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ABSTRACT

Main Memory Map Reduce (M3R) is a new implementation
of the Hadoop Map Reduce (HMR) API targeted at online
analytics on high mean-time-to-failure clusters. It does not
support resilience, and supports only those workloads which
can fit into cluster memory. In return, it can run HMR
jobs unchanged — including jobs produced by compilers for
higher-level languages such as Pig, Jaql, and SystemML and
interactive front-ends like IBM BigSheets — while providing
significantly better performance than the Hadoop engine on
several workloads (e.g. 45x on some input sizes for sparse
matrix vector multiply). M3R also supports extensions to
the HMR API which can enable Map Reduce jobs to run
faster on the M3R engine, while not affecting their perfor-
mance under the Hadoop engine.

1. INTRODUCTION

The Apache Hadoop Map Reduce (HMR) engine [6, 20]
has had a transformational effect on the practice of Big Data
computing.

HMR is modeled on the Google Map Reduce program-
ming model [12] (and the backing Google File System, [14]).
Usually input is taken from (and output is written to) a dis-
tributed, resilient file system (such as HDFS). A partitioned
input key/value (KV) sequence I is operated on by mappers
to produce another KV sequence J, which is then sorted and
grouped (“shuffled”) into a sequence of pairs of key/list of
values. The list of values for each key is then operated upon
by a reducer which may contribute zero or more KV pairs to
the output sequence. If the involved data sets are large, they
are automatically partitioned across multiple nodes and the
operations are applied in parallel.

'In this paper we are primarily concerned with v 0.22.*
Hadoop APIs. The Map Reduce APIs of interest are the “old
style” APIs mapred and the “new style” APIs mapreduce.
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This model of computation has many remarkable proper-
ties. First, it is simple. The HMR API specifies a few entry
points for the application programmer — mappers, reduc-
ers/combiners, partitioners, together with input and output
formatters. Programmers merely need to fill out these entry
points with (usually small) pieces of sequential code.

Second, it is widely applicable. A very large class of par-
allel algorithms (on structured, semi-structured or unstruc-
tured data) can be cast in this map/shuffle/reduce style.

Third, the framework is parallelizable. If the input data
sequence is large, the framework can run mappers/ shuf-
flers/ reducers in parallel across multiple nodes thus har-
nessing the computing power of the cluster to deliver scal-
able throughput.

Fourth, the framework is scalable: it can be implemented
on share-nothing clusters of several thousand commodity
nodes, and can deal with data sets whose size is bounded
by the available disk space on the cluster. This is because
mappers/shufflers/reducers operate in streaming mode, thus
supporting “out of core” computations. Data from the disk
is streamed into memory (in implementation-specified block
sizes), operated on, and then written out to disk.

Fifth, the framework is resilient. A job controller tracks
the state of execution of the job across multiple nodes. If
a node fails, the job controller has enough information to
restart the computation allocated to this node on another
healthy node and knit this new node into the overall com-
putation. There is no need to restart the entire job.2 Key
to resiliency is that the programmer supplied pieces of code
are assumed to be functional in nature, i.e. when applied to
the same data the code produces the same result.

Because of these properties, the HMR engine is now widely
used, both as a framework against which people directly
write code (e.g. for Extract/ Transform/ Load tasks) and
as a compiler target for higher-level languages (cf Pig [16],
Jaql [7], Hive [19], SystemML [15]).

The design point for the HMR engine is offline (batch)
long-lived, resilient computations on large commodity clus-
ters. To support this design point, HMR makes many de-
cisions that have a substantial effect on performance. The
HMR API supports only single-job execution, with input/
output being performed against an underlying file system

2Within limits; of course if there are a large number of fail-
ures, the job controller may give up. The job controller
itself is a single point of failure, but known techniques can
be applied to make it resilient.



(HDFS). If a higher level task is to be implemented with
multiple jobs, each job in this sequence must write out its
state to disk and the next job must read it in from disk. This
incurs I/O cost as well as (de-)serialization cost. Mappers
and reducers for each job are started in new JVMs (JVMs
typically have high startup cost). An out-of-core shuffle im-
plementation is used: the output of mappers is written to
local disk; a file transfer protocol is used to move these files
to their target nodes and an out-of-core sorting algorithm is
used to group the records by key for the reduce phase.

The demands of interactive analytics (e.g. interactive ma-
chine learning) lead to a different design point. Here the
data to be operated upon has already been cleaned and di-
gested and reduced to arrays of numbers that are (on the
higher end) terabytes big (rather than petabytes). This data
can be held in the memory for scores of nodes (one does not
need thousands of nodes). Indeed, the amount of main mem-
ory available on nodes is only going to increase in coming
years, making in-memory execution even more attractive.
Furthermore, algorithms in this space tend to be iterative,
operating on large data-structures in phases. Performance
is critical — performance closer to that delivered by in-core
(multi-node) HPC algorithms is desired. This performance
point can be 10x-100x better than the performance delivered
by Hadoop.

M3R. 1In this paper we make a fundamental distinction be-
tween the Hadoop Map Reduce APIs (we will call them
HMR APIs, or just HMR) and the Hadoop Map Reduce
implementation (we will call it the HMR Engine). M3R im-
plements the HMR APIs — thus it can run existing Hadoop
jobs, including jobs produced by tool-chains above Hadoop,
such as Pig, Jaql and SystemML. The HMR APIs supported
by M3R include the mapred and mapreduce APIs, coun-
ters, user-specified sorting and grouping comparators, user-
defined input/output formats and the Hadoop distributed
cache. M3R is essentially agnostic to the file system, so it
can run HMR jobs that use the local file system or HDFS.

However, M3R is a completely new engine focused on the
following design points:

e In-memory execution: M3R stores key value sequences
in a family of long-lived JVMs, sharing heap-state be-
tween jobs. Note that this limits M3R scalability to
the size of memory on the cluster (not the size of disks
on the cluster).

No resilience: The engine will fail if any node goes
down — it does not recover from node failure.

This means that M3R is useful for networks with high
mean time to failure. These can be commodity clusters
with scores of nodes or high performance systems with
much larger node counts. This also means that M3R
is probably not suitable for jobs that require tens of
hours to run since such long runs might interfere with
operational maintenance issues.

