Megaverse: Simulating Embodied Agents at
One Million Experiences per Second

Aleksei Petrenko ' > Erik Wijmans ' * Brennan Shacklett* Vladlen Koltun '

I . AAAL_Woay -
- —

Figure 1. Megaverse is a new research platform that supports simulating embodied agents in immersive interactive 3D environments at
over 1,000,000 experiences per second on a single 8-GPU server. Video demonstrations of Megaverse scenarios and behaviors of trained

agents are available at www.megaverse.info

Abstract

We present Megaverse, a new 3D simulation
platform for reinforcement learning and embod-
ied Al research. The efficient design of our en-
gine enables physics-based simulation with high-
dimensional egocentric observations at more than
1,000,000 actions per second on a single 8-GPU
node. Megaverse is up to 70x faster than Deep-
Mind Lab in fully-shaded 3D scenes with inter-
active objects. We achieve this high simulation
performance by leveraging batched simulation,
thereby taking full advantage of the massive par-
allelism of modern GPUs. We use Megaverse
to build a new benchmark that consists of sev-
eral single-agent and multi-agent tasks covering

'Intel Labs *University of Southern California *Georgia In-
stitute of Technology *Stanford University. Correspondence to:
Aleksei Petrenko <petrenko@usc.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

a variety of cognitive challenges. We evaluate
model-free RL on this benchmark to provide base-
lines and facilitate future research. The source
code is available at www .megaverse.info

1. Introduction

Since the advent of deep learning, progress in the field has
been driven by two factors: the availability of large amounts
of data and the ability to train big and expressive paramet-
ric models on this data. Deep reinforcement learning is no
exception: the existence of fast, efficient, and challenging
simulation environments that can generate millions of tra-
jectories allowed researchers to quickly iterate, experiment
with learning at scale, and ultimately develop improved
models and learning algorithms.

The majority of RL environments used in contemporary
Deep RL research with high-dimensional observations are
based on repurposed game engines. For example, the Ar-
cade Learning Environment (ALE) (Bellemare et al., 2013),

www.megaverse.info
www.megaverse.info

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

VizDoom (Kempka et al., 2016), and DeepMind Lab (Beat-
tie et al., 2016) use the engines of Atari 2600, Doom, and
Quake III, respectively. While reusing existing graphics
pipelines reduces development costs, it can be a suboptimal
basis for RL environments.

Game engines have been designed and optimized to render
a single complex scene at resolutions and framerates tuned
for human perception. The simulation of game physics pro-
ceeds in very small steps such that the resulting motion and
animations appear smooth when the end user interacts with
the game world in real time. Environments for RL research,
however, have drastically different requirements. State-of-
the-art learning algorithms typically consume large amounts
of low-resolution observations rendered much faster than
real time. Turning a game engine into a high-throughput
simulator for RL thus requires using OS-level parallelism,
where individual game instances are run at the same time in
parallel processes. This prevents the engines from efficiently
sharing resources, increases memory consumption, and ulti-
mately fails to fully utilize the throughput of modern hard-
ware accelerators. In addition, due to the high granularity
of physics simulation, researchers often use techniques like
frame-skipping (Bellemare et al., 2013) to simplify credit
assignment, thereby wasting computation on synthesizing
views that are never observed by agents.

We argue that a purpose-built rendering and simulation en-
gine for RL research can eliminate inefficiencies of the ex-
isting environments and therefore accelerate research in re-
inforcement learning and artificial intelligence. We present
Megaverse, a new platform for embodied Al. Built from
scratch as a lightweight simulator, it leverages batched ren-
dering (Shacklett et al., 2021) to fully utilize the throughput
of modern GPUs and render up to 1.1 x 105 observations
per second on a single 8-GPU node at 128 x 72 x 3 reso-
lution. By default we simulate physics at lower frequency
compared to traditional 3D engines, which eliminates the
need for frame-skipping and thus enables an experience col-
lection rate up to ~20x faster than Atari and ~70x faster
than DeepMind Lab on hardware commonly found in deep
learning research labs.

Since Megaverse was designed to render an arbitrary number
of viewpoints and scenes in parallel, it naturally supports
multi-agent simulation. While traditional RL engines either
do not support multi-agent training (Bellemare et al., 2013)
or require a slow network setup to enable it (Kempka et al.,
2016), Megaverse can simulate the experiences of dozens of
agents in the same environment without loss of performance,
in both collaborative and competitive (self-play) settings.

We introduce Megaverse as a simulation platform that can
be used to create virtual worlds for deep RL and embod-
ied Al research. We release eight environments built on
top of Megaverse that cover an array of embodied cogni-

tive tasks and prove to be hard for modern RL algorithms.
Our benchmark, Megaverse-8, addresses challenges such
as navigation, exploration, and memory. All of the envi-
ronments are procedurally generated, and can therefore be
used to investigate generalization of trained agents (Cobbe
et al., 2019). Many of the challenges require our agents to
learn nontrivial physics-based environment manipulation,
which has previously been a feature of resource-intensive
high-fidelity simulators (Kolve et al., 2017).

