
MOIST: A Scalable and Parallel Moving Object Indexer with
School Tracking

Junchen Jiang, Hongji Bao, Edward Y. Chang and Yuqian Li
Google Research

{jasonjiang, hongjibao, edchang, liyuqian}@google.com

ABSTRACT

Location-Based Service (LBS) is rapidly becoming the next ubiq-

uitous technology for a wide range of mobile applications. To sup-

port applications that demand nearest-neighbor and history queries,

an LBS spatial indexer must be able to efficiently update, query,

archive and mine location records, which can be in contention with

each other. In this work, we propose MOIST, whose baseline is

a recursive spatial partitioning indexer built upon BigTable. To

reduce update and query contention, MOIST groups nearby ob-

jects of similar trajectory into the same school, and keeps track of

only the history of school leaders. This dynamic clustering scheme

can eliminate redundant updates and hence reduce update latency.

To improve history query processing, MOIST keeps some history

data in memory, while it flushes aged data onto parallel disks in a

locality-preserving way. Through experimental studies, we show

that MOIST can support highly efficient nearest-neighbor and his-

tory queries and can scale well with an increasing number of users

and update frequency.

1. INTRODUCTION
The number of “smart” wireless devices such as mobile phones

and iPad-like devices have been rapidly growing. Being able to

keep track of the locations of moving devices can enhance a number

of applications. Location-Based Service (LBS) is rapidly becoming

the next ubiquitous technology for a wide range of mobile applica-

tions, such as location positioning, location navigation, location-

aware search, social networks, and advertizing, just to name a few.

Besides the traditional “where am I” queries, LBS must support

nearest-neighbor (NN) queries and history queries. Some exam-

ples of NN query are: when a store wants to find nearby customers

to offer coupons, a user wants to find nearby friends, or a taxi driver

wants to locate nearby clientele. History queries can find popular

routes of pedestrians, and locate points of interest in a city. A de-

lay in providing accurate NNs can degrade user experience or cost

business opportunities. Both NN and history queries on moving

objects bring technical challenges to LBS design.

Performing NN queries on static objects can be supported by im-

plementing a traditional spatial indexer (see Section 2 for represen-

tative work). Indeed, Google Maps has been using a spatial indexer

called S2Cell to index geographically nearby objects. However,

when objects can move, and at the same time users are interested

in their history as well as current locations, an indexer must satisfy

performance requirements under new constraints. The first require-

ment (constraint) is that the update latency must be short. (Here,

we define update latency to be the time from when an update is

requested by a mobile device to the time when the location is avail-

able on the indexer to be queried.) The issue at hand is that huge

numbers of update queries usually results in long update latency,

which in turn can cost user convenience. For instance, a one-minute

update latency in NYC can be translated into a distance of a couple

of city blocks traveled by a bus or taxi. The second performance re-

quirement is related to historical queries. Not only must history be

made available for queries, it should also be made available quickly.

The indexer must thus cache some history data in memory and, at

the same time, flush out aged data onto disks to vacate memory

space for new location updates.

To reduce update latency and to support efficient history queries,

we propose MOIST (Moving Object Index with School Tracking).

On top of Google BigTable and spatial indexer, MOIST performs

object schooling (explained shortly) to eliminate redundant updates.

Aged data is treated to preserve its on-disk locality through a par-

allel ping-pong scheme. More specifically, MOIST consists of four

key schemes:

1. Key-value model is the baseline of MOIST. MOIST uses Big-

Table to store the three records, namely the Location Table,

Spatial Index Table and Affiliation Table.

2. Spatial indexer. MOIST uses the Google S2Cell indexer to

hierarchically decompose a space into cells of different res-

olutions. The cells have a space-filling curve structure that

makes them efficient for spatial indexing. An arbitrary re-

gion can be approximated by a collection of cells. When

performing an NN query, MOIST enhances S2Cell to adapt

to cells’ population density to look up NNs in cells of differ-

ent resolutions.

3. Object school. On top of the key-value pairs, MOIST clusters

data into object schools (OSes) consisting of objects that are

close in geographic proximity and similar in velocity. OSes

are pervasive among urban-area moving objects such as pas-

sengers on cars on freeways. OSes reduce redundant updates

and hence cuts down update latency. (Section 2 presents an

example to illustrate the key differences between OSes and

traditional object clustering approaches.)

1838

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

4. Aged data archiving. MOIST employs PPP, a parallel ping-

pong scheme, to flush history data onto disks. When do-

ing so, PPP attempts to preserve data locality so as to sup-

port efficient on-disk location-based and object-based history

queries.

Our experimental results show that MOIST achieves much higher

Queries Per Second (QPS) than the best record of previous ap-

proaches by one, or in some cases, even two orders of magni-

tude. Take update as an example. With only one server access-

ing BigTable and no object school (clustering), MOIST achieves

8,000+ updates per second with one million moving objects (2x

better than 3,000+ QPS of Bx-tree [15] even when only input/output

(IO) time is counted). With 10 servers and object schools, MOIST

achieves update QPS of 60k and about 80% of the updates gener-

ated in a road-network map are shed by object schools, showing a

nearly 80x speedup over Bx-tree.

In summary, this paper makes two significant contributions to

the design of a location-based data service:

1. Traffic shedding. MOIST reduces update latency through

exploring moving-pattern correlations between moving ob-

jects, and thus eliminates redundant updates and storage.

2. History data archiving. MOIST employs PPP to ensure effi-

ciency on both aged-data archiving and history queries.

The rest of the paper is organized as follows: In Section 2, we

survey related work. Section 3 presents MOIST in detail, includ-

ing its baseline. Section 4 reports experimental results. Section 5

briefly presents a deployed application that uses the techniques in-

troduced in this paper. Finally, we offer our concluding remarks in

Section 6.

2. RELATED WORK
We address three problems in this work: spatial indexing, traffic

shedding, and object clustering. We discuss related work accord-

ingly.

2.1 Spatial Indexers
Moving object indexing traditionally employs R-tree or B-tree

structures. An R-tree employs a maximal bounding rectangle (MBR)

to bound location of the objects in a subtree. A TPR-tree, [23]

and later, TPR*-tree [24] are proposed to support temporal services

(predictive or historical queries). In a query-intensive scenario, an

R-tree structure and its derivations are more likely to outperform

other B-tree based methods, as the MBRs employed by R-trees are

of the same order of the number of mobile devices and a large part

of these are pruned for each query. However, in update-intensive

cases, R-trees tend to spend more time on maintaining target struc-

tures than B-trees. Two representative methods to implement tem-

poral service are Bx-trees [15] and Bdual-trees [27]. Bx-trees do not

use any MBR and index objects by using space-filling curves [20]

to serialize a 2-D space into a 1-D key space. Bdual-trees parti-

tion both spatial and velocity spaces and thus key objects in a four

dimensional space. In [19], a Bx-tree forest is created to enable

more efficient historical and predictive queries. Like B-tree based

methods, MOIST uses space-filling curves as its baseline spatial

index. However, MOIST leverages fine-grain tuning on scan size

using a method introduced in Section 3.4, and it also requires no

disk- or memory-based optimizations as in [2] or [7], because the

BigTable infrastructure of MOIST uses a finer granularity when

fetching each cell and support for range scan [5].

2.2 Traffic Shedding
Many previous works throttle workload to achieve higher per-

formance by shedding updates on the records of a single user. QU-

trees [25] shed index updates by controlling the underlying index’s

filtering quality. An alternative could be to shed updates using a

Kalman Filter [14]. MobiQual [11] has the same targets while tak-

ing skew in QoS of different updates and queries into account. In

the recently proposed STSR [8], the same workload shedding is

performed in a decentralized protocol run by each user, shedding

unnecessary updates before they are sent to the server. Recent

work [21] scales location updates with so-called active shedding

by introducing query encounter points to make the traffic reduction

QoS-aware. Safe region is used as a common base solution in many

proposals to carry traffic shedding [3] [13] [22]. In contrast to these

approaches, MOIST sheds updates by exploiting relationships be-

tween users, rather than making use of the data of just a single user

(like in [25] [11] [8]).

2.3 Object Clustering
Prior works on clustering can be divided into two approaches:

static and dynamic.