Performance: The engine should deliver performance
close to main memory execution.

M3R is implemented in X10 [10, 17], a type-safe, object-
oriented, multi-threaded, multi-node, garbage-collected pro-
gramming language designed for high-productivity, high-
performance computing. X10 is built on the two funda-
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mental notions of places and asynchrony. An X10 pro-
gram typically runs as multiple operating system processes
(each process is called a place and supplies memory and
worker-threads), and uses asynchrony within a place and for
communication across places. Over an essentially standard
modern, sequential, class-based, object-oriented substrate
(with support for functions and structs, and a sophisticated
constraint-based type system), X10 has four core, orthog-
onal constructs for concurrency and distribution: async S
(to execute S asynchronously), finish S (to execute S and
wait for all its asyncs to terminate), when (c) S (to execute
S in one step from a state in which c is true), and at (p) S
(to switch to place p to execute S). The power of X10 arises
from the fact that these constructs can be nested arbitrarily
(with very few restrictions), and thus lexical scoping can be
used to refer to local variables across places. The X10 com-
piler produces C++ for execution on a native back-end and
also Java for execution on multiple JVMs. The X10 runtime
(written primarily in X10) ensures that the execution of at
transparently serializes values, transmits them across places
and reconstructs the lexical scope at the target place. The
X10 runtime provides fast multi-place coordination mecha-
nisms, such as barriers and teams. X10 runs on sockets, on
PAMI, and on MPI (and hence on any transport on which
MPI runs, including Infiniband).

The M3R engine, implemented in X10, enjoys the follow-
ing key advantages over the HMR engine:

1. Each instance of M3R runs on a fixed number (possi-
bly one) of multi-threaded JVMs. An M3R instance
runs all jobs in the HMR job sequence submitted to
it, potentially running multiple mappers and reduc-
ers in the same JVM (for the same job), and sharing
heap-state between jobs.

The job tracker and the heartbeat mechanism is com-
pletely eliminated. Instead fast X10 constructs (bar-
riers, teams) are used to coordinate mappers and re-
ducers and signal job completion.

On input from the file system, M3R, associates the in-
put splits with the global (multi-place) key value se-
quence obtained from this input. Subsequent invoca-
tions of the input splits (e.g. by subsequent jobs in
the sequence) are fulfilled by reading the key value se-
quence from the heap, eliminating the need to read
from the file system again, and deserialize.

Similarly, output to an output formatter is associated
with the global key value sequence so that subsequent
input requests can be fulfilled from the key value se-
quence. (See Section 3.2.1.)

The shuffle of key value pairs is done in memory, using
X10 inter-process communication. It enjoys the bene-
fit of de-duplication performed by the X10 serialization
mechanism. (See Section 3.2.2.3.)

M3R implements a guarantee (partition stability) that
the same partition number is mapped to the same
place, across all jobs in the sequence. This crucial
property enables programmers to write HMR jobs that
can simply re-use memory structures across jobs and
avoid a significant amount of communication. (See
Section 3.2.2.2.)



The payoff from these advantages is that small HMR jobs
can run essentially instantly on M3R, avoiding the huge (10s
of second) start-up cost of the HMR engine. We show that
some HMR jobs can run 50x faster on M3R than on the
HMR engine. We show that programs in languages higher
in the Hadoop tool stack (particularly Pig, Jaql and Sys-
tem ML jobs) can run unchanged (minor modifications are
needed to the compilers for these languages).

To implement M3R we solved several technical problems:

e Control over cloning. The HMR, API allows the reuse
of keys and values, necessitating expensive cloning by
the M3R engine. We allow the programmer to specify
that keys/values need not be cloned.

Control over caching. Allows the programmer to spec-
ify which files should be cached and when the cache
should be flushed.

Exposing partition stability, allowing for locality-aware
programming within the confines of the HMR API.

In summary the contributions of this work are:

1. Identifying a distinction between HMR APIs and the

HMR engine.

Showing that HMR APIs can be implemented in a
main-memory implementation with substantial ben-
efits (reduced start-up time, significant performance
gain).

Identifying the sources of performance gain in the M3R
engine.

Identifying extensions to the HMR APIs which can
be used by M/R jobs to achieve better performance
on M3R, without affecting performance on the HMR
engine.

Demonstrating that Pig, Jaql and SystemML programs
can run unchanged on M3R (with minor modifications
needed to the compilers).

Rest of this paper. In the next section we place this paper
in the context of related work. Section 3 discussed the basic
HMR engine and M3R engine execution flows, highlighting
how M3R differs from HMR. Section 4 discusses backwards
compatible changes to HMR APIs that permit new kinds of
input and output formatters to be written that are aware of
MS3R caching, and that permit information to be specified
that does not affect the HMR engine but that can be used by
MS3R for better performance. Section 6 compares the perfor-
mance of the HMR and M3R engines on several benchmark
problems, and also discuss micro-benchmarks that highlight
the differences between the two. Finally, Section 7 concludes
and points directions for future work.

2. RELATED WORK

HaLoopl9] adds to the Hadoop API, allowing a program-
mer to explicitly specify which MapReduce iterations make
up a job, and the data that is re-used across iterations. The
HaLoop scheduler uses this knowledge to cache the reused
data on local disks. By leveraging this data locality in the
scheduler, performance is improved. The M3R engine does
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not extend the Hadoop API in this way, but is still able
to take advantage of data locality across MapReduce itera-
tions. The M3R engine caches all key/value pairs in mem-
ory at each machine, and it attempts to execute MapReduce
jobs where their data is located. Because M3R caches ev-
erything, there is no need for an API to specify what is to
be reused. Thus M3R is able to achieve the iterative job
performance improvements of HaL.oop, without the burden
of changing existing Hadoop programs to use new APIs.

Twister[13] is another MapReduce engine that exploits
data-locality for iterative MapReduce jobs. While Twister
and M3R make similar design decisions, the primary differ-
ence is that M3R implements the HMR API, while Twister
does not. Another less significant difference is that M3R
leverages X10’s built-in communications while Twister re-
lies on an externally hosted Message Broker network.