A key goal of Megaverse is to democratize deep RL re-
search. State-of-the-art results in RL have primarily been
a prerogative of large research labs with access to vast
computational resources. A fast and efficient simulation
engine that supports interactive immersive environments
that call for advanced embodied cognition can enable rapid
community-wide experimentation and iteration, thus accel-
erating progress in the field.

2. Prior work

The first artificial agents were typically confined to minia-
ture grid worlds or board games (Tesauro, 1995). These rel-
atively simple environments were nevertheless a challenge
for early intelligent systems. They allowed researchers to
hone the foundations of reinforcement learning theory and
general-purpose learning algorithms (Sutton & Barto, 1992).

With the advent of powerful function approximators, re-
searchers turned their attention to 2D computer games as
a new challenge for artificial agents. The DQN algorithm
(Mnih et al., 2015) demonstrated the ability to learn directly
from high-dimensional pixel observations, matching or ex-
ceeding human-level performance on multiple Atari games.

Rapid progress on Atari-like benchmarks led to a phase tran-
sition: a new generation of Al research platforms brought
immersive simulators. In contrast to the flatland of arcade
games, the real world is immersive and 3-dimensional. In or-
der to successfully operate in the real world, artificial agents
have to master skills such as spatiotemporal reasoning and
object manipulation. Simulators derived from first-person
3-dimensional video games, such as VizDoom (Kempka
et al., 2016), DeepMind Lab (Beattie et al., 2016), and Min-
eRL (Guss et al., 2019) were among the first to offer virtual
embodiment and egocentric perception.

Immersive simulators vary in their fidelity and throughput.
Advanced simulation platforms built on top of modern 3D
engines, such as Unity (Kolve et al., 2017) or Unreal (Doso-
vitskiy et al., 2017), trade simulation speed for high-fidelity
graphics. These are useful in studying sim-to-real trans-
fer and perceptual aspects of embodied Al, but end-to-end
learning of non-trivial skills and behaviors in these environ-
ments requires massive computational resources (Wijmans
et al., 2020).

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

Other efforts focus on increasing the behavioral complexity
of simulated worlds. Interactions arising in such environ-
ments allow researchers to study non-trivial behaviors and
strategies learned by artificial agents. Environments such as
Dota 2 (Berner et al., 2019) and StarCraft IT (Vinyals et al.,
2019) are complex modern strategy games, and playing
these games at a human level requires advanced long-term
planning. However, these games are not fully immersive,
they provide only a structured top-down view of the envi-
ronment. The OpenAl Hide-and-Seek project (Baker et al.,
2020) investigates sophisticated behaviors emerging in an
environment with full physics simulation. Unlike the strat-
egy games mentioned above, this environment simulates
egocentric perception, although only 1D Lidar-like sensing
is supported.

Capture the Flag (Jaderberg et al., 2019), which is based
on the Quake III engine, demonstrated great potential of
reinforcement learning in immersive environments, but the
project relied on complex closed-source compute infras-
tructure. With Megaverse we aim to build a platform that
enables the exploration of advanced embodied cognition at
or beyond the level of Capture the Flag and Hide-and-Seek,
with full physics simulation and high-dimensional pixel ob-
servations, without requiring tens or hundreds of servers for
experience collection.

Megaverse is not the first initiative that aims at building an
RL simulator from scratch. For example, MINOS (Savva
et al., 2017) and its successor Habitat (Savva et al., 2019)
use a purpose-built rendering engine and support high-
resolution textured scenes based on 3D scans of real environ-
ments (Chang et al., 2017). These and other environments
can be used as testbeds for embodied challenges such as
navigation (Anderson et al., 2018) and rearrangement (Batra
et al., 2020). Most related to our work is Shacklett et al.
(2021) who demonstrate that considerable speedups can be
gained via batched simulation, synthesizing the observations
in many environments simultaneously. Whereas Shacklett
et al. (2021) only examined very simplistic physics (sim-
ple collisions with static geometry), with a single agent per
environment, we apply batched simulation to multi-agent
environments with complex interactivity.

The idea of batched GPU-accelerated simulation has also
been applied in the context of continuous control such as
robot locomotion and dexterous manipulation (Liang et al.,
2018). Perhaps a combination of batched rendering and
batched physics can pave the way for a new generation of
fast high-fidelity simulators that will become a core part of
future Al research infrastructure.

3. Megaverse

Megaverse is a purpose-built simulation platform for embod-
ied Al research. Our engine can simulate fully immersive
3D worlds with multiple agents interacting with each other
and manipulating physical objects, at more than 105 expe-
riences per second on a single node. The agents perceive
the world through high-dimensional observations, rendered
with dynamic shading and simulated lighting.

We introduce a number of performance optimizations that
are instrumental in unlocking this performance regime. Our
discretized physics approach (Section 3.1) allows us to
streamline the computation of non-trivial physical inter-
actions between simulated objects. The parallel architecture
built around the batched Vulkan renderer (Shacklett et al.,
2021) (Section 3.2) enables the production of hundreds
of observations in a single pass, drastically reducing the
required amount of communication between hardware com-
ponents. Another algorithmic optimization is 3D geometry
simplification (Section 3.3). The following sections describe
these architectural choices and optimizations in more detail.

