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Forward to the 2001 edition

Since its publication in 1989, System Identification has become a standard refer-
ence source for researchers and a frequently used textbook for classroom and self
studies. The book has also appeared in paperback in 1994, and a Polish transla-
tion has been published as well in 1997.

The original publisher has now declared the book out of print. Because we have
got very positive feedback from many colleagues who are missing our book, we
have decided to arrange for a reprinting, and here it is.

We have chosen to let the text appear in the same form as the 1989 version. Over

the years we have found only very few typing errors, and they are listed on the
next page. We hope that you, our readers, will enjoy the book.

Uppsala, August 2001

Torsten Soderstrom, Petre Stoica



Printing errors in System Identification

1. p 12, eq. (2.7) should read

k) — 3 Ttk vt = B

% Et]\il u?(t)

2. p 113, line 9-. should read ‘even if u(¢) is not’.

3. p 248. In (C7.6.4) change ‘=" to ‘} =".
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PREFACE AND
ACKNOWLEDGMENTS

System identification is the field of mathematical modeling of systems from experimental
data. It has acquired widespread applications in many areas. In control and systems
engineering, system identification methods are used to get appropriate models for
synthesis of a regulator, design of a prediction algorithm, or simulation. In signal
processing applications (such as in communications, geophysical engineering and
mechanical engineering), models obtained by system identification are used for spectral
analysis, fault detection, pattern recognition, adaptive filtering, linear prediction and
other purposes. System identification techniques are also successfully used in non-
technical fields such as biology, environmental sciences and econometrics to develop
models for increasing scientific knowledge on the identified object, or for prediction and
control.

This book is aimed to be used for senior undergraduate and graduate level courses on
system identification. It will provide the reader a profound understanding of the subject
matter as well as the necessary background for performing research in the field. The
book is primarily designed for classroom studies but can be used equally well for self-
studies.

To reach its twofold goal of being both a basic and an advanced text on system identifi-
cation, which addresses both the student and the researcher, the book is organized as
follows. The chapters contain a main text that should fit the needs for graduate and
advanced undergraduate courses. For most of the chapters some additional (often more
detailed or more advanced) results are presented in extra sections called complements.
In a short or undergraduate course many of the complements may be skipped. In other
courses, such material can be included at the instructor’s choice to provide a more
profound treatment of specific methods or algorithmic aspects of implementation.
Throughout the book, the important general results are included in solid boxes. In a few
places, intermediate results that are essential to later developments, are included in
dashed boxes. More complicated derivations or calculations are placed in chapter
appendices that follow immediately the chapter text. Several general background results
from linear algebra, matrix theory, probability theory and statistics are collected in the
general appendices A and B at the end of the book. All chapters, except the first one,
include problems to be dealt with as exercises for the reader. Some problems are
illustrations of the results derived in the chapter and are rather simple, while others are
aimed to give new results and insight and are often more complicated. The problem
sections can thus provide appropriate homework exercises as well as challenges for more
advanced readers. For each chapter, the simple problems are given before the more
advanced ones. A separate solutions manual has been prepared which contains solutions
to all the problems.

Xii



Preface and Acknowledgments xiii

The book does not contain computer exercises. However, we find it very important
that the students really apply some identification methods, preferably on real data. This
will give a deeper understanding of the practical value of identification techniques that is
hard to obtain from just reading a book. As we mention in Chapter 12, there are several
good program packages available that are convenient to use.

Concerning the references in the text, our purpose has been to give some key
references and hints for a further reading. Any attempt to cover the whole range of
references would be an enormous, and perhaps not particularly useful, task.

We assume that the reader has a background corresponding to at least a senior-level
academic experience in electrical engineering. This would include a basic knowledge of
introductory probability theory and statistical estimation, time series analysis (or
stochastic processes in discrete time), and models for dynamic systems. However, in the
text and the appendices we include many of the necessary background results.

The text has been used, in a preliminary form, in several different ways. These include
regular graduate and undergraduate courses, intensive courses for graduate students and
for people working in industry, as well as for extra reading in graduate courses and
for independent studies. The text has been tested in such various ways at Uppsala
University, Polytechnic Institute of Bucharest, Lund Institute of Technology, Royal
Institute of Technology, Stockholm, Yale University, and INTEC, Santa Fe, Argentina.
The experience gained has been very useful when preparing the final text.

In writing the text we have been helped in various ways by several persons, whom we
would like to sincerely thank. '

We acknowledge the influence on our research work of our colleagues Professor Karl
Johan Astrém, Professor Pieter Eykhoff, Dr Ben Friedlander, Professor Lennart Ljung,
Professor Arye Nehorai and Professor Mihai Tertisto who, directly or indirectly, have
had a considerable impact on our writing.

The text has been read by a number of persons who have given many useful sugges-
tions for improvements. In particular we would like to sincerely thank Professor Randy
Moses, Professor Arye Nehorai, and Dr John Norton for many useful comments. We are
also grateful to a number of students at Uppsala University, Polytechnic Institute of
Bucharest, INTEC at Santa Fe, and Yale University, for several valuable proposals.

The first inspiration for writing this book is due to Dr Greg Meira, who invited the first
author to give a short graduate course at INTEC, Santa Fe, in 1983. The material
produced for that course has since then been extended and revised by us jointly before
reaching its present form.

The preparation of the text has been a task extended over a considerable period of
time. The often cumbersome job of typing and correcting the text has been done with
patience and perseverance by Ylva Johansson, Ingrid Ringdrd, Maria Dahlin, Helena
Jansson, Ann-Cristin Lundquist and Lis Timner. We are most grateful to them for their
excellent work carried out over the years with great skill.

Several of the figures were originally prepared by using the packages IDPAC
(developed at Lund Institute of Technology) for some parameter estimations and
BLAISE (developed at INRIA, France) for some of the general figures.

We have enjoyed the very pleasant collaboration with Prentice Hall International.
We would like to thank Professor Mike Grimble, Andrew Binnie, Glen Murray and
Ruth Freestone for their permanent encouragement and support. Richard Shaw
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GLOSSARY

set of parameter vectors describing models with stable predictors
set of models. # describing the true system ./

expectation operator

white noise (a sequence of independent random variables)
data prefilter

transfer function operator

estimated transfer function operator

noise shaping filter

estimated noise shaping filter

identification method

identity matrix

(n|n) identity matrix

reflection coefficient

natural logarithm

model set, model structure

model corresponding to the parameter vector 6

matrix dimension is m by n

null space of a matrix

normal (Gaussian) distribution of mean value m and covariance matrix P
number of data points

model order

number of inputs

number of outputs

dimension of parameter vector

(n|n) matrix with zero elements

O(x)/x is bounded when x — 0

probability density function of x given y

range (space) of a matrix

Euclidean space

true system

transpose of the matrix A

trace (of a matrix)

time variable (integer-valued for discrete time models)
input signal (vector of dimension nu)

loss function

a column vector formed by stacking the columns of the matrix A on top of each other
experimental condition

output signal (vector of dimension ny)

optimal (one step) predictor

vector of instrumental variables
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xvi  Glossary

v(1) gain sequence

Oy Kronecker delta (= 1 if s = ¢, else = 0)

d(1) Dirac function

e(t, 8) prediction error corresponding to the parameter vector 0
0 parameter vector

0 estimate of parameter vector

0, true value of parameter vector

A covariance matrix of innovations

A2 variance of white noise

A forgetting factor

o] variance or standard deviation of white noise

d(w) spectral density

¢y (o) spectral density of the signal u(t)

Py (0) cross-spectral density between the signals y(f) and u(r)
(1) vector formed by lagged input and output data

P regressor matrix

$(n) ¥ distribution with n degrees of freedom

Y(r) negative gradient of the prediction error &(¢, 6) with respect to 6
® angular frequency

Abbreviations

ABCE asymptotically best consistent estimator

adj adjoint (or adjugate) of a matrix, adj(A)2 A 'detA
AlIC Akaike’s information criterion

AR autoregressive

AR(n) AR of order n

ARIMA autoregressive integrated moving average

ARMA autoregressive moving average

ARMA(n;, n;) ARMA where AR and MA parts have order n; and n,, respectively
ARMAX autoregressive moving average with exogenous variables
ARX autoregressive with exogenous variables

BLUE best linear unbiased estimator

CARIMA controlled autoregressive integrated moving average
cov covariance matrix

dim dimension

deg degree

ELS extended least squares

FIR finite impulse response

FFT fast Fourier transform

FPE final prediction error

GLS generalized least squares

iid independent and identically distributed

v instrumental variables

LDA Levinson-Durbin algorithm

LIP linear in the parameters

LMS least mean squares

LS least squares

MA moving average

MA(n) MA of order n

MAP maximum a posteriori
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MFD matrix fraction description

mgf moment generating function
MIMO multi input, multi output

ML maximum likelihood

mse mean square error

MVE minimum variance estimator
ODE ordinary differential equation
OEM output error method

pdf probability density function

pe persistently exciting

PEM prediction error method

PI parameter identifiability

PLR pseudolinear regression

PRBS pseudorandom binary sequence
RIV recursive instrumental variable
RLS recursive least squares

RPEM recursive prediction error method
SA stochastic approximation

SI system identifiability

SISO single input, single output
SVD singular value decomposition
var variance

w.p.1 with probability one

w.r.t with respect to

WWRA Whittle-Wiggins—Robinson algorithm
YW Yule-Walker

Notational conventions

HY(q™") [H(g~ "™
@'(1) [o()]"
A—T [A«!]”l

12 matrix square root of a positive definite matrix Q: (Q"?)'Q"? = Q

QT/Z [QI/Z]T

X% x"Ox with Q a symmetric positive definite weighting matrix
dist convergence in distribution
A=B the difference matrix (A — B) is nonnegative definite (here A and B are

nonnegative definite matrices)
A>B the difference matrix (A — B) is positive definite
defined as
= assignment operator
distributed as
Kronecker product
modulo 2 summation of binary variables
direct sum of subspaces
modulo 2 summation of binary variables
gradient of the loss function V
" Hessian (matrix of second order derivatives) of the loss function V

>
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Chapter 1

INTRODUCTION

The need for modeling dynamic systems

System identification is the field of modeling dynamic systems from experimental data. A
dynamic system can be conceptually described as in Figure 1.1. The system is driven by
input variables u(#) and disturbances v(¢). The user can control u(f) but not v(¢). In some
signal processing applications the inputs may be missing. The output signals are variables
which provide useful information about the system. For a dynamic system the control
action at time ¢ will influence the output at time instants s > f.

Disturbance
V(1)

Input Output
System

u(f) y(0

FIGURE 1.1 A dynamic system with input u(f), output y(#) and disturbance v(),
where ¢ denotes time.

The following examples of dynamic systems illustrate the need for mathematical
models.

Example 1.1 A stirred tank

Consider the stirred tank shown in Figure 1.2, where two flows are mixed. The
concentration in each of the flows can vary. The flows F; and F, can be controlled with
valves. The signals F;(¢) and F,(¢) are the inputs to the system. The output flow F(¢) and
the concentration c(f) in the tank constitute the output variables. The input concentra-
tions ¢;(¢) and c¢,(¢) cannot be controlled and are viewed as disturbances.

Suppose we want to design a regulator which acts on the flows F|(f) and F,(¢) using
the measurements of F(¢) and c(¢). The purpose of the regulator is to ensure that F(¢) or
c(f) remain as constant as possible even if the concentrations c{(f) and c,(f) vary
considerably. For such a design we need some form of mathematical model which
describes how the input, the output and the disturbances are related. ]

Example 1.2 An industrial robot

An industrial robot can be seen as an advanced servo system. The robot arm has to
perform certain movements, for example for welding at specific positions. It is then
natural to regard the position of the robot arm as an output. The robot arm is controlled
by electrical motors. The currents to these motors can be regarded as the control inputs.
The movement of the robot can also be influenced by varying the load on the arm and by

1
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Flow F, >< >< Flow F,
Conc. ¢, H l l I l Conc. ¢,
h
Volume V
Conc. ¢
—
‘——— Flow F
Conc.c

FIGURE 1.2 A stirred tank.

friction. Such variables are the disturbances. It is very important that the robot will move
in a fast and reliable way to the desired positions without violating various geometrical
constraints. In order to design an appropriate servo system it is of course necessary to
have some model of how the behavior of the robot is influenced by the input and the
disturbances. |

Example 1.3 Aircraft dynamics

An aircraft can be viewed as a complex dynamic system. Consider the problem of main-
taining constant altitude and speed — these are the output variables. Elevator position
and engine thrust are the inputs. The behavior of the airplane is also influenced by its
load and by the atmospheric conditions. Such variables can be viewed as disturbances.
In order to design an autopilot for keeping constant speed and course we need a model
of how the aircraft’s behavior is influenced by inputs and disturbances. The dynamic
properties of an aircraft vary considerably, for example with speed and altitude, so
identification methods will need to track these variations. [ |

Example 1.4 Effect of a drug

A medicine is generally required to produce an effect in a certain part of the body. If the
drug is swallowed it will take some time before the drug passes the stomach and is
absorbed in the intestines, and then some further time until it reaches the target organ,
for example the liver or the heart. After some metabolism the concentration of the drug
decreases and the waste products are secreted from the body. In order to understand
what effect (and when) the drug has on the targeted organ and to design an appropriate
schedule for taking the drug it is necessary to have some model that describes the
properties of the drug dynamics. ]

The above examples demonstrate the need for modeling dynamic systems both in
technical and non-technical areas.
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Many industrial processes, for example for production of paper, iron, glass or chemical
compounds, must be controlled in order to run safely and efficiently. To design regulators,
some type of model of the process is needed. The models can be of various types and
degrees of sophistication. Sometimes it is sufficient to know the crossover frequency and
the phase margin in a Bode plot. In other cases, such as the design of an optimal
controller, the designer will need a much more detailed model which also describes the
properties of the disturbances acting on the process.

In most applications of signal processing in forecasting, data communication, speech
processing, radar, sonar and electrocardiogram analysis, the recorded data are filtered in
some way and a good design of the filter should reflect the properties (such as high-pass
characteristics, low-pass characteristics, existence of resonance frequencies, etc.) of the
signal. To describe such spectral properties, a model of the signal is needed.

In many cases the primary aim of modeling is to aid in design. In other cases the
knowledge of a model can itself be the purpose, as for example when describing the
effect of a drug, as in Example 1.4. Relatively simple models for describing certain
phenomena in ecology (like the interplay between prey and predator) have been pos-
tulated. If the models can explain measured data satisfactorily then they might also be
used to explain and understand the observed phenomena. In a more general sense
modeling is used in many branches of science as an aid to describe and understand
reality.

Sometimes it is interesting to model a technical system that does not exist, but may be
constructed at some time in the future. Also in such a case the purpose of modeling is to
gain insight into and knowledge of the dynamic behavior of the system. An example is a
large space structure, where the dynamic behavior cannot be deduced by studying
structures on earth, because of gravitational and atmospheric effects. Needless to say, for
examples like this, the modeling must be based on theory and a priori knowledge, since
experimental data are not available.

Types of model
Models of dynamic systems can be of many kinds, including the following:

e Mental, intuitive or verbal models. For example, this is the form of ‘model’ we use
when driving a car (‘turning the wheel causes the car to turn’, ‘pushing the brake
decreases the speed’, etc.)

o Graphs and tables. A Bode plot of a servo system is a typical example of a model in a
graphical form. The step response, i.e. the output of a process excited with a step as
input, is another type of model in graphical form. We will discuss the determination
and use of such models in Chapters 2 and 3.

e Mathematical models. Although graphs may also be regarded as ‘mathematical’
models, here we confine this class of models to differential and difference equations.
Such models are very well suited to the analysis, prediction and design of dynamic
systems, regulators and filters. This is the type of model that will be predominantly
discussed in the book. Chapter 6 presents various types of model and their properties
from a system identification point of view.
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It should be stressed that although we speak generally about systems with inputs and
outputs, the discussion here is to a large extent applicable also to time series analysis. We
may then regard a signal as a discrete time stochastic process. In the latter case the
system does not include any input signal. Signal models for times series can be useful in
the design of spectral estimators, predictors, or filters that adapt to the signal properties.

