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ABSTRACT

Top-k query processing finds a list of k results that have largest

scores w.r.t the user given query, with the assumption that all the

k results are independent to each other. In practice, some of the

top-k results returned can be very similar to each other. As a re-

sult some of the top-k results returned are redundant. In the lit-

erature, diversified top-k search has been studied to return k re-

sults that take both score and diversity into consideration. Most

existing solutions on diversified top-k search assume that scores of

all the search results are given, and some works solve the diver-

sity problem on a specific problem and can hardly be extended to

general cases. In this paper, we study the diversified top-k search

problem. We define a general diversified top-k search problem that

only considers the similarity of the search results themselves. We

propose a framework, such that most existing solutions for top-

k query processing can be extended easily to handle diversified

top-k search, by simply applying three new functions, a sufficient

stop condition sufficient(), a necessary stop condition necessary(),
and an algorithm for diversified top-k search on the current set

of generated results, div-search-current(). We propose three new

algorithms, namely, div-astar, div-dp, and div-cut to solve the

div-search-current() problem. div-astar is an A∗ based algorithm,

div-dp is an algorithm that decomposes the results into components

which are searched using div-astar independently and combined

using dynamic programming. div-cut further decomposes the cur-

rent set of generated results using cut points and combines the re-

sults using sophisticated operations. We conducted extensive per-

formance studies using two real datasets, enwiki and reuters. Our

div-cut algorithm finds the optimal solution for diversified top-k
search problem in seconds even for k as large as 2, 000.

1. INTRODUCTION
Top-k queries are one of the most fundamental queries used in

the IR and database areas. Given a user query, the top-k results of

the query are a list of k results that have largest scores/relevances

with respect to the user query, under the assumption that all of the k
results are independent to each other. In some situations, for a cer-

tain top-k query, some of the results returned can be very similar to

each other. For example, if we search “apple” in Google image1,

7 out of the top-10 results returned are the logo of the Apple com-

pany. In order to remove the redundancy in the results, and at the

same time keep the quality of the top-k results, diversity should be

considered in the top-k search problems.

For top-k search algorithms. In the literature, most of them aim

at finding an early stop condition, such that they can find the top-

k results without exploring all the possible search results. Based

on this, two frameworks are generally used, namely, the incremen-

tal top-k framework and the bounding top-k framework. The in-

cremental top-k framework outputs the results one by one in non-

increasing order of their scores, and stops as soon as k results are

generated. It aims to find a polynomial delay algorithm such that

given the existing generated results, the next result with largest

score can be generated in polynomial time w.r.t. the size of the

input only [16, 15, 20, 14]. In the bounding top-k framework, re-

sults are not necessarily generated in non-increasing order of their

scores. It maintains a score upper bound for the unseen results ev-

ery time when a new result is generated. The algorithm stops when

the current k-th largest score is no smaller than the upper bound for

the unseen results. The threshold algorithm based approaches [7,

9] fall in this framework and other approaches include [12, 17].

Diversity aware search has been studied in recent years. Most of

the existing solutions that support diversity on top-k search results

assume the ranking of all the search results are given in advance.

Based on which, a diversity search algorithm is given to output k
results based on a scoring function that takes both query relevance

and diversity into consideration [6, 1, 11, 5, 2]. Other works give

algorithms that solve the diversity problem for a special area, i.e.,

graph search [18], document search [22], etc. and can hardly be

extended to support general top-k diversity search.

In this paper, we propose a general framework to handle the di-

versified top-k search problem. We keep the advantages for the

existing top-k search algorithms, that can stop early without ex-

ploring all search results, and at the same time, we take diversity

into consideration. We show that any top-k search algorithm that

can be used in the incremental top-k framework or the bounding

top-k framework can be easily extended to handle diversified top-

k search, by adding three new functions studied in this paper: a

sufficient stop condition sufficient(), a necessary stop condition

necessary(), and a diversity search function div-search-current().
All of them are application independent. The only assumption

in our framework is that, given any two search results vi and vj ,

whether vi and vj are similar to each other can be decided, e.g., us-

ing a similarity function sim(vi, vj) > τ for a user given threshold

τ . We output a list of k results with maximum total scores such that
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no two of them are similar to each other. We make the following

contributions in this paper.

(1) We formalize the diversified top-k search problem. Based on

our definition, the optimal solution only depend on the similarity

of search results themselves, and no other information is needed.

(2) We study two categories of algorithms generally used in finding

top-k results with early stop in the literature, namely, the incre-

mental top-k framework and the bounding top-k framework. We

show both frameworks can be extended to diversified top-k search

by simply adding three application independent functions studied

in this paper, namely, a sufficient stop condition sufficient(), a nec-

essary stop condition necessary(), and a diversity search function

div-search-current(). The sufficient stop condition helps to early

stop and the necessary stop condition helps to reduce the number of

div-search-current() processes, since div-search-current() is usu-

ally a costly operation.

(3) We show that div-search-current() is an NP-Hard problem and

is hard to be approximated. We propose three new algorithms,

namely, div-astar, div-dp, and div-cut, to find the optimal solution

for div-search-current(). div-astar is an A∗ based algorithm and

is slow to handle a large number of results. div-dp decomposes the

results into disconnected components in order to reduce the graph

size to be searched using div-astar. Results in div-dp are com-

bined using dynamic programming. div-cut further decomposes

each component into several subgraphs to form a cptree, based on

the cut points of each component. A tree based search is applied on

cptree to find the optimal solution.

(4) We conducted extensive performance studies using two real

datasets, to test the performance of the three algorithms. Our div-cut

approach can find the diversified top-k results within seconds when

k is as large as 2, 000.

The rest of this paper is organized as follows. Section 2 formally

defines the diversified top-k search problem. Section 3 shows the

two existing frameworks on general top-k search problems. Sec-

tion 4 shows how to extend the two categories of top-k search ap-

proaches to solve diversified top-k search, by defining a sufficient

stop condition sufficient(), a necessary stop condition necessary(),
and a diversified top-k search algorithm div-search-current() to

search on the current result set. Section 5, 6, and 7 give three al-

gorithms to solve the div-search-current() problem. We show our

experimental results in Section 8, and introduce the related work in

Section 9. Finally, we conclude our paper in Section 10.

2. PROBLEM DEFINITION
We consider a list of results S = {v1, v2, · · · }. For each vi ∈ S,

the score of vi is denoted as score(vi). For any two results vi ∈ S
and vj ∈ S, there is a user defined similarity function sim(vi, vj)
denoting the similarity between the two results vi and vj . Without

loss of generality, we assume 0 ≤ sim(vi, vj) ≤ 1 for any two

results vi ∈ S and vj ∈ S, and sim(v, v) = 1 for any v ∈ S.

Given an integer k where 1 ≤ k ≤ |S|, the top-k results of S is a

list of k results Sk that satisfy the following two conditions.

1) Sk ⊆ S and |Sk| = k.

2) For any vi ∈ Sk and vj ∈ S − Sk, score(vi) ≥ score(vj).
Here, S − Sk is the set of results that are in S but not in Sk, i.e.,

S − Sk = {v|v ∈ S, v /∈ Sk}.

Given two results vi ∈ S and vj ∈ S, vi is similar to vj iff

sim(vi, vj) > τ where τ is a user defined threshold, and 0 < τ ≤
1. We use vi ≈ vj to define that vi is similar to vj .

Definition 1 (Diversified Top-k Results) Given a list of search

results S = {v1, v2, · · · }, and an integer k where 1 ≤ k ≤ |S|, the
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Figure 1: A sample diversity graph

diversified top-k results of S, denoted as D(S), is a list of results

that satisfy the following three conditions.

1) D(S) ⊆ R and |D(S)| ≤ k.

2) For any two results vi ∈ R and vj ∈ R and vi 6= vj , if vi ≈ vj ,

then {vi, vj} * D(S).
3)

∑

v∈D(S) score(v) is maximized.