3.1. Discretized continuous physics

Full simulation of physical contact and collisions between
dozens of objects can be computationally expensive. Most
physics engines require a small simulation step to avoid
unrealistic interpenetration of objects caused by movement
interpolation. Megaverse works around this by discretizing
some of the physical interactions. Even though movement
and collision checking for agents are fully continuous, we
simplify the simulation of more complex interactions, such
as object stacking. This enables non-trivial object manip-
ulation, e.g. building staircases and bridges using physical
objects, or moving objects around while solving rearrange-
ment tasks without prohibitively expensive high-frequency
simulation of full contact forces.

Specifically, we use a voxel grid data structure: the agents
are free to pick up objects anywhere and move them continu-
ously, but placement of objects is only allowed at discretized
locations in space, similar to MineRL (Guss et al., 2019).
This has two major benefits. First, proximity checks and
other spatial queries become trivial O(1) operations. More
importantly, collision checking even with hundreds of ob-
jects also becomes extremely fast. We take advantage of
caching mechanisms based on axis-aligned bounding boxes
implemented in the Bullet physics engine (Coumans & Bai,
2016-2020). Since most of the interactive objects reside
in axis-aligned voxels, a simple check based on bounding
box intersections eliminates the vast majority of potential
collision candidates.

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

Megaverse

NxM Thread Pool NxM NxM

Training System

H Env1 H
actions states observations

Al === st o(t+)
- Batched
- " |Renderer

Megaverse

NxMxK
actions
1
N x M x K Policy Worker Learner
observations Rollouts
—_— E——

EnvN
Agents 1..M

|
|
|
|
|
Weights :
|
|
|
|
|
|

Figure 2. Megaverse parallel architecture in the context of a reinforcement learning system. Synchronous or asynchronous training
sequentially interacts with K > 1 instances of Megaverse, each hosting N > 1 environments with M > 1 agents. Megaverse parallelizes
physics computations on CPU, after which the entire vector of observations is rendered in a single pass.

3.2. Large batch simulation and rasterization

One of the key design features of our implementation is an
efficient parallel architecture (Figure 2). A single instance
of the traditional game-based RL environment can simulate
only a single virtual world and render a single observation
per simulation step. One instance of Megaverse can advance
hundreds of environments, each containing multiple agents,
in parallel. This allows our engine to take full advantage of
the massive parallelism of modern computing platforms.

Formally, for environment 7 our system maintains an internal

o= [38?1)7 - "SZ?NE”)]’ where SE:)n) € Sim(3)"

and Nl—(t) is the number of entities in the environment %
at time step ¢ (i.e. interactive objects, walls, agent bod-
ies, cameras, etc.). Then, given a tensor of actions
A®) g ANumEnvsxNumAgents \vhere A is the set of all avail-
able actions, we update the internal state to produce
S+ = s s{EH)] Taken together, the dynam-
ics can be summarized as follows:

state s

S(t+1 — Physics(S®*), A®) (1)
O*1) = Render(S*+1))

where O(*1) is the rendered observations while Physics
and Render are batched modules that are responsible for
their own parallelization. See Figure 2 for a visual depiction.

Physics simulation is parallelized on the CPU by scheduling
state updates for individial environments on a thread pool
with a configurable number of threads. In order to paral-
lelize the rasterization step we adopt the optimized batched
rendering pipeline proposed by Shacklett et al. (2021). This
technique takes advantage of the fact that modern GPUs
excel at rendering relatively small numbers of ultra-high-
resolution images. The renderer bundles together all the
rendering commands corresponding to individual agents
and makes a single request to the GPU to render all the ob-
servations. This massively cuts down the required amount
of communication between CPU and GPU, and helps the
renderer achieve high GPU utilization. The impact of this

"The group of all rotations, translations, and scalings in 3D.

technique on sampling performance is investigated in Sec-
tion 5.1. For compatibility with existing training systems,
by default we transfer the resulting rendered images to CPU
memory, although it is also possible to expose them directly
as PyTorch GPU-side tensors (Paszke et al., 2019).

3.3. 3D geometry optimization

Voxelized geometry allows us to speed up physics calcu-
lations, but it is not the most efficient way to represent
procedurally generated environment layouts, especially in
scenarios with non-trivial 3D landscapes. A naive way to
visualize such layouts would require rendering thousands of
individual voxels that make up the environment. Instead, at
the beginning of every episode, after the random landscape
is generated, we merge adjacent voxels into a small number
of enclosing parallelepipeds (Figure 3). While finding the
optimal solution for this problem is NP-hard, a greedy O(n)
algorithm (where n is a total number of non-empty voxels)
is sufficient to significantly reduce the number of geometric
primitives in the environment. We study the impact of this
technique on sampling throughput in Section 5.1.

Figure 3. After procedurally generating the environment layout,
we minimize the number of primitives by coalescing adjacent
voxels where possible.