2.3.1 Static Clustering

A number of common patterns can be defined to be represented

by cluster prototypes. A moving segment is then represented by

one of these prototypes, and a long-term moving trajectory con-

sisting of several moving segments is represented by a sequence of

prototypes. The benefit of this kind of static clustering approach

is its efficiency in dealing with pattern changes. Some shortcom-

ings however, are that the pre-defined prototypes may not cover

all possible patterns, and an approximation of the trajectory causes

information loss. Works of coreset proposed in [12] and [9] are

representative static approaches. Mapping a moving object with an

uncertain behavior model is studied in [28].

2.3.2 Dynamic Clustering

Dynamic clustering finds similar patterns in real time, and repre-

sents a cluster by a virtual center moving in linear model and a ra-

dius [16], or by a bounding rectangle [18]. Each object in a cluster

shares the same moving pattern as that cluster. A cluster’s moving

pattern is influenced by each object’s updates, based on which the

moving pattern is adjusted or the object departs the cluster. Our

proposed object school is also a dynamic clustering scheme that

differs from [16] and [18] in that we keep track of only one ob-

ject’s location changes, and shed updates of all others. Therefore,

the number of updates MOIST needs to handle is independent of

the cluster size. Imagine the most optimistic case, where all sub-

way passengers can be tracked by just one single lead passenger.

All clustering algorithms face the challenge of overhead during a

merge and split operation caused by pattern changes. We will dis-

cuss this in Section 3.3.

2.4 Illustrative Example
Figure 1 shows how our object-school method differs from the

afore-mentioned traditional clustering methods. The figure presents

two objects, A and B, moving along a road (depicted between two

curved lines) in a similar trajectory. Object A makes four turns,

whereas object B makes five. Suppose a static clustering scheme

may use four predetermined moving patterns (prototypes) to de-

scribe A and B (in Figure 1(a)). Both A and B must be reclassified

into a predefined prototype when a turn is made. Both their lo-

cations must be updated in their spatial indexer. Next, a dynamic

clustering scheme (in Figure 1(b)) like the ones proposed in [16]

1839

����������	�ABC�

D��BA���EF����������A	

�

�

(a) Static cluster

� ��
�

�������	�ABCDEF�	

�	�FE�D���	�	�	B���DEC

��FDB�A	�E�DEF

�

�

�

� �

�

�

(b) Dynamic cluster

���������	A�B�C�BD��E	�

�	�F	�

�	�F	�

�B��B�	��BD�

�DD������B���

��A�	���B��������F��	

�	�F	���BA���B���

��A�	���B��������F��	�

(c) Object School

Figure 1: Comparison of static cluster, dynamic cluster and object school

and [18] may decide to cluster A and B (and some other objects)

into one cluster, and create a virtual center to represent them. This

re-clustering is performed at each major turn, and therefore, we can

see in Figure 1(b) that three large arrows, representing three virtual

centers, are generated along the path. This reclustering and vir-

tual center computation involves all objects and can be both com-

putational intensive (at least O(n logn), where n is the number of

objects) and IO intensive (reading each object’s moving pattern).

Our OS scheme finds a leader (A is chosen to be the leader in Fig-

ure 1(c)) to represent a school (cluster), and location updates of a

school involve only one object on the indexer. This school clus-

tering eliminates a tremendous amount of redundant updates on

the indexer. Furthermore, our re-clustering algorithm can enjoy an

O(logn) complexity since it uses the existing leaders as candidate

prototypes to align objects.

3. MOIST
As presented in Section 1, MOIST aims to reduce update latency

and support efficient history queries. MOIST consists of four key

components: key-value-based data structures, spatial indexers, ob-

ject schooling, and aged-data archiving.

3.1 Data Structures
Before presenting detailed schemas of the two key tables (i.e.,

the Location Table and Affiliation Table), we briefly depict some

benefits of using BigTable. Our use of BigTable leads to the es-

sential difference between our storage method and that of previous

works (e.g., [24] [7] [15]). First, BigTable is a key-value based

distributed storage system that stores and manages values by sort-

ing row keys, and the values can be configured to store in memory

or on disk by columns. Second, BigTable supports batch reading

for accessing values from a set of contiguous key blocks, and this

reading method performs much faster.

The Location Table stores the location and velocity information

for each object, so that queries on an individual object can be an-

swered efficiently. To track object schools (OSes), MOIST main-

tains the Affiliation Table to record the mapping for each cluster

and is keyed by the behavior (i.e., the leader’s velocity) of that

cluster. The Spatial Index Table stores the leaders by their spatial

locations which will be detailed in Section 3.2.

3.1.1 Affiliation Table

The Affiliation Table of MOIST is keyed by an Object ID (OID).

The goal of the Affiliation Table is to provide fast access – for a

leader to locate its followers and for a follower to find its leader.

The design of the Affiliation Table includes two basic operations:

first, to check if an object is a leader or a follower; and second, in

the case it is a follower, to calculate its estimated location by its dis-

placement from its leader. The Affiliation Table implements these

two operations by two column families, namely L/F and Follower

Info.

2

4

7
4->2

4->7

Row Key:

ID

In-memory column:

L/F

Disk column:

L/F

In-memory column:

4

2

LL
LL/F record

L(F-4,4à 2)(F-4,4->2)
LL/F record

(2,4à 2), (7, 4à 7)

Figure 2: Schema example of Affiliation Table

L/F records: A leader only has one L/F record indicating that it is

a leader, and a timestamp indicating the time the leader is chosen. A

follower j has multiple L/F records with the same content (F-i, i→
j) where i is its leader. The L/F record will be renewed each time

the follower updates its location. Fresh L/F records are stored in

the in-memory column, and after a period of time, aged L/F records

will be transferred to disk columns.

Follower Info: The Follower Info of a leader i is a concatenation

of pairs in the form of (j, i→ j), where j is one of its followers

and i→ j is the vector replacement in location from i to j. Only

leaders have content in the Follower Info column and this content

does not change until either any follower leaves the OS or the leader

becomes a follower itself.

The Affiliation Table also reduces the workload on the Location

Table by pre-processing queries, and only passes them to the Lo-

cation Table (see the next section) if those queries are irrelevant to

school (cluster) information.

3.1.2 Location Table

The Location Table is employed to keep necessary information

for each object. The Location Table sets each row’s key as the ob-

ject ID (OID) of a particular object. Each row then stores multiple

location records of the corresponding object at different times. In

Location Table, each location record includes various information

such as location, velocity, etc of the object. The Location Table

contains one in-memory column and several disk columns. Each

location record is timestamped and stored in such a way that the

most up-to-date location records are kept in the in-memory col-

umn. After a fixed period of time, all records are then considered

aged. The location records in each column are then compressed

and transferred to the next disk column (The scheme for aged data

transfer is covered in Section 3.5.) Figure 3 depicts an example

schema of a Location Table.

3.1.3 Example Tables

Figure 4 shows an example of three simplified tables for 6 objects

grouped into 2 OSes. As objects 4 and 6 are leaders, the Location

Table and Spatial Index Table only hold records for objects 4 and

6. The Affiliation Table keeps track of all leaders and followers, as

well as the displacements from each leader to its followers.

1840

��������

	A

B�CDEF ��E�C����������F ���F�C

	F�E�E������CDEF��

�������F

A��� ��CDEF��

�������F

A������CDEF��

�������F

�C��� �������F������� �������F������� �������F�������

Figure 3: Example schema of a Location Table, where location

records include location, velocity, etc. Each record is times-

tamped. The Location Signal Column Family contains one in-

memory column and several disk columns in order to store data

aged to different degrees.

�� ��� ������	A �BC�

� ���

� � �������	���	�

A ��B

B � A�B�A��C�B�C�

	 ���

C ��B

DEEF�F��F��������

�� ��DEF��B

� �

B �

�����F��������

��EF�E��

�B�	�

��

� B

� �

����F��������������

�

	

�

C

B

A

Figure 4: The content of a Location Table, Spatial Index Table

and Affiliation Table for 6 objects grouped into 2 OSes

3.2 Spatial Indexer
We first depict a spatial indexer for static objects, and then present

our enhancements to index moving objects.

3.2.1 Indexer for Static Objects

An example for querying static objects can be that of a mobile

user who asks for the locations of nearby bus stops or coffee shops.