The Spark|[21] engine primarily uses main memory storage
to achieve faster performance compared to Hadoop. M3R
also uses main memory to achieve performance gains, but
at the expense of longer recovery time in the event of a
node failure. Spark uses a programming model based on Re-
silient Distributed Datasets (RDDs), to reduce this recovery
time without the performance degradation that comes with
checkpointing. While very interesting, Spark is not an HMR
based engine.

The Hadoop Online Prototype(HOP)[11] engine has many
similarities to M3R. Both are capable of running unmod-
ified Hadoop jobs, and both engines speed up execution
by getting data from the map phase to the reduce phase
(and potentially on to the map phase of the next job) more
quickly. HOP accomplishes this by pipelining the map-
pers and reducers, moving data between them using main-
memory buffers and network links in place of the local filesys-
tem whenever possible. M3R also uses main-memory and
network links for this shuffle, but M3R goes a step further,
by merging map and reduce roles into the same process.
This enables M3R to reduce the amount of data moved in
the shuffle phase (and in the map phase of the following job),
because much of the input for the reduce phase is already in
memory from the just-completed map phase of each process.

In the commercial space, companies such as Platform[5],
Facebook[8], MapR|[3], IBM[1], and others have focused pri-
marily on improving Hadoop’s ability to scale, eliminating
single points of failure like the NameNode, and improving
the manageability and support of large Hadoop clusters.
Some of these implementations offer minor performance im-
provements, but their main focus is on the largest-scale
Hadoop users. M3R’s focus is on the smaller scale, on the
user who finds themselves scaling down their Hadoop appli-
cation size to reach completion times suitable to an inter-
active user. M3R offers interactive performance levels for
larger data sizes than Hadoop.

3. HMR AND M3R EXECUTION FLOWS

This section presents a detailed account of HMR and M3R
execution flows, highlighting their different approach to MR
execution.

Figure 1 depicts an example application for iteratively
multiplying together a sparse matrix and dense vector. (This
is the core computation inside PageRank.) A single ma-
trix multiply is implemented with two MR jobs: the first
to calculate the appropriate scalar products and the sec-
ond to sum them. Since the HMR API does not represent
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Figure 1: Data flow for an iteration of matrix-vector
multiplication. The matrix G is row-block parti-
tioned, and the vector V is broadcast as needed.

work-flows the client must submit two MR jobs (for each
iteration), using the output of the first as an input to the
second. Note that the input matrix G remains unchanged
through both jobs.

3.1 HMR Execution Flow

We discuss in detail the execution flow for a single job as
background for a discussion of the differences with M3R.

The client prepares a job configuration object specifying
the classes to be used during execution, the number of reduc-
ers used to run the job, the location of the HMR jobtracker
etc. This configuration object is threaded throughout the
program (and passed to user classes), and can hence be used
to communicate information of use to the program.

The job configuration object is submitted in a call to
JobClient.submitJob. This library function obtains a jo-
bid from the Hadoop jobtracker, and writes out the nec-
essary job information to the jobtracker’s filesystem (in a
jobid-relative path), including the job configuration object
and the user code to be run. The user’s InputFormat is
instantiated, and asked to produce InputSplits, metadata
that describes where each “chunk” of input resides. These
are also written out to the job’s directory. Finally, the job-
tracker is notified that a new job with the given jobid has
been submitted.

Figure 2 presents a high level view of the data flow for a

File System

(HDFS)

Input Map Reduce Output
(InputFormat/ (Mapper) (Reducer) (OutputFormat/
< K

RecordReader/ RecordWriter

InputSplit) OutputCommitter)

Figure 2: Data flow in a Hadoop job. Dotted lines
represent cheap in-memory communication. Solid
black lines represent expensive out of memory (disk
or network) operations.

single Hadoop job (each mapper and reducer box represents
multiple processes).

The jobtracker schedules the job to run, allocating map
and reduce tasks on available task trackers. The map tasks
(allocated close to their corresponding InputSplits) must
next read input data. If the data is in HDFS (common case),
reading requires network communication with the namenode
(storing the file metadata). Reading the actual data requires
file system I/O (which may not require disk i/o if the data
is in kernel file system buffers), and may require network
i/o (if the mapper is not on the same machine as the one
hosting the data). The map tasks deserialize the input data
to generate a stream of key/value pairs that is passed into
the mapper. The mapper outputs key/value pairs, which
are immediately serialized and placed in a buffer. While in
the buffer, Hadoop may run the user’s combiner to combine
values associated with equivalent keys. When the buffer fills
up, they are sorted and flushed out to local disk.

Once map output has been flushed out to disk, reducer
tasks start fetching their input data. This requires disk and
network I/O. Each reducer performs an out-of-core sort of
its input data. After all of the mappers have completed
and the data is sorted, each reducer starts processing its in-
put. Each reducer outputs a (possibly empty) sequence of
key/value pairs that is sent to the QutputFormat (and its at-
tendent RecordWriter) for output. Typically, this involves
serializing the data and writing it out to disk. The namen-
ode is contacted to update the required filesystem metadata.
The data is written out to the local datanode (generally co-
located with the compute node), and optionally replicated
to a configurable number of other datanodes for resilience.

3.2 M3R Execution Flow

The general flow of M3R is similar to the flow of the HMR
engine. The client submits multiple jobs to the M3R engine,
which distributes the work to compute nodes in the cluster.

An M3R instance is associated with a fixed set of JVMs
(spawned by the X10 runtime, one per place) that are used
to run both mapper and reducer jobs, and is used to run mul-
tiple jobs. Reusing VMs reduces startup cost and permits
data to be kept in memory between jobs. In the common
case of job pipelines (the output of one job is immediately
used by the next job) M3R affords significant benefits in
avoiding network, file i/o and (de-)serialization costs.

File System
(HDFS)

Input Map

Output

(OutputFormat/

Reduce

(InputFormat/ (Mapper) (Reducer)

RecordReader/ | RecordWriter

InputSplit)
Partitioner v

Figure 3: Data flow in an M3R job. Dotted lines
represent cheap in-memory communication. Solid
black lines represent expensive out of memory (disk
or network) operations.

