
ANU ML Workshop
Developing and Debugging Machine Learning Algorithms

Stephen Gould
stephen.gould@anu.edu.au

Australian National University

23 September 2011

Stephen Gould 1/89

What is this workshop about?

“if we knew what we
were doing it wouldn’t
be called research”

— Albert Einstein

Stephen Gould 2/89

Registration Expertise

1 2 3 4 5
0

5

10

15

20
Machine Learning Expertise

Stephen Gould 3/89

Purpose

The goal of this workshop is to provide researchers who are
new to the field with some tools for debugging machine
learning applications.

The material is not mathematical. Rather we aim to develop
intuitions for getting algorithms to work.

Some of the material is debatable.

The workshop is geared towards using supervised machine
learning as a technology within real applications—the advice
is not necessarily applicable to doing novel research in
machine learning.

This workshop is for you so make sure to ask lots of questions.

Stephen Gould 4/89

Schedule

Session 1 (10:00am–10:45am)
Overview of supervised machine learning
Linear regression
Logistic regression and classification

Morning Tea
Session 2 (11:15am–12:30pm)

Getting started / Running experiments
Measuring performance and comparing algorithms

Lunch
Session 3 (1:30pm–3:00pm)

Diagnosing learning problems / Error analysis
Implementation tricks and approximations

Afternoon Tea
Session 4 (3:30pm–4:15pm)

Internet-scale image and video processing

Conclusion

Stephen Gould 5/89

Machine Learning Books

Stephen Gould 6/89

Machine Learning Courses

There are a number of wonderful machine learning courses with
freely available lecture notes:

Christfried Weber’s “Introduction to Statistical Machine
Learning” (ANU COMP4670)

Andrew Ng’s “Machine Learning” (Stanford CS229)

Peter Christen and Lexing Xie’s “Advanced Databases and
Data Mining” (ANU COMP3420)

A number of other resources may be useful:

videolectures.net

Andrew Moore’s tutorials

Attribution: Some of the technical material in this workshop is
drawn from these sources.

Stephen Gould 7/89

Machine Learning Software

SVMlight

Stephen Gould 8/89

Darwin 0.4

xmlParser Eigen OpenCV

externals

drwnIO

drwnML drwnPGM

drwnVision

libraries

drwnBase

applications projects

http://users.cecs.anu.edu.au/~sgould/darwin/

Stephen Gould 9/89

http://users.cecs.anu.edu.au/~sgould/darwin/

Machine Learning Algorithms Need Data

[play movie]

Stephen Gould 10/89

media/needinput.avi

Supervised Machine Learning

The task of supervised machine learning is, given a set of

training examples D =
{

(x(t), y (t))
}T
t=1

, to learn a function
h : X → Y so that h(x) is a good predictor of y .

hypothesis

learning
algorithm

training
set

new
data

predicted
output

When y (t) are continuous, we call the problem regression.

When y (t) take on a small number of discrete values, we call
the problem a classification problem.

Stephen Gould 11/89

A Simple Machine Learning Problem

Australia vs. USA Rugby

Year Score Winner

1912 12–8 AUS
1976 24–12 AUS
1983 49–3 AUS
1987 47–12 AUS
1990 67–9 AUS
1999 55-19 AUS
2011 ? ?

source: www.pickandgo.info

Stephen Gould 12/89

Machine Learning Pipeline

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

evaluation
data

partitioning
data

collection
feature

extraction
parameter
learning

model
selection

data
labelling

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

diagnostics
and

visualisation

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

Stephen Gould 13/89

Linear Regression

Suppose the x(t) ∈ Rn and we choose our hypothesis function to
approximate y ∈ R as a linear function of x,

hθ(x) = θTx

The learning task is to find the values for the parameters θ ∈ Rn

so as to make hθ(x) close to y for the training samples. One way
to define “close” is by square-error:

J(θ) =
1

2

T∑
t=1

(
hθ(x(t))− y (t)

)2
The optimal parameters are then θ? = argminθ J(θ).