To query static objects, a server maintains the location of all objects

using an index structure called a Spatial Index Table. Hereafter, we

refer to the specific Google implementation of this as S2Cell which

uses Hilbert Curves [20] to form a B-tree indexing scheme. From a

bird’s eye view, the Spatial Index Table first linearizes a 2-D space

into 1-D key space by partitioning the space into a 2n × 2n grid

and numbering each cell with a key called a spatial index. If a

static object is located within a given cell, then that object’s ID is

stored as the value associated with the key of that cell. Then, any

query for the static objects on 2-D space can be transformed to a

combination of queries on the 1-D key space for which BigTable

provides parallelism to read data from multiple ranges.

Mathematically, suppose that the two-dimensional space is [0,1]2

and the spatial index function is h(·) : [0,1]2 → [0,1]. The func-

tion h((x,y)) can be easily achieved with division and encoding:

divide [0,1]2 into four small squares of length 2−1, encode these

four squares by 00,01,10,11, find the small square which contains

location (x,y), write its encoded number as d1 ∈ {00,01,10,11},
then divide d1 into four smaller squares of length 2−2, encode and

find a smaller square d2 ∈ {00,01,10,11}, and so on so forth. Af-

ter l rounds of this process, one can map each location to a finite

sequence (d1,d2,d3, . . . ,dl)2. Finally, define 0.d1d2d3 . . .dl , the bi-

nary fraction, as the spatial index value where l is called the level

of the spatial index:

h((x,y)) = (0.d1d2d3 . . .dl)2 ∈ [0,1]

A space-filling curve is constructed by linking all cells in a space

by the sequential order of their spatial indexes. Hilbert Curves [20]

are a representative scheme of space-filling curves, which guaran-

tee locality, a property that cells geographically close together are

01 10

00 11

01 10

00 11

11 10

00 01

01 00

10 11

01 10

00 11

Bus1

Bus2

Alice

Bob

Row key:

Spatial index

Column family: ID

In-memory column:

Bus

In-memory column:

User

(11,01)

(11,10)

(11,11)

Bob

Bus2

AliceBus1

Row Key:

Spatial index

In-memory column:

Bus

In-memory column:

User

Figure 5: Example scheme of a Spatial Index Table. The left

side is an example of how space is recursively divided and en-

coded by spatial indexes. The right-hand side is the corre-

sponding rows in the Spatial Index Table.

likely to be given spatial indexes close in value in the key space.

We use Hilbert Curves to encode spatial indexes. This is illustrated

in the left-hand side of Figure 5. While other encodings such as Z-

curves are also applicable to perform space-filling, Hilbert Curves

perform slightly better [15].

In the case of the surface of the Earth as 2-D space (which lies on

a positively curved geometry, as opposed to flat Euclidian geome-

try), the 2-D surface is first partitioned into six square parts, and

Hilbert Curves are employed to each part. On each part of these

six, mathematical methods are used to normalize Earth’s curved

surface onto a 2-D plane surface [17]. It is only after this process

that objects on the Earth’s surface can be indexed.

Given a location coordinate, it is first mapped into one of the six

squares described earlier. Then, its spatial index is calculated at the

first level (i.e., d1) and then di (i = 2, . . . , l), recursively. Finally,

they are concatenated to obtain the spatial index. The reverse di-

rection, i.e., calculating a location coordinate from a spatial index,

is similar. In this way, a location update can be instantly mapped

to the row that is keyed by its corresponding spatial index; this al-

lows the distance between two spatial cells to be easily calculated.

An example of a Spatial Index Table is shown in the right side of

Figure 5.

3.2.2 Challenges of Moving Objects

Querying over moving objects is much more challenging than

querying over static objects. The reason is simple, when objects

move, location updates can be in contention with location queries.

In addition, when a server has to handle a large number of updates,

and when the volume of those updates increases with the popula-

tion of objects, or the update frequency of each object is escalated,

the number of updates will eventually overwhelm the capacity of

BigTable. This scalability issue can cause amplified update laten-

cies as we depicted in Section 1. MOIST addresses the update la-

tency problem by employing object schooling, which we present

next in detail.

3.3 School Clustering
MOIST clusters nearby objects with similar moving patterns into

one school. This mapping is based on the observation, called Ob-

ject Schooling, that nearby objects often move with similar veloc-

ities, and more importantly, with similar trajectories. Take objects

on a subway for example, the static clustering approach may re-

quire re-clustering whenever the subway turns. The dynamic ap-

proach may not consider the “nearby” factor causing a cluster to

consist of objects which are far apart (though with the same mov-

ing pattern). In contrast, MOIST calls a group of nearby objects

moving in concert an object school (OS). MOIST keeps track of

an OS by tracking only the lead object, and records the distance

between locations of the other follower objects and the leader for

precise location query on each object.

1841

�

�� ��� ������	A �BC�

� ���

� � ������	������

A ��B

B � A�B�A�	C�B�C�

� �

C ��B

DEEF�F��F��������

�� ��DEF��B

� �

B �

� �

�����F��������

��EF�E��

�B�	�

��

� B

� �

� �

����F��������������

�

B

�

�

AC

Figure 6: Example of updating

OSes are maintained and renewed when a location update ar-

rives. An object is considered to have departed its OS when its

displacement to its leader exceeds a certain threshold. When an

object leaves an OS, it becomes a leader of a new OS. We period-

ically merge OSes using a quick cluster method. Next, we discuss

how location updates may affect three data structures of MOIST,

namely the Location Table, the Spatial Index Table and the Affilia-

tion Table.

3.3.1 Location Updates

An update message consists of an object’s ID, location and ve-

locity. Upon receiving an update request, MOIST updates the Lo-

cation, Spatial Index and Affiliation tables by Algorithm 1, which

has three basic branches: one for a leader, one for a follower that

remains within a school, and one for a follower that departs an OS.

The location update procedure begins by checking if the update

is a leader or a follower–this is accomplished by looking up the L/F

record of its ID in the Affiliation Table (line 1). If the object is a

leader, the update will be done by changing both the Location Table

and the Spatial Index Table (line 1,1). Line 1 ensures that each ID

has one record in the Spatial Index Table. In the case that the object

is a follower, MOIST first decides whether the update can be shed

by analyzing the encoded location. If the estimated location (to be

shown soon) of the follower is close enough to the real location

(i.e., within a threshold ε), the update is shed; otherwise, the object

is considered as having left the school. In this case, we transform

ID into a leader and update its records by writing its location infor-

mation in the Location Table and insert its ID to the corresponding

spatial index in the Spatial Index Table (line 1 to 1).

Algorithm 1 MOIST Update Procedure

Require: 4-tuple (ID,
−→
Loc,
−→
V , t), location

−→
Loc, velocity

−→
V

1: if ID is a leader then
2: Location Table: add (

−→
Loc,
−→
V) to row ID with timestamp t

3: Spatial Index Table: delete ID in previous spatial index and add it
into new spatial index

4: else
5: Find ID’s leader i in L/F column in Affiliation Table
6: Calculate ID’s estimated location

−−→
Eloc in t

7: if Distance(
−−→
Eloc,

−→
loc)≤ ε then

8: Shed update and do nothing
9: else

10: Delete ID’s record in i’s Follower Info
11: Affiliation Table: Label ID as leader by adding new L/F entry

with timestamp t

12: Location Table: add (
−→
Loc,
−→
V) to row ID with timestamp t

13: Spatial Index Table: add ID into new spatial index
14: end if
15: end if

The calculation of estimated location involve four steps: (i) find

the object’s leader i (line 1), (ii) get i’s latest location record (in-

cluding
−→
Loc and

−→
V) from the Location Table, (iii) calculate i’s lo-

cation
−−→
Loc′ at time t, and (iv) get

−−→
Eloc =

−−→
Loc′+(i→ ID), where

i→ ID is the displacement from leader i to follower ID. Thus, an

OS consists of a leader L and followers F , and is formally defined

as

{F |Distance(
−→
Loc,
−−−→
ELoc)< ε}

Figure 6 shows an example where object 7 is too far away from

its estimated location. When receiving an update from object 7,

MOIST recognizes it is a follower and calculates its estimated loca-

tion, denoted by a gray circle. Since the updated location digresses

by a margin exceeding our threshold, we let object 7 be the leader

of a new OS and delete its record in its former leader 4.