Mathematical modeling and system identification

As discussed above, mathematical models of dynamic systems are useful in many areas
and applications. Basically, there are two ways of constructing mathematical models:

o Mathematical modeling. This is an analytic approach. Basic laws from physics (such as
Newton’s laws and balance equations) are used to describe the dynamic behavior of a
phenomenon or a process.

o System identification. This is an experimental approach. Some experiments are per-
formed on the system; a model is then fitted to the recorded data by assigning suitable
numerical values to its parameters.

Example 1.5 Modeling a stirred tank

Consider the stirred tank in Example 1.1. Assume that the liquid is incompressible, so
that the density is constant; assume also that the mixing of the flows in the tank is very
fast so that a homogeneous concentration c exists in the tank. To derive a mathematical
model we will use balance equations of the form

net change = flow in — flow out
Applying this idea to the volume V in the tank,

dv
Y F4F-F (1.1)

Applying the same idea to the dissolved substance,
%@W=QE+Q&—J ‘ (1.2)

The model can be completed in several ways. The flow F may depend on the tank level
h. This is certainly true if this flow is not controlled, for example by a valve. Ideally the
flow in such a case is given by Torricelli’s law:

F=aV(2gh) (1.3)

where a is the effective area of the flow and g =~ 10 m/sec’. Equation (1.3) is an
idealization and may not be accurate or even applicable. Finally, if the tank area A does
not depend on the tank level 4, then by simple geometry

V= Ah (1.4)

To summarize, equations (1.1) to (1.4) constitute a simple model of the stirred tank. The
degree of validity of (1.3) is not obvious. The geometry of the tank is easy to measure,
but the constant a in (1.3) is more difficult to determine. E
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A comparison can be made of the two modeling approaches: mathematical modeling and
system identification. In many cases the processes are so complex that it is not possible
to obtain reasonable models using only physical insight (using first principles, e.g.
balance equations). In such cases one is forced to use identification techniques. It often
happens that a model based on physical insight contains a number of unknown para-
meters even if the structure is derived from physical laws. Identification methods can be
applied to estimate the unknown parameters.

The models obtained by system identification have the following properties, in
contrast to models based solely on mathematical modeling (i.e. physical insight):

o They have limited validity (they are valid for a certain working point, a certain type of
input, a certain process, etc.).

e They give little physical insight, since in most cases the parameters of the model have
no direct physical meaning. The parameters are used only as tools to give a good
description of the system’s overall behavior.

e They are relatively easy to construct and use.

Identification is not a foolproof methodology that can be used without interaction from
the user. The reasons for this include:

e An appropriate model structure must be found. This can be a difficult problem, in
particular if the dynamics of the system are nonlinear.

e There are certainly no ‘perfect’ data in real life. The fact that the recorded data are
disturbed by noise must be taken into consideration.

e The process may vary with time, which can cause problems if an attempt is made to
describe it with a time-invariant model.

¢ It may be difficult or impossible to measure some variables/signals that are of central
importance for the model.

How system identification is applied

In general terms, an identification experiment is performed by exciting the system (using
some sort of input signal such as a step, a sinusoid or a random signal) and observing its
input and output over a time interval. These signals are normally recorded in a computer
mass storage for subsequent ‘information processing’. We then try to fit a parametric
model of the process to the recorded input and output sequences. The first step is to
determine an appropriate form of the model (typically a linear difference equation of a
certain order). As a second step some statistically based method is used to estimate the
unknown parameters of the model (such as the coefficients in the difference equation).
In practice, the estimations of structure and parameters are often done iteratively. This
means that a tentative structure is chosen and the corresponding parameters are esti-
mated. The model obtained is then tested to see whether it is an appropriate repre-
sentation of the system. If this is not the case, some more complex model structure must
be considered, its parameters estimated, the new model validated, etc. The procedure
is illustrated in Figure 1.3. Note that the ‘restart’ after the model validation gives an
iterative scheme.
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FIGURE 1.3 Schematic flowchart of system identification.
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What this book contains

The following is a brief description of what the book contains (see also Summary and
Outlook at the end of Chapter 2 for a more complete discussion):

o Chapter 2 presents some introductory examples of both nonparametric and parametric
methods and some preliminary analysis. A more detailed description is given of how
the book is organized.

e The book focuses on some central methods for identifying linear systems dynamics.
This is the main theme in Chapters 3, 4 and 7—10. Both off-line and on-line identifica-
tion methods are presented. Open loop as well as closed loop experiments are treated.

e A considerable amount of space is devoted to the problem of choosing a reasonable
model structure and how to validate a model, i.e. to determine whether it can be
regarded as an acceptable description of the process. Such aspects are discussed in
Chapters 6 and 11.

o To some extent hints are given on how to design good identification experiments. This
is dealt with in Chapters 5, 10 and 12. It is an important point: if the experiment is
badly planned, the data will not be very useful (they may not contain much relevant
information about the system dynamics, for example). Clearly, good models cannot be
obtained from bad experiments.

What this book does not contain

It is only fair to point out the areas of system identification that are beyond the scope of
this book:

o Identification of distributed parameter systems is not treated at all. For some survey
papers in this field, see Polis (1982), Polis and Goodson (1976), Kubrusly (1977),
Chavent (1979) and Banks et al. (1983).

Identification of nonlinear systems is only marginally treated; see for example Example

6.6, where so-called Hammerstein models are treated. Some surveys of black box

modeling of nonlinear systems have been given by Billings (1980), Mehra (1979),

Haber and Keviczky (1976).

Identification and model approximation. When the model structure used is not flexible

enough to describe the true system dynamics, identification can be viewed as a form of

model approximation or model reduction. Out of many available methods for model
approximation, those based on partial realizations have given rise to much interest in
the current literature. See, for example, Glover (1984) for a survey of such methods.

Techniques for model approximation have close links to system identification, as

described, for example, by Wahlberg (1985, 1986, 1987).

e Estimation of parameters in continuous time models is only discussed in parts of
Chapter 2 and 3, and indirectly in the other chapters (see Example 6.5). In many cases,
such as in the design of digital controllers, simulation, prediction, etc., it is sufficient to
have a discrete time model. However, the parameters in a discrete time model most
often have less physical sense than parameters of a continuous time model.

o Frequency domain aspects are only touched upon in the book (see Section 3.3 and

@
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Examples 10.1, 10.2 and 12.1). There are several new results on how estimated
models, even approximate ones, can be characterized and evaluated in the frequency
domain; see Ljung (1985b, 1987).

Bibliographical notes
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Chapter 2

INTRODUCTORY EXAMPLES

2.1 The concepts S, M, I, X

This chapter introduces some basic concepts that will be valuable when describing and
analyzing identification methods. The importance of these concepts will be demonstrated
by some simple examples.

The result of an identification experiment will be influenced by (at least) the following
four factors, which will be examplified and discussed further both below and in sub-
sequent chapters.

o The system .#. The physical reality that provides the experimental data will generally
be referred to as the process. In order to perform a theoretical analysis of an identifica-
tion it is necessary to introduce assumptions on the data. In such cases we will use the
word system to denote a mathematical description of the process. In practice, where
real data are used, the system is unknown and can even be an idealization. For simu-
lated data, however, it is not only known but also used directly for the data generation
in the computer. Note that to apply identification techniques it is not necessary to
know the system. We will use the system concept only for investigation of how differ-
ent identification methods behave under various circumstances. For that purpose the
concept of a ‘system’ will be most useful.

o The model structure _# . Sometimes we will use nonparametric models. Such a model is
described by a curve, function or table. A step response is an example. It is a curve
that carries some information about the characteristic properties of a system. Impulse
responses and frequency diagrams (Bode plots) are other examples of nonparametric
models. However, in many cases it is relevant to deal with parametric models. Such
models are characterized by a parameter vector, which we will denote by 6. The
corresponding model will be denoted .4 (8). When 6 is varied over some set of feasible
values we obtain a model set (a set of models) or a model structure .#.

o The identification method ¥. A large variety of identification methods have been
proposed in the literature. Some important ones will be discussed later, especially in
Chapters 7 and 8 and their complements. It is worth noting here that several proposed
methods could and should be regarded as versions of the same approach, which are
tied to different model structures, even if they are known under different names.

o The experimental conditionZ’. In general terms £’is a description of how the identifica-
tion experiment is carried out. This includes the selection and generation of the input
signal, possible feedback loops in the process, the sampling interval, prefiltering of the
data prior to estimation of the parameters, etc.

9
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Before turning to some examples it should be mentioned that of the four concepts.”,
M, I, &, the system.” must be regarded as fixed. It is ‘given’ in the sense that its prop-
erties cannot be changed by the user. The experimental condition & is determined
when the data are collected from the process. It can often be influenced to some degree
by the user. However, there may be restrictions — such as safety considerations or re-
quirements of ‘nearly normal’ operations — that prevent a free choice of the experimental
condition &°. Once the data are collected the user can still choose the identification
method # and the model structure #. Several choices of ¥ and.# can be tried on the
same set of data until a satisfactory result is obtained.

2.2 A basic example

Throughout the chapter we will make repeated use of the two systems below, which are
assumed to describe the generated data. These systems are given by
y(t) + a(,y(t - 1) = b(,u(t - l) + e(t) + C()e(t - ].) (2.1)

where e() is a sequence of independent and identically distributed random variables of
zero mean and variance A2. Such a sequence will be referred to as white noise. Two
different sets of parameter values will be used, namely

l/I: ay = -0.8 b() =1.0 Cy = 00 A=1.0

/é: apy = -0.8 b() =1.0 Cy = —-0.8 A=1.0 (22)

The system .| can then be written as
Sy —0.8y(t— 1) =1.0u(t— 1)+ e(t) (2.3)
while ., can be represented as
x(®) = 0.8x(t— 1) = 1.0u(t - 1)
2 y() =x(@t) +e(0)

The white noise e(¢) thus enters into the systems in different ways. For the system ./} it
appears as an equation disturbance, while for ./; it is added on the output (cf. Figure
2.1). Note that for.#, the signal x(#) can be interpreted as the deterministic or noise-
free output.

(2.4)

2.3 Nonparametric methods

In this section we will describe two nonparametric methods and apply them to the system
1.

Example 2.1 Transient analysis
A typical example of transient analysis is to let the input be a step and record the step
response. This response will by itself give some characteristic properties (dominating
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FIGURE 2.1 The systems .#; and /5. The symbol ¢! denotes the backward shift

operator.

time constant, damping factor, static gain, etc.) of the process.
Figure 2.2 shows the result of applying a unit step to the system .#;. Due to the
high noise level it is very hard to deduce anything about the dynamic properties of the

process.

y()

2 4

0

50

;100

FIGURE 2.2 Step response of the system (jerky line). For comparison the true step
response of the undisturbed system (smooth line) is shown. The step is applied at time

t = 10.
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Example 2.2 Correlation analysis
A weighting function can be used to model the process:

y(t) = i h(k)u(t — k) + v(f) (2.5)

k=0

where {h(k)} is the weighting function sequence (or weighting sequence, for short) and
v(f) is a disturbance term. Now let u(f) be white noise, of zero mean and variance o2,
which is independent of the disturbances. Multiplying (2.5) by u(¢z — 1) (t > 0) and taking
expectation will then give

ryu(7) & Ey(u(t — ©) = > h(k)Eu(t — k)u(t — 1) = 0*h() (2.6)
k=0
Based on this relation the weighting function coefficients {h(k)} are estimated as
1 N
< S yui -

t=1t+1

h(k) =

5 @.7)
RAY
=1

where N denotes the number of data points. Figure 2.3 illustrates the result of simulating
the system .#; with u(¢) as white noise with o = 1, and the weighting function estimated
as in (2.7).

The true weighting sequence of the system can be found to be

h(k) = 0.8"  k=1;h(0)=0

The results obtained in Figure 2.3 would indicate some exponential decrease, although
it is not easy to determine the parameter from the figure. To facilitate a comparison
between the model and the true system the corresponding step responses are given in
Figure 2.4.

It is clear from Figure 2.4 that the model obtained is not very accurate. In particular,
its static gain (the stationary value of the response to a unit step) differs considerably
from that of the true system. Nevertheless, it gives the correct magnitude of the time
constant (or rise time) of the system. ]

2.4 A parametric method

In this section the systems.”; and./, are identified using a parametric method, namely
the least squares method. In general, a parametric method can be characterized as a
mapping from the recorded data to the estimated parameter vector.

Consider the model structure.# given by the difference equation

y(&) +ay(t — 1) = bu(t — 1) + &(¥) (2.8)
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FIGURE 2.3 Estimated weighting function, Example 2.2.
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FIGURE 2.4 Step responses for the model obtained by correlation analysis and for the
true (undisturbed) system.
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This model structure is a set of first-order linear discrete time models. The parameter
vector is defined as

0= (Z) (2.9)

In (2.8), y(¢) is the output signal at time ¢, u(¢) the input signal and €(¢) a disturbance
term. We will often call €(¢) an equation error or a residual. The reason for including £(¢)
in the model (2.8) is that we can hardly hope that the model with £(f) = 0 (for all ¢) can
give a perfect description of a real process. Therefore () will describe the deviation in
the data from a perfect (deterministic) first-order linear system. Using (2.8), (2.9), for
a given data set {u(1), y(1), u(2), y(2), ..., u(N), y(N)}, {e(f)} can be regarded as
functions of the parameter vector 6. To see this, simply rewrite (2.8) as

)=y +ay(t—1)—bu(t—1)=y() —’(——y(t— Du(t-1))6 (2.10)

In the following chapters we will consider various generalizations of the simple model
structure (2.8). Note that it is straightforward to extend it to an nth-order linear model
simply by adding terms a;y(t — i), b;u(t — i) fori =2, ..., n.

The identification method .# should now be specified. In this chapter we will confine
ourselves to the least squares method. Then the parameter vector is determined as the
vector that minimizes the sum of squared equation errors. This means that we define the
estimate by

6 = arg min V() (2.11)
]

where the loss function V(8) is given by
N

V©e) = () (2.12)

t=1

As can be seen from (2.10) the residual £(¢) is a linear function of 8 and thus V/(6) will be
well defined for any value of 6.

For the simple model structure (2.8) it is easy to obtain an explicit expression of V(6)
as a function of 6. Denoting LY, by I for short,

V() = Z[y() + ay(t — 1) — bu(t — DJ?
= [@®Ly*(t — 1) + b*TuP(t — 1) — 2abT y(t — Du(t — 1)] (2.13)
+ [2aZy(O)y(t — 1) — 26T y(Hu(t — 1)] + Ty
The estimate 6 is then obtained, according to (2.11), by minimizing (2.13). The minimum

point is determined by setting the gradient of V(8) to zero. This gives

0= Wm(;f,e) = 2[a%y3(t - 1) — byt — Du(t — 1) + Ty y(t — 1)]

0= 9-%%92 = 2[bTud(t — 1) — aSy(t — Du(t — 1) — Ly@u(t — 1)]

(2.14)

or in matrix form
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Lyt — 1) =Xy(t — Du(t - 1) (d

(—Ey(t — Du(r — 1) it - 1) b
_(~Zy@y( -1
Ly(@u - 1)

Note that (2.15) is a system of linear equations in the two unknowns d and b. As we will
see, there exists a unique solution under quite mild conditions.