Stephen Gould 14/89

Normal Equations

The parameters θ? can be computed explicitly as

θ? =
(
XTX

)−1
XTY

where

X =


—
(
x(1)
)T

—

—
(
x(2)
)T

—
...

—
(
x(T)

)T
—

 and Y =


y (1)

y (2)

...

y (T)

 .

This is fine in theory and for small problems but for large problems
it is better to use iterative methods (more on this later).

Stephen Gould 15/89

“Non-Linear” Regression

We can use linear regression to model non-linear functions by
extending the input features x ∈ Rn through a feature mapping,
φ(x) ∈ Rm. We then have

hθ(x) = θTφ(x)

Example: we can learn a quadratic function y = ax2 + bx + c
with feature mapping φ(x) = (1, x , x2).

Stephen Gould 16/89

Linear Regression Example (y = θTφ(x))

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

x

y

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

x

y

data φ(x) = (x , 1)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

x

y

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

x

y

φ(x) = (x , log(x), 1) φ(x) = (x , x2, x3, x4, x5, 1)

Stephen Gould 17/89

Logistic Regression

Assume we have a binary classification problem where y ∈ {0, 1}.
We call y = 1 the positive class and y = 0 the negative class.
Given a feature vector x(t), the corresponding y (t) is also called the
label for x(t).

It turns out that the logistic function, or sigmoid, performs well as
a hypothesis for binary classification,

hθ(x) =
1

1 + e−θ
T x

1

0 θTx

Stephen Gould 18/89

Logistic Regression (2)

The probabilistic interpretation is

P (y = 1 | x;θ) = hθ(x) and P (y = 0 | x;θ) = 1− hθ(x)

Assuming the training examples are generated independently, we
can write the log-likelihood of the labels as

log L(θ) =
T∑
t=1

y (t) log
(
hθ(x(t))

)
+
(

1− y (t)
)

log
(

1− hθ(x(t))
)

We can now take gradients and maximize with respect to θ.

Stephen Gould 19/89

Logistic Regression Example

Label Feature
0 -3.83
0 -4.37
1 6.25
0 -4.92
1 4.36
1 5.58
0 -4.94
0 -3.20
1 4.64
1 4.86
0 -4.64
1 3.55
1 4.29
1 3.65
0 -5.69
0 -3.30
0 -4.94
0 -3.20
0 -4.73
0 -4.12
1 3.73
0 -4.73
0 -4.12
1 5.98
0 -4.12

−6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

x

−6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

θ ⋅ x

Stephen Gould 20/89

Logistic Regression Example (2)

−6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

θ ⋅ x
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

0.6

0.8

1

x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

θ ⋅ x

Stephen Gould 21/89

Multi-Class Logistic Regression

The logistic, or log-linear, model can be extended to a multi-class
classifier (y ∈ {1, . . . ,K}) as follows,

P (y = k | x;θ) =
eθ

T
k x

Z

where Z =
∑K

k=1 e
θT
k x (known as the partition function).

Learn parameters θ by maximum-likelihood

log L(θ) =
T∑
t=1

K∑
k=1

[[y (t) = k]]θT
k x(t) − logZ .

Stephen Gould 22/89

Regression and Classification Summary

Linear Logistic Multi-class
Regression Regression Logistic

features Rn Rn Rn

targets R [0, 1] ∆K−1

hypothesis h(x) = θTx P (1) = eθ
T x

1+eθT x
P (k) = eθ

T
k x

Z

loss `2 - log-likelihood - log-likelihood

Stephen Gould 23/89

Regularization

Purely optimizing for the loss function (e.g., maximum-likelihood)
may overfit the model to our training data. To avoid overfitting we
often use regularization (which we can motivate from a Bayesian
perspective).

θ? = argminθ `(θ) + λr(θ)

The meta-parameter λ ≥ 0 controls how much we regularize the
parameters.