Intuitively, D(S) is the set of at most k results, such that no two

results are similar with each other, and the total score of the results

is maximized. We use score(D(S)) to denote the total score of

results in D(S), i.e., score(D(S)) =
∑

v∈D(S) score(v).

In this paper, we are to find the diversified top-k results. Our

aim is to find a general approach, such that for any existing algo-

rithm that returns the top-k results of a certain problem, it can be

easily changed to return the diversified top-k results by applying

our framework, in which the result set S is not necessarily to be

computed in advanced but grows incrementally with an early stop

condition. We first give the definition of the diversity graph.

Definition 2 (Diversity Graph) Given a list of results S = {v1,
v2, · · · }, the diversity graph of S, denoted as G(S) = (V,E),
is an undirected graph such that for any result v ∈ R, there is

a corresponding node v ∈ V , and for any two results vi ∈ S and

vj ∈ R, there is an edge (vi, vj) ∈ E iff vi ≈ vj . We use V (G(S))
and E(G(S)) to denote the set of nodes and the set of edges in the

diversity graph G(S) respectively, and use v.adj(G(S)) to denote

the set of nodes that are adjacent to v in G(S). If the context is

obvious, we use vi to denote both the result vi in S and the node vi
in G(S), we use G to denote G(S), and we use D to denote D(S).
Without loss of generality, we assume nodes in G(S) are arranged

in non-increasing order of their scores, i.e., for any 1 ≤ i < j ≤
|V (G(S))|, score(vi) ≥ score(vj).

The diversified top-k results D(S) can be equivalently defined

as a subset of nodes in G(S), that satisfy the three conditions.

1) |D(S)| ≤ k.

2) D(S) is an independent set of G(S).
3) score(D(S)) is maximized.

Here, an independent set of a graph is a set of nodes in a graph,

where no two nodes are adjacent.

Example 1 Fig. 1 shows the diversity graph for 6 results S = {v1,

v2, · · · , v6}. Suppose k = 2, the optimal solution D(S) includes

two points v1 and v2 with score 18, as shown on the left part of

Fig. 1. Suppose k = 3, the optimal solution D(S) includes three

points v3, v4 and v5 with score 20, as shown on the right part of

Fig. 1.

In the following, we first show the two existing frameworks to

solve top-k search problems, namely, the incremental top-k frame-

work and the bounding top-k framework, which are most generally

used in top-k search algorithms. Then we show the framework of
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Algorithm 1 incremental(k)

1: S ← ∅;
2: for i=1 to k do
3: v ← incremental-next();
4: if v = ∅ then
5: break;
6: S ← S

⋃
{v};

7: return S;

Algorithm 2 bounding(k)

1: S ← ∅;
2: unseen← +∞;
3: while the k-th largest score of S < unseen do
4: v ← bounding-next();
5: if v = ∅ then

6: break;
7: S ← S

⋃
{v};

8: update unseen;
9: return top-k results in S;

our approach to extend the two frameworks to handle diversified

top-k search.

3. TOP­K SEARCH FRAMEWORKS
In the literature, the framework of most algorithms that find top-

k results falls into two categories, namely, the incremental top-k
framework and the bounding top-k framework.

Incremental Top-k: In the incremental top-k framework, results

are generated one by one by calling a procedure incremental-next(),
with non-increasing order of their scores. The algorithm stops after

k results are generated, and the k results are the final top-k results

for the problem. The framework named incremental is shown in

Algorithm 1. A lot of existing work fall into this category, e.g.,

finding top-k shortest paths in graphs, finding top-k steiner trees,

communities and r-cliques in graphs, etc [16, 15, 20, 14]. A lot

of works have been done to assume that the time complexity of

each incremental-next() procedure to generate the next result with

largest score is polynomial w.r.t. the size of the input only.

Bounding Top-k: In the bounding top-k framework, results are

generated one by one by calling a procedure bounding-next(), but

not necessarily with non-increasing order of their scores. A bound

unseen is defined to be the upper bound of the scores for the un-

seen results. After each result is generated by bounding-next(),
unseen is also updated to be a possibly smaller value. The algo-

rithm stops when the k-th largest score of all generated results is

no smaller than the upper bound for the unseen results unseen. The

framework named bounding is shown in Algorithm 2. The thresh-

old algorithm that is generally used to return top-k results falls into

this category [7, 9]. Other works that fall into this category include

[12, 17].

4. DIVERSIFIED TOP­K SEARCH
In this section, we show how to extend the incremental top-k

framework incremental and bounding top-k framework bounding

to handle diversified top-k search. We mainly focus on two tasks.

First, a new early stop conditions is needed. Second, an algorithm

that finds the diversified top-k results for the current generated re-

sult set is needed. For the early stop condition, in the original al-

gorithm, the stop condition for incremental is simply |S| = k and

the stop condition for bounding is the current k-th largest score

≤ unseen. Obviously, both of them cannot be applied to handle

Algorithm 3 div-search(k)

1: S ← ∅; D(S)← ∅;
2: while sufficient() do
3: the code to update S (and unseen);
4: if necessary() then
5: D(S)← div-search-current(G(S), k);
6: return D(S);

diversified top-k search. Consider an extreme case, when the al-

gorithm stops using the original stop condition, it is possible that

all the results generated are similar to each other. Thus the current

diversified top-k results only contain 1 result with the largest score.

It is not the optimal solution because it is possible that an unseen

result is not similar to the current one. Here, D(S) computed for

the current generated result set S can be used to check the new stop

condition, and if the new stop condition is satisfied, D(S) is the

optimal solution for the diversified top-k search.

We extend both incremental and bounding using the same frame-

work, which is shown in Algorithm 3, by adding three new func-

tions, a new sufficient stop condition sufficient(), a new necessary

stop condition necessary() and an algorithm div-search-current()
to search the diversified top-k results on the current generated re-

sult set. The algorithm executes the code of the original top-k al-

gorithm to update S and stops when sufficient() is satisfied. For

incremental, the code is line 3-6 in algorithm 1, and for bounding,

the code is line 4-8 in algorithm 2. After updating S, we construct

the diversity graph G(S) on S based on the similarity function

sim() for any given two results. If the necessary stop condition is

satisfied, we find the diversified top-k results for the current result

set S using div-search-current(). The necessary stop condition is

used to reduce the number of calling div-search-current(), because

div-search-current() is a costly work. In the following, we will in-

troduce the sufficient stop condition, the necessary stop condition,

and the search algorithm for current set.

Sufficient Stop Condition: Given the current result set S, we need

to calculate an upper bound best(S) for the possible optimal solu-

tions considering both the current result set S and the unseen re-

sults. Let Di(S) be the best diversified results of S with exactly

i elements for 1 ≤ i ≤ k, i.e., Di(S) is a subset of nodes in

V (G(S)), that satisfies the following three conditions.

1) |Di(S)| = k.

2) Di(S) is an independent set of G(S).
3) score(Di(S)) is maximized.

Lemma 1 Given Di(S) for 1 ≤ i ≤ k and the score upper bound

of all the unseen results u. The upper bound best(S) can be calcu-

lated as follows.

best(S) = max
1≤i≤k

{score(Di(S)) + (k − i)× u} (1)

where u is the score of the last generated result v, score(v), for

incremental and is the upper bound of the unseen results, unseen,

for bounding.

Proof Sketch: Suppose the final optimal solution is O, then we

can divide O into two parts, O = O1

⋃

O2, where O1 is the set of

generated results, and O2 is the set of unseen results. Suppose O1

has n1 elements and O2 has n2 elements. We have n1 + n2 ≤ k.