4. Megaverse-8 benchmark

Using the Megaverse simulation platform we created a
benchmark called Megaverse-8 (Figure 4), designed for
training and evaluation of embodied agents. The bench-

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

<

(a) ObstaclesEasy (b) ObstaclesHard

[}

(c) Collect (d) Sokoban

(e) HexExplore (f) HexMemory

(g) Rearrange (h) TowerBuilding

Figure 4. Overview of procedurally generated environments in Megaverse-8. At the beginning of each episode, the visual appearance and
layout of environments are sampled randomly.

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

mark comprises eight tasks, each aiming to test different
cognitive abilities of intelligent agents including exploration
and navigation in 3-dimensional spaces, tool use and object
manipulation, and long-term planning and memory. The
benchmark is built with multi-agent support in mind, and
all scenarios are suitable for teams of agents.

The environments in the benchmark are relatively simple
for human-level intelligence, yet present a serious challenge
for artificial agents (Section 5). To score well, agents must
demonstrate common-sense comprehension of the physical
world, such as understanding object permanence and oc-
clusion, and the ability to interactively manipulate objects.
Creating a research platform that provides scenarios that
elicit these skills is one of our motivations.

Megaverse-8 environments are procedurally generated and
each task has a practically infinite number of instantiations.
We randomize the parameters of the task, 3D geometry of
the environment, starting positions of interactable objects
and agents, etc. We randomize the visual appearance by sam-
pling random monochrome materials. Procedural synthesis
mitigates overfitting, allows us to evaluate the performance
of the agents on unseen environments, and may facilitate
the emergence of generalizable skills.

The following paragraphs provide high-level descriptions
of the tasks in Megaverse-8. Please refer to the supplemen-
tary materials and www.megaverse.info for detailed
specifications and video demonstrations.

Megaverse “HexExplore” (Fig. 4e). Agents are placed in
a randomized hexagonal maze and tasked to find a target
object. The episode is considered solved when the target ob-
ject is touched by the agent. This environment tests agents’
episodic exploration abilities (Savinov et al., 2019).

Megaverse “Collect” (Fig. 4c). Agents navigate in a proce-
durally generated 3D landscape and collect objects. Green
objects provide positive reward, while red objects gener-
ate an equal-magnitude penalty. The episode is considered
solved when all positive-reward objects are collected. To
generate the level geometry a 2D fractal noise texture (Per-
lin, 1985) is synthesized and then interpreted as an elevation
map at each location in a discretized space. This environ-
ment tests agents’ skills in traversing 3D landscapes, includ-
ing the ability to control the gaze direction both vertically
and horizontally.

Megaverse “TowerBuilding” (Fig. 4h). Agents are chal-
lenged to construct structures made of interactable boxes.
Agents can pick up boxes scattered in the environment and
place them in the building zone, which is marked by a dis-
tinct color. Agents receive positive reward for placing a new
block in the building zone. The reward function grows as
r() = 2" with the height h at which the block is placed,
thus in order to maximize the score the agents are incen-

tivized to construct structures with as many levels as possi-
ble. The building process is subject to realistic constraints:
blocks can only be placed on top of other blocks and can
only be removed if they have no blocks above them. To
build non-trivial tall structures the agents need to maintain
scaffolding pathways that allow them to carry the blocks to
higher levels.

Megaverse “Sokoban” (Fig. 4d). Fast immersive version
of the classic Sokoban puzzle, inspired by the Mujoban en-
vironment (Mirza et al., 2020). At the beginning of every
episode, a random puzzle with 4 boxes is sampled from
the Boxoban dataset (Guez et al., 2018). The agents are re-
quired to push the boxes into target positions, marked green.
As in classic Sokoban, some of the moves are irreversible,
therefore the agents must strategically plan ahead in order
to succeed.

Megaverse “HexMemory” (Fig. 4f). Agents are placed
in a randomized hexagonal maze in front of a reference
object with randomly sampled shape and material. Smaller
copies of the reference object are scattered throughout the
environment, alongside other objects that do not match the
reference. The agent’s task is to collect objects matching
the reference, while avoiding other types of objects. When
all matching objects are collected, the episode is terminated
and the puzzle is considered solved. The scenario requires
agents to memorize the visual appearance of an object and
keep it in memory for long periods of time, as the reference
object inevitably disappears from view as the agent navi-
gates the maze. HexMemory challenges agents’ ability to
form and retain memories. This environment is inspired by
Beeching et al. (2019).

Megaverse “Obstacles” (Figures 4a and 4b). Procedurally
generated 3D obstacle course presented in two versions:
ObstaclesEasy and ObstaclesHard. Agents are spawned on
one side of the course and are required to reach a target
location on the other side. In order to get there they need
to overcome different types of obstacles, such as pits, lava
lakes, and high walls. Good coordination and movement is
not sufficient to overcome most obstacles. For example, a
wall can be too tall for the agent to jump over. Agents must
use interactive objects placed in the environment to build
bridges, staircases, and other artificial tools that help them
accomplish the task. ObstaclesEasy and ObstaclesHard dif-
fer in both the length of the obstacle course and the difficulty
of individual puzzles. ObstaclesHard is particularly diffi-
cult due to reward sparsity. As the agents are unlikely to
discover the sophisticated construction behaviors by mere
random exploration, the obstacle course environments can
be a good test for advanced exploration strategies such as
intrinsic curiosity (Pathak et al., 2017).