λ small λ large

−6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

θ ⋅ x
−6 −4 −2 0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

θ ⋅ x

Stephen Gould 24/89

Session 2
(11:15am–12:30pm)

Stephen Gould 25/89

Getting Started: ML Pipeline

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

1

3

2

Stephen Gould 26/89

Getting Started: Be Organized

A useful directory structure:

cached/

data/

models/

output/

clean.sh

pipeline.sh

configuration.xml

trainList.txt

valList.txt

testList.txt

experiment.log

Note: no code (which should be revision controlled elsewhere)

Stephen Gould 27/89

Getting Started: Plot Your Data

Stephen Gould 28/89

Scatter Plots

can also visualize arbitrary projections or as 3D point clouds

Stephen Gould 29/89

Dither Plots

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

feature index

fe
at

ur
e

va
lu

e

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

feature index

fe
at

ur
e

va
lu

e

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

normalized feature index

fe
at

ur
e

va
lu

e

0 5 10 15
−4

−2

0

2

4

6

8

10

feature index

fe
at

ur
e

va
lu

e

Stephen Gould 30/89

Other Data Visualization

source: google images

Stephen Gould 31/89

Dataset Partitioning

training set validation set test set

training set: learn model parameters

validation set: tune meta-parameters

testing/evaluation set: report performance

ideally used exactly once

Stephen Gould 32/89

Cross-Validation

Cross-validation is a common method used to estimate how well a
model generalizes to unseen data.

3
(train)

5
(train)

6
(test)

4
(train)

7
(train)

9
(train)

10
(train)

8
(train)

2
(train)

1
(train)

K-fold: Split the data into K sets of roughly equal size. For
the k-th fold, train the model on K − 1 parts and test on the
k-th part. We can now use all the data to estimate the
prediction error. (How?)

How do we choose K?

leave-one-out (LOOCV): set K to the size of the dataset

Stephen Gould 33/89

Dataset Bias

21-class MSRC Caltech 101

Stephen Gould 34/89

Training Set (Fold) Sampling Strategies

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

x

y

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

y

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

y

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

y

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

y

data φ(x) = (x , log(x), 1) φ(x) = (x , log(x), 1)

random sampling
Example: classifying pixels in images
Example: classifying frames in a video

unbalanced datasets
stratified sampling
data weighting (re-sampling or modifying loss function)

Stephen Gould 35/89

Unbalanced Datasets (Random Sampling)

dataset

training set test set

dataset

Stephen Gould 36/89

Unbalanced Datasets (Stratified Sampling)

datasetdataset

training set test set

dataset

Stephen Gould 37/89

Confusion Matrix

predicted

1 2

1

2

ac
tu

a l

K

K

...

...

...

... ..
.

..
....

(i,j) entry: number of examples of
class i that were predicted as class j

row sum: number of ground-truth
examples of class i

column sum: number of examples
predicted as class j

diagonal sum: number of correctly
classified examples

total sum: number of total examples

The number of rows does not need to equal number of columns!

Warning: sometimes you will see the matrix transposed.

Stephen Gould 38/89

Accuracy: Macro vs. Micro Averaging

Often we care about overall classification accuracy. This is an
example of micro-averaging,

accuracymicro =
number of correct classifications

total number of examples

However, sometimes we have an unbalanced dataset and wish to
treat each class equally. This is an example of macro-averaging,

accuracymacro =
1

K

K∑
k=1

number of correct classifications for class k

total number of examples for class k

More generally, we may also want to compute weighted accuracy.

Stephen Gould 39/89

Precision and Recall

TN

TPFN

FP

predicted

0 1

0

1ac
tu

a
l

Terminology:

Terminology Equation

true positive, hit, detection TP
true negative, correct rejection TN
false positive, false alarm, Type I error FP
false negative, miss, Type II error FN

Stephen Gould 40/89

Precision and Recall (2)

TN

TPFN

FP

predicted

0 1

0

1ac
tu

a
l

Derived statistics:

Statistic Equation

recall, true positive rate, sensitivity, hit rate TP / (TP + FN)
positive predictive power, precision TP / (TP + FP)
true negative rate, specificity TN / (TN + FP)

accuracy (TP+TN)
(TN+FP+FN+TP)

F1-score 2 (precision×recall)
(precision+recall)

Others: false alarm rate, false positive rate, fall-out; Jaccard coefficient,

area-of-overlap; false discovery rate; Fβ-score; etc.