Since O1 is the set of generated results, we have (1) score(O1) ≤
score(Dn1

(S)), since Dn1
(S) is the optimal solution with n1 el-

ements. We also have (2) score(O2) ≤ n2 × u ≤ (k − n1) × u,
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since (u) is the score upper bound for all unseen results. Com-

bine (1) and (2), we have score(O) = score(O1) + score(O2) ≤
score(Dn1

(S)) + (k − n1) × u ≤ max1≤i≤k{score(Di(S)) +
(k− i)×u} = best(S). best(S) is an upper bound for the optimal

solution. ✷

Having the score upper bound best(S) for the optimal solution,

the sufficient stop condition for div-search can be defined as fol-

lows.

score(D(S)) ≥ best(S) (2)

The following lemma shows that, after every iteration, div-search

moves towards the sufficient stop condition.

Lemma 2 For any S′ ⊆ S, best(S′) ≤ best(S) and best(S′) ≥
best(S).

Proof Sketch: Since S′ ⊆ S, the best solution on S′ is a feasible

solution on S, thus best(S′) ≤ best(S). Comparing to best(S′),
best(S) is calculated by changing some upper bounds u′ when cal-

culating best(S′) into the real scores no larger than u′ and chang-

ing the other unseen upper bounds from u′ to u, where u ≤ u′ is

assumed by the original algorithm. Thus best(S′) ≥ best(S). ✷

Necessary Stop Condition: We discuss the necessary stop con-

dition for div-search. The necessary stop condition is used as fol-

lows. In each iteration, before invoking div-search-current(), if the

necessary stop condition is not satisfied, then div-search-current()
is not necessarily to be invoked in this iteration.

Lemma 3 For div-search, if it can stop in a certain iteration, one

of the following conditions should be satisfied before invoking the

procedure div-search-current():
1) The last generated result v = ∅.

2) |S| ≥ |S′|+ k −max{i|1 ≤ i ≤ k,Di(S
′) 6= ∅} and the k-th

largest score in S ≥ u.

Here S′ is the set of results when the last div-search-current() is

invoked or ∅ if div-search-current() is never invoked.

Proof Sketch: The first condition is trivial. Now suppose v 6= ∅.

For the second condition, when the k-th largest score in S < u, it is

possible that a new result can be added that updates the k-th largest

score, and thus improves the current best solution. Now we discuss

|S| ≥ |S′| + k − max{i|1 ≤ i ≤ k,Di(S
′) 6= ∅}. max{i|1 ≤

i ≤ k,Di(S
′) 6= ∅} is the size of the maximum independent set for

G(S′) if it is smaller than k, and k−max{i|1 ≤ i ≤ k,Di(S
′) 6=

∅} is the minimum number of nodes needed to be added in order to

generate a result of size k. If such a result does not exist, we cannot

stop because we can always add some unseen nodes to any existing

solution with a size smaller than k to make the score larger. As a

result, we should add at least k −max{i|1 ≤ i ≤ k,Di(S
′) 6= ∅}

nodes into S′. ✷

Searching Current Set: The most important operation in our frame-

work is the the algorithm div-search-current() to search the diver-

sified top-k results for the current result set S. We first show the

difficulties of the problems in this section and give three algorithms,

namely div-astar, div-dp, and div-cut on div-search-current() in

the next three sections respectively.

The following lemma shows that finding the diversified top-k
results is an NP-Hard problem.

Lemma 4 Finding D(S) on G(S) is an NP-Hard problem.

Proof Sketch: We consider a special case of the problem, where

score(v) = 1 for all v ∈ V (G(S)), and k = |V (G(S))|. In

such a case, finding Dk(R) on G(S) is equivalent to finding the
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Figure 2: The greedy algorithm
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Figure 3: Overview of three algorithms

maximum independent set on graph G(S), which is an NP-Hard

problem. Thus, the original problem is an NP-Hard problem.

Greedy is Not Good: Given G(S) and k, a simple greedy algo-

rithm to find D(S) works as follows. It processes in iterations. In

each iteration, the node v with the maximum score is selected and

put into D(S). After that, all the nodes that are adjacent to v in

G(S) is removed from G(S). The process stops when G(S) is

empty or D(S) contains k results.

The quality of the greedy algorithm can be arbitrarily bad. The

approximation ratio for the greedy algorithm is not bounded by a

constant factor. Even for its special case, the maximum indepen-

dent set problem is known to be hard to approximate in the litera-

ture. We give an example. Fig. 2 shows a diversity graph with 201
nodes and 200 edges. Suppose k = 100. Using the greedy algo-

rithm, the solution is shown in Fig. 2(a), where the selected results

are marked gray. The score of the greedy solution is 199. The op-

timal solution for the problem is shown in Fig. 2(b). The score of

the optimal solution is 9, 900, which is nearly 50 times of the score

of the greedy solution.

In the following, we propose to find the optimal solution of D(S).
We propose three algorithms, namely, div-astar, div-dp, and div-cut.

div-astar searches the whole space S using the A∗ based heuris-

tics by designing an upper bound function astar-bound(). Based

on the NP-Hardness of the problem, div-astar can hardly handle

problems with large diversity graph G. In our second div-dp al-

gorithm, we decompose G into connected components. The size

of each component can be much smaller than the original graph

G, and is searched independently using div-astar. We combine the

components using an efficient operation ⊕ based on dynamic pro-

gramming. In our third div-cut algorithm, we further decompose

each connected component into subgraphs, where subgraphs are

connected through a set of cut points. Each subgraph is searched

independently for at most 4 times under different conditions. We

combine the components using two efficient operations ⊕ and ⊗.

The general ideas of the three algorithms are illustrated in Fig. 3.

5. AN A∗ BASED APPROACH
As discussed in Section 4, div-search-current(G(S), k) should

return the optimal solution Di(S) for 1 ≤ i ≤ k in order to find

the early stop condition. For simplicity, we use D to denote the set

of solutions, and we use D.solutioni to denote the optimal solution
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Algorithm 4 div-astar(G, k)

Input: The diversity graph G, the top-k value.
Output: Search result D.

1: H ← ∅; D ← ∅;
2: H.push((∅, 0, 0, 0));
3: for k′ = k down to 1 do
4: astar-search(G,H, D, k′);
5: for all e ∈ H do
6: e.bound← astar-bound(G, e, k′);
7: update e inH;
8: return D;

9: procedure astar-search(G,H, D, k′)

10: whileH 6= ∅ andH.top.bound > maxi≤k′{D.scorei} do

11: e← H.pop();
12: for i = e.pos+ 1 to |V (G)| do
13: if vi.adj(G)

⋂
e.solution = ∅ then

14: e′ ← (e.solution
⋃
{vi}, i, e.score+ score(vi), 0);

15: e′.bound← astar-bound(G, e′, k′);
16: H.push(e′);
17: update D using e′.solution;

18: procedure astar-bound(G, e, k′)
19: p← |e.solution|; i← e.pos+ 1;

20: bound← e.score;
21: while p < k′ and i < |V (G)| do
22: if vi.adj(G)

⋂
e.solution = ∅ then

23: bound← bound+ score(vi);
24: p← p+ 1;
25: i← i+ 1;
26: return bound;

with i results Di(S), and use D.scorei to denote the score for the

optimal solution score(Di(S)).
Our first algorithm is an A∗ based algorithm. The algorithm

is shown in Algorithm 4. We define a max heap H to store the

entries in the A∗ search. Each entry e ∈ H is with the form

e = (solution, pos, score, bound). Each entry e is ranked in H
according to e.bound, which is the estimated upper bound of the

solution if we further expand it in the A∗ search. e.solution is

the partial solution searched and e.pos is the position of the last

searched node in e.solution. e.score is the score of the partial solu-

tion, i.e., e.score = score(e.solution). The algorithm should return

D.solutioni for all 1 ≤ i ≤ k. Suppose we have an A∗ algorithm

that finds the optimal solution for a certain D.solutioni, the algo-

rithm should be invoked k times to find the k solutions, which is

costly. We show that after searching D.solutioni for a certain i, the

partial solutions in H can be reused when searching D.solutionj
for j < i. In the following, we first discuss the estimated upper

bound for partial solutions. Then we discuss the A∗ algorithm to

find the optimal solution D.solutioni for a certain i. At last, we

discuss how the partial solutions in H can be reused to find the

optimal solutions D.solutioni for all 1 ≤ i ≤ k.