Megaverse “Rearrange” (Fig. 4g). Inspired by the classic

www.megaverse.info

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

Envi " Simulation Training
fvironmen throughput throughput
System #1 (12xCPU, 1xRTX3090)
Atari (84 x 84 grayscale) 19.4k (16.8x) 15.0k (2.8x)
VizDoom (128 x 72 RGB) 38.1k (8.6x) 18.9 (2.3x)
DMLab (96 x 72 RGB) 6.1k (53.5x) 4.6k (9.3x)
Megaverse (128 x 72 RGB) 327k 42.7k

System #2 (36xCPU, 4xRTX2080Ti)

Atari (84 x 84 grayscale) 47.1K (18.2x) 31.4K (2.9x)
VizDoom (128 x 72 RGB) 79.5K (10.8x) 38.5K (2.3x)
DMLab (96 x 72 RGB) 124K (68.7x) 7.7K (11.6x)
Megaverse (128 x 72 RGB) 856K 90.1K

System #3 (48xCPU, 8xRTX2080Ti)

Atari (84 x 84 grayscale) 53.7K (21.4x) 34.6K (3.9x)
VizDoom (128 x 72 RGB) 100.1K (11.5x) 447K (3x)
DMLab (96 x 72 RGB) 63.3K (72.6x) 9.8K (13.7x)
Megaverse (128 x 72 RGB) 1148K 134K

Table 1. Pure sampling and training throughput with mainstream
RL simulators vs. Megaverse. The performance is reported in ob-
servations per second observed by the agent, i.e. after frameskip.

MIT Copy Demo, this environment challenges the agents to
replicate a reference structure made out of colored objects.
In order to successfully complete the task the agents have to
recognise and remember the object arrangement and repli-
cate it in a designated area by rearranging interactive objects
in a specific way. The task is considered solved when the
reference arrangement is replicated precisely.

We expect that some of the environments, such as “Rear-
range” and “ObstaclesHard”, will be too challenging for
present-day end-to-end learning systems. Agents not only
need to discover the low-level object manipulation skills,
but must also form appropriate internal representations and
explore compositions of skills in order to succeed.

S. Experiments
5.1. System performance

We start by benchmarking the performance of the Mega-
verse platform. We examine pure simulation speed, when
no inference or learning are done, as well as performance of
Megaverse environments as a part of a full RL training sys-
tem. In order to measure training performance, we use Sam-
ple Factory (Petrenko et al., 2020), a fast off-the-shelf RL
implementation. We use three different hardware setups that
are representative of systems commonly found in deep learn-
ing research labs. We compare performance of Megaverse
to other fast environments used in reinforcement learning,
namely Atari (Bellemare et al., 2013), VizDoom (Kempka
et al., 2016), and DMLab (Beattie et al., 2016).

We find that in simulation throughput, Megaverse is an

Optimized Batched rendering Simulation

geometry (Shacklett et al., 2021) throughput
X X 20.7K (10.1x)
v X 29.6K (7.1x)
X v 45.7K (4.6x)
v v 210K

Table 2. Influence of optimized geometry and batched rendering
optimizations on the overall sampling throughput. Performance
measured on a 10-core 1xGTX1080Ti system in Megaverse-8
“Collect” scenario.

order of magnitude faster than the next fastest environment,
VizDoom (Table 1), while supporting considerably more
complex interactions. Our platform is between 50x and 70x
faster than the most comparable environment, DMLab. In
end-to-end training, Megaverse is entirely bottlenecked by
learning and inference throughput. However, it still enables
training speeds 2-3 times faster than VizDoom and up to
14x faster than DMLab.

Ablation study. We examine the impact of two key per-
formance optimizations in Megaverse: batched rendering
(Section 3.2) and geometry optimization (Section 3.3). The
results show that both of these techniques are required to
achieve high throughput (Table 2). Without geometry op-
timization the system would be heavily bottlenecked by
physics calculations on the CPU, and without batched ren-
dering the communication between CPU and GPU is a major
bottleneck.

5.2. Single-agent baseline

Setup. In this section we present RL training results on
the Megaverse-8 benchmark. We train agents using asyn-
chronous proximal policy optimization (PPO) (Schulman
et al., 2017) with V-trace off-policy correction (Espeholt
et al., 2018) using the Sample Factory implementation (Pe-
trenko et al., 2020). Given the challenges of learning good
representation with model-free RL from scratch, we also
experiment with using Action Conditional Contrastive Pre-
dictive Coding (CPCIA) (Guo et al., 2018) as an auxiliary
loss. We train both standard PPO and a CPClA-augmented
version on 2 x 10 environment steps. We find that CPCIA
augmentation leads to considerable performance improve-
ments on TowerBuilding and Exploration tasks without sig-
nificantly affecting other scenarios, therefore we decided to
use it in all other experiments.