Stephen Gould 41/89

Receiver Operator Characteristics (ROC) Curves

Visualizes how correctly classified positive examples varies with the
number of incorrectly classified negative examples.

false positive rate (1 - specificity)

tr
ue

 p
os

iti
v e

 r
a

te
 (

se
n s

iti
vi

ty
)

0

1

1

ra
nd

om
 g

ue
ss

Not good if large skew in class distribution.

Stephen Gould 42/89

ROC Numerical Example

Consider an application where we are trying to detect cancer. We
have a test set of 1000 patients who are normal and 10 patients
who have cancer.

Our algorithms gives the
following confusion matrix:

N C

N 990 10

C 5 5

recall (TPR) = 50%
TNR = 99%
precision = 33%

A different algorithm has
confusion matrix:

N C

N 972 28

C 3 7

recall (TPR) = 70%
TNR = 97.2%
precision = 20%

Stephen Gould 43/89

Precision-Recall (PR) Curves

recall

pr
ec

is
io

n

0

1

1

Stephen Gould 44/89

Precision-Recall Curve Operating Points

recall

pr
ec

is
io

n

0

1

1

t = 50%

t = 75%

t = 25%

classification rule:
Pr(y = 1 | x) > t

recall

pr
ec

is
io

n

0

1

1

t = 50%

t = 25%

max. F
1

t = 75%

break-even

AUC

Stephen Gould 45/89

Efficiently Computing Precision-Recall Curves

Computing PR Curve
(Method 1)

for each threshold t

classify samples using rule
hθ(x) > t
build confusion matrix
compute precision
compute recall
plot point

Computing PR Curve
(Method 2)

construct a sorted table
Score #P #N

−∞
...
∞

compute cumulative sums

· · ·

Stephen Gould 46/89

Comparing Precision-Recall Curves

Which algorithm is better?

recall

pr
ec

is
io

n

0

1

1 recall

pr
ec

is
io

n

0

1

1

Stephen Gould 47/89

Real Precision-Recall Curves

recall

pr
ec

is
io

n

0

1

1

Stephen Gould 48/89

Other Ways to Compare Algorithms

Algorithm 1

A
lg

or
i th

m
 2

0

1

1

algo 2
is better

algo 1
is better

Ranked Order

A
lg

or
i th

m
 2

 –
 A

lg
or

ith
m

 1

-1

1

N

al
go

 2
is

 b
et

te
r

al
go

 1
is

 b
et

te
r

(within) % error

%
 o

f
e x

am
p l

es

0

1

1

algo 1algo 2

Stephen Gould 49/89

Exploring Features and Meta-Parameters

baseline
model

add
features

change
regularization

collect
more data

run for more
iterations

change
label weights

baseline
model

change
regularization

collect
more data

run for more
iterations

change
label weights

change
regularization

collect
more data

run for more
iterations

change
label weights

add
features

Stephen Gould 50/89

Feature Selection

Often the number of available features is very large but there are
only a small number of relevant features. We want to choose a
good subset of features, but given n features there are 2n possible
subsets. How can we choose the best one?

Filter Methods: Use a computationally cheap heuristic to
evaluate features, e.g., mutual information between a features
and class label.

Wrapper Methods: Incrementally add the best feature to
the feature set (forward feature selection) or remove the worst
from the feature set (backward feature selection).

Note. Some recent methods use sparsity inducing priors in an
attempt to perform joint feature selection and parameter learning.

Stephen Gould 51/89

Example: Forward Feature Selection

Start with an empty feature set, F = {}
Repeatedly try each feature i /∈ F , create Fi = F ∪ {i}, and
use cross-validation to evaluate Fi . Set F to be the best Fi .

features added

ac
cu

r a
cy

0

1

n

Stephen Gould 52/89

Session 3
(1:30pm–3:00pm)

Stephen Gould 53/89

Diagnostics

“I write down the
question, I think very
hard, and then I write
down the solution.”