OutputCommitter)




3.2.1 Input/Output Cache

M3R introduces an in-memory key/value cache to per-
mit in-memory communication between multiple jobs in a
job sequence. Like HMR, M3R can uses the client pro-
vided RecordReader to read in data and deserialize it into a
key/value sequence. Before passing it to the mapper, M3R
caches the key/value pairs in memory (associated with the
input file name). In a subsequent job, when the same input
is requested, M3R will bypass the provided RecordReader
and obtain the required key/value sequence directly from
the cache. As the data is stored in memory, there are no at-
tendent (de)serialization costs or disk/network I/O activity.

Similarly, when the reducers emit a key/value pair, M3R,
caches it (associated with the output file name) before using
the RecordWriter to serialize it and write it to disk. Sub-
sequent reads from this file name can be fulfilled from the
cache. If the output data is determined to be temporary
(only needed for subsequent jobs in the sequence), then the
data does not even need to be flushed to disk.

The cache in M3R is mostly transparent to the user, as it
is intended to work with unmodified Hadoop jobs. To this
end, M3R intercepts calls to the base Hadoop filesystem and
attempts to keep the cache up to date. For example, deleting
a file from the filesystem causes it to transparently removed
from the cache.

There are some instances where cache awareness is benefi-
cial/required. Explicit interaction with the cache is possible
through a set of extensions described in Section 4.2.

3.2.2  Reducing Shuffle Overhead

3.2.2.1 Co-location.

When M3R runs a job, it distributes the required informa-
tion to each place and starts multiple mappers and reducers
in each place (running in parallel). As a result, some of the
data a mapper is sending is destined for a reducer running
in the same JVM. The M3R engine is careful to make this
case efficient, and guarantees that no network, or disk I/O
is involved.

For locally shuffled data the engine tries to avoid the time
and space overhead of (de)serialization. Unfortunately, due
to a limitation in the Hadoop API, this cannot in general be
done safely. Hadoop assumes that map (and reduce) output
is immediately serialized and encourages clients to mutate
them after they have been passed to the engine. This forces
MS3R to conservatively make a copy of every key/value pair.
Section 4.1 introduces an extension allowing job writers to
inform the engine that a given map or reduce class is well-
behaved and does not mutate values that it has output to
the engine. For these classes, the key/value pair output by
the mapper can be passed directly into the reducer, avoiding
(de-)serialization.

3.2.2.2  Partition Stability.

The co-location strategy just described yields a small per-
formance boost to most jobs. Some fraction of data will be
shuffled locally, reducing intra-job communication. How-
ever, M3R goes further, and allows carefully written algo-
rithms to deliberately exploit locality, dramatically decreas-
ing communication and (de)serialization costs.

The HMR API allows the programmer to control how keys
are partitioned amongst the reducers. This is done via a
Partitioner that maps keys to partitions. This is primar-
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ily done for load balancing purposes and for global sorting
(across reducers). The default implementation uses a hash
function to map keys to partitions. Hadoop does not, how-
ever, allow the programmer any control over where the re-
ducer associated with a partition is run. This is deliberate,
and allows Hadoop to transparently restart failed reducers
on different hosts.

M3R, in contrast, provides programs with the following
partition stability guarantee: for a given number of reduc-
ers, the mapping from partitions to places is deterministic.
This allows job sequences that use a consistent partitioner to
route data locally. The output of a given reducer is cached
at the place where it is written. If it is read by a subsequent
job, the mapper associated with that data will be assigned
to the same place. If the mapper then outputs keys that
map to the same partition, it is guaranteed that the key will
be locally shuffled.

For illustration consider the matrix vector multiplication
example. The first job has two inputs: the matrix G and the
vector V. The matrix G is far larger, as its size is quadratic
in the size of V. As a result, it is critical that G not be
moved. Parts of G (e.g. a set of contiguous rows) should
be read in by each place and then left there for the entire
job sequence. This can be accomplished by using an appro-
priate partitioner (e.g. one that assigns to place i the ith
contiguous chunk of rows). This ensures that for the first
job all the partial products (the product of a fragment of
a row with a fragment of a column, for a given row) are
co-located. The same partitioner is used for the second job
and ensures that they are sent to a co-located reducer for
summation. As a result, the shuffle phase of the second job
in each iteration can be done without any communication.

Section 6.1 discusses the (substantial) performance impact
of local vs remote shuffle through a micro-benchmark.

3.2.2.3 De-Duplication.

Consider the matrix vector multiply example again. The
first job must broadcast V to all the reducers. However,
each place has a number of reducers, say k.

Clearly it would be beneficial for M3R to not send k copies
of V to each place. Note the HMR engine does not co-locate
reducers, so this optimization does not make sense. M3R
takes advantage of a feature of the underlying X10 serializa-
tion protocol to transparently de-duplicate the data sent to
a place. If the mappers at place P output the identical key
or value multiple times for a reducer located at place @, only
one copy of the key or value is serialized. On deserialization
@ will have multiple aliases of that copy.

4. HMR API EXTENSIONS

As discussed in Section 3, M3R extends the HMR APIs in
a backward compatible way for three reasons: to eliminate
needless (de)serialization, to interact with the cache, and to
enable locality aware algorithms.

4.1 ImmutableOutput

The Hadoop API assumes that mapper and reducer out-
put is immediately serialized. As a result, it allows both the
mapper and reducer code to reuse keys and values after they
have been output. This reuse is intended as an optimization.
Instead of allocating a new object, client code can mutate
and reuse a previously output object.



class Map ... {
IntWritable one = new IntWritable(1);
Text word = new Text();

void map(LongWritable key, Text value,
OutputCollector output, Reporter r) {

String line = value.toString();
StringTokenizer tokenizer

new StringTokenizer(line) ;

while (tokenizer.hasMoreTokens()) {
word.set (tokenizer.nextToken());
output.collect(word, one);

class Map ...

}

implements ImmutableQutput {
new IntWritable(1);

IntWritable one

void map(LongWritable key, Text value,

OutputCollector output, Reporter r) {
String line = value.toString();
StringTokenizer tokenizer

= new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

Text word =

new Text(tokenizer.nextToken());
output.collect(word, one);

Figure 4: Hadoop WordCount example: original (left), ImmutableOutput (right)

For example, Figure 4 (left) presents the mapper from a
typical word count example [4].