3.3.2 Clustering

Clustering is executed a periodically over a region of a given

level of spatial cell, called a clustering cell. Since a clustering cell

is several levels higher than the spatial cell used in the Spatial Index

Table, spatial cells of a clustering cell will have consecutive spatial

indexes. As a result, one can retrieve all leaders in a clustering cell

quickly from the Spatial Index Table by leveraging batch reading of

BigTable. It then groups leaders having similar velocities into one

OS with only a small overhead on time and computation. Two ve-

locities are considered similar if the value of their vector difference

is less than a threshold.

Within each clustering cell, we require the time for clustering to

be O(n) where n is the number of OSes in the cell. We define the ve-

locity space as a 2-D space, where any velocity can be projected by

fixing its start point on the center of the space. We use ∆m to denote

the maximum velocity deviation within an OS. We first partition the

velocity space into identical hexagons as shown in Figure 7 (on the

right-hand side), which guarantees that the maximum distance be-

tween two internal points is less than ∆m. To cluster all OSes in

the cell, each leader is first mapped to the corresponding hexagon

partition in O(1) time. After we map all the leaders, those within

one hexagon will be merged into one OS. To merge one leader j

and its followers into another leader i incurs three operations: (i) to

transfer all the Follower Info of j into i, (ii) to change the L/F entry

for all of j’s followers, and (iii) to delete leader j from the Spatial

Index Table.

Figure 7 shows an example of clustering where three OSes (the

same as those OSes in Figure 6) are grouped into two OSes. First,

we retrieve all leaders from the Spatial Index Table: 4, 6, and 7.

Then, cluster the leaders by their velocity. In Figure 7, we find that

6 and 7 should be merged into one cluster and 4 in another. Object

7 is merged into leader 6.

To reduce the impact of clustering the entire map, we sequen-

tially cluster each clustering cell, so at any given time only a small

number of clustering cells are being processed. To explain the ad-

vantage of this scheme, we consider another two clustering meth-

ods: static and dynamic clustering as introduced in Section 2.3.

Static clustering [12] [9] finds for an object a new leader once it de-

parts from a school. Prior dynamic clustering methods use trajec-

tory prediction (e.g., linear movement [16] or micro-cluster [18])

to avoid clustering and do reclustering on-demand. While these

methods all incur too many read/write operations with BigTable

if objects leave schools or change moving patterns frequently, our

method aggregates the operations into one clustering, and reads and

writes BigTable in batch, reducing networking overhead greatly.

Our advantage over static and dynamic clustering would be even

more clear in extreme cases where moving patterns of objects change

frequently as discussed next.

1842

�� ��� ������	A �BC�

� ���

� � �������	���	�

A ��B

B � A�B�A��C�B�C�

	 ��B

C ��B

DEEF�F��F��������

�� ��DEF��B

� �

B �

	 �

�����F��������

��EF�E�

�B�	�

��

� B

� �

����F��������������

�

B

�

	

AC

 �!"��#F�$�%��&��

	
B

�

 �!"��#F�$�����

'����F�(�"����

Figure 7: Example of clustering

3.3.3 Dealing with Extreme Cases

Since an OS is maintained by comparing the velocity of each

follower with that of the single leader, if the leader is representa-

tive enough, it costs only light overhead to shed a large amount of

updates. However, an extreme case could be that at some moment

all members in an OS change their behavior simultaneously so that

no object can be representative enough to become the leader. E.g.,

when a bus stops, many passengers of one OS who were moving

together at the same velocity, leave towards different directions at

almost the same time.

To handle these extreme cases, static clustering finds, as soon

as possible, new representative patterns (leaders) from the objects,

i.e., performs re-clustering immediately. However, if the objects

are changing velocity (e.g., some are transferring from one metro

to another, some are leaving the station), the chosen pattern (lead-

ers) cannot be representative for enough time, leading to more re-

clustering. In addition, to detect such phenomenon from a large

amount of updates will be costly. Dynamic clustering predicts the

moving patterns of objects and performs re-clustering on demand.

It suffers from the same problem that re-clustering might be inten-

sive as each object’s moving pattern is unstable.

In contrast, our approach (in Section 3.3.2) is to perform lazy

clustering, i.e., to do re-clustering periodically and not to detect

such phenomenon. Our method prevents unstable clustering results

in two ways. First, we take into account the geographical proximity

when judging if a follower leaves the OS. If a follower is near the

leader, it is still within the OS even if it changes the moving pattern

radically (e.g., most passengers just leaving a metro will still be in

geographical proximity for a while), avoiding unstable clustering

resulting from objects’ changing moving patterns. Second, we do

re-clustering periodically, saving the cost of detecting the extreme

cases. In fact, the interval between two re-clusterings becomes a

tradeoff which is studied in the section of experiments (4.2.2). Fi-

nally, although our clustering method takes the risk of having an

increased number of OSes since the unclustered objects will be-

come leaders and form new OSes, we argue that it is unlikely that

such extreme cases occur at the same time and at the same place,

i.e., re-clustering behavior will be “local” not global. For instance,

only a fraction of buses stop at a given time and only a fraction of

passengers get off/on a bus/subway at a given time.

3.4 Nearest Neighbor Search
Nearest neighbor query enables clients to retrieve the k nearest

objects around a given location loc. It has four steps: (i) estimate

the number of leaders to be retrieved, (ii) find a certain number of

the nearest leaders around loc from the Spatial Index Table, (iii)

fetch the followers of these leaders, and (iv) calculate locations (of

the leaders/followers) and return the k nearest ones. In this part,

� �

� � � �

� � �

�

�	ABCADE

CF���

��

…

…

��

D���D

�A�C�E��E��A���E��A�	D� �	ABCADECF���EBA�D�

�C�CB��E��DD ��DDECFE	�C �CB!E"#�#�

Figure 8: The example of nearest neighbor search algorithm

for better demonstration, we’ll first present the algorithm for find-

ing a certain number of the nearest leaders, then introduce how to

estimate the number of leaders we need to retrieve, and at last, de-

scribe the way to extend this algorithm to predictive nearest neigh-

bor search.

3.4.1 Nearest Leader Search Algorithm

We introduce the algorithm followed by its efficiency analysis.

Note that since it is only leaders that are actually stored in the Spa-

tial Index Table, in the interest of simplicity we refer to objects and

leaders interchangeably in the following presentation.

Algorithm 2 maintains two priority queues: Qcell for the spatial

cells around loc, called cell candidates, and Qob j for the objects

retrieved from cells in Qcell , called neighbor candidates. The cells

in Qcell are organized in ascending order by their distance from loc

(i.e., the shortest distance between loc and any point in the cell),

whereas objects in Qob j are organized in descending order by their

distance to loc. In the beginning, both queues are empty. The first

step is to push the cell that contains the loc, c, to Qcell . Then, the

two queues are to be iteratively used in such a way that, in each

iteration we pop one cell c in Qcell (i.e., the one closest to loc),

then push those four cells that share an edge with c to Qcell , and

add all objects in c to Qob j . The iteration terminates on the condi-

tion (line 2) that the closest cell in Qcell is farther than the first k

objects in Qob j . Figure 8 shows an example after three iterations,

where gray cells refer to those in Qcell (priority numbers are also

given) and the three yellow cells are those whose objects are added

into Qob j (the order of visiting is given by a,b,c). We use arrows

to denote the distance from a cell to loc.The rationale behind our

algorithm is that the distance between a cell and loc is the lower

boundary of the distance from any object within that cell to loc.

Because of this, we use cell candidates to estimate the the distance

of objects (in those cells) to loc before actually retrieving the ob-

jects we wish to measure from the Spatial Index Table.

The efficiency of Algorithm 2 is mainly affected by the time re-

quired for recovering a certain number of nearest cells that contain

enough moving objects. To improve the time for retrieving each

cell, we utilize BigTable’s feature of supporting very fast retrieval

on a range of rows. We hope to retrieve all needed moving objects

within a cell that is stored as a contiguous range of rows in the Spa-

tial Index Table. Thus, we define a cell to be a 2d × 2d space of

spatial indexes in a nearest neighbor search, called a NN cell. That

is, if a spatial index uses Hilbert Curves at level ls (i.e., 2ls × 2ls

spatial cells), the cells in a nearest neighbor search are the grids of

the Hilbert Curve at level ln = ls−d, and by the property of Hilbert

Curves, spatial indexes within a lower level are still consecutive.

Figure 8 illustrates this property by splitting an NN cell into four

spatial cells that correspond to a contiguous key range in BigTable.