— Richard Feynman

Stephen Gould 54/89

Diagnosing Machine Learning Problems

Assume you’ve written some code for your machine learning
application and you’re not getting the performance you want.
What could the problem be?

data
collection

data
partitioning

feature
extraction

parameter
learning

evaluation

model
selection

data
labelling

problem statement

data

features

algorithm/model

implementation

something else

We need diagnostics to help narrow down the problem...

Stephen Gould 55/89

Diagnosing Machine Learning Problems (2)

Example: Suppose that our test error is unacceptably high and we
suspect the problem is either that the model overfitting or the
features are not good enough.

Diagnostics:

The first hypothesis (overfitting) suggests that the training
error will be much lower than the test error.

The second hypothesis (features) suggests that the training
error and test error will both be high.

Stephen Gould 56/89

Learning Curves

training set size

er
ro

r
ra

te

test set

training set

Stephen Gould 57/89

Learning Curves: Bias vs. Variance

training set size

er
ro

r
ra

te

test set

training set

target error rate

er
ro

r
ra

te

test set

training set

target error rate

training set size

high variance high bias

Stephen Gould 58/89

Bias/Variance Trade-Off

model complexity

er
ro

r
ra

te

test set

training set

target error rate

high bias high variance

Stephen Gould 59/89

Fixes for Bias/Variance Problems

Diagnosing bias and variance problems provides us with hints as to
what to try next.

For bias problems:

try a larger set of features

try a richer model class

For variance problems:

try getting more training examples

try a smaller set of features

Stephen Gould 60/89

Objective/Optimization Problems

We may suspect that our poor performance is due to either a
problem with our optimization algorithm (e.g., not running for long
enough) or with our objective.

Unfortunately it is often very difficult to determine whether or not
an iterative algorithm has converged.

iteration

ob
je

c t
iv
e

Stephen Gould 61/89

Diagnosing Optimization Problems

Suppose the thing that we care about is weighted accuracy, i.e.,

acc(θ) =
T∑
t=1

[[y (t) 6= hθ(x(t))]]w (t)

(where higher is better).

Our learning algorithm is trying to optimize J(θ) = `(θ) + λr(θ)
(where lower is better).

Let θ? be the model parameters returned by our learning algorithm
and let θ̂ be any other parameters (e.g., guessed or obtained from
a different learning algorithm).

Stephen Gould 62/89

Diagnosing Optimization Problems (2)

acc(θ̂) > acc(θ?) acc(θ̂) < acc(θ?)

J(θ?) < J(θ̂) wrong objective no problem (?)

J(θ?) > J(θ̂) bad optimization

θ?: parameters from our algorithm

θ̂: competing parameters

J(θ): what we are optimizing (lower is better)

acc(θ): what we care about (higher is better)

Stephen Gould 63/89

Fixes for Optimization/Objective Problems

Diagnosing optimization versus objective problems provides us with
hints as to what to try next.

For optimization problems:

try running for more iterations

try using a different algorithm (e.g., Newton’s method as
opposed to gradient descent)

try random restarts (for non-convex objectives)

try smoothing (e.g., L1-approximation (see later))

For objective problems:

try different regularization

try weighting training examples

try a different loss function

change the model

Stephen Gould 64/89

Approximate Search Algorithms

initialize a solution, ŷ

repeat (until convergence)

define a neighbourhood N (ŷ)
find best local solution ŷ = argmaxy∈N (ŷ)score(y; x)

y prev

ynext

yopt

How can we tell whether the problem is with our search algorithm
or the scoring function?

For those who work with graphical models, how can we tell whether
the problem is with our inference algorithm or our energy function?

Stephen Gould 65/89

Diagnosing Search/Score Problems

Suppose we are trying to maximize score. Let ŷ be the solution
found by our search algorithm and let y? 6= ŷ be the ground-truth
solution.

If score(ŷ) > score(y?) then the problem is with our scoring
function.

Otherwise, initialize the search algorithm with the ground-truth
solution, y?.

If the search algorithm moves away from the ground-truth
solution then the problem is also with our scoring function.

Otherwise the problem is with our search algorithm.

Stephen Gould 66/89

Diagnostics Summary

Diagnostics are an important tool when developing your
machine learning algorithm.