In the following parameter estimates will be computed according to (2.15) for a
number of cases. We will use simulated data generated in a computer but also theoretical
analysis as a complement. In the analysis we will assume that the number of data points,
N, is large. Then the following approximation can be made:

(2.15)

7{;% V(- 1) =Ey*(t—1) (2.16)
t=1

where E is the expectation operator for stochastic variables, and similarly for the other
sums. It can be shown (see Lemma B.2 in Appendix B at the end of the book) that for all
the cases treated here the left-hand side of (2.16) will converge, as N tends to infinity, to
the right-hand side. The advantage of using expectations instead of sums is that in this
way the analysis can deal with a deterministic problem, or more exactly a problem which
does not depend on a particular realization of the data. For a deterministic signal the
notation E will be used to mean '

1 N
AN 2

Example 2.3 A pseudorandom binary sequence as input

The systems.”; and ./, were simulated generating 1000 data points. The input signal
was a PRBS (pseudorandom binary sequence). This signal shifts between two levels in
a certain pattern such that its first- and second-order characteristics (mean value and
-covariance function) are quite similar to those of a white noise process. The PRBS and
other signals are described in Chapter 5 and its complements. In the simulations the
amplitude of u(#) was o = 1.0. The least squares estimates were computed according to
(2.15). The results are given in Table 2.1. A part of the simulated data and the cor-
responding model outputs are depicted in Figure 2.5. The model output x,,,(¢) is given by

Xm(t) + ax,(t — 1) = bu(t — 1)

where u(¢) is the input used in the identification. One would expect that x,,,(¢) should be
close to the true noise-free output x(t). The latter signal is, however, not known to the

TABLE 2.1 Parameter estimates for Example 2.3

Parameter True value Estimated value
System /; System ./,
a -0.8 —0.795 —0.580

b 1.0 0.941 0.959




01

—1 4

7.5 4
0 -
-7.5 Y
0 50 100
(a)
]
_l_ |
0 50 100
6 -
0
_6 ¥
0 50 100
(b)

FIGURE 2.5 (a) Input (upper part), output (1, lower part) and model output (2, lower
part) for Example 2.3, system .#}. (b) Similarly for system /5.
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user in the general case. Instead one can compare x,,(f) to the ‘measured’ output signal
y(t). For a good model the signal x,,(¢) should explain all patterns in y(¢) that are due to
the input. However, x,,(f) should not be identical to y(¢) since the output also has a
component that is caused by the disturbances. This stochastic component should not
appear (or possibly only in an indirect fashion) in the model output x,,(f).

Figure 2.6 shows the step responses of the true system and the estimated models. It is
easily seen, in particular from Table 2.1 but also from Figure 2.6, that a good description
is obtained of the system .| while the system ./, is quite badly modeled. Let us now
see if this result can be explained by a theoretical analysis. From (2.15) and (2.16) we
obtain the following equations for the limiting estimates:

Ey¥r)  —Ey(ju(r)\[a
(—Ey(t)u(t) Eu?(1) )(5)
(—Ey(t)y(t - 1))
Ey(Hu(t — 1)

Here we have used the fact that, by the stationarity assumption, Ey*(t — 1) = Ey*(¢),
etc. Now let u(f) be a white noise process of zero mean and variance 2. This will be an
accurate approximation of the PRBS used as far as the first- and second-order moments
are concerned. See Section 5.2 for a discussion of this point. Then for the system (2.1),
after some straightforward calculations,

2.17)

b§o® + (1 + c& — 2agcy)\?
2.n _ D0 0 0Co
Ey () = [~ 2
- @
y(0)
5 . .f
M
4 4
3 o
2 4 Mo
1 -
0 -
0 ' 50

FIGURE 2.6 Step responses of the true system (), the estimated model of ./} (#;)
and the estimated model of ./, (#;), Example 2.3.
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Ey(®u() =0
Eu*(f) = o* (2.18a)

—aybjo® + (cy — ag) (1 = agcy)\?

1 -4

Ey(tyy(t — 1) =

Ey(Hu(t — 1) = byo?

Using these results in (2.17) the following expressions are obtained for the limiting
parameter estimates:

R —co(l — a%)))\z
a = Qy + )
bio® + (1 + ¢§ — 2agco)h (2.18b)
B = by
Thus for system ./}, (2.2), where ¢, = 0,
a=-08 b=10 (2.19)

which means that asymptotically (i.e. for large values of N) the parameter estimates will
be close to the ‘true values’ ay, b,. This is well in accordance with what was observed in
the simulations.

For the system ./, the corresponding results are

. —080>
o2 + 0.3602

Thus in this case the estimate d will deviate from the true value. This was also obvious
from the simulations; see Table 2.1 and Figure 2.6. (Compare (2.20) with the estimated
values for.#, in Table 2.1.) The theoretical analysis shows that this was not due to ‘bad
luck’ in the simulation nor to the data series being too short. No matter how many data
pairs are used, there will, according to the theoretical expression (2.20), be a systematic
deviation in the parameter estimate 4. L]

—-0.588 b =1.0 (2.20)

2.5 Bias, consistency and model approximation

Following the example of the previous section it is appropriate to introduce a few
definitions.
An estimate 0 is biased if its expected value deviates from the true value, i.e.

EB # 8, (2.21)

The difference E® — 0 is called the bias. If instead equality applies in (2.21), 6 is said to
be unbiased.

In Example 2.3 it seems reasonable to believe that for large N the estimate 6 may be
unbiased for the system./; but that it is surely biased for the system./,.
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We say that an estimate 0 is consistent if

f — g as N > o (2.22)

Since 6 is a stochastic variable we must define in what sense the limit in (2.22) should
be taken. A reasonable choice is ‘limit with probability one’. We will generally use this
alternative. Some convergence concepts for stochastic variables are reviewed in
Appendix B (Section B.1).

The analysis carried out in Example 2.3 indicates that 6 is consistent for the system
/1 but not for the system ./,.

Loosely speaking, we say that a system is identifiable (in a given model set) if the
corresponding parameter estimates are consistent. A more formal definition of identifi-
ability is given in Section 6.4. Let us note that the identifiability properties of a given
system will depend on the model structure .#, the identification method . and the
experimental condition &.

The following example demonstrates how the experimental condition can influence
the result of an identification.

Example 2.4 A step function as input

The systems .#; and ./, were simulated, generating 1000 data points. This time the
input was a unit step function. The least squares estimates were computed, and the
numerical results are given in Table 2.2. Figure 2.7 shows the input, the output and
model output.

TABLE 2.2 Parameter estimates for Example 2.4

Parameter True value Estimated value
System /, System. £,
a -0.8 —0.788 —0.058
b 1.0 1.059 4.693

Again, a good model is obtained for system ./;. For system ./, there is a consider-
able deviation from the true parameters. The estimates are also quite different from
those in Example 2.3. In particular, now there is also a considerable deviation in the
estimate b.

For a theoretical analysis of the facts observed, equation (2.17) must be solved. For
this purpose it is necessary to evaluate the different covariance elements which occur in
(2.17). Let u(t) be a step of size o and introduce S = by/(1 + a,) as a notation for the
static gain of the system. Then

(1 + C(z) - 20()6'()))\.2
1 - a}

Ey*(t) = §?0° +

So?

Ey(0)u(r)
Eu*(t) = o?  (2.230)
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FIGURE 2.7 (a) Input (upper part), output (1, lower part) and model output (2, lower
part) for Example 2.4, system .#;. (b) Similarly for system ./,.

(co —ap) (1 — aoCG)}\2

1—a3

Ey(t)y(t — 1) = S%0* +

Ey(Hu(t — 1) = So?

Using these results in (2.17) the following expressions for the parameter estimates are
obtained:



Section 2.5 Bias, consistency and model approximation 21

o - aj)
1 + ¢ — 2ayc

X
Il

ag

!~ (2.23b)

]

b = by — bocg ——5———
0 001+C(2)—'2610CQ

Note that now both parameter estimates will in general deviate from the true parameter
values. The deviations are independent of the size of the input step, o, and they vanish if

¢y = 0. For system ./,

A

a=-0.8 b=1.0 (2.24)
(as in Example 2.3), while for system ./, the result is

. f_ by

a=0.0 b= Ty 5.0 (2.25)

which clearly deviates considerably from the true values. Note, though, that the static
gain is estimated correctly, since from (2.23b)
) - b()
1+ a 1+ ay

(2.26)

The theoretical results (2.24), (2.25) are quite similar to those based on the simulation;
see Table 2.2. Note that in the noise-free case (when A\?> = 0) a problem will be
encountered. Then the matrix in (2.17) becomes

sz -5
2
¢ (—S 1)

Clearly this matrix is singular. Hence the system of equations (2.17) does not have
a unique solution. In fact, the solutions in the noise-free case can be precisely char-
acterized by
b
1+d

=S (2.27)
]

We have seen in two examples how to obtain consistent estimates for system./; while
there is a systematic error in the parameter estimates for.#,. The reason for this differ-
ence between /) and ./, is that, even if both systems fit into the model structure &
given by (2.8), only #; will correspond to e(¢) being white noise. A more detailed
explanation for this behavior will be given in Chapter 7. (See also (2.34) below.). The
models obtained for.#, can be seen as approximations of the true system. The approxi-
mation is clearly dependent on the experimental condition used. The following example
presents some detailed calculations.

Example 2.5 Prediction accuracy ,
The model (2.8) will be used as a basis for prediction. Without knowledge about the
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distribution or the covariance structure of €(f), a reasonable prediction of y(f) given data
up to (and including) time ¢ — 1 is given (see (2.8)) by

() = —ay(t—1) + bu(t - 1) (2.28)

This predictor will be justified in Section 7.3. The prediction error will, according to

(2.1), satisfy
¥y =y — 3@ 2.29)
=(a— ay)y(t — 1)+ (bg — b)u(t — 1) + e(®) + cpe(t — 1)

The variance W = Ey>(¢) of the prediction error will be evaluated in a number of cases.
For system ./, ¢y = a,. First consider the true parameter values, i.e. a = ay, b = by.
Then the prediction error of ./, becomes

y(@) = e(®) + ape(t — 1)
and the prediction error variance
=21+ af) (2.30)

Note that the variance (2.30) is inaependent of the experimental condition. In the
following we will assume that the prediction is used with u(?) a step of size 0. Using the
estimates (2.23), (2.25), in the stationary phase for system ./, the prediction error is

by
v = —ayy(t — 1) + (b(, "1+ a )u(t — 1) + e(t) + age(t — 1)
by apb
= “ao[l T a 0 + e(t — 1)] 13_0 o+ e(t) + ape(t — 1)
= e(t)
and thus
W,=a<W, (2.31)

Note that here a better result is obtained than if the true values a, and b, were used! This
is not unexpected since a and b are determined to make the sample variance % y*(f)/N
as small as possible. In other words, the identification method uses a and b as vehicles to
get a good prediction.

Note that it is crucial in the above calculation that the same experimental condition
(u(f) a step of size ¢) is used in the identification and when evaluating the prediction. To
see the importance of this fact, assume that the parameter estimates are determined from
an experiment with u(f) as white noise of variance . Then (2.18), (2.20) with ¢, = a,
give the parameter estimates. Now assume that the estimated model is used as a pre-
dictor for a step of size o as input. Let S be the static gain, S = by/(1 + a,). From (2.29)
we have

y(1) = (a = ag)y(t = 1) + e(t) + age(t — 1)
= (a — ag) [e(t — 1) + So] + e(t) + age(t — 1)
= (a — ap)So + e(t) + ae(t — 1)



Section 2.6 A degenerate experimental condition 23
Let r denote b%3%(1 — a§)\?. Then from (2.18b),

ay - agr
r+1 r+1

a = qy —

The expected value of j%(f) becomes

= )\.2(1 + az) + (a - a())ZSZO'Z

2.32)
— 122 a()rZ (a())zz (
x[1+( +1>]+ r+1)%

Clearly W3 > W, always. Some straightforwérd calculations show that a value of W;
can be obtained that is worse than W, (which corresponds to a predictor based on the
true parameters ay and b,). In fact W3 > W, if and only if

§26%>22(2r + 1) (2.33)
(]

In the following the discussion will be confined to system .| only. In particular we will
analyze the properties of the matrix appearing in (2.15). Assume that this matrix is ‘well
behaved’. Then there exists a unique solution. For system .#; this solution is asymptoti-
cally (N — ) given by the true values a,, b, since

1 Lyt — 1) —Zy(t — Dut — 1)\ /ao
N\ =2y - Du@ - 1) St — 1) bo
B _L(-ZY(t)Y(t - 1))

Ly@u(t - 1) (2.34)

Nz(y“ iJU@+wa—D*bwU~m

1o ye-1D y(t = 1) ~
=5 2(——u(t B 1))e(t)~—> E(_u(t B 1)>e(t) =0

The last equality follows since e(#) is white noise and is hence independent of all past
data.

2.6 A degenerate experimental condition

The examples in this and the following section investigate what happens when the square
matrix appearing in (2.15) or (2.34) is not ‘well behaved’.

.Example 2.6 An impulse as input

The system .#; was simulated generating 1000 data points. The input was a unit impulse
at t = 1. The least squares estimates were computed; the numerical results are given in
Table 2.3. Figure 2.8 shows the input, the output and the model output.
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TABLE 2.3 Parameter estimates for Example 2.6

Parameter True value Estimated value
a -0.8 -0.796
b 1.0 2.950

This time it can be seen that the parameter a is accurately estimated while the estimate
of by is poor. This inaccurate estimation of b, was expected since the input gives little
contribution to the output. It is only through the influence of u(-) on y(:) that infor-
mation about b, can be obtained. On the other hand, the parameter a, will also describe
the effect of the noise on the output. Since the noise is present in the data all the time, it
is natural that a, is estimated much more accurately than by,.

For a theoretical analysis consider (2.15) in the case where u(f) is an impulse of
magnitude o at time ¢ = 1. Using the notation

Ry =%r§:‘ly2<t— 1)
Ri=+3 vy 1)

=1

i

equation (2.15) can be transformed to

@\ [ NRy —y(I)o\~'[-NR,
<5) N <—y(1)0 o’ ) ()’(2)0)
_ 1 < —R; + y(1)y(2)/IN )
Ry — Y (/N \ (=y(1)R; + y(2)Ro)/o

(2.35)

0.5
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-6

. 1
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FIGURE 2.8 Input (upper part), output (1, lower part) and model output (2, lower
part) for Example 2.6, system /.
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When N tends to infinity the contribution of u(f) tends to zero and

2
A2 —ayh

Ry —» ——— R, — = —ayR

0 2 1 1 2 ((EANV]

1 - aj — 4y

A

Thus the estimates 4 and b do converge. However, in contrast to what happened in
Examples 2.3 and 2.4, the limits will depend on the realization (the recorded data), since
they are given by

IS

. (2.36)

b = (ay(1) + y(2))lo = by + e(2)/o
We see that b has a second term that makes it differ from the true value by. This
deviation depends on the realization, so it will have quite different values depending
on the actual data. In the present realization e(2) = 1.957, which according to (2.36)
should give (asymptotically) b = 2.957. This values agrees very well with the result given
in Table 2.3.

The behavior of the least squares estimate observed above can be explained as follows.
The case analyzed in this example is degenerate in two respects. First, the matrix in
(2.35) multiplied by 1/N tends to a singular matrix as N — . However, in spite of this
fact, it can be seen from (2.35) that the least squares estimate uniquely exists and can be
computed for any value of N (possibly for N — «). Second, and more important, in this
case (2.34) is not valid since the sums involving the input signal do not tend to
expectations (u(f) being equal to zero almost all the time). Due to this fact, the least
squares estimate converges to a stochastic variable rather than to a constant value (see
the limiting estimate b in (2.36)). In particular, due to the combination of the two types
of degenerency discussed above, the least squares method failed to provide consistent
estimates. ]

Examples 2.3 and 2.4 have shown that for system ./} consistent parameter estimates are
obtained if the input is white noise or a step function (in the latter case it must be
assumed that there is noise acting on the system so that A*> > 0; otherwise the system of
equations (2.17) does not have a unique solution; see the discussion at the end of
Example 2.4). If u(¢) is an impulse, however, the least squares method fails to give
consistent estimates. The reason, in loose terms, is that an impulse function ‘is equal to
zero too often’. To guarantee consistency an input must be used that excites the process
sufficiently. In technical terms the requirement is that the input signal be persistently
exciting of order 1 (see Chapter 5 for a definition and discussions of this property).

2.7 Theinfluence of feedback

It follows from the previous section that certain restrictions must be imposed on the input
signal to guarantee that the matrix appearing in (2.15) is well behaved. The examples in
this section illustrate what can happen when the input is determined through feedback
from the output. The use of feedback might be necessary when making real identification
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experiments. The open loop system to be identified may be unstable, so without a
stabilizing feedback it would be impossible to obtain anything but very short data series.
Also safety requirements can be strong reasons for using a regulator in a feedback loop
during the identification experiment.