The level employed by the Hilbert Curve ln (called the NN level) is

1843

Algorithm 2 Nearest Neighbor Search

Require: loc, find nearest neighbors around loc

Require: k > 0, at most k neighbors can be returned
Require: ln > 0, where ln is the level of the cell (i.e., the search region

unit)
1: Qcell ← new priority queue // to pop the nearest cell to loc

2: Qcell .push(cell that contains loc in level ln))
3: distmax ← ∞ // distmax is the maximum distance a returned neighbor

may be from loc

4: Qob j ← new priority queue // to pop the furthest object from loc

5: while Qcell is not empty do
6: c← Qcell .pop()
7: if distance from c to loc > distmax then
8: break // the predictive version will consider velocity and predict

duration in this pruning
9: end if

10: for ob ject in c’s row of the Spatial Index Table do
11: Qob j .push(ob ject)
12: if Qob j .size() > k then

13: Qob j .pop()
14: end if
15: if Qob j .size() = k then
16: distmax← distance from Qob j .top() to loc

17: end if
18: end for
19: for neighborCell around c do
20: Qcell .push(neighborCell)
21: end for
22: end while
23: Return result

a tunable parameter in our algorithm, which means the same near-

est neighbors query can be completed with different cell sizes (ln)

without making any modifications to the Spatial Index Table.

3.4.2 Adaption to Spatial Density

The NN level is critical to the performance of nearest neighbor

search. In this section, we present a method called Fast Level Adap-

tive Grid (FLAG) for fast tuning of NN levels as well as a caching

scheme to reduce the overhead of calculating these NN levels. It

is required that the tuning imposes no effect on update or other

queries, so access to BigTable storage (i.e., the Spatial Index, Lo-

cation, and Affiliation Tables) should be avoided when we tune or

cache NN levels. Basically, we need to find an NN level so that

every visited NN cell has σ objects, or as close to σ objects as pos-

sible. The value of σ is a parameter decided by how the Spatial

Index Table is stored in BigTable and is independent to the tuning

algorithm.

FLAG Algorithm: Assuming that σ is known, we give the calcu-

lation of NN levels in Algorithm 3. Initially, we guess the NN level

ln by assuming all objects are uniformly distributed over the whole

map (line 3). After the first estimation of object distribution, we

check the number of objects in cell c of level ln that contains loc.

If the estimation is too large (resp. too small), we increase ln by

δ = 1
2 log m

σ to decrease (resp. increase) the objects in cell c (again

assuming that objects are uniformly distributed in c). The tuning

continues until ln cannot be further adjusted.

Algorithm 4 illustrates how to cache the old NN levels of differ-

ent areas for future use. Each cached NN level ln is associated with

a range in the spatial index [le f t,right], which makes the caching

location-sensitive. For example, an ln in urban and rural areas will

most likely be different as there are probably more objects in a cell

of an urban area than that of a rural one. The NN level ln is also

associated with a timestamp showing when it was calculated. This

is of great importance especially for business centers, where people

stay only during working hours but leave after work.

Algorithm 3 Calculate Best Search Level

Require: loc, nearest neighbor query center is loc

Require: ρ0, best density, i.e., number of objects in best search level cell
Require: n, the number of moving objects in the whole space
1: ln←

1
2

log n
σ

2: minln ←−∞
3: maxln ← ∞
4: loop

5: c← the cell in level ln that contains loc

6: m← number of objects in c

7: δ = 1
2

log m
σ

8: if δ > 0 then
9: minln ← ln

10: else if δ < 0 then
11: maxln ← ln
12: end if
13: l′n← δ+ ln
14: if l′n ≤ minln or l′n ≥ maxln then
15: break
16: end if
17: ln← l′n
18: end loop
19: Return ln

When a nearest neighbor search targeting loc arrives, we search

in the cache for a range [le f t,right] that covers loc, i.e., h(loc) ∈
[le f t,right] (h is the spatial index function). If it has not been

cached or the timestamp is too old, a new ln will be calculated

for loc by tuning algorithm (Algorithm 3). Then, we add a new

cache record (ln, [le f t,right]) where le f t,right are respectively the

smallest and largest spatial indexes in cell c at level ln that contains

loc.

Algorithm 4 Best Search Level Cache

Require: loc, nearest neighbor query center is loc

1: index← h(loc)
2: r← find cache record (ln, [le f t,right]) such that index ∈ [le f t,right]
3: if r exists and r.created time is not too old then
4: Return r.ln
5: end if
6: ln← calculate best ln for loc

7: c← the cell in level ln that contains loc

8: add cache record (ln, [le f t(c),right(c)])
9: Return ln

3.5 Aged Data Archiving
Aged data should be written onto disk so that a history of moving

patterns can be later analyzed for useful information such as travel

paths and points of interest. When retrieving data for answering

history queries, non-sequential and non-consecutive IOs are com-

mon. A naive scheme for archiving historical data is to flush an

updated object location onto the disk before a new update arrives.

This scheme can incur a large number of disk IOs, where each IO

suffers from a latency penalty (i.e., seek time and rotational delay).

To reduce latency overhead, double-buffering (or ping-pong buffer-

ing) can be employed. While updates are taking place on one mem-

ory buffer, another memory buffer is flushed onto the disk. What

we must ensure in this scheme is that the time it takes to flush aged

data from one buffer onto the disk is less than the time it takes to

fill the other buffer in memory. Formally, let us denote the time to

flush a buffer to the disk as Td and the time to fill a buffer as Tm, the

following constraint must be observed: minTm ≥maxTd .

At first glance, this double-buffering scheme seems to be simple

to implement: When the location of an object is updated, we write

that update to one of the two history buffers. When the current

1844

buffer is full, we flush it and then swap buffers. A major advantage

of this scheme is keeping BigTable small: each object stores only

one piece of location data. However, this simple implementation

is inadequate for two reasons. First, since disk IO is much slower

than memory IO, the archiving scheme may require flushing aged

data onto parallel disks. Second, historical data are often analyzed

by objects or by locations. To avoid scanning all files in response

to an object or location query, preserving data locality must be con-

sidered. Therefore, we must design buffer strategy to meet the re-

quirements of effective data locality and efficient parallel IOs.

As we mentioned in Section 3.3, we keep a number of histori-

cal locations in memory for each object. The purpose of this in-

memory caching is for the support of applications such as travel-

path rendering, current location positioning (via algorithms such as

Viterbi [26]), and future location prediction. Thus, for each object

we have m in-memory records.

3.6 Parallel Archiving Streams
We present a parallel ping-pong scheme (PPP), which is de-

signed to deal with three problems as follows:

1. How should the buffer be partitioned to preserve access lo-

cality?

2. What should the buffer-page size sB be for each archiving

stream?

3. What should be the desired number of disks nd?

3.6.1 Data Placement

To address the problem of data partitioning, we view location

data as a two-dimensional matrix, with rows representing objects

and columns their locations. Because the location updating fre-

quency of different objects vary, a column is copied to an aged-

buffer page only when it is full. A buffer page is flushed onto disk

only when enough objects have filled the page. Suppose we have

nd buffer pages for nd disks. We would like to 1) flush an object

to a minimal number of disks, and 2) place nearby objects on the

same buffer page as much as possible.

To meet the locality requirement, we transfer data of object i

(1≤ i≤ no) to disk hashd(i, loci,0)(1≤ hashd(x,y)≤ d). This will

guarantee that any object’s archived data are always located on the

same disk. Besides this object-locality, an object’s initial location

loci,0 is also considered in generating hashd . This initial location

is a good estimate of an object’s potential location at later points

of time because moving objects are unlikely to move too far away

from their initial position after only a short period of time. For ex-

ample, only a small subset of people travel to more than three cities

in a single week. Over shorter periods of time, even city dwellers

who typically restrict themselves to only a handful of locations in

a single day often use the same transit routes.

3.6.2 Determine sB and nd

Since MOIST employs a double-buffering scheme, we need to

reserve sB = srec× no for caching aged data. In other words, the

primary and secondary buffer reserves a space of sB for data in

memory. These two buffers swap roles whenever the aged-data

buffer has been flushed. Given nd disks, to balance workload, we

assign each disk no/nd objects via hashing. Each disk then deals

with a buffer of size sB/nd .

