuple against the LIKE expression. If it matches, the result
tuple is pushed to the next operator in the pipeline.

Blocking operators, such as the SORT operator, can use the func-
tion ProcessTuple to append the tuple to a buffer structure (i.e.,
a vector). The same buffer structure is used for all the queries that
belong to the same batch. In this case, no results are produced from
ProcessTuple. Once all the result tuples have been received, the
buffer structure is sorted and it is pushed to the consumers as part
of the SendEndOfStream function.

4.3 Runtime Configuration
All database operators are executed in a separate hardware con-

text. If there are enough CPU cores in the system, each database
operator is assigned to a different CPU core, using hard processor
affinity. This guarantees that the threads do not migrate between
processors, allowing for optimal instruction cache locality. Addi-
tionally, the binding of operators to physical CPU cores allows for
optimal use of NUMA (non-uniform memory access) hardware ar-
chitectures. The local stack and heap of every operator is allocated
on memory that has the minimum NUMA distance. As a result
CPUs never access each other’s local memory except for passing
operation results, giving maximum bandwidth and minimum ac-
cess latency where it matters: during query processing.
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Algorithm 1: Skeleton of a SharedDB Operator
Data: SyncedQueue iqq; // incoming queries queue
Data: SyncedQueue irq; // incoming result tuples queue
while true do

Array aq ← ∅ ; //Array of active queries
//Operators that will receive the produced results
Array consumers← ∅ ;
//Activate all queries in the incoming queue
while ¬IsEmpty(iqq) do Put(aq, Get(iqq));
//Enqueue subqueries to underlying operators
foreach Query q ∈ ag do

Query subQuery ← GetSubQuery(q);
Operator op← GetOperator(subQuery);
EnqueueQuery(op, subQuery);
Operator consumer ← GetConsumer(q);
Put(consumers, consumer);

//Loop until all active queries have finished
Number queriesLeft← Size(aq);
while queriesLeft do

//Receive a tuple from the underlying operators
Tuple t← Get(irq);
//Process the incoming tuple. Depending on the

operator, this function might generate results
Tuple resultTuple← ProcessTuple(t);
if ¬IsNull(resultTuple) then

SendResult(consumers, resultTuple);
if IsEndOfStream(t) then

queriesLeft← queriesLeft− 1;

//Notify the consumers that processing has finished
SendEndOfStream(consumers);

Moreover, careful deployment of database operators across CPU
cores can further exploit modern multi core hardware architectures.
In these systems, CPU cores that are located on the same chip, share
components of the memory architecture, like the L3 cache and the
NUMA main-memory region. Database operators that access simi-
lar sets of records can be assigned to “adjacent” CPU cores in order
to benefit from the sharing of these memory components.

Our existing implementation supports all these optimizations.
Currently the assignment of operators to CPU cores has been per-
formed manually by examining the data access paths of every op-
erator. Future versions of SharedDB will support an optimizer to
automatically deploy operators to the proper CPU cores.

4.4 Storage Manager and Transactions
The current implementation of SharedDB is based on the Cres-

cando storage manager which has been successfully deployed to
serve demanding update-intensive operational business intelligence
workloads of the travel industry [28]. The Crescando storage man-
ager is currently in production at Amadeus, the market leader for
airline reservation.

In the version used for SharedDB, Crescando supports two ac-
cess methods for reading base tables: (a) (shared) table scan, and
(b) index probes. Table scans are carried out using the ClockScan
algorithm, described in detail in [28]. ClockScan batches queries
and updates in the same way as SharedDB and processes a whole
batch of queries and updates. As a result, the ClockScan algo-
rithm fits nicely into the overall SharedDB design. Performance
is increased by indexing the query predicates instead of the data
and performing query-data joins, a technique widely used in data-

stream processing. Updates are executed in arrival order as part of
the same scan that executes the queries. At this level, Crescando
guarantees that all select queries read a consistent snapshot of data.