Clearly, such reuse of output objects is not compatible
with caching. To maintain integrity, M3R will by default
clone keys and values produced by mappers and reducers.
If the map or reduce class promises to not mutate keys and
values that it has emitted — it does this by implementing
ImmutableOutput — M3R will not clone. Note that Hadoop
will simply ignore this interface, allowing the same code to
be run on M3R and Hadoop. The right-hand code presents
the same word count mapper example modified to satisfy
the ImmutableOutput constraints. The modified example
allocates a fresh Text object each time instead of reusing a
single object.

Section 6.3 presents performance results demonstrating
the improvement this change effects for WordCount.

With the old style “mapred” interface, the user can also
provide a custom MapRunnable implementation to manu-
ally connect the input to the mapper. Any such custom
MapRunnable implementation must also be marked as pro-
ducing immutable output for M3R to avoid cloning.

The default MapRunnable implementation used by Hadoop
reuses the same key/value for each input and so does not
conform to the required contract for ImmutableOutput. This
means that if the mapper just passes along the input (e.g.
the identity mapper), the output will be mutated by the
default implementation. M3R specially detects the default
implementation and automatically replaces it with a cus-
tomized version that allocates a new key/value for each in-
put and is (appropriately) marked as ImmutableOutput.

4.2 Key/Value Cache

MS3R introduces a key/value cache for job inputs and out-
puts. Simple Hadoop programs can transparently benefit
from the cache. However, more sophisticated programs can
benefit from some cache interactions. These range from in-
terfaces that allow code to teach M3R how to better interact
with their custom input/output code to code that explicitly
modifies or queries the cache.

4.2.1 Naming Data

The HMR InputSplit, InputFormat, and OutputFormat
classes do not declare what name is associated with a given
piece of data. Focusing on InputSplits, this makes it diffi-
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cult to identify what data input is referring to. Without a
name, there is no way to cache the data for subsequent use.

M3R understands how standard Hadoop input and output
formats work, in particular the File (Input/Output)Format
classes and the FileSplit class. Given a FileSplit, it can
obtain the file name and offset information and use that to
enter /retrieve the data in the cache.

For user-defined splits, M3R provides the NamedSplit in-
terface, allowing the InputSplit to provide the necessary in-
formation. The interface defines a single method, getName,
which returns the name to use for the data associated with
the split. Alternatively, if the split is a wrapper around an-
other split (such as described in Section 4.2.2) then it can
implement the DelegatingSplit interface and tell M3R how
to get the underlying information.

If a split does not implement one of these interfaces and
is not a standard type known to M3R then M3R is forced
to bypass the cache for the data associated with the split.
Note that (as with the ImmutableQutput interface) Hadoop
simply ignores these interfaces, allowing the same code to
run on M3R and Hadoop.

4.2.2  Multiple Inputs/Outputs

The Hadoop model only allows a single input format. Sim-
ilarly, each reducer writes to a single output. For many
applications, this is too restrictive. For example, the iter-
ated matrix vector multiplication job sequence discussed in
Section 3 needs two inputs: the matrix and the vector. Fur-
thermore, these inputs are routed to two different mappers.
To address this type of situation, the Hadoop libraries come
with the MultipleInputs and MultipleOutputs classes to
multiplex input and output.

The MultipleInputs class uses TaggedInputSplit to tag
input splits so they can be routed to the appropriate base
input format and mapper. The DelegatingInputFormat
class handles instantiating the underlying record readers.
As a result, it needs to be cache aware. In particular, it
needs to wrap the input formats it creates with the provided
CachingInputFormat wrapper, which adds cache awareness
to a base input format.

Similarly, the MultipleOutputs class creates additional
named record writers, allowing the reducer to output to
multiple explicitly named files. As with MultipleInputs,
this code needs to be modified to enable caching.



The necessary changes to the standard libraries are trans-
parently done by M3R. However, if client code implements
their own variant of these classes, they need to make similar
modifications.

4.2.3 Cache Management

Programs can explicitly manage the cache in different
ways. They can mark outputs as “temporary”, such that
they need not be output to disk at all. This is suitable for
outputs that will be consumed by subsequent jobs and are
not needed by non-map/reduce code. At the moment, this
is done based on a simple naming convention: if the last
part of the output path starts with a given string (which
defaults to “temp”) then it is treated as temporary and not
written out. This string can be customized by setting a
property in the job’s configuration. Adding settings to the
job configuration like this is common practice in Hadoop for
communicating additional information to jobs. In a similar
way, a list of files that should be considered temporary could
be passed enumerated in a job configuration setting.

Programs can also rename and delete data from the cache.
M3R alters Hadoop’s FileSystem class so that it transpar-
ently sends calls to operations such as rename, delete, and
getFileStatus to both the cache and the underlying file
system. However, there are times when the program wants
to explicitly delete (or rename) data just from the cache,
without affecting the underlying file system. To support
this, the FileSystem objects created by M3R implement
and additional CacheFS interface. This interface provides a
getRawCache method that returns a new FileSystem object.
Operations on this synthetic file system object are only sent
to the cache of the original FileSystem. So calling delete
on the synthetic file system will delete the file from the cache
without affecting the underlying file system.

4.2.4 Cache Queries

Programs can also explicitly query the cache and obtain
the key/value sequence associated with a path. As just dis-
cussed in Section 4.2.3, a program can use getRawCache in
conjunction with getFileStatus to check if data is in the
cache and obtain its associated metadata. The CacheFS in-
terface provides a getCacheRecordReader method that al-
lows the program to obtain an iterator over the key/value
sequence associated with a given path.

4.3 Partition Stability

As introduced in Section 3.2.2.2, M3R allows algorithms
to exploit locality to reduce shuffle costs. The interface to
this ability is primarily implicit, provided by an enhanced
performance model.

M3R provides a PlacedSplit interface that allows an in-
put split to inform M3R what partition the data should be
associated with. Splits that implement this interface are
sent to a mapper running at the place associated with that
partition. This is beneficial in ensuring that the data goes
to the right place at the very beginning. (Using partition
stability, the programmer can ensure that it stays there for
the duration of the job sequence.)