Example 2.7 A feedback signal as input
Consider the model (2.8). Assume that the input is determined through a proportional
feedback from the output,

u(r) = —ky(1) (2.37)

Then the matrix in (2.15) becomes

- 0(, )

which is singular. As a consequence the least squares method cannot be applied. It can
be seen in other ways that the system cannot be identified using the input (2.37). Assume
that k is known (otherwise it is easily determined from measurements of u(f) and y(¢)
using (2.37)). Thus, only { y(f)} carries information about the dynamics of the system.
Using {u(#)} cannot provide any more information. From (2.8) and (2.37),

e(t) = y(0) + (a + bk)y(t — 1) (2.38)

This expression shows that only the linear combination a + bk can be estimated from the
data. All values of a and b that give the same value of a + bk will also give the same
sequence of residuals {e(r)} and the same value of the loss function. In particular, the
loss function (2.12) will not have a unique mimimum. It is minimized along a straight
line. In the asymptotic case (N — o) this line is simply given by

{Gla + bk = ay + bok}

Since there is a valley of minima, the Hessian (the matrix of second-order derivatives)
must be singular. This matrix is precisely twice the matrix appearing in (2.15). This
brings us back to the earlier observation that we cannot identify the parameters a and b
using the input as given by (2.37). ]

Based on Example 2.7 one may be led to believe that there is no chance of obtaining
consistent parameter estimates if feedback must be used during the identification
experiment. Fortunately, the situation is not so hopeless, as the following example
demonstrates.

Example 2.8 A feedback signal and an additional setpoint as input
The system ./| was simulated generating 1000 data points. The input was a feedback from
the output plus an additional signal,

u(t) = —ky(t) + r(t) (2.39)

The signal r(¢) was generated as a PRBS of magnitude 0.5, while the feedback gain was
chosen as k = 0.5. The least squares estimates were computed; the numerical values are
given in Table 2.4. Figure 2.9 depicts the input, the output and the model output.
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FIGURE 2.9 Input (upper part), output (1, lower part) and model output (2, lower
part) for Example 2.8.

TABLE 2.4 Parameter estimates for Example 2.8

Parameter True value Estimated value
a -0.8 —-0.754
b 1.0 0.885

27

It can be seen that this time reasonable parameter estimates were obtained even

though the data were generated using feedback.

To analyze this situation, first note that the consistency calculations (2.34) are still
valid. It is thus sufficient to show that the matrix appearing in (2.15) is well behaved (in
particular, nonsingular) for large N. For this purpose assume that r(f) is white noise of
zero mean and variance o2, which is independent of e(s) for all ¢ and s. (As already
explained for o = 0.5 this is a close approximation to the PRBS used.) Then from (2.1)
with ¢g = 0 and (2.39) (for convenience, we omit the index 0 of a and b), the following

equations are obtained:
y(@ + (a + b)y(t = 1) = br(t — 1) + e()
u(t) + (@ + bkyu(t — 1) = r() + ar(t — 1) — ke(?)

This gives, after some calculations,

Ey¥ ) —Ey(Ou(n)) _ 1
—Ey(hu(t)  Eu¥@®) ) 1 - (a + bk)?
(b*6* + 29 —k(b*c? + \?)
<~k(b202 + %) K(b%* + M) + {1 - (a + bk)z}oz)

which is positive definite. Here we have assumed that the closed loop system is

asymptotically stable so that |a + bk| < 1.
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Summary and outlook

The experiences gained so far and the conclusions that can be drawn may be summarized
as follows.

1. When a nonparametric method such as transient analysis or correlation analysis is
used, the result is easy to obtain but the derived model will be rather inaccurate. A
parametric method was shown to give more accurate results.

2. When the least squares method is used, the consistency properties depend critically
on how the noise enters into the system. This means that the inherent model structure
may not be suitable unless the system has certain properties. This gives a requirement
on the system /. When that requirement is not satisfied, the estimated model will not
be an exact representation of ./ even asymptotically (for N — o). The model will
only be an approximation of #. The sense in which the model approximates the
system is determined by the identification method used. Furthermore, the parameter
values of the approximation model depend on the input signal (or, in more general
terms, on the experimental condition).

3. Asfar as the experimental condition&’ is concerned it is important that the input signal
is persistently exciting. Roughly speaking, this implies that all modes of the system
should be excited during the identification experiment.

4. When the experimental condition includes feedback from y(f) to u(¢) it may not be
possible to identify the system parameters even if the input is persistently exciting.
On the other hand, when a persistently exciting reference signal is added to the
system, the parameters may be estimated with reasonable accuracy.

Needless to say, the statements above have not been strictly proven. They merely rely on
some simple first-order examples. However, the subsequent chapters will show how
these conclusions can be proven to hold under much more general conditions.

The remaining chapters are organized in the following way.

Nonparametric methods are described in Chapter 3, where some methods other than
those briefly introduced in Section 2.3 are analyzed. Nonparametric methods are often
sensitive to noise and do not give very accurate results. However, as they are easy to
apply they are often useful means of deriving preliminary or crude models.

Chapter 4 treats linear regression models, confined to static models, that is models
which do not include any dynamics. The extension to dynamic models is straightforward
from a purely algorithmic point of view. The statistical properties of the parameter
estimates in that case will be different, however, except in the special case of weighting
function models. In particular, the analysis presented in Chapter 4 is crucially dependent
on the assumption of static models. The extension to dynamic models is imbedded in a
more general problem discussed in Chapter 7.

Chapter 5 is devoted to discussions of input signals and their properties relevant to
system identification. In particular, the concept of persistent excitation is treated in some
detail.

We have seen by studying the two simple systems ./} and ./, that the choice of model
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structure can be very important and that the model must match the system in a certain
way. Otherwise it may not be possible to get consistent parameter estimates. Chapter 6
presents some general model structures, which describe general linear systems.

Chapters 7 and 8 discuss two different classes of important identification methods.
Example 2.3 shows that the least squares method has some relation to minimization of
the prediction error variance. In Chapter 7 this idea is extended to general model sets.
The class of so-called prediction error identification methods is obtained in this way.
Another class of identification methods is obtained by using instrumental variables
techniques. We saw in (2.34) that the least squares method gives consistent estimates
only for a certain type of disturbance acting on the system. The instrumental variable
methods discussed in Chapter 8 can be seen as rather simple modifications of the least
squares method (a linear system of equations similar to (2.15) is solved), but consistency
can be guaranteed for a very general class of disturbances. The analysis carried out in
Chapters 7 and 8 will deal with both the consistency and the asymptotic distribution of
the parameter estimates.

In Chapter 9 recursive identification methods are introduced. For such methods the
parameter estimates are modified every time a new input-output data pair becomes
available. They are therefore perfectly suited to on-line or real-time applications. In
particular, it is of interest to combine them with time-varying regulators or filters that
depend on the current parameter vectors. In such a way one can design adaptive systems
for control and filtering. It will be shown how the off-line identification methods
introduced in previous chapters can be modified to recursive algorithms.

The role of the experimental condition in system identification is very important. A
detailed discussion of this aspect is presented in Chapter 10. In particular, we investigate
the conditions under which identifiability can be achieved when the system operates
under feedback control during the identification experiment.

A very important phase in system identification is model validation. By this we mean
different methods of determining if a model obtained by identification should be accepted
as an appropriate description of the process or not. This is certainly a difficult problem.
Chapter 11 provides some hints on how it can be tackled in practice. In particular, we
discuss how to select between two or more competing model structures (which may, for
example, correspond to different model orders).

It is sometimes claimed that system identification is more art than science. There are
no foolproof methods that always and directly lead to a correct result. Instead, there are
a number of theoretical results which are useful from a practical point of view. Even so,
the user must combine the application of such a theory with common sense and intuition
to get the most appropriate result. Chapter 12 should be seen in this light. There we
discuss a number of practical issues and how the previously developed theory can help
when dealing with system identification in practice.

Problems

Problem 2.1 Bias, variance and mean square error
Let 6;, i = 1, 2 denote two estimates of the same scalar parameter 6. Assume, with N
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denoting the number of data points, that

N . /N fori=1
. ) A R - =
bias (0;) £ E(8;) — © {0 fori =2
R . R /N fori=1
) 2 E[6, — E6)] =
var(0;) £ E[6;, — E(9;)] {3/N fori =2

where var (+) is the abbreviation for variance (-). The mean square error (mse) is defined
as E((?)i — 0)%. Which one of 8;, 6, is the best estimate in terms of mse? Comment on
the result.

Problem 2.2 Convergence rates for consistent estimators

For most consistent estimators of the parameters of stationary processes, the variance of
the estimation error tends to zero as 1/N when N — o (N = the number of data points )
(see, for example, Chapters 4, 7 and 8). For nonstationary processes, faster convergence
rates may be expected. To see this, derive the variance of the least squares estimate of a
in

y() = ot + e(f) t=1,2,...,N
where e(f) is white noise with zero mean and variance \”.
Problem 2.3 [llustration of unbiasedness and consistency properties
Let {x;}, be a sequence of independent and identically distributed Gaussian random

variables with mean p and variance o. Both u and ¢ are unknown. Consider the
following estimate of p:

1 X
Mzﬁ;;xi

and the following two estimates for o:
1 & 2
o=y R
-
1 & 2
02=N_121(x,-—u)
i=
Determine the means and variances of the estimates (i, 6, and &,. Discuss their
(un)biasedness and consistency properties. Compare §; and 6, in terms of their mse’s.
Hint. Lemma B.9 will be useful for calculating var(§;).

Remark. A generalization of the problem above is treated in Section B.9.

Problem 2.4 Least squares estimates with white noise as input
Verify the expressions (2.18a), (2.18b).

Problem 2.5 Least squares estimates with a step function as input
Verify the expressions (2.23a), (2.23b).



Problems 31
Problem 2.6 Least squares estimates with a step function as input, continued

(a) Verify the expression (2.26).
(b) Assume that the data are noise-free. Show that all solutions to the system of
equations (2.17) are given by (2.27).

Problem 2.7 Conditions for a minimum
Show that the solution to (2.15) gives a minimum point of the loss function, and not
another type of stationary point.

Problem 2.8 Weighting sequence and step response

Assume that the weighting sequence {h(k) };=¢ of a system is given. Let y(¢) be the step
response of the system. Show that y(¢) can be obtained by integrating the weighting
sequence, in the following sense:

y(@© —y(t — 1) = h(r)
y(=1) =0

Bibliographical notes

The concepts of system, model structure, identification method and experimental
condition have turned out to be valuable ways of describing the items that influence an
identification result. These concepts have been described in Ljung (1976) and Gustavsson
et al. (1977, 1981). A classical discussion along similar lines has been given by Zadeh
(1962).



Chapter 3

NONPARAMETRIC
METHODS

3.1 Introduction

This chapter describes some nonparametric methods for system identification. Such
identification methods are characterized by the property that the resulting models are
curves or functions, which are not necessarily parametrized by a finite-dimensional
parameter vector. Two nonparametric methods were considered in Examples 2.1-2.2.
The following methods will be discussed here:

e Transient analysis. The input is taken as a step or an impulse and the recorded
output constitutes the model.

e Frequency analysis. The input is a sinusoid. For a linear system in steady state the
output will also be sinusoidal. The change in amplitude and phase will give the
frequency response for the used frequency.

e Correlation analysis. The input is white noise. A normalized cross-covariance
function between output and input will provide an estimate of the weighting function.

e Spectral analysis. The frequency response can be estimated for arbitrary inputs by
dividing the cross-spectrum between output and input to the input spectrum.

3.2 Transient analysis

With this approach the model used is either the step response or the impulse response of
the system. The use of an impulse as input is common practice in certain applications,
for example where the input is an injection of a substance, the future distribution of
which is sought and traced with a sensor. This is typical in certain ‘flow systems’, for
example in biomedical applications.

Step response

Sometimes it is of interest to fit a simple low-order model to a step response. This is
illustrated in the following examples for some classes of first- and second-order systems,
which are described using the transfer function model

32
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Y(s) = G(s)U(s) 3.1)

where Y(s) is the Laplace transform of the output signal y(¢), U(s) is the Laplace
transform of the input u(f), and G(s) is the transfer function of the system.

Example 3.1 Step response of a first-order system
Consider a system given by the transfer function

K e
1+ sT

G(s) = —st (3.22)

This means that the system is described by the first-order differential equation
dy
T—d—t(t) + y(f) = Ku(t — 1) (3.2b)

Note that a time delay t is included in the model. The step response of such a system is
illustrated in Figure 3.1.

Figure 3.1 demonstrates a graphical method for determining the parameters K, T
and t from the step response. The gain K is given by the final value. By fitting the
steepest tangent, T and t can be obtained. The slope of this tangent is K/T, where T is

the time constant. The tangent crosses the ¢ axis at ¢+ = 1, the time delay. ]
y
K
T T t

< e -
»

FIGURE 3.1 Response of a first-order system with delay to a unit step.
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Example 3.2 Step response of a damped oscillator
Consider a second-order system given by

Ko}

GGs) = s* + 2Cwes + f (3.32)
In the time domain this system is described by

d? d 5

d_t}z) + 2Cwoa{— + ofy = Kwju (3.3b)

Physically this equation describes a damped oscillator. After some calculations the step
response is found to be

1

-kl - —
v [ V-

e~ sin(wg V(1 — E%)t + r)]
(3.30)

T = arccos ¢

This is illustrated in Figure 3.2.

It is obvious from Figure 3.2 how the relative damping C influences the character of
the step response. The remaining two parameters, K and w,, merely act as scale
factors. The gain K scales the amplitude axis while w, scales the time axis. The three

y
2K
t=0
t =01
t=02
£=05
t=07
=1

t 10/w,

FIGURE 3.2 Response of a damped oscillator to a unit input step.
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parameters of the model (3.3a), namely K, € and wq could be determined by comparing
the measured step response with Figure 3.2 and choosing the curve that is most similar
to the recorded data. However, one can also proceed in a number of alternative ways.
One possibility is to look at the local extrema (maxima and minima) of the step
response. With some calculations it can be found from (3.3c) that they occur at times

T

b = km k=1,2, ... (3.3d)
and that

y(t) = K[1 = (=1)*M*] (3.3¢)
where the overshoot M is given by

M = exp[-tn/ V(1 — 3] (3.3f)

The relation (3.3f) between the overshoot M and the relative damping is illustrated in
Figure 3.3.

The parameters K, { and wg can be determined as follows (see Figure 3.4). The gain
K is easily obtained as the final value (after convergence). The overshoot M can be

0.8 |

0.6

0.4 ]

0.2 ]

0 025 0.5 0.75 1

FIGURE 3.3 Overshoot M versus relative damping € for a damped oscillator.
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y
K1 + M)
K(1 — M?)

4 b t t

FIGURE 3.4 Determination of the parameters of a damped oscillator from the step
response.

determined in several ways. One possibility is to use the first maximum. An alternative
is to use several extrema and the fact (see (3.3¢)) that the amplitude of the oscillations
is reduced by a factor M for every half-period. Once M is determined, C can be derived
from (3.3f):

C= [nz +—(11(())gg1;‘44)2]1/2 (3-3g)

From the step response the period T of the oscillations can also be determined. From
(3.3d),

T=— 2T (3.3h)
wo V(1 - Cz)

Then wy is given by

.= ?\7{?——_2;23 - %W + (log MY]" (3.3i)
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Impulse response

Theoretically, for an impulse response a Dirac function 8(¢) is needed as input. Then
the output will be equal to the weighting function A(?) of the system. However, an ideal
impulse cannot be realized in practice, and an approximate impulse must be used; for
example

o 0<t<a
u(t) = {0 o<t (3.49)

This input satisfies [u(f)dt = 1 as the idealized impulse and should resemble it for
sufficiently small values of the impulse length a.

Use of the approximate impulse (3.4) will give a distortion of the output, as can be
seen from the following simple calculation:

y(@) = fw h(s)u(t — s)ds = % t h(s)ds = h(¢) (3.5)

0 max(0,r—a)

If the duration a of the impulse (3.4) is short compared to the time constants of interest,
then the distortion introduced may be negligible. This fact is illustrated in the following
example.

Example 3.3 Nonideal impulse response
Consider a damped oscillator with transfer function

1

GO) = 7504 71

(3.6)

Figure 3.5 shows the weighting function and the responses to the approximate impulse
(3.4) for various values of the impulse duration a. It can be seen that the (nonideal)
impulse response deviates very little from the weighting function if a is small compared
to the oscillation period. [

Problem 3.11 and Complement C7.5 contain a discussion of how a parametric model
can be fitted to an estimated impulse response.