The original Crescando storage manager presented in [28] only
supports full table scans using the ClockScan algorithm. For this
work, we extended Crescando and implemented B-Tree indexes
and index probe operators as an additional access path. These index
probe operators are used to implement regular scans (with predi-
cates) on base tables and to implement index nested-loops joins.
The logic of the index probe operator is similar to Algorithm 1.
Look-ups are enqueued in the pending query queue which is emp-
tied at the beginning of each cycle. During the cycle, the updates
are executed in the arrival order and multiple B-Tree look-ups are
used to evaluate all the select queries. Executing multiple look-ups
in one cycle allows for better instruction and data cache locality
[12]. Just as the (shared) full table scan, the index probe operator
guarantees that all select queries will read a consistent snapshot.

In general, transactions can be implemented in SharedDB in al-
most the same way as in any other database system. In partic-
ular, atomicity, consistency (i.e., checking integrity constraints),
and durability (i.e., recovery) are completely orthogonal to shared
query and update processing. With regard to isolation, the design of
SharedDB favors optimistic and multi-version concurrency control
because any kind of locking would result in unpredictable response
times due to lock contention and blocking. In particular, Snapshot
Isolation, as supported by the Crescando storage manager, comple-
ments nicely the batch-oriented shared query processing model of
SharedDB. With regard to durability, Crescando keeps all data in
main memory, but it also supports full recovery by checkpointing
and logging all data to disk.

Crescando supports horizontal partitioning of data and process-
ing several partitions with different cores in parallel. This feature of
Crescando, however, was not used in the performance experiments
presented in Section 5.

4.5 Replication
The design of our system allows replication in SharedDB. In

fact, not only storage operators but also database operators can be
replicated. Replicating a storage operator does not hurt consistency,
because updates are always executed in the same order as they were
received by the system. Moreover, data processing operators can
be also replicated in order to reduce the effects of bottlenecks and
hotspots in the data flow network. For instance, if a specific oper-
ator becomes a bottleneck, SharedDB can partition the load across
two replicas of the same physical operators. Similar to the deploy-
ment of database operators to CPU cores, replicating a specific op-
erator is a task that needs to be performed by an optimizer, based
on the global query plan.

5. PERFORMANCE EXPERIMENTS AND
RESULTS

In order to evaluate the performance of SharedDB, we carried
out a series of performance experiments. As baselines, we used
MySQL and a high-end commercial database product. We present
results of comprehensive workloads using the TPC-W benchmark
and the results of micro benchmarks with individual queries in or-
der to demonstrate specific effects.

5.1 Experimental Environment
The TPC-W benchmark models an online bookstore. It assesses

the performance of multi-tier information systems which contain a
database layer, a web server layer and a client layer. Every client
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Figure 6: Global Plan for the TPC-W Benchmark (Updates have been omitted for simplicity)

of the system is an emulated browser that issues http requests (web
interactions in TPC-W terminology) to the web server layer. Be-
tween two web interactions, there is a “thinktime” which is defined
by a negative exponential distribution and has an average of 7 sec-
onds. The web servers accept the clients’ requests and issue queries
to the database layer in order to retrieve the requested data. Each
client interaction is translated to a number of database queries, de-
pending on the type of the interaction. For instance, to execute the
“Home” web interaction (i.e., a user visits the application’s home
page), two queries have to be evaluated: The first query fetches a
set of promotion items, and the second query retrieves the profile
of the user.

In order to be compliant with the TPC-W specification, every
web interaction needs to be answered in a predefined amount of
time. The timeout depends on the type of the web interaction, rang-
ing from 2 seconds for small, point queries, up to 20 seconds for
long running analytical queries. Any web interaction that exceeds
this timeout, is not valid.