We measure cost based on disk utilization. There are two tasks

which must be analyzed in relation to disk utilization: when aged

data are written to parallel disks, and when queries to aged data are

conducted (a disk read is performed) for pattern analysis. A large

nd or small sB/nd decreases the write-side of disk utilization. This

can be explained as follows: let a disk’s rotational delay and seek

time be Trot and Tseek, respectively, and data transfer rate be Rdisk.

Then on each disk we have

Td = Trot +Tseek + sB/(nd ×Rdisk). (1)

The larger the value of nd , the more the seek time and rotational de-

lay dominate Td . In this case, disk utilization Ud can be expressed

as Ud = sB/(nd ×Rdisk× (Trot +Tseek)).
At the other hand, a small per-disk buffer size improves query-

side locality, and hence increases the query-side (i.e., the read-side)

of disk utilization. This can be explained by revisiting Eq.1. The

larger the value of nd , the better IO resolution from reading histor-

ical data for a set of objects is. In the worst case, when nd = 1,

finding historical data of an object requires reading the entire his-

tory archive, which can be several thousand times larger than that

of sB, spanning several days of history. Though some optimization

can be performed, IO resolution remains deficient when the local-

ity of writes is poor. In this case, the read resolution (i.e., read

effectiveness) Rd can be approximately expressed as

Rd = k×nd/no.

At one extreme, when nd = no, resolution is perfect because each

object has its own disk to cache its data. On the other end of the

spectrum, when nd = 1, resolution is at its worst. We scale the frac-

tion nd/no by a normalization factor k, which can be tuned based

on the real operational cost of the computer clusters, the fraction of

write versus read operations, and the desired tradeoff between Ud

and Rd .

The optimization problem can then be formulated as maximizing

overall disk utilization, min(Ud ,Rd), given the constraint minTm ≤
maxTd , or

maxmin(Ud ,Rd)

subject to minTm ≥maxTd .

Since Ud monotonously decreases and Rd monotonously increases

as nd increases, the maximum of min(Ud ,Rd) is achieved when

Ud =Rd and nd is unconstrained. If nd which satisfies Ud =Rd also

satisfies minTm ≥maxTd , we take this nd as the best configuration.

Otherwise, the optimal nd shall be the one that satisfies minTm =
maxTd .

4. EXPERIMENTS
This section presents our experiments for evaluating MOIST. We

designed experiments to answer two key questions:

1. How effectively can MOIST eliminate update redundancy

(e.g., update shedding ratio)?

2. What are the limitations of BigTable for supporting MOIST

(e.g., QPS of udpate and nearest neighbor query that BigTable

can support for MOIST)?

Note that we conducted two sets of experiments separately:

1. When we performed experiments about MOIST’s school, we

tuned error bound and the shedding ratio, to see the perfor-

mance change.

2. When we performed experiments about BigTable, the error

bound was set to be zero, i.e., we did these experiments un-

der the worst case: if every object is a leader, how is the

performance of our basic indexing and kNN algorithm.

1845

��� ��� ���

�

��

��

��

�
	
A
�B
C
BD
EB
F
�

�A	����D�B���A��D��Bε

B���B��B���B����

B���B��B���B��

B���B��B���B��

(a) Average # of OSes vs. devia-
tion threshold ε

� ��� ��� ��� ��� ����

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

�
	
A
BC
D
CE
FC
�
�

DCEFCE��A��

(b) Average # of OSes vs. total
number of object

� �� ��� ��� ��� ��� ���

�

��

��

��

��

�
�
	
AB
C
BD
EB
F
�

���	

(c) Average # of OSes over time

Figure 9: Impact of parameters on the average number of OS

These two sets of experiments show that both our basic indexing

and kNN algorithm and school have significant performance im-

provement over Bx-tree and other methods without school.

4.1 Datasets and Experiment Setup
We implemented and deployed MOIST in Google’s data cen-

ter. Each physical node was configured with a 1GHz CPU, 1GB

RAM and a 1GB Disk. The MOIST server called Bigtable APIs

for read and write operations. The overall BigTable resource quota

was 2GB RAM, 300GB disk storage and 512KBps bandwidth. We

used multiple machines to simulate traffic load as well as real ser-

vices. All load tests were run by triggering updates and queries

from multiple machines simultaneously: with up to 20,000 virtual

machines, each running 50 threads, we were able to simulate a pop-

ulation of one million independent mobile clients. We regulated the

update/query workload to MOIST by changing the update/query in-

terval of each client. To simulate real servers, we deployed MOIST

on multiple servers and studied the improvement on performance.

Due to the lack of real moving object datasets with a large pop-

ulation and high update frequency, we generated synthetic datasets

of moving objects with positions on a square map of 1,000×1,000

units size. A similar simulation is used in many related works

(e.g., [16]). To test MOIST’s performance, we simulated real mo-

bile object moving patterns in an urban area as much as possible.

We used a road-networked map that had rectanglar buildings sur-

rounded by roads. Each building was given an entrance. Moving

objects were divided into two types: pedestrians and cars. We let

each object initially move along a randomly selected road. Veloc-

ity was chosen between 0 and 1 units/second for pedestrians and

between 1 and 2 units/second for cars. The locations and velocities

in each update message were randomly perturbed to simulate noise,

and the update interval was randomly chosen between zero and five

seconds. When an object reached a crossroad, it chose a turn with

equal probability. When a pedestrian was near an entrance to a

building, they chose to enter it with 5% probability. Once inside

a building, a pedestrian exited the building with a 5% probability

also. During the time a pedestrian was inside of a building, each

update would assign a position to the pedestrian within the build-

ing uniformly, at random.

We also studied the support of BigTable for location updates and

nearest neighbor searches which showed that our scheme enjoyed

a significant improvement, though it suffered from some limita-

tions when compared to other memory- or disk-based methods. To

stretch BigTable to its limit, updates and queries applied to a pop-

ulation of 400k to 1m objects with randomly chosen positions and

velocities in a space size of 1km2 were carried out. Since bottle-

necks may take place in either BigTable or the server receiving the

updates and queries, we also used multiple servers to receive up-

dates and queries.

4.2 Effectiveness of MOIST
To test the effectiveness of MOIST, two competing aspects must

be considered, the benefit of reductions in the number of updates

versus the cost of clustering to obtain fewer OSes. To address this

question, we considered the number of read and write operations

performed by the server on BigTable (where the Location, Spatial

Index and Affiliation Tables are stored), as this was the major bot-

tleneck of our work. Generally, BigTable had a much better con-

currency in read operations than write ones, so a reduction of write

operations was of higher priority.

4.2.1 Update Reduction

Since only the leader of an object school (OS) incurs write oper-

ations to BigTable, we used the number of OSes as the benchmark

for the benefits of update reduction. We only examined the average

number of OSes for each clustering cell within a cluster interval,

in order to avoid the consideration of the influence of reclustering

(the influence of reclustering will be discussed in the Section 4.3).

In MOIST, three factors have the potential to impact the number

of OSes: the deviation threshold ε, the average size of an OS, and

the cluster interval Tc for a cluster cell. As the the average size of

an OS was not tunable, we increased the total number of objects,

which is roughly the product of the average size of an OS and the

average number of OSes. We separately investigated the influences

of these factors and plot the results in Figure 9. We used a default

update frequency of one update per second and a default population

of 100 objects.

In Figure 9(a), the average number of OSes decreases linearly

with deviation threshold ε. Meanwhile, the speed distribution has

little impact on the number of OSes. Figure 9(b) indicates that there

is little increase in the number of OSes when the number of objects

increases by a factor of 10. Therefore, the update shed rate is able

to achieve about 90% when 1,000 objects are in the space. Finally,

Figure 9(c) shows that an update interval of Tc = 10 seconds can

keep the variance of the number of OSes within 10.

4.2.2 Performance Tradeoffs of Clustering

We first investigate the latency of each clustering, a key met-

ric of the clustering performance. The latency of one clustering in

terms of the interaction with BigTable consists of three parts, read

time, computation time and write time. Information needed by the

clustering will be first retrieved in batch from the Spatial Index Ta-

ble and Affiliation Table, which is in read time. Then, leaders are

clustered into groups by the algorithm of Section 3.3.2, which is in

1846

Figure 10: Performance of clustering: per-clustering latency

computation time. Finally, the Affiliation Table and the Spatial In-

dex Table are updated according to the computation result, which

is in write time. Figure 10(a) and Figure 10(b) show clustering

latencies versus increasing numbers of pre-clustering leaders with

fixed numbers of post-clustering leaders (i.e., 1k leaders), and fixed

numbers of pre-clustering leaders (i.e., 10k leaders) with increasing

number of post-clustering leaders, respectively. The plots also give

the ratio of read, computation and write time for each setting. Fig-

ure 10(a) shows that the rising of latency depends more on the read

time rather than the increasing number of leaders. Figure 10(b)

shows that the latency has little to do with the reduction ratio of the

settings in the plot.