The iterated matrix vector multiplication example criti-
cally takes advantage of locality. This allows M3R to run the
example far more efficiently than the HMR engine. Detailed
results are presented in Section 6.2.
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Writer createWriter(File path, BlockInfo info)
Reader createReader(File path, BlockInfo info)
void delete(File path)

void rename(File src, File dest)

PathInfo getInfo(File path)

void mkdirs(File path)

Figure 5: Key/Value store API. All operations are
atomic (serializable).

S. IMPLEMENTATION

5.1 The X10 Language and Core M3R Engine

X10 is a modern OO language intended for programming
multi-core (providing fine-grained concurrency), heteroge-
neous, and distribution (scaling to thousands of nodes). It
can be compiled to C++ or Java, in which case Java classes
(such as those in the Hadoop codebase) are exposed along-
side X10 classes. This allows us to easily use X10’s sophisti-
cated concurrency and distribution features while integrat-
ing cleanly with existing Java code.

The core M3R engine implements a minimal map/reduce
API focussing on concurrency and communication, and leav-
ing input/output to the client. It is written in pure X10,
and utilizes X10’s fine-grained concurrency concurrency con-
structs to multi-thread the mappers / reducers, and paral-
lelize shuffling. The actual communication is handled us-
ing X10’s at (p) S construct, which executes S at place
p, automatically serializing and transmitting variables (and
heap graphs referenced there-from) captured in the enclosing
scope. This serialization protocol must handle cycles in the
heap, so has to recognize when a given object has been seri-
alized before. This mechanism gives us free de-duplication,
as described in Section 3.2.2.3. X10’s Team API provides a
barrier construct that the engine uses for synchronization.
No reducer is allowed to run until globally all shuffie mes-
sages have been sent. By utilizing X10 at the core of M3R,
we leverage a highly-performing and well-tested execution
engine, and can focus on the problem of map/reduce.

5.2 Key/Value Store

MS3R caches both job inputs and outputs as discussed in
Section 3.2.1. Underneath this is a distributed in-memory
key/value store that implements a file system like API. The
key/value store distributes the (hierarchal) metadata across
the different places used by M3R.

Figure 5 presents the basic API exposed by the key value
store. All operations are atomic with respect to each other,
making it simple for callers to reason about their behav-
ior. Paths are represented by Java File’s, which represent
abstract filesystem paths.

Like HDFS, paths can map to multiple blocks, each of
which can be stored at a different place. Blocks are identified
by their metadata. The key value store is generic in the type
of metadata, but requires that it implement a reasonable
equals method.

The key/value store is fully distributed: both the meta-
data and data are distributed across the places. Metadata
is distributed using a static partitioning scheme: a path is
hashed to determine where the metadata associated with
that path is located. Data blocks can live anywhere: there



location is specified by their metadata. The createWriter
call will create a block at the place where it is invoked.

Each place has a handle to its own concurrent hash tables
(one for the metadata and one for the data). These map
full paths to their associated metadata/data. When an op-
eration needs to modify or access an entry associated with
a path, it first atomically swaps out the entry with a special
lock entry (or inserts it if there was nothing there before-
hand). If the entry is already a lock entry, it (carefully)
swaps in a heavier weight monitor entry that it then blocks
on. When the task that previously locked the entry releases
the lock it will detect this and wake up the blocked task.

To ensure that operations are serializable, the implemen-
tation follows the two phase locking protocol (2PL) when
acquiring locks during a task. To ensure that operations do
not induce a deadlock, they follow a least common ancestor-
based locking protocol. Any task that acquires a lock [ while
holdings locks L must be holding the least common ances-
tor of [ with all the locks in L. This suffices to ensure that
deadlock cannot occur.

5.3 Hadoop Interop

The Hadoop-interop layer of M3R wraps a JobConf and
produces an X10 job that can be run by the core M3R en-
gine. The main job class distributes task specific data to
each place when it is created. It then wraps the required
Hadoop API-based user code for the engine and wraps the
engine’s context objects to present to the Hadoop API-based
user code.

The compatibility layer is complicated by the need to sup-
port two sets of Hadoop APIs: the older mapred and the
newer mapreduce interfaces. Since many classes (such as
Map) do not share a common type, separate wrapper code
must be written for both of them. The implementation sup-
ports any combination of old (mapred) and new (mapre-
duce) style mapper, combiner, and reducer. It also support
“map-only” jobs, which are Hadoop jobs with zero reducers.
Output from the mapper is sent directly to output as per
Hadoop.

MS3R also supports many auxiliary features of Hadoop,
including counters and the distributed cache. In addition
to correctly propagating user counters, M3R keeps many
Hadoop system counters properly updated. M3R also sup-
ports many Hadoop administrative interfaces including job
queues, job end notification urls, and asynchronous progress
and counter updates.

There are currently two ways to run M3R: integrated
mode and server mode. Integrated mode starts the Hadoop
client under the control of M3R. M3R starts and initializes
the X10 runtime across all of the designated machines and
(using Java classpath trickery) replaces Hadoop’s JobClient
with a custom M3R implementation that submits jobs di-
rectly to the M3R engine. It then uses reflection to call the
specified client main function. When the client submits jobs
they are transparently redirected to the engine. If an (M3R-
aware) client explicitly wishes to use Hadoop for a specific
job, they can set a property in the submitted job config-
uration and the JobClient submission logic will invoke a
Hadoop server as usual. All of the benchmarks presented in
this paper were run in integrated mode.

MS3R also supports a (still somewhat experimental) server
mode. In this mode, M3R starts up and registers an IPC
server that implements the Hadoop JobTracker protocol.
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Clients can submit jobs as usual, and the M3R server (which
functions just like the normal Hadoop server) will run the
job. It is possible to simply replace the Hadoop server dae-
mon with the M3R one. It is also possible to start the
Hadoop and M3R servers with different configuration files,
that specify different ports. They can then coexist, and a
client can dynamically choose which server to submit a job
to by altering the appropriate port setting in their job con-
figuration.

Using server mode, we have successfully run BigSheets [2],
a large Hadoop based system that generates assorted jobs
(many of them Pig jobs). The BigSheets system was unmod-
ified, except that we stopped the running Hadoop server and
started the M3R server on the same port.