TPC-W contains a total of 14 different web interactions. Ev-
ery web interaction has a different probability of appearing in the
workload. The probabilities of all the web interactions are given
by the “workload mix”. TPC-W defines three different workload
mixes: Browsing, Shopping, and Ordering. The Browsing mix is a
read-mostly, search intensive workload with few updates and many
analytical queries. The Ordering mix is a write-intensive workload
with only a few analytical queries. The Shopping mix is somewhere
in between with some updates and some analytical queries.

In all experiments reported in this paper, we used a 48 core ma-
chine as a database server. This machine features four twelve-
core AMD Opteron 6174 (“Magny-Cours”) sockets and is equipped
with 128 GB of DDR3 1333 RAM. Each core has a 2.2 GHz clock
frequency, 128 KB L1 cache, 512 KB L2 cache, and is connected
to a shared 12 MB L3 cache. The operating system used in all ex-
periments was a 64-bit SMP Linux. The emulated browsers were
executed on up to eight client machines, each having 16 CPU cores
and 24 GB of DDR3 1066 RAM. The clients also ran the applica-
tion logic; that is, the clients issued queries directly to the database
server. This is a slight simplification of the TPC-W set-up and justi-

fied because we were interested in the performance of the database
system under high load. The client machines were connected to the
database server machine using a 1 Gbps ethernet.

We implemented the full TPC-W workload in SharedDB. Fig-
ure 6 shows the global query plan that was generated. It con-
sists of 26 database operators in addition to shared scans and in-
dex probe operators to access the nine base tables of the TPC-W
benchmark. The current version of SharedDB does not feature any
parallel join or sort algorithms and does not support partitioning or
replication of base data. As a result, we used at most 32 cores for
SharedDB, one core for each operator and nine cores for the shared
table scans. (Filter operators do not require a separate CPU core
and the Distinct* operator is evaluated as part of the underlying
Hash1 operator.) SharedDB is able to make use of the additional
CPU cores by replicating operators, as explained in Section 4.5.
However, we avoided using replication of data and operators in all
our experiments as the goal is to study the benefits of sharing rather
than the benefits of this particular technique. In order to demon-
strate the scalability of SharedDB, we varied the number of cores
between 1 and 32 in some experiments. We used the kernel param-
eter maxcpus to limit the number of available CPU cores. If not
stated otherwise, 24 cores were used.

In all experiments reported in this paper, SharedDB held all the
data in main memory. Disk I/O was only required to log updates as
part of the Crescando storage manager (Section 4.4). As a result,
running the TPC-W benchmark on SharedDB was CPU-bound. It
was also CPU-bound for the two baseline systems that we describe
in the next sub-section.

5.2 Baselines
To put the performance of SharedDB into perspective, we com-

pared it against two existing database systems. The first one is a
popular commercial system that will be referred to as SystemX.
The second one is a widely used database system, MySQL 5.1
using the InnoDB storage engine. Just like SharedDB, MySQL
and SystemX are general-purpose database systems, designed to
perform well for any kind of workload. Other existing solutions
may reach better performance for specific workloads; e.g., column
stores for OLAP workloads and lock-free, single-threaded systems
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for OLTP workloads. We do not compare SharedDB to these sys-
tems because we wanted to understand specifically the performance
tradeoffs of SharedDB’s shared execution model as opposed to the
traditional, query-at-a-time model.

Clearly, the comparison of SharedDB with MySQL and Sys-
temX is not an apples-to-apples comparison, but we tried to make
the comparison as fair as possible by fine-tuning the two baseline
systems. We built all the necessary indexes on the two systems and
we used an in-main-memory filesystem for the data files of both
systems. Furthermore, we provided a big memory buffer pool for
MySQL and SystemX, big enough to hold the database and all in-
dexes. Finally, we filled this buffer pool by carrying out full table
scans and a warm-up phase of the benchmark. As a result, neither
MySQL nor SystemX performed any disk I/O to carry out queries.
Disk I/O was only performed by SystemX and SharedDB as part of
logging in order to persist updates. For MySQL, all recovery op-
tions were turned off so that MySQL did not even perform disk I/O
for logging. Overall, however, the workload was CPU-bound for
all three systems. The isolation level used was “read committed”,
as TPC-W requires only session consistency.