Upper Bound Estimation: Given a partial solution e, for a cer-

tain k′, we show how to estimate the score upper bound if we ex-

pand the partial solution to be a solution of at most k′ elements.

The algorithm astar-bound is shown in Algorithm 4, line 18-26.

The newly added nodes should at least satisfy the following two

conditions: 1) they can not be one of e.solution, and 2) they are

not adjacent to any node in e.solution. Under such conditions, we

can just add the set of nodes with largest scores, and after adding

the nodes, the total number of nodes is no larger than k′. In or-

der to satisfy condition 1), we visit nodes in G from the posi-

tion e.pos + 1 (line 19). Since nodes in G are sorted in the non-

increasing order of their scores, we add nodes one by one until the

size p reaches k′. For each node added, condition 2) can be checked

using vi.adj(G)
⋂

e.solution = ∅ (line 22).

Lemma 5 astar-bound(G, e, k′) finds the score upper bound for

the partial solution e.solution to be expanded to a solution of at

most k′ elements.

Proof Sketch: Suppose we have removed all the nodes from G
that are adjacent to at least one node in e.solution, then the func-

tion astar-bound(G, e, k′) calculates the upper bound by expand-

ing e.solution using the set of nodes after position e.pos in G with

largest scores. The optimal solution that e.solution can be ex-

panded also selects the expanded nodes from the set of nodes after

position e.pos but it may not select all with the largest scores since

some of them may be adjacent to each other. Thus the optimal so-

lution can not be larger than astar-bound(G, e, k′). As a result,

astar-bound(G, e, k′) is a score upper bound for all expansions of

e.solution. ✷

A∗ Search for a Certain k: To find the optimal solution for a

certain k = k′, the A∗ search algorithm astar-search is shown in

Algorithm 4, line 9-17. It runs in iterations. In each iteration, the

partial solution e with the largest estimated upper bound is popped

out from H (line 11). e can then be expanded to new partial solu-

tions by adding a new node into e.solution. The nodes are added

from position e.pos + 1 in G since all nodes before the position

has been processed (line 12). The newly added node vi should not

be adjacent to one of e.solution(line 13), and after adding the new

node, the upper bound of the new partial solution should be updated

using astar-bound(), and the new partial solution should be pushed

into H for further expansion (line 14-16). In line 17, suppose the

new partial solution e′ has j elements, the new partial solution is

considered as a solution of size j, and used to update the current

best solution D.solutionj , if D.scorej < e′.score. The iteration

stops if either H is ∅ or the largest upper bound in H is no larger

than the current best score maxi≤k′{D.scorei} (line 10).

Reusing Partial Solutions: In Algorithm 4, line 1-8 show how to

share the same H to compute D.solutionk′ for 1 ≤ k′ ≤ k, with-

out constructing H from scratch each time k′ changes. It processes

with decreasing order of k′ (line 3). After processing k′, the partial

solutions in H can be reused when processing k′ − 1, in order to

save computational cost. If we simply keep the current entries in

H, they cannot be used directly to process k′ − 1. It is because the

upper bounds for each partial solution are calculated by expanding

to a solution of size k′, which is not the upper bounds for a solution

of size k′ − 1. In order to reuse the partial solutions in H, we need

to recalculate the upper bounds for all partial solutions in H using

k′ − 1 and update the new positions for elements in H (line 5-7).

The following lemma shows the correctness of the approach.

Lemma 6 The partial solutions in H for calculating D.solutioni
can be reused when calculating D.solutioni−1.

Proof Sketch: Consider the possibly expanded node e in H such

that e.solution = D.solutioni−1. There is a unique path from the

root of H to e. (1) Suppose e is not removed from H currently,

then there exists a unique ancestor of e in the current H. Since

the upper bounds have been updated and e is the optimal solution

D.solutioni−1, e can be expanded when calculating D.solutioni−1.

(2) Suppose e has been removed from H currently, then e has

been used to update D.solutioni−1 after removal. Since the upper

bounds for all entries in H have been updated and e is the optimal
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Figure 5: Finding diversified top-2 results

solution D.solutioni−1, the process can stop directly before pop-

ping any entry from H. From (1) and (2), we conclude that after

reusing the partial solution, D.solutioni−1 can be calculated. ✷

Example 2 Consider the diversity graph shown in Fig. 1. Suppose

k = 3. The process for the div-astar search is shown in Fig. 4.

First, entry (∅, 0,∞) is popped from the heap H, and 6 new entries

are pushed. The result {v1} is with upper bound 19 because after

selecting v1, nodes v3, v5 and v4 that are adjacent to v1 should

be excluded when calculating the upper bound of {v1}. The only

nodes left are v2 and v6 with scores 8 and 1 respectively. Thus the

upper bound for {v1} is score({v1}) + 8 + 1 = 19. The one with

the highest score is ({v3}, 7, 20), and thus it is popped from H
in the next iteration and generates two new entries. Accordingly,

({v3, v4}, 14, 20) and ({v3, v4, v5}, 20, 20) are popped from H
in order. At this moment, D.score1 = 10, D.score2 = 14, and

D.score3 = 20. The stop condition is satisfied, and D.solution3
is the optimal diversified top-3 results. Consider now we compute

D.solution2 since it is not the optimal solution currently. We do not

need to reconstruct H from scratch. We update all upper bounds

for entries that exists on the current H. In this example, entry

({v1}, 10, 19) is updated to be ({v1}, 10, 18) as shown in Fig. 5.

Continue the iteration, ({v1}, 10, 18) and ({v1, v2}, 18, 18) are

popped from H in order. At this moment, D.score2 is updated to be

18 and the stop condition is satisfied. Thus 18 is the best score for

k = 2.

6. A DP BASED APPROACH
The div-astar algorithm is not suitable to handle large diversity

graph G since the search space for div-astar increases exponen-

tially with respect to the size of G and k. In order to reduce the

size of the diversity graph G used for div-astar search. In this sec-

tion, we decompose G into a set of disconnected components. We

show that we only need to process each disconnected component

separately using div-astar, and the solution for each disconnected

component can be combined efficiently to the solution of the whole

graph G using dynamic programming. Before introducing the al-

gorithm, we first introduce two operators, ⊕ and ⊗.

Algorithm 5 operator ⊕(D′, D′′)

Input: Search results D′ and D′′ for subgraphs.
Output: Search result D = D′ ⊕D′′.

1: D ← ∅;
2: for i = 1 to k do

3: D.scorei ← 0; D.solutioni ← ∅;
4: for j = 0 to i do
5: if D′.solutionj 6= ∅ or j = 0 then

6: if D′′.solutioni−j 6= ∅ or i = j then
7: if D′.scorej +D′′.scorei−j > D.scorei then
8: D.scorei ← D′.scorej +D′′.scorei−j ;
9: D.solutioni ← D′.solutionj

⋃
D′′.solutioni−j ;

10: return D;

Algorithm 6 operator ⊗(D′, D′′)

Input: Search results D′ and D′′ for subgraphs.
Output: Search result D = D′ ⊗D′′.