We discuss the influences of clustering by learning the benefits

of improving the nearest neighbor search QPS (NN QPS). More

clusterings mean little objects (i.e., only leaders) in the Spatial In-

dex Table, thus increasing NN QPS remarkably (e.g., NN QPS is

doubled when the population in 1km2 decreases from 10k to 1k).

However, higher frequency of clustering will lead to more time

cost, which will affect NN query and hence decrease the overall

QPS. Here, we show our results about choosing a good clustering

frequency. We assume two settings, setting A and B. For both set-

tings, there were initially 1k leaders out of 20k objects. With each

object updating their locations, we assume in setting A that the

number of leaders increases linearly from 1k to 20k in 30sec, and

in setting B that the number of leaders increases linearly from 1k

to 20k in 60sec. Figure 11 plots the NN QPS variances of the two

settings. Both settings A and B have roughly optimal frequencies

of clustering that best improve the NN QPS (baseline of using no

clustering is given by the black horizontal line). We use settings

A and B to represent the cases where objects are moving in highly

���� ���� ���� ���� ���� ���� ���� ���� ����

���

���

	��

���

A��

B
B

CD
E
F

����������C���������C�������

C!"C�#���#C��C�����

C$"C�#���#C��C�����

Figure 11: Influence of clustering: improvement of nearest

neighbor search QPS (NN QPS). Black horizontal line gives the

NN QPS with no clustering.

dynamic (leaders of A increase much faster than those in B) and in

relatively fixed manner. Figure 11 shows that the optimal cluster-

ing frequency of setting A is a bit larger than that of B while the

effect of clustering in setting A is better. Compared to the base-

line of no clustering, the benefits of clustering in both settings are

remarkable. While according to [6], the disk-based Bx tree imple-

mentation needs a CPU time of at least 0.005-0.01 second, the peak

NN QPS of our implementation has at least a 4x speedup than that

of [6] in the same scenario.

4.3 Effectiveness of BigTable
In this section, we present the overall performance of our server

that employs the BigTable infrastructure. We use the metric of

Queries Per Second (QPS) to evaluate the performance.

4.3.1 Adaptation over BigTable

BigTable has accessing criteria that is in stark contrast to page-

based disk methods due to its distributed key-value storage scheme.

In Section 3.4, we give an adaptive method called Fast Level Adap-

tive Grid (FLAG) for fast nearest neighbor search by considering

object density skew when determining the granularity of search

range.

We conducted our experiment on a map with no moving objects

in order to evaluate the performance the nearest neighbor search

aspect of MOIST over the search range. As discussed previously,

a naive (fixed NN level) NN search algorithm will experience a

quadratic rise in time cost as the search range limit increases. This

was confirmed by figure 12(b), and QPS of fixed NN level drops

drastically as figure 12(a) illustrates. From this, we can ascertain

that an increase in performance can be obtained by a decrease of the

NN level. Most importantly, this experiment proves that our Fast

Level Adaptive Grid (FLAG) scheme works well in the presence

of increasing search range. By adapting NN level automatically,

FLAG maintains high performance even as range limit increases.

To evaluate robustness against an increase in density, we con-

ducted the following experiment. From sparse to dense, 1K, 10K,

50K, 100K objects were uniformly and randomly placed into a

square area of 1km2 size. Figure 12(d) illustrates that a fixed NN

level will experience a linear increase in time cost with the increase

of density. As Figure 12(c) shows, QPS of fixed NN level drops

when density increases. From these two figures, we can see that

faster process time can be achieved by increasing NN levels when

density increases. For FLAG, this experiment testifies that rela-

tively high performance is conserved in face of increasing density.

4.3.2 Single­Server QPS

In this experiment, we set up 10 machines that ran client sim-

ulators to query a single server. Each client simulator had 100

threads which concurrently queried the server. Before the test be-

gan, we configured the population and update frequency of each

of the clients (i.e., their threads). Then, for each query generated

by a thread, a random object id (1 ≤ id ≤ # of objects) would be

assigned to the object.

Figure 13(a) reveals that update QPS decreases very little as the

number of indexed objects increase. Even in the case of a sin-

gle front-end server and 1 million indexed objects, our design can

process as many as 7,875 update requests per second. The amor-

tized time cost for a single update request is less than 0.2ms, which

surpasses state-of-the-art disk-based designs such as the Bx trees

evaluated in [6].

1847

20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

NN QPS against Search Range Limit

(single server)

search range limit(meter)

N
N

 q
u

e
ri

e
s
 p

ro
c
e

s
s
e

d
 p

e
r

s
e

c
o

n
d

(N
N

 Q
P

S
)

Fast Level Adaptive Grid(FLAG)
Search Level 19 (8m−long square)
Search Level 20 (4m−long square)

(a) NN QPS by a single server
vs. search range limit

20 40 60 80 100

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

NN Cost against Search Range Limit

(single server)

search range limit(meter)

a
ve

ra
g

e
 N

N
 p

ro
c
e

s
s
 t

im
e

(s
e

c
o

n
d

)

Fast Level Adaptive Grid(FLAG)
Search Level 19 (8m−long square)
Search Level 20 (4m−long square)

(b) Time cost per NN query by
a single server vs. search range
limit

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

NN QPS against Objects Density

(single server, 10m search range limit)

number of objects(inside TUSP)

N
N

 q
u

e
ri

e
s
 p

ro
c
e

s
s
e

d
 p

e
r

s
e

c
o

n
d

(N
N

 Q
P

S
)

1K 10K 50K 100K

Fast Level Adaptive Grid(FLAG)
Search Level 19 (8m−long square)
Search Level 20 (4m−long square)

(c) NN QPS by a single server
vs. object density

NN Cost against Objects Density

(single server, 10m search range limit)

number of objects(inside TUSP)

a
ve

ra
g

e
 N

N
 q

u
e

ry
 p

ro
c
e

s
s
 t

im
e

1K 10K 50K 100K

0
m

s
3

m
s

6
m

s
9

m
s

1
2

m
s

1
5

m
s

Fast Level Adaptive Grid(FLAG)
Search Level 19 (8m−long square)
Search Level 20 (4m−long square)

(d) Time cost per NN query by
a single server vs. object den-
sity

Figure 12: Effectiveness of adaptation over BigTable using FLAG

4.3.3 Multiple­Server QPS

Theoretically, MOIST has very little communication overhead

with the increase in the number of machines. Furthermore, even

with restricted BigTable resources, the performance of MOIST scales

in a favorable fashion with the number of machines.

Figure 13(b) exhibits the QPS when we deployed 5 servers shar-

ing a single BigTable to handle updates/queries. The speedup is

very close to the optimal case, i.e., a 5x speedup. Figure 13(c)

shows the QPS when we deployed 10 servers sharing a single BigTable

to handle updates/queries. Although the QPS is not very stable over

time, the average and maximum speedups are very close to optimal.

In spite of this, the QPS increases to 60k with the deployment of

10 machines, which accounts for almost an 80x speedup over Bx

trees [6].

5. APPLICATIONS
In this section, we give a brief introduction on the applications

that we have deployed or plan to deploy based on the MOIST. We

currently focus on two main fields, realtime transit and realtime

coupon.

Realtime transit targets to organize the realtime locations of pub-

lic transportation vehicles, like buses and taxis, and makes them

easily accessible by users. Taking a bus as an example, most urban

residents take it every day, however, they are frustrated by its un-

predictable arrival time due to bad traffic. If they can search the bus

location on their mobile phone, they probably can save a lot of time

in waiting at bus stops. From the aspect of implementation, buses’

GPS locations should be updated to server, and the server takes

charge of storing location data, building an index and responding

to users’ location queries. Since buses can travel as far as hundreds

of meters in one minute, the location updating frequency should be

high enough. This is just one of problems that MOIST can solve,

additionally, its index can support users to browse all running buses

near a location. We’ve built a Bus Alert Service, and a correspond-

ing Android application through which users can use the service.