Results. We establish that the proposed benchmark has
considerable diversity in task difficulty. While all tasks are
far from being solved, reasonable progress can be made on
four of the eight (Figure 5). ObstaclesEasy, Collect, and
HexExplore require robust 3D navigation skills and basic
object manipulation abilities. Model-free RL was able to
achieve non-trivial performance in these scenarios, although

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

| Without CPCIA

With CPCIA

Collect

—

Obstacles (Easy)

=

g
o
g
=}

o
™
S
®

Fraction Solved
o
o
Fraction Solved
O
o

Fraction Solved

HexExplore TowerBuilding

-
o

10

‘z

Tallest Tower

0.4 4 0.4 0.4 4
— f
0.2 / 02 / 0.2 e
0.0 0.0 0.0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Obstacles (Hard)
10 Rearrange 10 Sokoban 10 HexMemory 1.0
- 0.8 - 0.8 - 0.8 - 0.8
] [} 9] 19
> > > 2
5 0.6 G 0.6 5 0.6 S 0.6
1% (%2} (2] (2]
5 s S s
204 204 204 204
(%) (%} &) 1%}
o ° o o
o2 0.2 /_’_____________ 0.2 o2
0.0 - 0.0 - 0.0 — — 0.0 -
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0

Experience (Steps in Billions) Experience (Steps in Billions)

Experience (Steps in Billions) Experience (Steps in Billions)

Figure 5. Single-agent performance. Megaverse-8 has a diversity of challenges, with environments where model-free RL is able to make
progress (top four) and environments where it fails to achieve non-trivial performance (bottom four). Even for the simplest environments,
there is still considerable room for improvement. The results are reported for 3 random seeds.

none of the agents approached 100% success.

Our agents demonstrated surprisingly high level of per-
formance in the TowerBuilding scenario. Comparatively
dense reward allowed the agents to master object stacking
and consistently construct structures up to ten levels high.
Video demonstrations of agent performance can be found at
www.megaverse.info

Other scenarios in the benchmark have proven to be a much
harder challenge. Both Rearrange and Sokoban agents im-
proved at the beginning of training, but ultimately failed
to reach satisfactory performance levels. In the Rearrange
scenario, the agents learned to randomly shuffle the objects
in the hope of matching the target arrangement by accident,
and never learned to pay attention to the reference arrange-
ment. In Sokoban, the agents tend to push blocks to nearby
targets which happens to be sufficient to solve some of the
puzzles. Full completion of the task requires long-term plan-
ning, and the agents ultimately failed to demonstrate the
ability to do that.

HexMemory and ObstaclesHard turned out to be the most
challenging scenarios. HexMemory is a hard credit assign-
ment and memory challenge. Agents failed to capture the
relationship between temporally distal events, such as ob-
servation of the reference object and collection of simi-
lar/dissimilar objects in the environment. This experiment
shows that GRU policy networks that we used in our experi-
ments are not sufficient for this type of task, although there
is potential for other policy architectures, such as transform-
ers (Parisotto et al., 2020).

ObstaclesHard is perhaps the most challenging scenario
in the Megaverse-8 benchmark. To traverse the obstacle

course completely the agents need to master multiple skills
and combine them in intelligent ways to overcome obsta-
cles. Learning individual skills via a curriculum of simpler
environments may be a promising research direction.

5.3. Multi-agent baseline

Setup. We continue by examining multi-agent performance
with two and four agents on our proposed benchmark. In
all Megaverse-8 tasks, the agents must work together to
perform well. To encourage cooperation, we experiment
with Team Spirit reward shaping, inspired by OpenAl Dota
2 experiments (Berner et al., 2019). Team Spirit modifies
the credit assignment such that agents are rewarded both
for their own actions and the actions of other agents in
the team. Formally, the reward for agent ¢ as time ¢ is

r = (1 - TeamSpirit) 7" + I\Tg%sgp;‘l > Fj(-t), where 7")
is the individual agent rewards before incorporating Team
Spirit. This reward makes credit assignment harder, thus we
gradually increase Team Spirit from 0.0 to 1.0 over the first

one billion steps of training as a form of curriculum.

Results. For two tasks, HexExplore and Collect, we find
that having more agents is beneficial (Figure 6). In these
tasks, relatively high score can be achieved even if agents ig-
nore each other and focus on maximizing their own reward.
This is confirmed by the fact that Team Spirit hurts perfor-
mance. For HexMemory, a team of agents has a higher
chance of completing the task randomly. Even though the
results are better than for a single agent, teams of agents
fail to make progress. In TowerBuilding, we discover that
two agents perform approximately as well as one agent, and
four agents consistently perform worse. The agents end up

www.megaverse.info

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

2 Agents, No Team Spirit — s— 2 Agents, Team Spirit = = =

4 Agents, No Team Spirit 4 Agents, Team Spirit

10 Obstacles (Easy) 10 Collect 10 HexExplore 10 TowerBuilding

0.8 0.8 0.8 8
B 3 3 It ee coraeaa i
> 2 e 5 4 Seeel 3
3 0.6 3 0.6 /‘ e eI K] 0.6 3 e 6l aeem————=
c c /s c /4 = B
S04 So4| [, Soal| | ¢ 4 //‘/—\—_\-
© I} /.’ [} =
o o v o = [
w 0.2 w 0.2 jl w 0.2 ’ 2