We showed examples for bias/variance, search/score, and
optimization/objective, but there are many others.
They can save a lot of wasted effort by guiding your choice of
what to try next.
They also allow you to develop insights into your particular
application and justify your design decisions.

Diagnostics often involve repeated experiments with different
parameter settings while keeping everything else fixed (see
next slide).

Another important diagnostic tool is that of error analysis,
i.e., understanding where your errors are coming from.

Stephen Gould 67/89

De-randomization

Comparing different runs of an algorithm is difficult if the
algorithm is stochastic.

randomized
algorithmx y

deterministic
algorithmx y

r

transform random algorithm A(x) into deterministic A′(x, r)
where r is a sequence of random numbers

use random seeds

(e.g., srand() in C/C++, rng() in Matlab R2011a)

Stephen Gould 68/89

Error Analysis

Error analysis tries to explain the difference between current
performance and perfect performance.

How much error is due to various different machine
learning components in the application?

Plug the ground-truth (if available) into each component of
the application and see how it affects accuracy. Alternatively,
we could add noise to each component and, again, see how it
affects accuracy.

Does the algorithm fail on a particular subclass of
examples?

Visualize the data and results (see previous session).

Stephen Gould 69/89

Ablative Analysis

Ablative analysis tries to explain the different between some
baseline performance and the current performance.

Example: You’ve been working on your application for the past
several months and now have a number of sophisticated features
that you pass to a logistic regression classifier. Which features
account for the good performance of your classifier over some
baseline logistic regression model with some simple features?

Ablative analysis would remove features from the application one
at a time and see which results in the biggest decrease in
performance—similar to backward feature selection. Note: The
order of feature removal matters.

Stephen Gould 70/89

Implementation Issues

“Anything that can go
wrong will go wrong.”

— Edward A. Murphy, Jr.

Stephen Gould 71/89

Diagnosing Implementations

So you’ve just finished implementing the first version of your new
whizz-bang deep-kernalized-logistic-SVM-GP classifier. How do
you test it?

small synthetic test case

ground-truth features

random features

boundary cases

re-use known working components

Stephen Gould 72/89

Numerical Tricks

Numerical calculations on a computer are always subject to errors.
These can be due to

limited precision arithmetic

algorithmic limitations (e.g., generating true random numbers)

careless implementation

we will see some examples soon

bugs

Example. What is 16777216 + 1?

float x = 16777216.0;

float y = x + 1.0f;

assert(x != y);

Stephen Gould 73/89

Feature Scaling

Numerical algorithms work best on well-scaled data. We usually
scale our input feature vectors to have zero mean and unit variance
(sometimes called feature whitening), e.g.,

x
(t)
i 7→

x
(t)
i − µ̂i
σ̂i

∼ N (0, 1)

or

x(t) 7→ Σ̂−
1
2

(
x(t) − µ̂

)
∼ N (0n, In)

Note. Parameters are learned from the set of training examples.

Question: for which classifiers (i.e., learning algorithms) would
feature scaling not have any effect?

Stephen Gould 74/89

Feature Scaling Example

Dataset: Iris [Fisher, 1936]: three classes, four features, 50
examples per class

Feature vector: squared raw features plus bias term

Classifier: multi-class logistic

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

iterations

ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d

Iris (3−class) Classification

Scaled

Unscaled

Stephen Gould 75/89

Effect of Scaling on Classification Accuracy

Feature scaling does not affect the “strength” of the
classifier—however, it does help with convergence during
training

For linear models there is a direct mapping between optimal
parameter vectors. Example: for binary classifier

hθ(x) =
1

1 + e−θ
T x+θ0

with x̃ = Σ̂−
1
2 (x− µ̂) we have

θ̃
?

= Σ̂
1
2θ? and θ̃?0 = θ?0 + µ̂T θ̃

?

Stephen Gould 76/89

Standard Deviation Calculations

The empirical standard deviation of a feature is defined as

σ̂i =

√√√√∑T
t=1

(
x
(t)
i − µi

)2
T − 1

where µi = 1
T

∑T
t=1 x

(t)
i .