To summarize this section, we note that transient analysis is often simple to apply.
It gives at least a first model which can be used to obtain rough estimates of the rela-
tive damping, the dominating time constants and a possible time delay. Therefore,
transient analysis is a convenient way of deriving crude models. However, it is quite
sensitive to noise.

3.3 Frequency analysis

For a discussion of frequency analysis it is convenient to use the continuous time model
Y(s) = G(s)U(s), see (3.1).
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1

y

0 t 10

FIGURE 3.5 Weighting function and impulse responses for the damped oscillator (3.6)
excited by the approximate impulses (3.4).

Basic frequency analysis

If the input signal is a sinusoid

u(t) = a sin(wt) 3.7
and the system is asymptotically stable, then in the steady state the output will become

y(®) = b sin(wt + @) (3.8)
where

b = a|G(iw)] (3.9a)

¢ = arg[G(im)] (3.9b)

This can be proved as follows. Assume for convenience that the system is initially at
rest. (The initial values will only give a transient effect, due to the assumption of
stability.) Then the system can be represented using a weighting function h(f) as
follows:

y() = ft h(t)u(t — tv)de (3.10)

0
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where A(f) is the function whose Laplace transform equals G(s). Now set

G(s) = f h(t)e™""dt (3.11)

0

Since

. 1 . »
sin ot = —2—i(e“”’ — e

equations (3.7), (3.10), (3.11) give

t
y(t) = %f h(r)[eiw(l‘—r) _ e—iw(t_T)]d‘t
0

5 [€'G (iw) — e7'G/(—iw)] (3.12)

— _gj‘Gr(iw)l[eimteiargG,(iw) _ e—iwte—iargG,(iw)]
1

= a|G,(iw)| sin(wt + argG,(iw))

When ¢ tends to infinity, G,(iw) will tend to G(iw). With this observation, the proof of
(3.8), (3.9) is completed.

Note that normally the phase ¢ will be negative. By measuring the amplitudes a
and b as well as the phase difference @, the complex variable G(iw) can be found from
(3.9). If such a procedure is repeated for a number of frequencies then one can obtain a
graphical representation of G(iw) as a function of w. Such Bode plots (or Nyquist plots
or other equivalent representations) are well suited as tools for classical design of
control systems.

The procedure outlined above is rather sensitive to disturbances. In practice it can
seldom be used in such a simple form. This is not difficult to understand: assume that
the true system can be described by

Y(s) = G(s)U(s) + E(s) (3.13)

where E(s) is the Laplace transform of some disturbance e(¢). Then instead of (3.8) we
will have

y(t) = b sin(wt + @) + e(?) (3.14)

and due to the presence of the noise it will be difficult to obtain an accurate estimate of
the amplitude b and the phase difference ¢.

Improved frequency analysis
There are ways to improve the basic frequency analysis method. This can be done by a

correlation technique. The output is multiplied by sin w# and cos w¢ and the result is
integrated over the interval [0,T]. This procedure is illustrated in Figure 3.6.
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sin wt

y()

ys(T)

?

Ccos wt

Ye(T)

FIGURE 3.6 Improved frequency analysis.

For the improved frequency analysis, (3.14) yields

ys(T) = f i y(t) sin otdt
0

T T
= f b sin(wt + @) sin wrdt + j e(t) sin wrdt (3.15a)
0 0
T T
= 92—7: cos @ — g f cosQut + @)dr + f e(t) sin wrdt
0 0
T
y(T) = J y(¢) cos wrdt
0
T T
= f b sin(wt + @) cos wdt + f e(t) cos wtdt (3.15b)
0 0
T T
= b?T sin @ — g f sin(2wt + @)dt + f e(t) cos ordt
0 0

If the measurements are noise-free (e(f) = 0) and the integration time 7 is a multiple of
the sinusoid period, say T = k2n/w, then

1) = con g
(3.16)

bT .
ye(T) = = sin @

From these relations it is easy to determine b and @; then |G (io)]| is calculated according
to (3.9a). Note that (3.9) and (3.16) imply
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ys(T) = a_27_’ Re G(iw)
(3.17)
ye(T) = & Im G(io)

which can alse provide a useful form for describing G(iw).

Sensitivity to noise

- Intuitively, the approach (3.15)—(3.17) has better noise suppression properties than the
basic frequency analysis method. The reason is that the effect of the noise is suppressed
by the averaging inherent in (3.15).

A simplified analysis of the sensitivity to noise can be made as follows. Assume that
e(?) is a stationary process with covariance function r,(t). The variance of the output is
then r.(0). The amplitude b can be difficult to estimate by inspection of the signals unless
b? is much larger than r.(0). The variance of the term y,(T) can be analyzed as follows
(y.(T) can be analyzed similarly). We have

E [ f OT e(?) sin (J)tdtjl2

T T
E f f e(tl) sin O.)tle(t2) sin (Dt2dt1dt2 (318)
0 J0

var[ys(T)]

I

T T
= f f re(t;y — t;) sin wt; sin whdsde,
0 Jo

Assume that the noise covariance function r,(t) is bounded by an exponential function
Ir(v)| < ro exp(—alt)  (a > 0) (3.19)

(For a stationary disturbance this is a weak assumption.) Then an upper bound for
var[y,(T)] is derived as follows:

T T
varly(T)] sf f Ir(ty — 1)ldnds,
0 0

- f [ f |re(r>|dr]dtz
olLJ—,
< f:[ f : \re(r)tdr]dtz

< 2Tf ro exp(—alt|) dt =
0

(3.20)

2Tr0
o
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The ‘relative precision’ of the improved frequency analysis method satisfies

varfy(T)] _ 8  ro
{E[y{(D]}* ~ acos® ¢ b°T

(3.21)

which shows that the relative precision will decrease at least as fast as 1/7 when T tends
to infinity. For the basic frequency analysis without the correlation improvement, the
relative precision is given by

var y(f) _ r(0)
(Ey(t)}*  b* sin*(ot + @)

(3.22)

which can be much larger than (3.21).

Commercial equipment is available for performing frequency analysis as in (3.15)—
(3.17). The disadvantage of frequency analysis is that it often requires long experiment
times. (Recall that for every frequency treated the system must be allowed to settle to
the ‘stationary phase’ before the integrations are performed. For small w it may be
necessary to let the integration time T be very large.)

3.4 Correlation analysis

The form of model used in correlation analysis is
y(@) = 2 h(k)u(t — k) + v(?) (3.23)
k=0

or its continuous time counterpart. In (3.23) {h(k)} is the weighting sequence and v(¢) is
a disturbance term. Assume that the input is a stationary stochastic process which is
independent of the disturbance. Then the following relation (called the Wiener—Hopf
equation) holds for the covariance functions:

Tyu(T) = 2 h(k)r,(t — k) (3.24)
k=0
where r,,(t) = Ey(t + t)u(t) and r,(t) = Eu(t + t)u(t) (see equation (A3.1.11) in
Appendix A3.1 at the end of this chapter). The covariance functions in (3.24) can be
estimated from the data as

1 N-—max(t,0)
Pou(T) = N > y(it + Hu®) T=0, 1, £2, ...
t=1—min(t,0) 395
1 N—t ( * )
) = S ult+u) A1) = A0 T=0,1,2, ..
t=1

Then an estimate {fz(k)} of the weighting function {A(k)} can be determined in principle
by solving
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PoulT) = i h(k)?, (v — k) (3.26)
k=0

This will in general give a linear system of infinite dimension. The problem is greatly
simplified if we use white noise as input. Then it is known a priori that r,(t) = 0 for t # 0.
For this case (3.24) gives

h(k) = ry(k)/r.(0) (3.27)

which is easy to estimate from the data using (3.25). In Appendix A3.2 the accuracy of
this estimate is analyzed. Equipment exists for performing correlation analysis auto-
matically in this way.

Another approach to the simplification of (3.26) is to consider a truncated weighting
function. This will lead to a linear system of finite order. Assume that

hky=0 k=M (3.28)

Such a model is often called a finite impulse response (FIR) model in signal processing
applications. The integer M should be chosen to be large in comparison with the
dominant time constants of the system. Then (3.28) will be a good approximation. Using
(3.28), equation (3.26) becomes

M-1

() = 3 Ak, (x — k) (3.29)
k=0
Writing out this equation for v = 0, 1,..., M — 1, the following linear system of
equations is obtained:
) 7.(0) e F(M=1) R
: = ‘. : (3.30)
Fou(M — 1 : ’ ' h(M —1
Pl ) FM—1) ... £ 0) (M —1)

Equation (3.29) can also be applied with more than M different values of t giving rise to
an overdetermined linear system of equations. The method of determining {k(k)} from
(3.30) is discussed in further detail in Chapter 4. The condition required in order
to ensure that the system of equations (3.30) has a unique solution is derived in
Section 5.4.

3.5 Spectral analysis

The final nonparametric method to be described is spectral analysis. As in the previous
method, we start with the description (3.23), which implies (3.24). Taking discrete
Fourier transforms, the following relation for the spectral densities can be derived from
(3.24) (see Appendix A3.1):
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by(@) = H(e™)Pu(@) (3.31)

where

oo

@) = 5= D ruDe

oul0) = 5= 3 r(me (6:32)
—m)) E h(k)e“"“”
k=0

See (A3.1.12) for a derivation. Note that ¢y, (w) is complex valued.
Now the transfer function H(e ') can be estimated from (3.31) as

H(e™) = by (0)/dy () (3.33)

To use (3.33) we must find a reasonable method for estimating the spectral densities. A
straightforward approach would be to take

N

X 1 A —itw
q)yu(w) = EJ; E ryu(t)e (3.34)
t=—N
(cf. (3.25), (3.32)), and similarly for ¢,(w). The computations in (3.34) can be organized
as follows. Using (3.25),

N N—max(t,0)

2 —itw
bu@) =50 S S e+ Dulde
t=—N t=1-min(t,0)
Next make the substitution s = ¢ + t. Figure 3.7 illustrates how to derive the limits for
the new summation index.
Since e = e7*“e" we get

|
|
|
]
|
|
|
|
|
|
|
|
N

/ N

FIGURE 3.7 Change of summation variables. Summation is over the shaded area.
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N N
dul®) = 5 > 3 e e
et (3.35)
= 5o Ya(@)Un(-0)
where
N .
V@) = S ys)e™
N A (3.36)
Un(w) = > u(s)e™™

are the discrete Fourier transforms of the sequences {y(¢)} and {u(¢)}, padded with
zeros, respectively. For w = 0, 2n/N, 4n/N, . . . , w they can be computed efficiently using
FFT (fast Fourier transform) algorithms.

In a similar way,

$u(w) = 5% Un(@) Un(-0) = | Un(0)? (3.37)

This estimate of the spectral density is called the periodogram. From (3.33), (3.35),
(3.37), the estimate for the transfer function is

H(e ) = Yy(w)/Uy(w) (3.38)

This quantity is sometimes called the empirical transfer function estimate. See Ljung
(1985b) for a discussion.

The foregoing approach to estimating the spectral densities and hence the transfer
function will give poor results. For example, if u(f) is a stochastic process, then the
estimates (3.35), (3.37) do not converge (in the mean square sense) to the true spectrum
as N, the number of data points, tends to infinity. In particular, the estimate ¢, (o) will
on average behave like ¢,(w), but its variance does not tend to zero as N tends to
infinity. See Brillinger (1981) for a discussion of this point. One of the main reasons for
this behavior is that the estimate r‘yu(r) will be quite inaccurate for large values of T (in
which case only a few terms are used in (3.25)), but all covariance elements 7,,(t) are
given the same weight in (3.34) regardless of their accuracy. Another more subtle
reason may be explained as follows. In (3.34) 2N + 1 terms are summed. Even if the
estimation error of each term tended to zero as N — o, there is no guarantee that the
global estimation error of the sum also tends to zero. These difficulties may be
overcome if the terms of (3.34) corresponding to large values of t are weighted out. (The
above discussion of the estimates 7,,(t) and ¢,,(®) applies also to 7,(t) and ¢,(»).)
Thus, instead of (3.34) the following improved estimate of the cross-spectrum (and
analogously for the auto-spectrum) is used:

N

@) = 5= S AulDwDe™ (3.39)

T=—N



46 Nonparametric methods Chapter 3

where w(t) is a so-called lag window. It should be equal to 1 for T = 0, decrease with
increasing T, and should be equal to 0 for large values of 1. (‘Large values’ refer to a
certain proportion such as 5 or 10 percent of the number of data points, N). Several
different forms of lag windows have been proposed in the literature; see Brillinger
(1981).

Some simple windows are presented in the following example.

Example 3.4 Some lag windows
The following lag windows are often referred to in the literature:

1 tl <M 3.40
Wl('[;) - 0 Itl > M ( . a)
(1~ kM | <M
wy(t) = {0 | > M (3.40b)
1 T
o) = {§<1 + cos —1\7) [t < M (3.400)
0 [t > M

The window w;(t) is called rectangular, w,(t) is attributed to Bartlett, and ws(t) to
Hamming and Tukey. These windows are depicted in Figure 3.8.

Note that all the windows vanish for |t| > M. If the parameter M is chosen to be
sufficiently large, the periodogram will not be smoothed very much. On the other hand,
a small M may mean that essential parts of the spectrum are smoothed out. It is not

]

0 T M

FIGURE 3.8 The lag windows w(t), w,(t) and w;(t) given by (3.40).
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trivial to choose the parameter M. Roughly speaking M should be chosen according to
the following two objectives:

1. M should be small compared to N (to reduce the erratic random fluctuations of the °

periodogram).
2. |f(v)] < #,(0) for T = M (so as not to smooth out the parts of interest in the true
spectrum). E

The use of a lag window is necessary to obtain a reasonable accuracy. On the other
hand, the sharp peaks in the spectrum may be smeared out. It may therefore not be
possible to separate adjacent peaks. Thus, use of a lag window will give a limited
frequency resolution. The effect of a lag window on frequency resolution is illustrated
in the following simple example.

Example 3.5 Effect of lag window on frequency resolution

Assume for simplicity that the input signal is a sinusoid, u(f) = V2 sin wyf, and that a
rectangular window (3.40a) is used. (Note that when a sinusoid is used as input, lag
windows are not necessary since Uy(w) will behave as the tire spectrum, i.e. will be
much larger for the sinusoidal frequency and small for all other arguments. However,
we consider here such a case since it provides a simple illustration of the frequency
resolution.) To emphasize the effect of the lag window, assume that the true covariance
function is available. As shown in Example 5.7,

r.(t) = cos woT (3.41a)
Hence
. 1 XM .
¢ () = o > cos wgre ™ (3.41b)
=M

The true spectrum is derived in Example 5.7 and is given by
1
bu(w) = 5[d(@ = o) + &(w + wp)] (3.41¢)

Thus the spectrum consists of two spikes at w = *wy. Evaluating (3.41b),
. 1 X .
¢u((0) — ZE 2 [e 0—w)T +e l(w0+w)1:]

T=—

—1i 2M+1
= —1-— e_i(wo_w)Ml —¢ + ei(wa'ﬁ-w)Ml — ¢ i(wyto)( +
45t 1 — ei(wo—w) 1 — e—i(u)0+w)

1 (e~i(m0—w)(M+l/2) — ei(@—)(M+1/2)

i(we—w)(2M+1)

~ i o i@—@)2 _ gi(wo—w)2

+

ei(u)0+m)(M+1/2) _ e—i(w0+(n)(M+1/2))

ei((x)0+uo)/2 —i(wy+w)/2

— €

_ i(sin(M + H(wy — w)  sin(M + 3)(wy + w))

ym (3.41d)

sin 3(w, — W) sin $(wp + ®)
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FIGURE 3.9 The effect of the width of a rectangular lag window on the windowed
spectrum (3.41d), oy, = 1.5.
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The windowed spectrum (3.41d) is depicted in Figure 3.9 for three different values of M.
It can be seen that the peak is spread out and that the width increases as M decreases.
When M is large,

) _1M+12 M

< 4 >~_1_ sin(/2) 1 1 M
bl @0+ 5p) = 2 sin(w/4AM)  4n wAM T 2

Hence an approximate expression for the width of the peak is
Aw =2 — = — (3.41e)

Many signals can be described as a (finite or infinite) sum of superimposed sinusoids.
According to the above calculations the true frequency content of the signal at ® = wg
appears in ¢,(w) in the whole interval (w, — Aw, 0, + Aw). Hence peaks in the true
spectrum that are separated by less than /M are likely to be indistinguishable in the
estimated spectrum. |

Spectral analysis is a versatile nonparametric method. There is no specific restriction on
the input except that it must be uncorrelated with the disturbance. Spectral analysis
has therefore become a popular method. The areas of application range from speech
analysis and the study of mechanical vibrations to geophysical investigations, not to
mention its use in the analysis and design of control systems.
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Summary

o Transient analysis is easy to apply. It gives a step response or an impulse response
(weighting function) as a model. It is very sensitive to noise and can only give a crude
model.

e Frequency analysis is based on the use of sinusoids as inputs. It requires rather long
identification experiments, especially if the correlation feature is included in order to
reduce sensitivity to noise. The resulting model is a frequency response. It can be
presented as a Bode plot or an equivalent representation of the transfer function.

e Correlation analysis is generally based on white noise as input. It gives the weighting
function as a resulting model. It is rather insensitive to additive noise on the output
signal.

e Spectral analysis can be applied with rather arbitrary inputs. The transfer function is
obtained in the form of a Bode plot (or other equivalent form). To get a reasonably
accurate estimate a lag window must be used. This leads to a limited frequency
resolution.