0.0 0.0 0.0 0

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Obstacles (Hard)
10 Rearrange 10 Sokoban 10 HexMemory 1.0
0.8
508 0.8 <08 3
9] @ [S
= = 2 206
5 0.6 5 0.6 S 0.6 a9
%] 1% (%2} -
c f= [=4
So4 So4 S04 204
9] 9] © g
© ° © 2
w 0.2 w 0.2 w 0.2 w 0.2
e e e s
0.0 ~ 0.0 0.0 0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

Experience (Steps in Billions) Experience (Steps in Billions)

Experience (Steps in Billions) Experience (Steps in Billions)

Figure 6. Multi-agent performance. For the majority of tasks in Megaverse-8, increasing the number of agents does not yield better
results with our model-free RL framework. For all tasks except tower building, a simple Team Spirit strategy of sharing rewards has either
no impact or negative impact on performance due to the increased difficulty of credit assignment. The results are reported for 3 random

seeds.

competing for rewards with each other instead of working
together. In this case the addition of Team Spirit encourages
cooperation and improves performance in both two- and
four-agent teams.

6. Discussion

We presented a new research platform Megaverse, capable
of achieving simulation throughput over 1,000,000 obser-
vations per second on a single node — unprecedented for
immersive 3D simulators. Aside from the ability to sim-
ulate embodied agents tens of thousands of times faster
than real time, our engine can also match the throughput
of existing simulators while using only a fraction of com-
putational resources. Our dedicated simulation platform
can make large-scale RL experiments more accessible, thus
accelerating progress in Al research.

Hard problems and good metrics for evaluating progress on
these problems are instrumental for science. While the tradi-
tional benchmarks in Deep RL are definitely not trivial, they
are getting tantalizingly close to being solved (Badia et al.,
2020; Parisotto et al., 2020; Petrenko et al., 2020). We use
the Megaverse platform to build Megaverse-8, a new suite
of hard challenges for embodied Al. Complete solution of
all tasks in Megaverse-8 requires the agents to master object
manipulation, rearrangement, and composition of different
low-level skills. We hope that solving these challenges in a
robust and principled way will advance our understanding
of embodied intelligence.

Extremely fast simulation provided by Megaverse can have
impact beyond deep reinforcement learning. For exam-

ple, contemporary derivative-free optimization methods are
known for their supremacy in Mujoco-like environments
(Sener & Koltun, 2020), but evaluating them in scenarios
with high-dimensional observations has previously been
very costly. With more than an order-of-magnitude improve-
ment in simulation throughput, evaluation of derivative-free
methods in immersive 3D environments may be feasible.

Another research direction that can leverage fast simulation
is meta-learning. With highly optimized learning systems
(Stooke & Abbeel, 2019; Espeholt et al., 2019; Petrenko
et al., 2020), entire training sessions in simple Megaverse en-
vironments can be completed in mere seconds, and thus can
be used as a part of a larger meta-learning process. While
partial learning of optimizer features and loss functions has
been demonstrated (Bechtle et al., 2021), access to suffi-
ciently fast training may enable the optimization of whole
learners parameterized by neural networks.

Megaverse opens new possibilities in the field of multi-agent
learning. Megaverse is one of the first open-source platforms
that allows fast simulation of multiple agents interacting
in immersive environments. The accessibility of such a
platform can have important implications for studying multi-
agent cooperation, autocurricula emerging from self-play
(Baker et al., 2020), and the emergence of communication
and language (Mordatch & Abbeel, 2018).

References

Anderson, P., Chang, A. X., Chaplot, D. S., Dosovitskiy, A.,
Gupta, S., Koltun, V., Kosecka, J., Malik, J., Mottaghi, R.,
Savva, M., and Zamir, A. R. On evaluation of embodied

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

navigation agents. arXiv:1807.06757, 2018.

Badia, A. P, Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In ICML,
2020.

Baker, B., Kanitscheider, 1., Markov, T., Wu, Y., Powell, G.,
McGrew, B., and Mordatch, I. Emergent tool use from
multi-agent autocurricula. In /CLR, 2020.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,
J., Koltun, V., Levine, S., Malik, J., Mordatch, 1., Mot-
taghi, R., Savva, M., and Su, H. Rearrangement: A
challenge for embodied Al. arXiv:2011.01975, 2020.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Kiittler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., Schrittwieser, J., Anderson, K., York, S.,
Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H.,
Hassabis, D., Legg, S., and Petersen, S. DeepMind Lab.
arXiv:1612.03801, 2016.

Bechtle, S., Molchanov, A., Chebotar, Y., Grefenstette, E.,
Righetti, L., Sukhatme, G., and Meier, F. Meta learning
via learned loss. In International Conference on Pattern
Recognition, 2021.