1: D ← ∅;
2: for i = 1 to k do
3: D.scorei ← 0; D.solutioni ← ∅;
4: if D′.scorei > D′′.scorei then
5: D.scorei ← D′.scorei;
6: D.solutioni ← D′.solutioni;
7: else

8: D.scorei ← D′′.scorei;
9: D.solutioni ← D′′.solutioni;

10: return D;

The ⊕ Operator: The ⊕ operator has two operands, search result

D′ and search result D′′. For 1 ≤ i ≤ k, D.solutioni is the solu-

tion of size i with the largest score by combining some nodes in D′

and other nodes in D′′. The algorithm to compute D = D′ ⊕D′′

is shown in Algorithm 5 using dynamic programming. It calculates

D.solutioni one by one for 1 ≤ i ≤ k (line 2). For a certain i,
we try to select j nodes from D′ and the left i − j nodes from

D′′ for all 0 ≤ j ≤ i (line 4). For a certain j, it can generate a

feasible solution from D′ and D′′ if the two conditions are satis-

fied: 1) D′.solutionj 6= ∅ or j = 0, and 2) D′′.solutioni−j 6= ∅
or i − j = 0 (line 5-6). D.solutioni is the one that results in the

largest total score (line 7-9). The time complexity for Algorithm

5 is O(k2). The ⊕ operator is suitable to operate on two search

results that are generated from two disjoint subgraphs respectively.

The ⊕ operator has the following two properties.

(Commutative law) D ⊕D′ = D′ ⊕D.

(Associative law) (D ⊕D′)⊕D′′ = D ⊕ (D′ ⊕D′′).

The ⊗ Operator: Similar to the ⊕ operator, the ⊗ operator is

operated on two operands, search result D′ and search result D′′.

For 1 ≤ i ≤ k, D.solutioni is the solution of size i that are the

best of D′.solutioni and D′′.solutioni. The algorithm to compute

D = D′ ⊗D′′ is shown in Algorithm 6. It calculates D.solutioni
one by one for 1 ≤ i ≤ k (line 2). For a certain i, D.solutioni is

set to be D′.solutioni if D′.scorei > D′′.scorei, and is set to be

D′′.solutioni otherwise (line 4-9). The time complexity for Algo-

rithm 6 is O(k). The ⊗ operator is suitable to operate on two search

results that are generated from the same subgraph. The ⊗ operator

will be used and discussed in the next section. The ⊗ operator has

the following two properties.

(Commutative law) D ⊗D′ = D′ ⊗D.

(Associative law) (D ⊗D′)⊗D′′ = D ⊗ (D′ ⊗D′′).

The Overall Approach: The overall approach to compute D is

shown in Algorithm 7. We find the set of disconnected components

1129



Algorithm 7 div-dp(G, k)

Input: The diversity graph G, the top-k value.
Output: Search result D.

1: D ← ∅;
2: let C = {G1, G2, · · · } be the set of connected components of G;
3: for all Gi ∈ C do
4: D′ ← div-astar(Gi, k);
5: D ← D ⊕D′;
6: return D;
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Figure 6: A sample diversity graph

C of G (line 2). We then process each Gi ∈ C individually using

div-astar search (line 4). With the commutative law and associa-

tive low of operator, the search results for subgraphs in C can be

combined with D in an arbitrary order using operator ⊕ (line 5).

Example 3 Consider the diversity graph G shown in Fig. 6 that

contains two connected components G1 and G2. Suppose k = 5,

and suppose the results D1 of G1 and D2 of G2 have been com-

puted using div-astar algorithm separately. We now combine D1

and D2 to compute the result for D for G. Suppose we now com-

pute D.solution5, using the ⊕ operator shown in Algorithm 5, if

we select 1 node from G1 and select 4 nodes from G2, we got a

score 0 since D2.solution4 = ∅. If we select 2 nodes from G1 and

select 3 nodes from G2, we got a score 40, and if we select 3 nodes

from G1 and 2 nodes from G2 we got a score 38. We search all

the possible combinations, and select the best of them, which is 40,

with 2 nodes from G1 and 3 nodes from G2, as the best solution

D.solution5. The operation ⊕ to combine D1 and D2 is shown in

Fig. 7.

7. A CUT POINT BASED APPROACH
The dynamic programming based approach divides the diversity

graph G into components and each component can be searched sep-

arately. When one of the components is large, it is still a costly

work to search the single component. Consider a certain connected

component Gi, although it is connected, it may contain several

subgraphs that are loosely connected, i.e., connected through a set

of cut points, where a cut point of a graph Gi is a single node

v ∈ V (Gi) such that Gi is disconnected if removing v from Gi. In

this section, we show that the subgraphs connected through some

of the cut points can be considered separately by applying div-astar

search at most 4 times under different assumptions, and their search

results can be combined using a series of ⊕ and ⊗ operations.

The Cut Point Tree (cptree): Given a connected graph G, the cut

point tree (cptree) of G is a tree formed by a subset of cut points

of G. Each node o of cptree is with the form o = (o.cut-point,
o.entry-graph, o.left-graph, o.subnodes, o.result). o.cut-point is

the corresponding cut point representing the node. o.entry-graph

is the subgraph of G that connects o.cut-point and the cut-point

of the farther node of o on cptree. If there are more than one such

graphs, then o.entry-graph is a disconnected graph that contains
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Algorithm 8 div-cut(G, k)

Input: The diversity graph G, the top-k value.
Output: Search result D.

1: D ← ∅;
2: let C = {G1, G2, · · · } be the set of connected components of G;
3: for all Gi ∈ C do

4: cp-compress(Gi);
5: if cut-points(Gi) = ∅ then
6: D′ ← div-astar(Gi, k);
7: else

8: o← cptree-construct(Gi, cut-points(Gi));
9: cp-search(Gi, o, k);

10: D′ ← o.result0 ⊗ o.result1;
11: D ← D ⊕D′;
12: return D;

all of them. It is possible that o.entry-graph = ∅. o.left-graph
is the graph that does not contain any cut point after removing

o.cut-point from G. If there are more than one such graphs, then

o.left-graph is a disconnected graph that contains all of them. It

is possible that o.left-graph = ∅. o.subnodes is the set of sub-

nodes for o in the cptree. o.result contain two results, o.result0
and o.result1. o.result0 is the search result for the subtree rooted

at o such that o.cut-point is excluded, and o.result1 is the search

result for the subtree rooted at o such that o.cut-point is included.

We use o.cut-point to denote o if the context is obvious.

Graph Compression: In order to increase the number of cut points

in a graph and thus reduce the size of the sub-components after

removing some of the cut points. We study how to compress a

graph G. By compression, we mean some nodes can be removed

from the graph if the final solution D on G is not influenced. The

following lemma shows how to compress a graph G.

Lemma 7 Given the diversity graph G, a node vi can be removed

from G if there exists a node vj that satisfies the following three

conditions.

1) vj ∈ vi.adj(G).
2) score(vj) ≥ score(vi).
3) vj .adj(G)

⋃

{vj} ⊆ vi.adj(G)
⋃

{vi}.

After removing vi, the optimal solution on the new graph is the

same with the optimal solution on the original graph.

Proof Sketch: We prove that for any solution V that contains vi,
we can get a solution by replacing vi with vj and the score is not

decreased. First, we prove after replacing vi with vj , the solution

is still a feasible solution. Since vi and vj are adjacent (the first

condition), vj can not be contained in the original solution. Since

each node that vj connects is connected to vi (the third condition),

and there are no nodes in V that are adjacent to vi, after replacing

vi with vj in V , there are still no nodes in V that are adjacent

to vj . Thus, the new solution is still an feasible solution. Since

score(vj) ≥ score(vi) (the second condition), the score of the new

solution is no smaller than the score of the original solution V . ✷
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Algorithm 9 cptree-construct(G, cut-points)

Input: Graph G, a set of cut points cut-points.
Output: The root cpnode o of the cptree.