As shown in Chapter 2, nonparametric methods are easy to apply but give only
moderately accurate models. If high accuracy is needed a parametric method has to be
used. In such cases nonparametric methods can be used to get a first crude model,
which may give useful information on how to apply the parametric method.

\

Ka cos ¢
y Ka sin @ /

a sin ¢

acos @

N

—a u a

FIGURE 3.10 Input—output relation, Problem 3.3.
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Problems

Problem 3.1 Determination of time constant T from step response
Prove the rule for determining T given in Figure 3.1.

Problem 3.2 Analysis of the step response of a second-order damped oscillator
Prove the relationships (3.3d)-(3.3f).

Problem 3.3 Determining amplitude and phase

One method of determining amplitude and phase changes, as needed for frequency
analysis, is to plot y(z) versus u(z). If u(f) = a sin wt, y(t) = Ka sin(wt + @), show that
the relationship depicted in the Figure 3.10 applies.

Problem 3.4 The covariance function of a simple process
Let e(f) denote white noise of zero mean and variance A>. Consider the filtered white
noise process

y(t) = 1+ a —1 e(t) ,al <1

where g~' denotes the unit delay operator. Calculate the covariances ry(k) =
Ey(t)y(t — k), k =0, 1,2, ..., of y(¢).

Problem 3.5 Some properties of the spectral density function
Let ¢,(w) denote the spectral density function of a stationary signal u(¢) (see (3.32)):

0

ou(w) = 515 Z rv)e " e [-m, x]

T=—00

Assume that

=5}

> @] <

=0
which guarantees the existence of ¢,(w). Show that ¢,(w) has the following properties:

(a) ¢.(w) is real valued and ¢, (—w) = ¢,(o)
(b) ¢ (w) = 0 for all ®

Hint. Seto(t) = (w(t—1) ... u(t—n)T,x=01 €&° ... @ V)T Thenshow
that

1
$ —_—
0 " Elp
1 “ ioT
= ; n — |t v)e

and find out what happens when n tends to infinity.
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Problem 3.6 Parseval’s formula
Let

Hg ™= Hag™  (mln)

k=0

G =3 Ga™* (ol

k=0

be two stable matrix transfer functions, and let e(f) be a white noise of zero mean and
covariance matrix A (n|n). Show that

_1__ ™ i T o—1w — > T
o f_ H(e )AG (C )d(l) = z HkAGk

k=0

E[H(g™He()][G(g~De®]"

The first equality above is called Parseval’s formula. The second equality provides an
‘interpretation’ of the terms occurring in the first equality.

Problem 3.7 Correlation analysis with truncated weighting function
Consider equation (3.30) as a means of applying correlation analysis. Assume that the
covariance estimates 7,,(-) and 7,(-) are without errors.

(a) Let the input be zero-mean white noise. Show that, regardless of the choice of M,
the weighting function estimate is exact in the sense that

hk)y = h(k) k=0,...,M—1

(b) To show that the result of (a) does not apply for an arbitrary input, consider the
input u(f) given by

u(t) — au(t — 1) = v() la] <1
where v(¢) is white noise of zero mean and variance ¢, and the first-order system
y(&) + ay(t — 1) = bu(t — 1) la] <1
Show that
h(0) =0
h(k) = b(—a)*™! k=1

hk)y = h(k) k=0,...,M—2

" _h(M -1)
h(M 1) = (1 + ao)
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: 0 .1+ 0> —a
a1 . 1 —a 1

(This result can be verified by direct calculations. It can be derived, for example, from
(C7.7.18).)

Problem 3.8 Accuracy of correlation analysis
Consider the noise-free first-order system

y() +ay(t — 1) =bu(t — 1) o <1

Assume that correlation analysis is applied in the case where u(f) is zero-mean white
noise. Evaluate the variances of the estimates A(k), k = 1, 2, ... using the results of
Appendix A3.2.

Problem 3.9 Improved frequency analysis as a special case of spectral analysis
Show that if the input is a sinusoid of the form

u(t) = a sin ¢ (I)=%Vy~t-n,ne[0,N—1]

(N = number of data points)

the spectral analysis (3.33)-(3.36) reduces to the discrete time counterpart of the
improved frequency analysis (3.15)—(3.17). More specifically, show that

Problem 3.10 Step response analysis as a special case of spectral analysis

Let {y(1)}L, denote the response of a discrete time linear system with transfer function
H(g™") = ZZ_oh(k)q™* to a step signal u(f) of amplitude a. Assume that y(f) = 0 for
t < 0 and y(f) = constant for ¢+ > N. Justify the following estimate of the system
transfer function:

Hg™) = Fi hg ey = XE = ﬁ(k ) R
k=0

and show that it is approximately equal to the estimate provided by the spectral
analysis.
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Problem 3.11 Determination of a parametric model from the impulse response
Assume that we know (or have estimated) an impulse response {h(k)};~;. Consider an
nth-order parametric model of the form

A(g~"y(t) = B(g~"u() (@)
which is to be determined from the impulse response {h(k)}, where

A h=14aq "+ ... +aq"

B(g7Y)Y=byg '+ ... +bg"

One possibility to determine {a;, b;} from {h(k)} is to require that the model (i) has a
weighting function that coincides with the given sequence for k = 1, ..., 2n.

(a) Set H(q™") = Xy~ h(k)qg~*. Show that the above procedure can be described in a
polynomial formulation as

B(q™") = A(g"HH(q™") + O(g™*"™) (ii)
and that (ii) is equivalent to the folllowing linear system of equations:
0 0 b1 0 aj h(1)
—h(1) 0 : I :
|
-h(2) —h(1) ! 0 1
. | a,
bbbt = : (iii)
—h(1) i by
0o -
. | .
—h(2n — 1) . . . h(n) | b, h(2n)
I

Also derive (iii) directly from the difference equation (i), using the fact that {h(k)}
is the impulse response of the system.
(b) Assume that {h(k)} is the noise-free impulse response of an nth-order system

Ao(q ") y(0) = Bolg™")u()

where Ay, By are coprime. Show that the above procedure gives a perfect model in
the sense that A(g™") = Ay(qg™"), B(g™") = Bo(g™).

Bibliographical notes

Eykhoff (1974) and the tutorial papers by Rake (1980, 1987) and Glover (1987) give
some general and more detailed results on nonparametric identification methods.

Some different ways of determining a parametric model from a step response have
been given by Schwarze (1964).

Frequency analysis has been analyzed thoroughly by Astrom (1975), while Davies
(1970) gives a further treatment of correlation analysis.

The book by Jenkins and Watts (1969) is still a standard text on spectral analysis. For
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more recent references in this area, see Brillinger (1981), Priestley (1982), Ljung
(1985b, 1987), Hannan (1970), Wellstead (1981), and Bendat and Piersol (1980). Kay
(1988) also presents many parametric methods for spectral analysis. The FFT algorithm
for efficiently computing the discrete Fourier transforms is due to Cooley and Tukey
(1965). See also Bergland (1969) for a tutorial description.

Appendix A3.1
Covariance functions, spectral densities and linear filtering

Let u(f) be an nu-dimensional stationary stochastic process. Assume that its mean
value is m, and its covariance function is

rd(t) = E[u(t + ©) — mu][u(®) — m]* (A3.1.1)

Its spectral density is then, by definition,

o

1 .
A T —itw
o (w) & o r;_:w r.(t)e (A3.1.2)
The inverse relation to (A3.1.2) describes how the covariance function can be found
from the spectral density. This relation is given by

r,(t) = f Ou(w)e™dw (A3.1.3)
As a verification, the right-hand side of (A3.1.3) can be evaluated using (A3.1.2), giving
7 1 i r (t;)e—ir'meitmdw — ___1_ i r (T’) T ei(x—r')mdw
~ “ 2n * .

2

T'=—00 T'=—0

oo

= 2 ru(t)d: v = 1(7)
which proves the relation (A3.1.3).
Now consider a linear filtering of u(z), that is

O = S Rl - k) (A3.1.4)
k=0

where y(¢) is an ny-dimensional signal and {i(k)} a sequence of (ny|nu)-dimensional
matrices. We assume that the filter in (A3.1.4) is stable, which implies that ||h(k)|| — 0
as k — oo,

Under the given conditions the signal y(¢) is stationary. The aim of this appendix is to
derive its mean value m,, covariance function r,(t) and spectral density ¢,(®); and in
addition the cross-covariance function r,,(t) and the cross-spectral density ¢, (w). It will
be convenient to introduce the filter, or transfer function operator
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Hg™") = i h(k)g* (A3.1.5)
k=0

where g1 is the backward shift operator. Us1ng H(g™ "), the filtering (A3.1.4) can be
rewritten as

y(®) = H(g™Hu() (A3.1.6)
The mean value of y(¢) is easily found from (A3.1.4):

my, = Ey(t) = E > h(kju(t — k) = > h(kym, = H(1)m, (A3.1.7)
k=0 k=0
Note that H(1) can be interpreted as the static (dc) gain of the filter.

Now consider how the deviations from the mean values y(t) £ y(t) — m,, u(t) &
u(t) — m, are related. From (A3.1.4) and (A3.1.7),

50 = S kRt — k) = S hEm, = S h@u(t — k) — m,]
k=0 k=0 k=0
. | (A3.1.8)
= S W)l - k) = H(ga()
k=0

Thus (@(f), y(t)) are related in the same way as (u(f), y(t)). When analyzing the
covariance functions, strictly speaking we should deal with #i(f), y(¢). For simplicity we
drop the ~ notation. This means formally that u(f) is assumed to have zero mean. Note,
however, that the following results are true also for m, # 0.

Consider first the covariance function of y(f). Some straightforward calculations give

r(t) = Ey(t + 1)y"(1)

22

h()Eu(t + © — ju'(t — KAT(K)

uMs

(A3.1.9)
=SS hre (8 — j + RHTGR)
j=0 k=0

In most situations this relation is not very useful, but its counterpart for the spectral
densities has an attractive form. Applying the definition (A3.1.2),

B =5 S r@e ™

2n SO3S h(eTVOr (v — j + ke TTTORT(k)etke

=]

= Zni i h(j)e“ijw[ E ru(.cr)e-—ir’w:lhT(k)eikm

T'=—00

i h(e” *f‘”]%(w)[i hT(k)e"k“’]

k=0
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or

dy(0) = H(e ) (0) H () (A3.1.10)

This is a useful relation. It describes how the frequency content of the output depends on
the input spectral density ¢,(w) and on the transfer function H(e'). For example,
suppose the system has a weakly damped resonance frequency w,. Then | H(e')| will be
large and so will ¢,(wg) (assuming ¢,(wy) # 0).

Next consider the cross-covariance function. For this case

ru(T) = Ey(t + t)u'(2)

= go h(j)Eu(t + © = ju’(2) (A3.1.11)

8

h(jru(t = J)
0

~.
I

For the cross-spectral density, some simple calculations give

@) = 5= D ruDe ™

T=—00

1 3 - Ne —Jw Na—i(T—j)®
3 2 ke — e

t=—00 j=0

I

o

i (1)e*‘f‘”[1 » m(r')e—“’w]

T'=—o00

or

Pyu(w) = H(e )P () (A3.1.12)

The results of this appendix were derived for stationary processes. Ljung (1985c) has
shown that they remain valid, with appropriate interpretations, for quasi-stationary
signals. Such signals are stochastic processes with deterministic components. In analogy
with (A3.1.1), mean and covariance functions are then defined as

m, = AIIEEO = 2 Eu(?) (A3.1.13a)
.1 T
r(t) = Algl})0 N 2 E@(t + 1) — m)(u(t) — m,) (A3.1.13b)

assuming the limits above exist. Once the covariance function is defined, the spectral
density can be introduced as in (A3.1.2). As mentioned above, the general results
(A3.1.10) and (A3.1.12) for linear filtering also hold for quasi-stationary signals.
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Appendix A3.2
Accuracy of correlation analysis

Consider the system
y(@© = > hku(t — k) + v(t) (A3.2.1)
k=0

where v(¢) is a stationary stochastic process, independent of the input signal. In Section
3.4 the following estimate for the weighting function was derived:

y(t + ku(l)
Frulk) _ ‘;S:

30
’ %z (1)

assuming that u(¢) is white noise of zero mean and variance §°.

The accuracy of the estimate (A3.2.2) can be determined using ergodic theory
(see Section B.1 of Appendix B). We find #,,(k) — ry.(k), 7,(0) — r,(0) and hence
h(k) — h(k) as N tends to infinity. To examine the deviation i(k) — h(k) for a finite but
large N it is necessary to find the accuracy of the covariance estimates 7,,(k) and 7,(0).
This can be done as in Section B.8, where results on the accuracy of sample
autocovariance functions are derived. However, here we choose a more direct way. First
note that

h(k) =

k=01, ... (A3.2.2)

H

(k) — h(k) ,uzo) (1K) = A(R)7(0)]

~ o ;17[2 O+ k)~ h(k)u(r)}u(t)]
_ %%Z{i Rt + k — i) + vt + k)}u(t) (A3.2.3)
r=1]i=0

i#*k

The covariance P, between {h(w) — h(n)} and {A(v) — h(v)} is calculated as follows:

Pov= i E {2 h(@u(c + w = i) + vt + u)}u(t):l
=1

B
3

#u

h(j)u(s +v—j) + v+ v)}u(s)]

=0
” (A3.2.4)
1 N N o o
=35 S S S S AORDELG + 5~ i) u(OuGs + v~ u(s)]
t=1 s=1 0 j=0

i”
% Ev(t + wv(s + v)Eu(f)u(s)
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where use has been made of the fact that u and v are uncorrelated. The second term in
(A3.2.4) is easily found to be

1
NS r(p = v)

To evaluate the first term, note that for a white noise process
Eu(t + p — Du(u(s + v — juls) = 6*8,-i0dv—j0
+ 046z+u—us+v—16us‘+ 046:+g—aséns+v
+ {Eu*(t) — 30*}8,-;08y— 08¢

For convenience, set h(i) = 0 for i < 0. Inserting the above expression into (A3.2.4) we
now find

=

O (V) I IS 1 &
Pp,v -~ W + N 1_20 ;0 h(l)h(])apt—i,v—j + ]—V—Z T=E_N (N - !t!)h(t + H)h(" - 1:)
i#Fp ;’;‘:v T#0
— rv(“’ — V) _l - : s
=Nz TN ,ZO h()h(i — u + v)
i;u

+ % 2\': (N — |[t)h(t + wh(v — 1)
0

zf"—(—';;,—;*v-) + %gh(i)h(i + v —u)

v
+ —]{—/ > h(v + wh(v — 1) — %h(u)h(v) (A3.2.5)
T=—p
Note that the covariance element P, will not vanish in the noise-free case (v(f) = 0). In
contrast, the variances—covariances of the estimation errors associated with the
parametric methods studied in Chapters 7 and 8, vanish in the noise-free case. Further
note that the covariance elements P, approach zero when N tends to infinity. This is in

contrast to spectral analysis (the counterpart of correlation analysis in the frequency
domain), which does not give consistent estimates of H.