We disabled query and result caching in both MySQL and Sys-
temX. Query caching allows a database system to skip execution
of a query as long as it has been executed before and no change in
the dataset has occurred. Result caching performs the same opti-
mization on each individual subquery. By disabling any caching,
we guarantee that we measure the performance of evaluating every
query, rather than fetching pre-calculated results from a cache.

In summary, we did everything to make a fair comparison be-
tween the three systems. Overall, however, our goal is not to show
that SharedDB is better than MySQL, SystemX, or any other ex-
isting database system. Our goal was to show that batch-oriented
sharing can result in predictable performance under high load. To
this end, we also present the results of micro-benchmarks that study
the behavior of all systems under growing load and isolates the ef-
fects of “query-at-a-time” vs. “shared” query processing.

Unfortunately, we could not carry out performance experiments
on QPipe, CJoin, or DataPath, the closest competitors of SharedDB
in terms of shared computation. These systems are research pro-
totypes and were not available for experimentation. Furthermore,
we believe that significant research is necessary before the special,
continuous (as opposed to batch-oriented) sharing featured by these
systems can be applied to comprehensive workloads such as the
TPC-W benchmark. So far, these systems have only been applied
to OLAP queries of the TPC-H and SSB benchmarks.

5.3 Performance under Varying Load
In the first set of experiments, we compared the performance of

SharedDB, MySQL and SystemX on the three workload mixes of
TPC-W. We varied the load of the system by increasing the number
of emulated browsers and measured the web interactions that were
successfully answered by the system in the response time limit that
is defined by the TPC-W specification. All web interactions that
exceeded this limit were not accounted as successful. For this ex-
periment, we configured the database system to use 24 CPU cores.

Figure 7 shows the results. SharedDB is able to achieve higher
throughput in all three TPC-W workload mixes. For instance, in the
Browsing mix, we see that SharedDB is able to sustain twice the
throughput of SystemX and eight times the throughput of MySQL.
The Browsing mix involves use cases of customers searching for
items. Most of the search queries are heavy queries that involve
a number of joins and sorts. This result confirms previous results
with MQO on TPC-H queries (e.g., [15]) that shared computation
is beneficial if heavy queries need to be executed.
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Figure 7: Throughput: Varying Load, All Mixes

The Ordering mix involves few searches for items, and instead
places many new orders. For this mix, MySQL is able to execute as
many web interactions as SystemX. Again, MySQL had a bit of an
unfair advantage as compared to SystemX and SharedDB here be-
cause all recovery options were turned off for MySQL. SharedDB
still wins in this experiment, but the margins are lower. In the Or-
dering mix, most queries are point queries that can be executed
highly efficiently with an index look-up in a traditional, query-at-
a-time fashion. Furthermore, there is a little benefit for sharing for
such point queries.

Finally, the bottom diagram of Figure 7 shows the throughput
results with varying load of the three systems for the Shopping mix.
Again, SharedDB is the clear winner and again the reason is that
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SharedDB takes advantage of shared computation for heavy and
medium-sized queries.

We would like to reiterate that SharedDB used the same global
plan for all three mixes. SharedDB was not adapted or tuned in
any way to meet the specific requirements of these workloads. Ob-
viously, a “query-at-a-time” system can adapt much better to the
workload and, for instance, optimize a query based on the currently
available resources. We do not know how, for example, SystemX
does so. It is clear, however, that shared computation is more criti-
cal to sustain high throughputs with response time guarantees than
any adaptation technique implemented in MySQL and SystemX.
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5.4 Scaling with the Number of Cores
In the second set of experiments, we explored the impact of hav-

ing additional CPU cores on the database server. For this reason,
we varied the number of available CPU cores of the database server
machine from 1 to 48 and repeated the experiments of Section 5.3
for each configuration. As mentioned in Section 5.1, we varied
the number of cores for SharedDB only between 1 to 32 because
SharedDB cannot take advantage of additional cores for the TPC-
W benchmark in the configuration used for these experiments. We
measured the maximum number of successful web interactions per
second each system could achieve.