1: cpnode o← ∅;
2: v ← a node in cut-points with smallest entry-graph(v);
3: o.cut-point← v;
4: o.entry-graph← entry-graph(v);
5: let C = {G1, G2, · · · } be the connected components after removing

v and entry-graph(v) from G;
6: for all Gi ∈ C do
7: if cut-points

⋂
V (Gi) 6= ∅ then

8: o′ ← cptree-construct(Gi, cut-points
⋂

V (Gi));
9: o.subnodes← o.subnodes

⋃
{o′};

10: else
11: o.left-graph← o.left-graph

⋃
Gi;

12: return o;

Algorithm 10 cp-search(G, o, k)

Input: Graph G, the cpnode o of the cptree, the top-k value.
Output: The search result o.result0 and o.result1.

1: for all o′ ∈ o.subnodes do
2: cp-search(o′);
3: for i = 0 to 1 do
4: if i = 1 then

5: mark(o.cut-point.adj(G));
6: o.resulti ← div-cut(remove-mark(o.left-graph), k);
7: for all o′ ∈ o.subnodes do
8: D ← ∅;
9: for j = 0 to 1 do

10: if j = 1 and i = 1 and o′.cut-point ∈ o.cut-point.adj(G)
then

11: break;
12: if j = 1 then
13: mark(o′.cut-point.adj(G));
14: D′ ← div-cut(remove-mark(o′.entry-graph), k);
15: D′ ← o′.resultj ⊕D′;
16: D ← D ⊗D′;
17: if j = 1 then
18: unmark(o′.cut-point.adj(G));
19: o.resulti ← o.resulti ⊕D;
20: if i = 1 then
21: update o.resulti by adding node o.cut-point into every solution

of o.cut-point;
22: unmark(o.cut-point.adj(G));

Example 4 Fig. 8 shows a sample diversity graph. In the graph,

w1 can be removed since there exits a node w2 that connects w1,

and every node that w2 connects is connected to w1. After com-

pression, the new graph is shown in Fig. 9. The cptree of the new

graph is shown on the left most part of Fig. 11, where there are 3
nodes, w2, w4 and w5 with root w2. The w4.entry-graph is G′

1

which is marked on Fig. 9, and the left graph of w4 is a graph that

contains only one node w3.

Solution Overview: The cut point based solution is outlined in Al-

gorithm 8. Similar to Algorithm 7, it first decomposes the diversity

graph G into disconnected components (line 2). For each compo-

nent Gi, we first compress it by removing nodes based on Lemma

7 (line 4). If there are no cutting points, we simply search Gi using

div-astar (Algorithm 4). Otherwise, we construct the cptree with

root o for Gi and search on the cptree from root node o to calculate

o.result0 and o.result1 (line 8-9). o.result0 and o.result1 are com-

bined using the ⊗ operator since they are for the same subset of

nodes (line 10). The results for different components are combined

using the ⊕ operator since they are for different subset of nodes in

w5
w61

1

12

w1

w2

13
8

u3

u2

9

10 u1

6

u5

u4

7

w3

1

w41

v61

v3
7

7

v4

v2

8

6

v5

10

v1

G′
2

G′
1

Figure 8: A sample diversity graph

u4

7

u5

6

u1
10

1
w5

w61

u2

9

8

u3

w2

13

w3

1

w41

v4

7
v3

7

v2

8

6

v5

10

v1

1 v6

G′
1

G′
2

Figure 9: Compressed diversity graph

G (line 11). We discuss how to construct the cptree and how to

search the cptree below.

Constructing the cptree: Given a diversity graph G, the cptree for

G is constructed as follows. First, the set of cut points, cut-points,

is computed using the Tarjan’s algorithm with linear time w.r.t. the

size of G. Then each subtree of cptree is constructed recursively

based on a certain subgraph G′. The root node v of the subtree

is selected as follows: if v is the root of the whole cptree, v is

the node in cut-points, such that after removing v, the maximum

component of G is minimized. Otherwise, v is selected as the

node in cut-points, such that after removing v from G′, the size

of the component that is connected to v’s farther node in the orig-

inal graph G, denoted as entry-graph(v), is maximized. For other

components in G′ after removing v, they can be divided into two

categories. The first category includes components with no node

in cut-points. Such components are added to the left-graph of v.

The other category includes components with at least one node in

cut-points. Each of such components is considered as a subtree of

v in cptree and is created recursively. The algorithm for construct-

ing the cptree is shown in Algorithm 9.

Searching the cptree: The aim of searching the cptree is to com-

pute o.result0 and o.result1 for every node o on the cptree in a

bottom-up fashion. For a certain node o on the cptree, suppose the

result0 and result1 for all o’s subnodes have been computed, we

need to compute o.result0 and o.result1. The algorithm to search

the cptree is shown in Algorithm 10.

We explain Algorithm 10 using an example. Fig. 10 shows a

cptree with 3 nodes, o12, o34 and o24 connecting 4 graphs G1, G2,

G3 and G4. G34 consists of G3, G4 and o3,4. G12 consists of

G1, G2 and o12, and G consists of G12, G34 and o24. For sim-

plicity, in this example, we use the graph itself to denote the search

result on the graph. For a cutting point o on a graph G, we use

G.includeo to denote the optimal solution on G that o is included,

and use G.excludeo to denote the optimal solution on G that o is

excluded. Suppose G3.includeo34 , G3.excludeo34 , G1.includeo12 ,

and G1.excludeo12 have been computed. We show how to compute

G.includeo24 and G.excludeo24 .

Computing G.excludeo24 : It is the case for i = 0 in Algorithm 10

(line 3). Since o24 is excluded, we have G.excludeo24 = G34 ⊕
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G12 (line 19 in the for loop from line 7). We now discuss how to

compute G12, and G34 can be computed in a similar way. There

are two situations:

1. o12 is excluded. It is the case for j = 0 (line 9). In such

a situation, we can compute G′
12 = G1.excludeo12 ⊕ G2

(line 15).

2. o12 is included. It is the case for j = 1 (line 9). In such a

situation, we can compute G′′
12 = G1.includeo12 ⊕ (G2 −

o12.adj(G)) (line 15), where G2 − o12.adj(G) is to remove

the adjacent nodes of o12 from G2 (line 13).

After computing 1 and 2, G12 can be computed as G12 = G′
12 ⊗

G′′
12 (line 16).

Computing G.includeo24 : It is the case for i = 1 in Algorithm

10 (line 3). Since o24 is included, we should remove nodes that

are adjacent to o24 in G4 and G2 (line 5). Thus G.includeo24 =
(G34 − o24.adj(G)) ⊕ (G12 − o24.adj(G). Note that since o24
is included, we should also add o24 into G.includeo24 after com-

puting the ⊕ operation (line 21). We now discuss how to compute

(G12 − o24.adj(G)), and (G34 − o24.adj(G)) can be computed in

a similar way. There are two situations:

1. o12 is excluded. It is the case for j = 0 (line 9). In such a

situation, we can compute G′
12 = G1.excludeo12 ⊕ (G2 −

o24.adj(G)) (line 15).

2. o12 is included. It is the case for j = 1 (line 9). In such a

situation, we can compute G′′
12 = G1.includeo12 ⊕ (G2 −

o24.adj(G)−o12.adj(G)) (line 15), where G2−o24.adj(G)−
o12.adj(G) is to remove the adjacent nodes of o12 from G2−
o24.adj(G) (line 13).

After computing (1) and (2), (G12− o24.adj(G)) can be computed

as (G12 − o24.adj(G)) = G′
12 ⊗G′′

12 (line 16).

From the above discussion, on the cptree, for each node o′,
o′.entry-graph needs to be searched for at most four times de-

pending on whether o.cut-point and o′.cut-point are included or

not, where o is the father node of o′ on cptree. For the above ex-

ample, G2 is searched four times, using G2, (G2 − o12.adj(G)),
(G2 − o24.adj(G)) and (G2 − o24.adj(G)− o12.adj(G)) respec-

tively. There are two more cases that the above example is not

considered. First, when o.left-graph is not ∅, the search result on

o.left-graph should also be combined into o.result0 and o.result1
using operator ⊕ (line 6). Second, when o and o′ are adjacent, and

both o and o′ are included, it is not a feasible solution (line 10-11).