Beeching, E., Wolf, C., Dibangoye, J., and Simonin, O.
Deep reinforcement learning on a budget: 3D control and
reasoning without a supercomputer. arXiv:1904.01806,
2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. In IJCAI, 2013.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P,,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., Jozefowicz, R., Gray, S., Olsson, C., Pachocki, J.,
Petrov, M., de Oliveira Pinto, H. P., Raiman, J., Salimans,
T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I.,
Tang, J., Wolski, F., and Zhang, S. Dota 2 with large
scale deep reinforcement learning. arXiv:1912.06680,
2019.

Chang, A. X., Dai, A., Funkhouser, T. A., Halber, M.,
NieBner, M., Savva, M., Song, S., Zeng, A., and Zhang,
Y. Matterport3D: Learning from RGB-D data in indoor
environments. In 3DV, 2017.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. arXiv:1912.01588, 2019.

Coumans, E. and Bai, Y. PyBullet, a Python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016-2020.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. CARLA: An open urban driving simulator. In
Conference on Robot Learning (CoRL), 2017.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: Scalable dis-
tributed Deep-RL with importance weighted actor-learner
architectures. In ICML, 2018.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., and
Michalski, M. SEED RL: Scalable and efficient Deep-RL
with accelerated central inference. arXiv:1910.06591,
2019.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racaniere, S.,
Weber, T., Raposo, D., Santoro, A., Orseau, L., Eccles,
T., Wayne, G., Silver, D., Lillicrap, T., and Valdes, V.
An investigation of model-free planning: Boxoban levels.
https://github.com/deepmind/boxoban-levels/, 2018.

Guo, Z. D., Azar, M. G., Piot, B., Pires, B. A., and
Munos, R. Neural predictive belief representations.
arXiv:1811.06407, 2018.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel, C.,
Veloso, M., and Salakhutdinov, R. MineRL: A large-scale
dataset of Minecraft demonstrations. In IJCAI, 2019.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
Lever, G., Castafieda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., Sonnerat, N., Green,
T., Deason, L., Leibo, J. Z., Silver, D., Hassabis, D.,
Kavukcuoglu, K., and Graepel, T. Human-level perfor-
mance in 3D multiplayer games with population-based
reinforcement learning. Science, 364(6443), 2019.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaskowski, W. Vizdoom: A Doom-based Al research
platform for visual reinforcement learning. In IEEE Con-
ference on Computational Intelligence and Games, 2016.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. AI2-THOR: An interactive 3D environment for visual
Al arXiv:1712.05474, 2017.

Liang, J., Makoviychuk, V., Handa, A., Chentanez, N.,
Macklin, M., and Fox, D. GPU-accelerated robotic simu-
lation for distributed reinforcement learning. In Confer-
ence on Robot Learning (CoRL), 2018.

Mirza, M., Jaegle, A., Hunt, J. J., Guez, A., Tunyasuvu-
nakool, S., Muldal, A., Weber, T., Karkus, P., Racaniére,
S., Buesing, L., Lillicrap, T. P, and Heess, N. Physi-
cally embedded planning problems: New challenges for
reinforcement learning. arXiv:2009.05524, 2020.

http://pybullet.org

Megaverse: Simulating Embodied Agents at One Million Experiences per Second

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, L., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 518(7540), 2015.

Mordatch, I. and Abbeel, P. Emergence of grounded com-
positional language in multi-agent populations. In AAAI,
2018.

Parisotto, E., Song, H. F.,, Rae, J. W., Pascanu, R., Giilgehre,
C., Jayakumar, S. M., Jaderberg, M., Kaufman, R. L.,
Clark, A., Noury, S., Botvinick, M., Heess, N., and Had-
sell, R. Stabilizing transformers for reinforcement learn-
ing. In ICML, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Neural
Information Processing Systems, 2019.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In ICML, 2017.

Perlin, K. An image synthesizer. In SIGGRAPH, 1985.

Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., and
Koltun, V. Sample factory: Egocentric 3D control from
pixels at 100000 FPS with asynchronous reinforcement
learning. In ICML, 2020.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Polle-
feys, M., Lillicrap, T., and Gelly, S. Episodic curiosity
through reachability. In /CLR, 2019.

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser, T.,
and Koltun, V. MINOS: Multimodal indoor simulator for
navigation in complex environments. arXiv:1712.03931,
2017.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
Parikh, D., and Batra, D. Habitat: A Platform for Embod-
ied Al Research. In ICCV, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

Sener, O. and Koltun, V. Learning to guide random search.
In ICLR, 2020.

Shacklett, B., Wijmans, E., Petrenko, A., Savva, M., Batra,
D., Koltun, V., and Fatahalian, K. Large batch simulation
for deep reinforcement learning. In ICLR, 2021.

Stooke, A. and Abbeel, P. rlpyt: A research code
base for deep reinforcement learning in PyTorch.
arXiv:1909.01500, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 1992.

Tesauro, G. Temporal difference learning and TD-gammon.
Commun. ACM, 38(3), 1995.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in StarCraft IT
using multi-agent reinforcement learning. Nature, 575
(7782), 2019.

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, L,
Parikh, D., Savva, M., and Batra, D. DD-PPO: Learning
near-perfect PointGoal navigators from 2.5 billion frames.
In ICLR, 2020.