6. EVALUATION

To evaluate the performance of our implementation, we
have measured the total running time of several benchmark
programs. Each was written to the Hadoop API, with our
modest M3R-specific additions discussed in Section 3. We
ran these Hadoop programs in both the standard Hadoop en-
gine and in our M3R engine, on the same input from HDF'S,
and verified that they produced equivalent output in HDFS
(up to floating point rounding error). The hardware used
was a 20 node cluster of IBM LS-22 blades connected by
Gigabit Ethernet. Each node has 2 quad-core AMD 2.3Ghz
Opteron processors, 16 GB of memory, and is running Red
Hat Enterprise Linux 6.2. The JVM used is IBM J9 1.6.0.
When running M3R on this cluster, we used one process per
host, using 8 worker threads to exploit the 8 cores.

6.1 Microbenchmark

To illustrate these aspects of our performance model, we
wrote an Hadoop application that is parameterized to sim-
ulate an arbitrary ratio of remote / local shuffling. Ran-
domly, weighted by this local /remote ratio, pairs are either
kept local or sent to an adjacent machine (thus requiring
serialization and network overhead). The benchmark has
three iterations, with the output of one job being the input
for the next. The results are in Figure 6.

The input to this job is 1 million pairs, each with an
ascending integer for key and an array of 10000 bytes for
value. The mapper, which implements ImmutableOutput,
randomly decides to emit the pair with either its key un-
changed or replaced with a key (created during the map-
per’s setup phase) that partitions to a remote host. The
partitioner simply mods the integer key, and the reducer is
the identity reducer.

In M3R, the output of all jobs except the final iteration
are marked as temporary (not written to HDFS). The initial
read and the final output of course must be written to HDF'S.
We explicitly delete the previous iteration’s input, as it will
not be accessed again and its presence in the cache wastes
memory.

When running in Hadoop, every iteration takes the same
amount of time, regardless of whether pairs are shuffled re-
motely or locally. This is because Hadoop does not provide a
notion of remote / local shuffle because there is no partition
stability. All shuffled data is serialized and communicated
via local files and network and therefore there is equal cost
for all destinations. Also, since Hadoop does not cache data
between jobs, disk 1/O occurs at the beginning and end of
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Figure 6: Performance profile of microbenchmark in Hadoop and M3R

every job. The second and subsequent iterations cannot ben-
efit from I/O performed by the first iteration, as the loaded
data is not kept in memory between jobs.

When running in M3R, the performance changes drasti-
cally according to the amount of remote shuffling and due
to cache hits in second and subsequent iterations. All it-
erations exhibit a linear relationship between the amount
of remote shuffling required and the time taken, while also
having a constant overhead. However the constant overhead
is considerably less in the second and third iterations since
pairs are fetched directly from the cache instead of being de-
serialized from HDFS. Note also that in M3R, even the first
iteration with 100% remote shuffles outperforms Hadoop by
a considerable margin. We assume this is due to overheads
inherent in Hadoop’s task polling model, disk-based out-of-
core shuffling, and JVM startup/tear down costs.

6.1.1 Repartitioning

Because we wanted to compare correctness with a pure
stock Hadoop run, we generated our input data with Hadoop
(using the same Partitioner logic as the benchmark). We
used the same data for both Hadoop runs of the microbench-
mark and our M3R runs. This presents a challenge since al-
though the pairs are subject to the same partitioner in M3R
and Hadoop, the assignment of partitions to hosts is very
different. M3R assigns partitions to hosts in a fixed man-
ner, whereas Hadoop uses a dynamic approach. The host
on which a given partition’s data is stored is thus arbitrary,
because it was written by the generator’s reducer, which ran
in Hadoop.

In M3R, M3R runs mappers on every host and a mapper
is assigned, in the typical case, a local input split. This may
not be the correct input split according to the partition/host
mapping implied by partition stability, and thus pairs that
are emitted with keys unmodified may end up being shuffled
remotely. To avoid this, a ’repartitioner’ job is run ahead
of time, in M3R, using the identity mapper and reducer.
This redistributes the HDFS storage of the data, using the
shuffle, according to the M3R assignment of partitions to
hosts. For the data described, this takes 83 seconds. This is
a one-off cost, as the reorganized data can be used for any
job, in any run of the benchmark subsequent to this.

To avoid this extra step when bringing Hadoop-output
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data into M3R, there are some ideas that we will pursue
as further work. In the common case where the input data
is partitioned along the same lines, but merely permuted
across the hosts, HDFS remote reads could be used to bring
the data into the correct mapper. The data would be cached
in the right place so the cost would be only for the first it-
eration. This would be implemented using the PlacedSplit
API, introduced in Section 4.3, to override M3R/’s preference
of local splits. Additionally, if the data is evenly distributed,
it may be possible to take the permutation forced on M3R
by Hadoop’s assignment of partitions to hosts, and re-use
it, keeping those partitions stable throughout the M3R exe-
cution. This would avoid all network overhead. In general,
however, the data might be partitioned completely differ-
ently, e.g. if the Hadoop job that produced the data had
a different number of reducers than the M3R job. In these
cases, a full repartition job is required, to re-arrange the
data on a pair-by-pair basis.

6.2 Sparse Matrix Dense Vector Multiply

We discuss in detail the sparse vector multiply algorithm
referred to in Section 3.

The sparse matrix G is blocked into 1000 x 1000 blocks,
using a custom key class that encapsulates a pair of ints as
a two-dimensional index into the matrix. The value of such
pairs is a compressed sparse column (CSC) representation
of the sparse block. The dense vector V is blocked into 1000
x 1 blocks. The same key type is used (with a redundant
column value of 0) and each value is an array of double.
When generating data, a sparsity value of 0.001 is used for
the sparse matrix. The generation is done by a Hadoop
program, and a repartitioning job is used to reorganize the
data as described in Section 6.1. The pairs are partitioned
using the row index. This means that a given partition will
contain a number of rows of G and matching blocks of V.

The algorithm consists of three iterations of calculating a
new V from G and the previous V. Each iteration requires
two jobs. The first job has a mapper for each of its G and V'
inputs. The G mapper simply passes through each G block,
whereas the V' mapper broadcasts each V' block to every
index of G that needs to be multiplied by it (i.e. a whole
column). The reducer receives each block of G and associ-
ated V and multiplies them. This yields a partial result of
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Figure 7: Sparse matrix dense

the corresponding new V block, keyed by the index of the G
block that was used. To sum the results of a row of G, the
second job collects them by using its map logic to rewrite
the keys to have column 0. A single reduce call therefore
receives all partial sums and can compute the new V block,
keyed by the row number and 0.