Figure 8 shows that SharedDB again is the clear winner for all
three workload mixes and almost independent of the number of
cores. SharedDB is only outperformed by MySQL for the Ordering
mix if the database server is constrained to using only a single core.
Again, the magic ingredient is sharing and the special architecture
of SharedDB. Both SharedDB and SystemX scale nicely with the
number of cores for the Browsing and Shopping mixes. Scalability
is limited for the update-intensive Ordering mix because at some
point concurrency control and transaction management limit the
throughput of the system. MySQL does not scale beyond twelve
cores, independent of the workload. This observation was also
made in a recent study by Salomie et al. [23].

5.5 Analysis of Individual Web Interactions
The TPC-W benchmark involves a variety of different web in-

teractions, each involving a different set of queries. For instance,
the home web interaction involves two simple point queries (fetch-
ing promotion articles and a user’s profile). Other web interactions
involve point queries and several updates. Finally, there are also
web interactions that involve heavy, analytical queries with mul-
tiple joins, grouping, and sorting. Figure 9 shows the maximum
throughput that each of the three systems can achieve if the clients
are configured to issue only queries that correspond to a single web
interaction. These experiments were carried out in a configuration
with 24 cores for the database server.

SharedDB wins in this experiment for many kinds of web inter-
actions (e.g., BestSellers and CustomerRegistration). Again, shar-
ing is the main reason for SharedDB’s success. Keep in mind that
SharedDB does not only support sharing across queries of different
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Figure 10: Heavy Queries vs. Light Queries

types but also sharing between concurrent queries of the same type,
executed with different parameter settings. Figure 9, however, also
shows that SharedDB loses for several web interactions as com-
pared to SystemX (e.g., NewProducts and ShoppingCart). These
web interactions involve mostly point queries and/or updates for
which sharing does not help much. SystemX wins because it is the
more mature system and carries out the same work more efficiently
than SharedDB. In other words, SharedDB can only beat SystemX
if it carries out less work as a result of shared computation.

5.6 Heavy Queries vs. Light Queries
Next, we analyzed the performance of the three test systems un-

der two very different queries of the TPC-W benchmark. The first
one uses a key identifier to select an item and its author. This query
is part of the ProductDetail web interaction. It is a lightweight
query that performs a join of two relations and fetches one record
from each of them. The second query is the “best sellers” query that
is part of the BestSellers web interaction. This heavy query in-
volves the analysis of the latest 3,333 orders that have been placed
by customers in order to retrieve the most ordered items that match
a selection predicate provided by the client. It performs three joins
over four relations which are followed by a group-by operator and
additional sorting of the results.

We used batches of an increasing number of such queries and
issued a stream of them to the three systems while measuring the
time needed in order to complete the whole batch. For SharedDB,
the measured time includes the queueing time of the batch, as de-
scribed in Section 3.2. The results are shown in Figure 10. With
regard to the search item query, the performance of the three sys-
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tems follows the same trend. SystemX is able to execute the batches
of queries faster than SharedDB, which is expected as explained in
Section 5.5. This query is executed so fast that the overhead of
batching queries and updates is greater than the gains.

For best sellers queries, the performance of the three systems
differs significantly. MySQL’s performance is almost linear with
the number of queries in the batch. SystemX outperforms MySQL
because it is simply the better and more mature system. The best
performance, however, was again achieved with SharedDB. Even
though SharedDB has a less mature query processor, it outperforms
SystemX in this experiment because of sharing.