Chapter 4

LINEAR REGRESSION

4.1 The least squares estimate

This chapter presents a discussion and analysis of the concept of linear regression. This
is indeed a very common concept in statistics. Its origin can be traced back to Gauss
(1809), who used such a technique for calculating orbits of the planets.

The linear regression is the simplest type of parametric model. The corresponding
model structure can be written as

y(®) = ¢T(1)6 (4.1)

where y(¢) is a measurable quantity, ¢(f) is an n-vector of known quantities and 8 is an
n-vector of unknown parameters. The elements of the vector ¢(f) are often called
regression variables or regressors while y(¢) is called the regressed variable. We will call
0 the parameter vector. The variable ¢ takes integer values. Sometimes ¢ denotes a time
variable but this is not necessarily the case.

It is straightforward to extend the model (4.1) to the multivariable case, and then

y(t) = ®T(1)6 (4.2)

where y(f) is a p-vector, ®(f) an (n|p) matrix and 6 an n-vector. Least squares
estimation of the parameters in multivariable models of the form (4.2) will be treated in
some detail in Complement C7.3.

Example 4.1 A polynomial trend
Suppose the model is of the form

y@©) =ag + ait + ... + at

with unknown coefficients a, ..., a,. This can be written in the form (4.1) by defining
)= ¢t ... T
0=1( a ... a)"

Such a model can be used to describe a trend in a time series. The integer r is typically
taken as 0 or 1. When r = 0 only the mean value is described by the model. ]

Example 4.2 A weighted sum of exponentials
In the analysis of transient signals a suitable model is
y(t) = bie ™ " + be ' + ..+ be
60
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It is assumed here that k4, ..., k, (the inverse time constants) are known but that the
weights by, ..., b, are unknown. Then a model of the form (4.1) is obtained by setting

o) = (e™k ... e7kNHT
0= (bl e bn)T |
Example 4.3 Truncated weighting function

A truncated weighting function model was described in Section 3.4. Such a model is
given by

y(@) = hou(t) + hu(t — 1) + ... + hpyy_qu(t — M + 1)

The input signal u() is recorded during the experiment and can hence be considered as
known. In this case

o) = W@ uit—1) ... ult-M+1)"
6 = (ho ce hM_l)T

This type of model will often require many parameters in order to give an accurate
description of the dynamics (M typically being of the order 20-50; in certain signal
processing applications it may be several hundreds or even thousands). Nevertheless, it
is quite simple conceptually and fits directly into the framework discussed in this
chapter. ]

The problem is to find an estimate 6 of the parameter vector 8 from measurements y(1),
o(1), ..., ¥(N), ®(N). Given these measurements, a system of linear equations is
obtained, namely

y(1) = ¢"(1)6
y(2) = 97(2)6

y(N) = ¢"(N)8

This can be written in matrix notation as

Y = @0 (4.3)
where

y(1)

Y = S, an (N|1) vector (4.4a)
y(N)
@'(1)

P = : ], an (N|n) matrix (4.4b)
?'(N)

One way to find 6 from (4.3) would of course be to choose the number of measurements,
N, to be equal to n. Then ® becomes a square matrix. If this matrix is nonsingular the
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linear system of equations, (4.3), could easily be solved for 6. In practice, however,
noise, disturbances and model misfit are good reasons for using a number of data
greater than n. With the additional data it should be possible to get an improved
estimate. When N > n the linear system of equations, (4.3), becomes overdetermined.
An exact solution will then in general not exist.

Now introduce the equation errors as

e(f) = y(1) — 9" (00 (4.5)

and stack these in a vector ¢ defined similarly to (4.4a):

e(1)
()
g(N)

In the statistical literature the equation errors are often called residuals. The least
squares estimate of 0 is defined as the vector 0 that minimizes the loss function

S 2 = Leme = Ly
V(0) = Ee(t)=§ss=§||s[| (4.6)

N —

where ||-|| denotes the Euclidean vector norm. According to (4.5) the equation error
(¢) is a linear function of the parameter vector 6.

The solution of the optimization problem stated above is given in the following
lemma.

Lemma 4.1
Consider the loss function V(0) given by (4.5), (4.6). Suppose that the matrix ®® is
positive definite. Then V(0) has a unique minimum point given by

6 = (@To) 'oTY 4.7)

The corresponding minimal value of V(8) is

min V(6) = V(0) = [YTY — YT®(0 D) 'oTY] (4.8)

B[ =

Proof. Using (4.3), (4.5) and (4.6) an explicit expression for the loss function V(8) can
be obtained. The point is to see that V(0) as a function of 6 has quadratic, linear and
constant terms. Therefore it is possible to use the technique of completing the squares.
We have

e=Y — ®0

and
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V(0) = %[Y - ©6]"[Y — @8]
- %[eTqﬂcpe ~ 0TOTY — YO0 + Y'Y]
Hence
V() = 1[0 - (@T0) BTV i@ D) — (©70) 10TY]

+ %[YTY — YTo(0TD) 1 PTY]

The second term does not depend on 0. Since ®*® by assumption is positive definite, the
first term is always greater than or equal to zero. Thus V(8) can be minimized by setting
the first term to zero. This gives (4.7), as required. The minimal value (4.8) of the loss
function then follows directly. |

Remark 1. The matrix ®® is by construction always nonnegative definite. When it is
singular (only positive semidefinite) the above calculation is not valid. In that case one
can instead evaluate the gradient of the loss function. Setting the gradient to zero,

_dv(e) _

0 do

~Y™® + 0T(0TD)

which can be written as
(<I>T<D)6 = oy (4.9)

When ®*® is singular, ® does not have full rank (i.e. rank ® < n). In such a case,
equation (4.9) will have infinitely many solutions. They span a subspace which
describes a valley of minimum points of V(6). Note, however, that if the experiment
and the model structure are well chosen then @ will have full rank. |

Remark 2. Some basic results from linear algebra (on overdetermined linear systems of
equations) are given in Appendix A (see Lemmas A.7 to A.15). In particular, the least
squares solutions are characterized and the so-called pseudoinverse is introduced; this
replaces the usual inverse when the matrix is rectangular or does not have full rank. In
particular, when @ is (N|n) and of rank # then the matrix (®*®)'®" which appears in
(4.7) is the pseudoinverse of @ (see Lemma A.11). =

Remark 3. The form (4.7) of the least squares estimate can be rewritten in the
equivalent form

6 = [}: co(t)cpT(r)]~ [E cp(t)y(t)] (4.10)
=1 =1

In many cases ¢(f) is known as a function of ¢. Then (4.10) might be easier to
implement than (4.7) since the matrix @ of large dimension is not needed in (4.10). Also
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the form (4.10) is the starting point in deriving several recursive estimates which will be
presented in Chapter 9. Note, however, that for a sound numerical implementation,
neither (4.7) nor (4.10) should be used, as will be explained in Section 4.5. Both these
forms are quite sensitive to rounding errors. |

Remark 4. The least-squares problem can be given the following geometrical
interpretation. Let the column vectors of ® be denoted by @4, ..., ®,. These vectors
belong to RN. The problem is to seek a linear combination of @, ..., @, such that it
approximates Y as closely as possible. The best approximation in a least squares sense
is given by the orthogonal projection of Y onto the subspace spanned by @4, ..., ®,
(see Figure 4.1). Let the orthogonal projection be denoted Y*. Then it is required that

oY - YY" =0 i=1,...,n
j=1
for some weights 8; to be determined. This gives
oy =Y ofo8 i=1,...,n

j=1

In matrix form this becomes

oTo, ... ofo,) /6, oTy
oo, ... ofd,/\8, ory
which is precisely (4.9). |

The following example illustrates the least squares solution (4.7).

FIGURE 4.1 Geometrical illustration of the least squares solution for the case N = 3,
n=72.
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Example 4.4 Estimation of a constant
Assume that the model (4.1) is

y@ =»b

This means that a constant is to be estimated from a number of noisy measurements. In
this case

o) =1 6=0>

()

and (4.7) becomes

6= <) + ...+ yW)]

This expression is simply the arithmetic mean of all the measurements. |

4.2 Analysis of the least squares estimate

We now analyze the statistical properties of the estimate (4.7). In doing so some
assumptions must be imposed on the data. Therefore assume that the data satisty

y(®) = @"(1)8o + e(?) (4.11a)

where 0, is called the true parameter vector. Assume further that e(¢) is a stochastic
variable with zero mean and variance A?. In matrix form equation (4.11a) is written as

Y=9®0, + ¢ (4.11b)
where
e(1)
e = :
e(N)
Lemma 4.2

Consider the estimate (4.7). Assume that the data obey (4.11) with e(¢) white noise of
zero mean and variance A>. Then the following properties hold:

(i) 6 is an unbiased estimate of 6,.
(ii)) The covariance matrix of 6 is given by

cov(f) = 32(@TP)! (4.12)

(iii) An unbiased estimate of A\? is given by
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s? = 2V(B)/(N — n) (4.13)

Proof. Equations (4.7) and (4.11) give
6 = (@TO) ' DT{DO, + ¢} = O, + (PTD) DT
and hence
EB = 0, + (®"®) '@ Ee = 6,

which proves (i).
To prove (ii) note that the assumption of white noise implies Eee® = A*I. Then

E®B - 00)(6 — 8))" = E[(®"®) " '®"e][(@7D) ' DTe]"
= (OTD) '®TEee’®(0 D) !
= (®T®) o\ ID(PTD) !
- A'Z((DT(D)—l

which proves (ii).
The minimal value V(G) of the loss function can be written, according to (4.8) and
(4.11), as

V() = 1[cpeo + €]l - B(® D) DT|[D6, + €]

- %eT[I ~ o(0T®) D"

Consider the estimate s* given by (4.13). Its mean value can be evaluated as
Es* = 2EV(O)(N — n) = Etr{e"[Iy — ®(®T®)"'®"|e}/(N — n)

Etr{[Iy — ®(®T®) '®"]ee’} /(N — n)

= tr[ly — ©(®T®) '®TNUN/(N — n)

= [trly — tr{®(®T®) ' dT}A*(N — n)

= [trly — tr{(®T®) (@ D)} N/(N — n)

= [trly — tt,]AY(N — n) = [N — n]A(N — n) = \?

I

In the calculations above I, denotes the identity matrix of dimension k. We used the
fact that for matrices A and B of compatible dimensions tr(AB) = tr(BA). The
calculations show that s? is an unbiased estimate of A% =

Remark 1. Note that it is essential in the proof that @ is a deterministic matrix. When
taking expectations it is then only necessary to take e into consideration. =

Remark 2. In Appendix B (Lemma B.15) it is shown that for every unbiased estimate
6 there is a lower bound, Pcgr, on the covariance matrix of 6. This means that
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cov(f) = Pcr (4.14)

Example B.1 analyzes the least squares estimate (4.7) as well as the estimate s?, (4.13),
under the assumption that the data are Gaussian distributed and satisfy (4.11). It is
shown there that cov(f) attains the lower bound, while var(s?) does so only
asymptotically, i.e. for a very large number of data points. |

4.3 The best linear unbiased estimate

In Lemma 4.2 it was assumed that the disturbance e(?) in (4.11) was white noise, which
means that e(f) and e(s) are uncorrelated for all £ # s. Now consider what will happen
when this assumption is relaxed. Assume that (4.11) holds and that

Eee' = R (4.15)

where R is a positive definite matrix. Looking at the proof of the lemma, it can be seen
that 6 is still an unbiased estimate of 6o. However, the covariance matrix of 6 becomes

cov(0) = (OT®) 'OTRO(® D) ! (4.16)

Next we will extend the class of identification methods and consider general linear
estimates of 6y. By a linear estimate we mean that 0 is a linear function of the data
vector Y. Such estimates can be written as

6=2"v (4.17)

where Z is an (N|n) matrix which does not depend on Y. The least squares estimate
(4.7) is a special case obtained by taking

Z = &(@ d)!

We shall see how to choose Z so that the corresponding estimate is unbiased and has a
minimal covariance matrix. The result is known as the best linear unbiased estimate
(BLUE) and also as the Markov estimate. It is given in the following lemma.

Lemma 4.3
Consider the estimate (4.17). Assume that the data satisfy (4.11), (4.15). Let

Z* = RT®(®"R'@)! (4.18)

Then the estimate given by (4.17), (4.18) is an unbiased estimate of 6,. Furthermore, its
covariance matrix is minimal in the sense that the inequality
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cov(0) = (PTR™1®) ™! < cov(H) (4.19)

holds for all unbiased linear estimates. (P; < P, means that P, — P, is nonnegative
definite).
Proof. The requirement on unbiasedness gives
8, = EO = EZT(®0, + e) = Z D6,
s0, since 6 is arbitrary,
Z'o =1 (4.20)

In particular, note that the choice (4.18) of Z satisfies this condition.
The covariance matrix of the estimate (4.17) is given in the general case by

covz(0) = E(Z'Y — 8,)(Z7Y - 6,)T = Z'RZ (4.21)
In particular, if Z = Z* as given by (4.18), then

covz+(0) = (P"R'®)'®"R'RRI®(®TR™®) ! = (®TR™'D) ! (4.22)
which proves the equality in (4.19). It remains to show the inequality in (4.19). For
illustration, we will give four different proofs based on different methodologies.

Proof A. Let f) denote the estimation error § — 6, for a general estimate (subject to

(4.20)); and let 6* denote the error which corresponds to the choice (4.18) of Z. Then

cov,(0) = EBOT = E[6 — 6*][0 — 6*]T + E60*T + E6*6T — E6*0*T  (4.23)
However, we already know that

E6*9*T = (¢,TR—1(I))—1
and it follows that

E60*T = EZTee"Z* = Z'RZ* = ZTRR™'®(®TR'®)"!
ZTo(@"R™'®)! = (PTRT'®)! = E6*6*T
= Eé*éT]T

Note that we have used the constraint (4.20) in these calculations. Now (4.23) gives
cov,(0) = E[6 — 6*][6 — 6*]" + (®"R™'®)"! = (®"R™'®)!
which proves (4.19).

Proof B. The matrix

Z'RzZ Z'Rz*\ [(Z" RZ 7%
zZ*"Rz 7*"Rz*) \z*T

is obviously nonnegative definite. Then in particular
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Z'RZ — (Z'RZ*)(Z*"RZ*)"Y(Z*"RZ) = 0 (4.24)
(see Lemma A.3 in Appendix A). However,
Z'RZ* = Z'RR'®(®"R7'®)7! = ZTO(®"R7'®)! = (@TR™'P) 7!
Z*TRZ = (Z'RZ*)T = (®"R"'®)~!
Since this holds for all Z (subject to (4.20)), it is also true in particular that
Z*TRZ* = (®TR™'®)!
(cf. (4.22)). Now, (4.21), (4.24) give
covz(0) = ZTRZ = (®"R™'®)"! = cov(H)
which proves (4.19).

Proof C. Making use of (4.20),
covz(0) — cov,+(0) = ZTRZ — (®"R™'®)~!
= Z"RZ — Z'®(®"R'®)"'®"Z (4.25)
Z'[R — ("R '®) '®T|Z

However, the matrix in square brackets in this last expression can be written as
R — ®(®"R'®)'®T = [R — ®(®"RT'®)'®T|IR"IR — ®(®TR'®)1®T]
and it is hence nonnegative definite. It then follows easily from (4.25) that
covz(é) - covZ*(é) =0
which is the required result.
Proof D. Let a be an arbitrary n-dimensional vector. Finding the best linear unbiased
estimate 8 by minimizing the covariance matrix (4.21) is equivalent to minimizing

a"ZTRZa subject to (4.20). This constrained optimization problem is solved using the
method of Lagrange multipliers. The Lagrangian for this problem is

L(Z,A) = o"Z"RZo. + tr{A(Z"® — I)}

where the (n|n) matrix A represents the multipliers. Using the definition

5,37
0Zl; 9Z;

for the derivative of a scalar function with respect to a matrix, the following result can
be obtained:

_ oL
Y4

0 = 2RZaa” + DA (4.26)

This equation is to be solved together with (4.20). Multiplying (4.26) on the left by
®'R1,
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0 = 207Zoa™ + (P"R™'D)A

In view of (4.20), this gives
A= -2®"R'®) laaT

Substituting this in (4.26),
Zoo' = —%R”(I)A = R'®(®"R'®) loaT

Thus

[Z - RT'®(@TR'®) Hoa® =0
for all a. This in turn implies that

Z = R'O(@'R'd)!