Example 5 For the diversity search graph shown in Fig. 8, sup-

pose k = 5, after graph compression (Fig. 9), the cptree is shown

in the left most part of Fig. 11. For the root node w2, suppose

the solutions for its subnodes w4 and w5 are computed. The opti-

mal solution w2.result0 (exclude w2) is computed by combing two
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Figure 11: Search the cptree

kfreq enwiki reuters

1 historic lake spokesman
2 divided areas net
3 rating system april
4 student high school billion
5 community web march

Figure 12: Keyword queries

results using operator ⊕: (1) the optimal solution for G′
1

⋃

the

subgraph represented by w4, and (2) the optimal solution for G′
2

⋃

the subgraph represented by w5. When computing (1), we should

combine the following two results using the operator ⊗: (a) the

result by including w4 and (b) the result by excluding w4. (a) can

be computed by first removing all nodes from G′
1 that are adjacent

to w4, and combining the optimal solutions for G′
1 and w4.result1

using operator ⊕. The optimal solution for G′
1 can be computed

using div-cut again. (b) can be computed in a similar way. The

optimal solution w2.result0 is shown in the middle lower part of

Fig. 11, and the optimal solution w2.result1 is shown in the middle

upper part of Fig. 11. After combining w2.result0 and w2.result1
using operator ⊗, the final solution is shown in the right part of

Fig. 11.

8. PERFORMANCE STUDIES
We conducted extensive performance studies to test the algo-

rithms proposed in this paper. We implemented three algorithms,

denoted div-astar (Algorithm 4), div-dp (Algorithm 7), and div-cut

(Algorithm 8) that follow the framework shown in Algorithm 3

with different implementations on div-search-current. All algo-

rithms were implemented in Visual C++ 2008 and all tests were

conducted on a 2.8GHz CPU and 2GB memory PC running Win-

dows XP.

We use two real datasets, enwiki2 and reuters3. enwiki includes

11,930,681 articles from the English Wikipedia, and reuters in-

clude 21,578 news from Reuters. Given a user keyword query q,

we search the top-k documents using the TF*IDF score normal-

ized by the length of the corresponding document, which is defined

as follows for each document d.

score(q, d) =

∑

qi∈q
tf(qi, d)× idf(qi)
√

len(d)
(3)

where tf(qi, d) is term frequency of keyword qi in d, idf(qi) is

the inverted document frequency for keyword qi, which is defined

as idf(qi) = log |D|
|{d∈D:qi∈d}|+1

for the dataset D, and len(d) is

the total number of words in d. Given any two documents d1 and

d2, suppose all stop words have been removed from d1 and d2, the

2
http://en.wikipedia.org/wiki/Wikipedia:Database download

3
http://kdd.ics.uci.edu/databases/reuters21578/
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similarity for d1 and d2 is defined as follows, based on the weighted

Jaccard distance.

sim(d1, d2) =

∑

w∈d1
⋂

d2
idf(w)

∑

w∈d1
⋃

d2
idf(w)

(4)

where d1
⋂

d2 is the multi-set of words that appear in both d1 and

d2, and d1
⋃

d2 is the multi-set of words that appear in either d1 or

d2.

For enwiki, we test the scalability for keyword queries with mul-

tiple keywords, where the results for each keyword are sorted ac-

cording to the scores and stored in the inverted index. The results

for all keywords are aggregated using the threshold algorithm [8].

For reuters, we test the scalability for keyword queries where each

keyword query only contains one keyword. The results are out-

put incrementally by sequentially scanning the inverted index for

the keyword. For each testing, we record the processing time and

the peak memory consumption. The processing time/peak memory

consumption is the total time/peak memory consumed in searching

the diversified top-k results. When all the 2GB memory is used up,

the algorithm cannot compute the diversified top-k results. We use

INF to denote such a situation.

For each dataset, we vary 3 parameters, k, τ and kfreq. k is

the top-k value, τ is the similarity threshold, and kfreq is the av-

erage keyword frequency for the corresponding query. For each

dataset, we select representative queries with different keyword

frequencies as follows. After removing all the stop words, we

set the maximum keyword frequency among all keywords as π,

and divide the keyword frequency range between 0 and π into 5
partitions, namely, π/5, 2π/5, 3π/5, 4π/5 and π. For simplic-

ity, we say a keyword has frequency p(p ∈ {1, 2, 3, 4, 5}), iff

its frequency is between (p − 1) · π/5 and p · π/5. We also

set two groups of k values. The small k values and the large

k values. Since div-astar is not suitable to be processed when

k is large, in the large k value group, we only compare the two

algorithms div-dp and div-cut. For enwiki, k is selected from

{40, 80, 120, 160, 200} with default value 120 for small k values

and selected from {500, 700, 900, 1300, 2000} with default value

900 for large k values. τ is selected from {0.4, 0.5, 0.6, 0.7, 0.8}
with default value 0.6, and kfreq ranges from 1 to 5 with default

value 3. For reuters, k is selected from {60, 80, 100, 110, 120}
with default value 100 for small k values and selected from {500,
700, 900, 1300, 2000} with default value 900 for large k values.

The small k values selected in reuters are different from those in

enwiki because div-astar can hardly handle queries when k is as

large as 200 in reuters. τ is selected from {0.4, 0.5, 0.6, 0.7, 0.8}
with default value 0.6, and kfreq ranges from 1 to 5 with default

value 3. When varying a certain parameter, the values for all the

other parameters are set to their default values. The set of keywords

with different kfreq are shown in Fig. 12.

Exp-1 (Test enwiki): The testing results on the enwiki dataset

when varying k are shown in Fig. 13. Fig. 13 (a) and Fig. 13

(b) show the processing time and memory consumption when k is

small. When k increases, the processing time for all the three algo-

rithms div-cut, div-dp, and div-astar increase. div-astar increases

sharply and div-dp and div-astar keep stable. When k reaches 200,

div-astar takes more than 200 seconds and consumes more than

200MB memory while both div-cut and div-astar take less than

0.1 seconds and consumes less than 10KB memory. The process-

ing time and memory consumption for large k values are shown in

Fig. 13 (c) and Fig. 13 (d) respectively. When k increases, the time

and memory consumption for div-dp increase sharply while the

time and memory consumption for div-cut increase slowly. This
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Figure 14: Vary τ (enwiki)

is because, when k increases, the size of the largest component for

the diversity graph increases, but it can still be decomposed into rel-

atively smaller subgraphs using cut points. When k reaches 2, 000,

div-dp cannot generate the result and div-cut can compute the op-

timal solution within 15 seconds using less than 200KB memory.

When τ varies from 0.4 to 0.8, the testing results on the enwiki

dataset are shown in Fig. 14. As shown in Fig. 14 (a) and Fig. 14

(b), for small k, when τ increases, the processing time and mem-

ory consumption for div-astar decrease, and the time and memory

consumption for div-cut and div-dp keep stable. This is because

when τ is large, a large number of search results are not similar to

each other. Thus in the div-astar search, the estimated upper bound

is tight and thus the algorithm stops early. For large k values, as

shown in Fig. 14 (c) and Fig. 14 (d), when τ increases, the time

and memory consumption for both div-cut and div-dp decrease.

When τ is 0.4, div-dp cannot generate a result because when τ is

small, a lot of search results are similar to each other, and thus the

largest component for the diversity graph is large. div-cut can com-

pute the optimal solution within 15 seconds using less than 1MB

memory.