This calculation requires two passes through the data. A seemingly
better approach is to perform equivalent calculation

σ̂i =

√√√√T
∑T

t=1

(
x
(t)
i

)2
−
(∑T

t=1 x
(t)
i

)2
T (T − 1)

which only requires one pass.

What can go wrong with this implementation?
Stephen Gould 77/89

logsumexp

Often, e.g., in computing the (log-)normalization constant for
logistic regression, we would like to perform a computation like

Z = log

(
n∑

i=1

exp (αi)

)

Problem: numerical overflow and underflow

Solution: set αmax = max {αi : i = 1, . . . , n}, then

Z = αmax + log

(
n∑

i=1

exp (αi − αmax)

)

Stephen Gould 78/89

L2-norm Calculations

‖x‖2 =
√

x21 + . . .+ x2n

Problem: numerical overflow and underflow

Solution: set xmax = maxi {|xi |}, then

‖x‖2 = xmax

√√√√ n∑
i=1

(xi
xmax

)2

Stephen Gould 79/89

Speed Comparison

x = Ab

memset((void *)x, 0.0, ...);

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

x[i] += A[i][j] * b[j];

running time: 1.8ms.
(N = 1000)

x = ATb

memset((void *)x, 0.0, ...);

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++)

x[i] += A[j][i] * b[j];

running time: 8.4ms.

memset((void *)x, 0.0, ...);

for (int j = 0; j < N; j++)

for (int i = 0; i < N; i++) {

x[i] += A[j][i] * b[j];

running time: 2.2ms.

both operations take approximately 1.5ms using Eigen.

Stephen Gould 80/89

Matlab Vectorization

Despite what most people claim, Matlab is very fast. You just
need to use it for what it’s good at.

Example: Consider the following code for computing the
Mahalanobis distance, d = (x− µ)TΣ−1(x− µ), between each
vector x(t) in our dataset and some reference vector µ.

for t = 1:T,

d(t) = (X(t, :) - mu’) * inv(Sigma) * (X(t, :)’ - mu);

end;

A faster version...

z = X - repmat(mu’, T, 1);

d = sum((z * inv(Sigma)) .* z, 2);

Stephen Gould 81/89

L1 Approximations

The L1-norm penalty is often used as a robust regularizer or
sparsity inducing prior. Unfortunately it is non-smooth and cannot
be easily optimized.

rL1(x) = |θ|

rL1(x ;M) ≈
{

1
2x

2 for x ≤ M
M(|x | − 1

2M) otherwise

rL1(x ;α) ≈ 1

α

(
log(1 + e−αx)

+ log(1− eαx)
) −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

Stephen Gould 82/89

Other Implementation Tips

software is written for people, not for machines

check for NaN and Inf

assert pre- and post-conditions

write simple test cases when debugging (and keep them for
future regression testing)

use existing code where possible

but don’t get bogged down gluing together third-party code

use source control (e.g., SVN, Git, etc.)

do not store files than can be reproduced or downloaded

print out debugging information (but not within tight loops)

use top, Task Manager, or valgrind to check for memory
leaks

run on small examples before your entire dataset

Stephen Gould 83/89

Session 4
(3:30pm–4:15pm)

Stephen Gould 84/89

Conclusion

Stephen Gould 85/89

Final Advice

VISUALIZE YOUR DATA AND RESULTS!!!

two design strategies:

careful design or build-and-fix

implement and test as you go

keep notes of what to do later

Stephen Gould 86/89

“every system should
be made a simple as
possible and no
simpler”

— Albert Einstein

Stephen Gould 87/89

Topics Not Covered

It is impossible to cover all the practical issues of machine learning
in one day. Here is a partial list of topics that were not covered:

curse of dimensionality (and dimensionality reduction,
i.e., feature selection)

choice of classifier (i.e., model selection)

Occam’s razor
no free lunch theorem

dealing with missing data

unsupervised learning and models with latent variables

structured prediction problems (e.g., Markov random fields)

Stephen Gould 88/89

thank you
(if you have feedback please email me)

Stephen Gould 89/89