All mappers and reducers are marked as producing only
ImmutableOutput, allowing the M3R engine to use aliases
wherever possible. Aside from the initial load, the only disk
or network I/O performed is during the shuffle phase of the
first job of each iteration, where the V' blocks are broadcast
so that every host has a complete V with which to multi-
ply against its row of G. All communication that was not
inherent to the multiplication operation, given the parti-
tioning scheme we chose, has been eliminated. In order to
make the application more representative of a real machine-
learning algorithm, which would use many more than three
iterations, we pre-populated our cache with the input data.
This means that the initial I/O overhead (which if there
were more iterations would be amortized across them) is
not measured.

Figure 7 shows the comparison between M3R and Hadoop.
The right hand graph shows just the M3R data, so its scal-
ability is visible.

6.3 Word Count

Word count (Map Reduce’s “Hello World”) is an interest-
ing case since none of M3R’s optimizations apply. It is not
an iterative job, so the cache does not come into play. It does
not make use of partition stability. The vast majority of its
shuffled pairs are remote. We modified the standard code to
not mutate its pairs, and added the ImmutableOutput anno-
tation to mapper and reducer. This means our instance of
the performance profile is on the 100% end of the Iteration
1 line in Figure 6. However we cannot expect such great
performance improvement over the HMR engine since that
microbenchmark did not do any work on the keys, it only
measured communication costs.

Figure 8 shows that the M3R engine is approximately
twice as fast as HMR engine for these input sizes. Greater
input sizes would still fit in the memory of these machines,
but the M3R shuffle implementation currently has consid-
erable memory overhead when large numbers of small pairs
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are used. De-duplication currently requires needs to com-
pare each outgoing key/value pair against the previous ones,
requiring the old ones to be kept around for longer then
otherwise needed. We are planning to address this problem
by relaxing X10 de-duplication to only check consecutive
key /value pairs from the same mapper. This still allows the
broadcast idiom of emitting pairs in a loop and does not
require such a heavy-weight implementation.

Also shown in Figure 8 is the performance cost of the
modification to WordCount to allow use of ImmutableOutput.
The version that allocates new TextWritable objects, and
therefore can be annotated with ImmutableOutput, is sub-
ject to more memory pressure and GC churn. It is slower
for small input sizes, but the gap disappears as the size in-
creases.

6.4 System ML

System ML [15] is an R-like declarative domain specific
language that permits matrix-heavy algorithms for machine
learning to be written concisely and elegantly. The System
ML compiler produces optimized Hadoop jobs. System ML
is of interest in M3R, benchmarking since it allows us to com-
pare the performance of compiler-generated Map/Reduce
code on M3R against Hadoop. Indeed, more generally Sys-



tem ML offers a simple and convenient way to benchmark
the performance of multiple Map Reduce implementations
on standard Machine Learning algorithms.

Two minor changes (involving changes to a few lines of
code) were made to the System ML compiler and runtime.
(1) System ML modified some Hadoop classes to fix bugs.
We had to port modifications to these classes we had made
to the SystemML version. (2) The System ML runtime di-
rectly accessed some files in HDF'S; these had to be modified
to be M3R cache-aware.?

No modifications were made to the System ML compiler
optimization algorithms. In particular, the code generated
by the compiler is not aware of ImmutableOutput (hence
is not optimized for cloning), and does not take advantage
of partition-stability. Finally, the in-memory representation
for sparse matrix blocks in the System ML runtime is about
10x less space-efficient than in the sparse matrix multiply
code we wrote manually. These factors are not important
for SystemML code run on Hadoop, but make a big differ-
ence in M3R. Thus, with appropriate modifications to the
System ML compiler, we believe that much better numbers
can be obtained on M3R, without compromising the num-
bers obtained on Hadoop.

‘We present performance results for three iterative matrix-
based System ML programs. The matrices had a sparsity
factor of 0.001 and were distributed with a blocking factor of
1000. (Note that System ML is capable of handling matrices
with much larger sizes than the ones presented here.)

Performance results for Global non-negative matrix
factorization are shown in Figure 9. The experiment var-
ied the number of rows in V, keeping the number of columns
constant at 100000, and the width of W (height of H) was 10.
Linear regression performance is shown in Figure 10. The
experiment varied the number of sample points, whereas the
number of variables was constant at 10000. Page rank per-
formance is shown in Figure 11. The independent variable
in this case was the size of the graph, i.e. the size of the
square matrix G.

7. CONCLUSIONS

We have presented a new engine for Hadoop Map Reduce
jobs, the M3R engine. This is aimed at a different design
point than Hadoop — a design point that emphasizes in-
memory, non-resilient execution and is therefore able to de-
liver substantially better performance than Hadoop on jobs
that can fit in cluster memory.

In future work we plan to develop libraries of Map Reduce
code, e.g. libraries for sparse matrix vector computations,
that can run on the HMR engine (scaling to the size of
cluster disks), while delivering very good performance for
jobs that can fit in the size of cluster memory.

We also plan to develop X10-based M3R style engines (not
necessarily based on Map Reduce) to provide fast in-memory
performance for other APIs, such as APIs for sparse graphs,
matrices, tables (cf HBase [18]) etc.

Finally, we believe it is possible to extend the M3R engine
so that it can support resilience and elasticity. To support
resilience, M3R wil need to detect node failure and recover

3Since the file API is based on byte buffers, and the cache
stores key-value pairs, these calls could not be trapped au-
tomatically. However, the System ML runtime immediately
deserializes the data into key value pairs, hence we patched
System ML to retrieve the pairs from the cache directly.
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by performing work proportional to the work assigned to the
failed node. We believe this can be done in a more flexible
way than that supported by HMR (which effectively check-
points state to disk after every job). Similarly we believe it
is possible to extend M3R to support elasticity — the ability
to cope with a reduction or an increase in the number of
places over which it is executing — without paying for it at
the granularity of a single job (as HMR does).
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