5.7 Load Interaction
In our last experiment, we explored how heavy queries compete

with lighter queries for resources and how this resource contention
may impact performance. For this reason we used a synthetic work-
load that is a mixture of the two queries that were analyzed in Sec-
tion 5.6. A constant load of 400 “search item by title” queries per
second was sent to the systems under test. The load of these “search
item” queries can easily be sustained by all three systems. In ad-
dition to these “search item by title”, we submitted an increasing
number of “best sellers” queries in this experiment. This way, we
were able to study precisely how mixing light and heavy queries
affected the performance of the three different systems.

The choice of “search item by title” and “best sellers” queries
was not random. In fact, as shown in Figure 6, these two queries
have a shared join on Items and Authors in SharedDB. As a re-
sult, these two queries compete for resources in SharedDB, too.
Of course, an experiment on resource contention between different
kinds of queries would not be fair if SharedDB would run the two
different kinds of queries on different cores.

The throughput results for all three systems are shown in Figure
11. At the beginning (the left part of the figure), the load consists of
only the 400 “search item” queries and only a few concurrent “best
sellers” queries. Such a workload can be sustained by all three sys-
tems. Moving to the right (i.e., increasing the number of concur-
rent “best sellers” queries), MySQL and SystemsX are not longer
able to sustain the throughput. In fact, the throughput of MySQL
and SystemX drops below 400 so that the presence of “best sell-
ers” queries hurts the execution of the “search item” queries. Ob-
viously, this problem could be fixed by introducing sophisticated
load control mechanisms. Figure 11 shows that such load control
mechanisms are not needed for SharedDB. The overall through-
put increases monotonically; the more concurrent queries, the more
sharing and the merrier. Unfortunately, SharedDB is not a perfor-
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mance panacea either. Starting at about 250 “best sellers” queries
per second, SharedDB is not able to handle the full workload either
and its throughput diverges from the ideal throughput, depicted by
the top-most dotted line in Figure 11. Since the concurrent “best
sellers” queries have different parameter settings, perfect sharing is
not possible and there is a per-query overhead in this experiment
which limits the scalability of SharedDB with the number of con-
current queries. Nevertheless, SharedDB scales much better than
the other systems, beating SystemX by a factor of 3 in throughput in
the extreme case of this experiment. More importantly, SharedDB
is robust and makes sure that the processing of heavy queries does
not have an impact on the performance of light queries, even if no
special load control techniques are applied.

6. CONCLUSION
This paper presented SharedDB, a general-purpose relational da-

tabase system. At the core of SharedDB is a novel query process-
ing model that is based on batching queries and shared computa-
tion. SharedDB does not always outperform traditional database
techniques that rely on the “query-at-a-time” processing model.
The advantages of SharedDB become apparent for high loads with
unpredictable mixes of heavy and light queries and updates. In
these situations, the performance (i.e., query latency and sustained
throughput) of SharedDB is extremely robust without requiring any
special tuning knobs, load control, or other adaptive techniques.
Our experimental study using the TPC-W benchmark confirmed
this robustness along a number of different dimensions: query load,
hardware configuration, and query/update diversity. Compared to
other related systems that are also based on shared computation,
SharedDB wins in terms of generality. For instance, these systems
are typically not suitable to process transactional workloads with
many small queries and updates.

The SharedDB project is only at its beginning and this paper only
presented the main design principles and architecture of SharedDB.
The next logical step is to develop a comprehensive query opti-
mizer that automatically generates good global query plans. As
part of this work, we will develop a cost model for shared execu-
tion in SharedDB. Furthermore, we will extend the SharedDB run-
time system in order to make better use of future NUMA machines
with possibly hundreds of cores; e.g., integrate parallel joins and
advanced partitioning and replication of base data. Another impor-
tant consideration is to optimize for processor cache locality and
integrate, e.g., cache-aware join methods. Currently, SharedDB
is based on standard, traditional join methods. Finally, we would
like to investigate the benefits of distributing the global query plan
across different machines.
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