Fig. 15 shows the testing results on the enwiki dataset when vary-

ing kfreq. When kfreq increases, both the processing time and

memory consumption do not have an obvious trend to increase or

decrease. This is because whether two search results are similar to

each other is not dependent largely on the keyword frequency for

the query. Fig. 15 (a) and Fig. 15 (b) show the processing time and

memory consumption for small k values. div-cut and div-dp have

similar performance and div-astar is more than 100 times slower

and consumes 1000 times more memory, comparing to div-cut and

div-dp in all cases. The processing time and memory consump-

tion for large k values when varying kfreq are shown in Fig. 15 (c)

and Fig. 15 (d) respectively. div-dp is more than 2 times slower and

consumes 10 times more memory comparing to div-cut in all cases.

When kfreq = 2, div-dp cannot generate a result and div-cut can
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Figure 16: Vary k (reuters)

finish in less than 10 seconds using less than 500KB memory.

Exp-2 (Test reuters): The testing results when varying k in the

reuters dataset are shown in Fig. 16. Fig. 16 (a) and Fig. 16 (b)

show that, for small k values, when increasing k, the processing

time and memory consumption for div-cut and div-dp keep stable

and the time/memory consumption for div-astar increase sharply.

When k reaches 120, div-astar cannot generate a result and div-cut

and div-dp can finish in less than 0.1 seconds using less than 1KB

memory. For large k values, as shown in Fig. 16 (c) and Fig. 16 (d),

when k is less than 900, div-cut and div-dp have almost the same

performance. When k = 500, div-dp even consumes smaller mem-

ory than div-cut. It is because when k is small, the components

for the diversity graph are all small, thus both div-cut and div-dp

consumes small memory, but div-cut needs extra space to put the

cptree. When k is as large as 2000, div-dp is 10 times slower than

div-dp and consumes more than 1000 times more memory.

The curves for reuters when varying τ are shown in Fig. 17.

As shown in Fig. 17(a) and Fig. 17(b), for small k values, when

τ increases, the time/memory consumption for div-astar decrease

sharply and div-cut and div-dp keep stable. When τ ≤ 0.5, the

div-astar algorithm cannot generate a result while div-astar and

div-cut can compute the optimal solution within 0.01 seconds us-

ing more than 1KB memory. The results for large k values are

shown in Fig. 17 (c) and Fig. 17 (d). When τ is larger than 0.6,

div-cut and div-dp have almost the same performance. When τ de-

creases, the time/memory consumption for div-dp increase sharply

and div-cut keeps stable. For τ = 0.4, div-dp can compute the op-

timal solution in more than 500 seconds using more than 500MB

memory, while div-cut can compute the optimal solution in less

than 5 seconds using less than 200KB memory.

Fig. 18 shows the testing results when varying kfreq in the reuters

dataset. Again, the time/memory consumption does not have an ob-

vious trend to increase or decrease. For small k values, as shown

in Fig. 18 and Fig. 18, div-cut and div-dp have similar processing
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time, but div-dp consumes more memory than div-cut. div-astar is

much slower and consumes much more memory than div-cut and

div-dp in all cases. For large k values, as shown in Fig. 18, the gap

between div-dp and div-cut is not as large as those in the enwiki

dataset. It is because in the enwiki dataset, the number of docu-

ments is large, and thus documents that fall into the same category

can be similar to each other with high probability, and in the reuters

dataset, the number of documents is small, and thus the probability

that two documents are similar to each other is small. div-cut is

faster and consumes smaller memory than div-dp in all cases.

9. RELATED WORK
In general, our problem of finding diversified top-k results is re-

lated to three problems in the literature, namely, traditional top-k

query, diversified top-k query, and maximum weight independent

set.

Traditional top-k query: In a top-k query, each result is associated

with a score and the k results with largest scores are reported as the

top-k results. General techniques to answer top-k queries follow

into two categories.

In the first category, all the results define a solution space. The

approach recursively partitions the solution space into subspaces

based on the best result in the current subspace, and the next best re-

sult is the one with largest score among the best result in each sub-

space. Therefore, the top-k results are generated one-by-one using

Lawler’s procedure [16], and the approaches based on it are in [15,

20, 14]. Lawler [16] proposes a general procedure for computing

top-k results to discrete optimization problems and also discusses

its application to k shortest path problem. Based on Lawler’s pro-

cedure, Kimelfeld and Sagiv [15] study how to find top-k steiner

trees, Qin et al. [20] focus on finding top-k communities, Kargar

and An [14] find r-cliques in a graph.

In the other category, the results are generated in a heuristic or-

der, and an upper bound score is computed for all the ungenerated

results. The algorithm stops if the scores of current top-k results are
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no smaller than the upper bound score. A detailed survey can be

found in [13]. The general setting is that, one ranked list is defined

for each query feature, and the score of each result is an aggreation

of scores corresponding to query features, which is a classical set-

ting in Information Retrieval. The most inflential algorithm is pro-

posed by Fagin et al. [7, 9], which considers both random access

and/or sequential access of the ranked lists. Other works consider

the scenario that only sequential accesses of the ranked lists are

allowed [12, 17].

Diversified top-k query: In the traditional top-k queries, it re-

turns results based on their relevance scores only. More and more

works propose to take the diversity (or redundancy) into consider-

ation to return a more satisfied result list for user queries [2, 1, 23,

22, 11]. The problems studied about diversity expand a wide vari-

ety of spectrum, e.g., diversified keyword search in documents [2],

diversified prestige node finding in information networks [18], di-

versified keyword query recommendation [23], diversified docu-

ment monitoring in information filtering system [22], diversified

keyword query interpretation over structured databases [6], and di-

versified keyword search over graphs [11], and so on.

In general, for a diversity-aware query, the results are returned

in an ordered list and a redundancy value is computed for each

result based on the content of results preceding it. Then, a use-

fulness score is computed by combining the relevance score and

redundancy value, and results are ranked with respect to the use-

fulness score [2, 1, 6, 11]. The approaches to find top-k diver-

sified results by usefulness scores generally consist of two steps,

which first computes a top-l (l > k) results based on the relevance

score only and then reranks the l results based on the usefulness

score using a greedy algorithm [6, 1, 11, 5]. Considering the effi-

ciency aspect, Angel and Koudas [2] propose a one-step approach

to answering diverisfied top-k queries. They couple their algorithm

with the threshold algorithm which is designed for traditional top-

k query [9]. An upper bound usefulness score is computed for

the non-retrieved documents, the current k documents with largest

scores are the top-k results if their scores are no smaller than the

upper bound computed.

Different from the above works, Zhang et al. [22] treat the redun-

dancy of a document with respect to a set of relevant documents as

a binary value, i.e., a document is either redundant or should be

reported as relevant. Mei et al. [18] find the top-k diversified pres-

tige nodes in information networks using vertex-reinforced random

walk. Zhu et al. [23] recommend top-k diversified relevant queries

using a manifold based approach.

Maximum weight independent set: Our problem can be viewed

as an instance of finding maximum weight independent set con-

strained with size k, which is NP-hard [10]. The problems of find-

ing maximum weight independent set, maximum weight clique,

and minimum weight vertex cover are all correlated, and these

problems are hard to approximate. Therefore, very few attempts

have been done in the literature to find exact solutions, except the

branch-and-bound methods [21, 3, 19, 4]. However, these works

do not consider the size constraint k as introduced in our problem.

Also, in our problem, the diversity graph is not toally materalized.

10. CONCLUSION
In this paper, we study the diversified top-k search problem,

that take both the scores of results and diversity into considera-

tion. We formally define the problem using the similarity of search

results themselves. We propose a framework, such that most ex-

isting solutions that handle top-k query processing with early stop

can be used in our framework to handle diversified top-k search by

applying three new functions, namely, a sufficient stop condition

sufficient(), a necessary top condition necessary() and an diversi-

fied top-k search algorithm div-search-current() to search on the

current result set. We study all the three functions in details and

give three algorithms for div-search-current(). We conducted ex-

tensive performance studies to show the performance of our algo-

rithms.
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