This work was first prototyped in Taipei in March 2011. The server

serves about 5000 buses’ realtime locations, and each bus updated

its GPS location twice a minute. From the client, users could (1)

query a bus’ location, (2) browse all buses nearby, and (3) set an

alarm to remind if the selected bus is approaching. In October 2011,

we launched the realtime location service of Google shuttles as a

key feature of Google Campus, which is widely used inside Google

to access company resources.

Another field where we want to apply MOIST is realtime coupon.

On the one hand, users are encouraged to update their locations to

get coupons from nearby shops or restaurants. On the other hand,

shop owners can submit coupons to our system, targeting nearby

users immediately. Proposing an interesting scenario: a user is

wandering then lunch time comes, he gets out his phone, regis-

ters for coupons of nearby Chinese restaurants. At the same time,

a pretty good Chinese restaurant within 300 meters finds that there

are several seats open, and submits several of 20%-off coupons tar-

geting customers within 1,000 meters. Our service will match the

restaurant and customer accurately. In all, this is an interesting idea,

and we’d like to deploy it in the near future.

MOIST can be employed by many kinds of applications as long

as they need frequent location updates. Furthermore, it can be used

to discover points of interests or even automatically draw maps

based on mining the large scale user location updates for a long

time. We’ve deployed MOIST as one of the fundamental location-

based infrastructures, and we can imagine all kinds of exciting ap-

plications coming afterwards.

6. CONCLUSION
In this paper, we presented MOIST, a recursive spatial parti-

tioning indexer built upon BigTable, which significantly improves

performance for spatial NN and history queries. We showed that

through object-schooling, update frequency can be significantly re-

duced, and through data placement and our proposed parallel ping-

pong scheme, we can archive historical data for efficient data pro-

cessing. Through our experiments, we have shown that MOIST is

able to scale well with increasing, large volume location updates

with low latency. We have also developed a Transit Alert proto-

type on top of MOIST for keeping track of real-time locations of

buses and users. Our future work will focus on utilizing historical

data to conduct pattern analysis for improving user experience on

LBS applications such as route planning, map makers, and point-

of-interest data mining.

Besides MOIST, the team [1] has been developing and prototyp-

ing indoor positioning and navigation technologies using WIFI sig-

nals, inertial navigation systems (INS) [10], and imagery data [4].

Schemes of INS calibration, signal processing, signal fusion, and

crowd sourcing will be deployed together with MOIST to provide

robust indoor/outdoor location-based services.

7. REFERENCES
[1] http://sitescontent.google.com/mobile-2014-research.

[2] L. Biveinis, S. Šaltenis, and C. Jensen. Main-memory

operation buffering for efficient R-tree update. In VLDB,

pages 591–602, 2007.

1848

(a) Number of update queries
processed per second by a sin-
gle server against the number of
indexed moving objects

0 5000 10000 15000

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

Index

in
p
u
t$

Q
P

S

(b) Update QPS when there are
5 servers and 50 simulating
clients and 100 concurrent RPC
for each client.

0 10000 20000 30000 40000

0
e
+

0
0

2
e
+

0
4

4
e
+

0
4

6
e
+

0
4

8
e
+

0
4

1
e
+

0
5

Index

in
p
u
t$

Q
P

S

(c) Update QPS when there are
10 servers and 100 simulating
clients and 100 concurrent RPC
for each client.

Figure 13: Impact of parameters on the average number of OS. For (b) and (c), x−axis: timeline; dashed line: the number of failed

queries per second (these queries are not included in QPS); horizontal line: the overall average QPS

[3] Y. Cai, K. Hua, G. Cao, and T. Xu. Real-time processing of

range-monitoring queries in heterogeneous mobile databases.

IEEE Transactions on Mobile Computing, 5(7):931–942,

2006.

[4] E. Y. Chang. Foundations of Large-Scale Multimedia

Information Management and Retrieval: Mathematics of

Perception. Springer, 2011.

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:

A distributed storage system for structured data. ACM

Transactions on Computer Systems (TOCS), 26(2):1–26,

2008.

[6] S. Chen, C. Jensen, and D. Lin. A benchmark for evaluating

moving object indexes. PVLDB, 1(2):1574–1585, 2008.

[7] S. Chen, B. Ooi, K. Tan, and M. Nascimento. ST2B-tree: a

self-tunable spatio-temporal b+-tree index for moving

objects. In ACM SIGMOD, pages 29–42, 2008.

[8] S. Chen, B. Ooi, and Z. Zhang. An adaptive updating

protocol for reducing moving object database workload.

PVLDB, 3(1-2):735–746, 2010.

[9] A. Civilis, C. Jensen, and S. Pakalnis. Techniques for

efficient road-network-based tracking of moving objects.

IEEE Transactions on Knowledge and Data Engineering,

17(5):698–712, 2005.

[10] Y. Gao, Q. Yang, G. Li, E. Chang, D. Wang, C. Wang, H. Qu,

P. Dong, and F. Zhang. Xins: the anatomy of an indoor

positioning and navigation architecture. In Proceedings of

the 1st International Workshop on Mobile Location-based

Service, pages 41–50, 2011.

[11] B. Gedik, K. Wu, P. Yu, and L. Liu. Mobiqual: Qos-aware

load shedding in mobile cq systems. In ICDE, pages

1121–1130, 2008.

[12] S. Har-Peled. Clustering motion. Discrete and

Computational Geometry, 31(4):545–565, 2004.

[13] H. Hu, J. Xu, and D. Lee. A generic framework for

monitoring continuous spatial queries over moving objects.

In ACM SIGMOD, pages 479–490, 2005.

[14] A. Jain, E. Chang, and Y. Wang. Adaptive stream resource

management using kalman filters. In ACM SIGMOD, pages

11–22, 2004.

[15] C. Jensen, D. Lin, and B. Ooi. Query and update efficient

B+-tree based indexing of moving objects. In VLDB, pages

768–779, 2004.

[16] C. Jensen, D. Lin, and B. Ooi. Continuous clustering of

moving objects. IEEE Transactions on Knowledge and Data

Engineering, 19(9):1161–1174, 2007.

[17] M. Kurashige and S. Fukushima. Image converter for

mapping a two-dimensional image onto a three dimensional

curved surface created from two-dimensional image data,

Nov. 8 1994. US Patent 5,363,476.

[18] Y. Li, J. Han, and J. Yang. Clustering Moving objects. In

KDD, pages 617–622, 2004.

[19] D. Lin, C. Jensen, B. Ooi, and S. Šaltenis. Efficient indexing

of the historical, present, and future positions of moving

objects. In Proceedings of the 6th International Conference

on Mobile Data Management, pages 59–66, 2005.

[20] M. Mokbel and W. Aref. Space-Filling Curves. 2008.

[21] P. Pesti, L. Liu, B. Bamba, A. Iyengar, and M. Weber.

RoadTrack: scaling location updates for mobile clients on

road networks with query awareness. PVLDB,

3(1-2):1493–1504, 2010.

[22] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and

S. Hambrusch. Query indexing and velocity constrained

indexing: Scalable techniques for continuous queries on

moving objects. IEEE Transactions on Computers,

51(10):1124–1140, 2002.

[23] S. Šaltenis, C. Jensen, S. Leutenegger, and M. Lopez.

Indexing the positions of continuously moving objects. In

ACM SIGMOD, pages 331–342, 2000.

[24] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An

optimized spatio-temporal access method for predictive

queries. In VLDB, pages 790–801, 2003.

[25] K. Tzoumas, M. Yiu, and C. Jensen. Workload-aware

indexing of continuously moving objects. PVLDB,

2(1):1186–1197, 2009.

[26] A. Viterbi. A personal history of the Viterbi algorithm. IEEE

Signal Processing Magazine, 23(4):120–142, 2006.

[27] M. Yiu, Y. Tao, and N. Mamoulis. The B dual-Tree: indexing

moving objects by space filling curves in the dual space.

VLDB Journal, 17(3):379–400, 2008.

[28] M. Zhang, S. Chen, C. Jensen, B. Ooi, and Z. Zhang.

Effectively indexing uncertain moving objects for predictive

queries. PVLDB, 2(1):1198–1209, 2009.

1849