Thus to minimize the covariance matrix of an unbiased estimate we must choose Z as in
(4.18). [ |

Remark 1. Suppose that R = A*l. Then Z* = ®(®'®) !, which leads to the simple
least squares estimate (4.7). In the case where e(f) is white noise the least squares
estimate is therefore the best linear unbiased estimate. |

Remark 2. One may ask whether there are nonlinear estimates with better accuracy
than the BLUE. It is shown in Example B.2 that if the disturbances e(f) have a
Gaussian distribution, then the linear estimate given by (4.17), (4.18) is the best one
among all nonlinear unbiased estimates. If e(¢) is not Gaussian distributed then there
may exist nonlinear estimates which are more accurate than the BLUE. |

Remark 3. The result of the lemma can be slightly generalized as follows. Let 6 be the
BLUE of 6,, and let A be a constant matrix. Then the BLUE of A6, is AB. This can be
shown by calculations analogous to those of the above proof. Note that equation (4.20)
will have to be modified to ZT® = A. [

Remark 4. In the complements to this chapter we give several extensions to the above
lemma. In Complement C4.1 we consider the BLUE when a linear constraint of the
form A6, = b is imposed. The case when the residual covariance matrix R may be
singular is dealt with in Complement C4.3. Complement C4.4 contains some extensions
to an important class of nonlinear models. [ ]

We now illustrate the BLUE (4.17), (4.18) by means of a simple example.

Example 4.5 Estimation of a constant (continued from Example 4.4)
Let the model be

y(@) =b
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Assume that the measurement errors are independent but that they may have different
variances, SO

y(&) = by + e(t)  Ee*(t) =\
Then

Thus the BLUE of by is

b= 3 (A0)
2 1/}\2)1 1

This is a weighted arithmetic mean of the observations. Note that the weight of y(i), i.e.

1 2
~ 1/A;

> ()

j=1

is small if this measurement is inaccurate (A; large) and vice versa. ]

4.4 Determining the model dimension

A heuristic discussion

The treatment so far has investigated some statistical properties of the least squares
and other linear estimates of the regression parameters. The discussion now turns to the
choice of an appropriate model dimension. Consider the situation where there is a
sequence of model structures of increasing dimension. For Example 4.1 this would
simply mean that r is increased. With more free parameters in a model structure, a
better fit will be obtained to the observed data. The important thing here is to
investigate whether or not the improvement in the fit is significant. Consider first an
ideal case. Assume that the data are noise-free or N = o, and that there is a model
structure, say .#*, such that, with suitable parameter values, it can describe the
system exactly. Then the relationship of loss function to the model structure will be as
shown in Figure 4.2.

In this ideal case the loss V(é) will remain constant as long as . is ‘at least as
large as’ #*. Note that for N — » and .# > .#* we have 2V(6)/N — Ee(¢). In the
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V(6)

+*

—+ + + + 4 ./”
M

FIGURE 4.2 Minimal value of the loss function versus the model structure. Ideal case
(noise-free data or N — ). The model structure .# * corresponds to the true system.

practical case, however, when the data are noisy and N < o, the situation is somewhat
different. Then the minimal loss V(é) will decrease slowly with increasing #, as
illustrated in Figure 4.3.

The problem is thus to decide whether the decrease AV = V; — V, is ‘small’ or not
(see Figure 4.3). If it is small then the model structure .#, should be chosen; otherwise
the larger model .#, should be preferred. For a normalized test quantity it seems
reasonable to consider AV = (V| — V,)/V,. Further, it can be argued that if the true
system can be described within the smaller model structure .4, then the decrease AV
should tend to zero as the number of data points, N, tends to infinity. One would
therefore expect N(V; — V,)/V, to be an appropriate test quantity. For ‘small’ values of
this quantity, the structure .#; should be selected, while otherwise .#, should be
chosen.

Statistical analysis

To get a more precise picture of how to apply the test introduced above, a statistical
analysis is needed. This is given in the following lemma.

Lemma 4.4
Consider two model structures .#; and .#, given by

V(6)

Vi
V2

1 1 1 L M
A,

FIGURE 4.3 Minimal value of the loss function versus the model structure. Realistic
case (noisy data and N < «).
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My y(1) = @1(1)6; (4.27)
Mo y(1) = 92(1)6; | (4.28)

where n; = dim 6; < n, = dim 6, and
@1(?)
Po(t) = ( )
’ a(t)

0,
6, =|{ -

Assume that the data satisfy
S y(0) = i (D)8 + e() (4.29)

where {e(t)} is a sequence of independent 4" (0, A?) distributed random variables. Let
V; denote the minimal value of the loss function as given by (4.8) for the model struc-
ture #;, i = 1, 2. Then the following results are true:

. 2V
(i) 52 ~ PN = ny)
2V, = V.
(ii) % ~ Xz(nz - m)
(iii) V; — V, and V, are independent random variables

Proof. The proof relies heavily on Lemma A.29, which is rather technical. As in the
proof of Lemma 4.2 we have

Vv, = %eTPle V, = —;-eTPze

where

Py =1 — &y(®{0y) ']

Py =1 — &x(®;D,) ']
We now apply Lemma A.29 (where F; corresponds to @, and F corresponds to ®,). Set
é = Uel\, where U is a specific orthogonal matrix which simultaneously diagonalizes

P, and P; — P,. Since U is orthogonal we have é ~ 470, I).
Next note that

Iy, O
2VL/A% = eTPe/\? = éT< NO : 0 )é

On-n, O O
2(Vi = Vo)A = e"(Py — PeN>=¢"| 0 I,_, O |e
0 0 0,

1

The results now follow by invoking Lemma B.13. |
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Remark. The y*(n) distribution and some of its properties are described in Section B.2
of Appendix B. =

Corollary. The quantity

V1°V2N"n2
Ny — Nq V2

f= (4.30)

is distributed F(n, — ny, N — n,).

Proof. The result is immediate by definition of the F-distribution; see Section B.2.

The variable fin (4.30) can be used to construct a statistical test for comparing the model
structures #; and .#,. For each model structure the parameter estimates and
the minimal value of the loss function can be determined. In this way the test quantity f
can easily be computed. If N is large compared to n, the ¥*(n, — n,) distribution can be
used instead of F(n, — ny, N — n,) (see Lemma B.14). Thus, if f is smaller than
¥2(n, — ny) then we can accept . at a significance level of o.. Here ¥2(n, — n,) is the
test threshold defined as follows. If x is a random variable which is ¥*(n, — n,) dis-
tributed and o € (0, 1) is a given number, then by definition P(x > x4(n, — n;)) = o. Asa
rough rule of thumb, #; should be accepted when f < (n, — ny) + V[8(n, — n;)] and
rejected otherwise (see the end of Section B.2). This corresponds approximately to o =
0.05. Thus, if f = (n, — ny) + V[8(n, — ny)], the larger model structure .#, should be
regarded as more appropriate.

It is not easy to make a strict analysis of how to select a, for the following reason.
Note that

o = P(H, is rejected when H, is true)
where Hj is the so-called null hypothesis,
Hy: The smaller model structure .#; is adequate

This observation offers some guidelines for choosing a. (A common choice is a = 0.05.)
However, it is not possible to calculate the risk for the other type of error:

P(H, is accepted when H, is false)

which corresponds to a given value of a.
The determination of the model dimension is examined further in Chapter 11, where
additional specific results are derived.

4.5 Computational aspects

This section considers some aspects of the numerical computation of the least squares
estimate (4.7). The following topics are covered:
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e Solution of the normal equations.
e Orthogonal triangularization.
e A recursive algorithm.

Normal equations

The first approach is to compute ®*® and ®*Y and then solve the so-called normal
equations (cf. (4.9)):

(@T®)6 = (@TY) (4.31)

This is indeed a straightforward approach but it is sensitive to numerical rounding
errors. (See Example 4.6 below.)

Orthogonal triangularization

The second approach, orthogonal triangularization, is also known as the QR method.
The basic idea is the following: Instead of directly ‘solving’ the original overdetermined
linear system of equations

P6=Y (4.32)
it is multiplied on the left by an orthogonal matrix O to give
QP06 = QY (4.33)
_This will not affect the loss function (4.6), since
QY — Q®6IP = [|Q(Y — @B)[P = (¥ — ©6)"QTQ(Y — @)
= (Y - ®0)"(Y — ®0) = ||[Y — @0}

Suppose now that the orthogonal matrix Q can be chosen so that Q® has a ‘convenient’
form. In Appendix A, Lemmas A.16—A.20, it is shown how Q can be constructed to
make Q® upper triangular. This means that

0P = (%) QY = <ﬁ> (4.34)

22
where R is a square, upper triangular matrix. The loss function then becomes
V(6) = [026 — QYIF = RO — z|f + |zo|* (4.35)

Assuming that R is nonsingular (which is equivalent to ® being of full rank, and also to
®"® being nonsingular), it is easy to see that V(8) is minimized for 6 given by

RO = z; (4.36)
The minimum value is

mein V(8) = |zl = 232, (4.37)
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It is an easy task to solve the linear system (4.36) since R is a triangular matrix.

The QR method requires approximately twice as many computations as a direct
solution to the normal equations. Its advantage is that it is much less sensitive to
rounding errors. Assume that the relative errors in the data are of magnitude & and
that the precision in the computation is . Then in order to avoid unreasonable errors
in the result we should require 1 < &2 for the normal equations, whereas < § is
sufficient for the OR method. A further discussion of this point is given in Appendix A
(see Section A.4).

The following example illustrates that the normal equations are more sensitive to
rounding errors than the QR method.

Example 4.6 Sensitivity of the normal equations
Consider the system

3 3-8\ (-1 438
(4 4+5>x_<1) (4.38)

where 0 is a small number. Since the column vectors of the matrix in (4.38) are almost
parallel, one can expect that the solution is sensitive to small changes in the coefficients.
The exact solution is

- (% (4.39)
T\ '
The normal equations are easily found to be
25 25 + 0 _ 1 (4.40
25+ 5 25420 +20%)  \1+20 40)

If a OR method is applied to (4.38) with Q constructed as a Householder trans-
formation (see Lemma A.18), then

13 4
Q‘5<4 -3)

Applying the OR method we get the following triangular system

5 5+ 0/5 1/5
x = (4.41)

0 =70/5 =7/5
Assume now that the equations are solved on a computer using finite arithmetic and
that due to truncation errors 8> = 0. The ‘QR equations’ (4.41) are then not affected

and the solution is still given by (4.39). However, after truncation the normal equations
(4.40) become

25 25+8\ [ 1 i)
25 4+06 25+25)°  \1+28 :

The solution to (4.42) is readily found to be
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49/8 + 2
‘= (4.43)
~49/8

Note that this solution differs considerably from the true solution (4.39) to the original
problem. B

Recursive algorithm

A third approach is to use a recursive algorithm. The mathematical description and
analysis of such algorithms are given in Chapter 9. The idea is to rewrite the estimate
(4.7) in the following form:

6 = 6@t — 1) + KO)[y(1) — 9 (96 — 1)] (4.44)

Here 6(r) denotes the estimate based on ¢ equations (¢ rows in ®). The term y(f) —
cpT(t)é(t — 1) describes how well the ‘measurement’ y(f) can be explained by using
the parameter vector 8(¢ — 1) obtained from the previous data. Further, in (4.44), K(¢) is
a gain vector. Complement C4.2 shows among other things how a linear regression
model can be updated when new information becomes available. This is conceptually
and algebraically very close to a recursive algorithm.

Summary

Linear regression models have been defined and the least squares estimates of their
unknown parameters were derived (Lemma 4.1). The statistical properties of the least
squares parameter estimates were examined (Lemma 4.2). The estimates were shown to
be unbiased and an expression for their covariance matrix was given. It was a crucial
assumption that the regression variables were deterministic and known functions. Next
the analysis was extended to general linear unbiased estimates. In particular Lemma 4.3
derived the estimate in this class with the smallest covariance matrix of the parameter
estimates. Finally, Lemma 4.4 provided a systematic way to determine which one of a
number of competitive model structures should be chosen. It was also pointed out that
orthogonal triangularization (the QR method) is a numerically sound way to compute a
least squares estimate.

Problems

Problem 4.1 A linear trend model 1
Consider the linear regression model

y(#) = a + bt + €(¥)

Find the least squares estimates of a and b. Treat the following cases.
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(a) First consider the following situations:
(i) The data are y(1), y(2), ..., y(N). Set
N

So=Sy0  Si=3 00

t=1 =1

(ii) The data are y(—N), y(—=N + 1), ..., y(N). Set

N N
So= > y® Si= > v

t=—N
Hint. TNt = N(N + 1)2;  EN.2 = N(N + 1)(2N + 1)/6.

(b) Next suppose that the parameter a is first estimated as

= —;—,-SO (case (i))

1
TN+ 1

Then b is estimated (by the least squares method) in the model structure

a So (case (ii))

y(t) — a = bt + €(¢)

What will 5 become? Compare with (a).
In parts (c)—(e) consider the situation in (a) and assume that the data satisfy

y(t) = a + bt + e(2)
where e(f) is white noise of variance \.

(c) Find the variance of the quantity s(¢) = 4 + bt. What is the value of this variance for
t = 1 and for + = N? What is its minimal value with respect to ¢?
(d) Write the covariance matrix of § = (4 b)” in the form
ol Qo10;
0010, 03

P = cov(f) = <

Find the asymptotic value of the correlation coefficient ¢ when N tends to infinity.
(e) Introduce the concentration ellipsoid
©-0'P6-6)=¢
(Roughly, vectors inside the ellipsoid are likely while vectors outside are unlikely,
provided T is given a value ~n. In fact,
E® — 0)"P~'(6 — 0) = tr PT'E(6 — 6)(6 — )T
= 1r PMI{(GO - 9)(90 - 9)1 + P}
=n+ (6,—0)"P7Y(6, — 6) = n, if 6, — 6 small enough.

If § is Gaussian distributed, 6 ~ N(68,, P), then (6 — 85)TP~'(6 — ;) ~ x2(n), see
Lemma B.12). Find and plot the concentration ellipsoids when A* = 0.1, ¢ = 2 and
the two cases (i) N = 3, (ii)) N = 8.
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Problem 4.2 A linear trend model 11
Consider the linear regression model

My y() = a + bt + g(F)

Assume that the aim is to estimate the parameter b. One alternative is of course to use
linear regression to estimate both a and b.
Another alternative is to work with differenced data. For this purpose introduce

z2(f) = y() — y(t = 1)
Then #, gives the new model structure
My z(H) = b + &(F)

(where &,(f) = &(f) — &(t — 1)). Linear regression can be applied to .#, for estimat-
ing b only (treating &,(f) as the equation error).

Compare the variances of the estimate of b obtained in the two cases. Assume that the
data are collected at times t = 1, ..., N and obey

S y(t) = ag + bot + 6([)

where e(?) is white noise of zero mean and unit variance.

Problem 4.3 The loss function associated with the Markov estimate

Show that the Markov estimate (4.17), (4.18) minimizes the following criterion:
V@) =e'R7'e e=Y — @0

Problem 4.4 Linear regression with missing data
Consider the regression equation

Y=®0 + ¢
where
b e
v= () e=(g) e=(2)
Y2 D, €
and
Eel = Eelef =]

Assume that y;, ®; and ®, are available but y, is missing. Derive the least squares
estimates of 6 and y, defined as

8, 9, = arg min (Y — $6)"(Y — 26)
»Y2

Problem 4.5 lll-conditioning of the normal equations associated with

polynomial trend models

Consider the normal equations (4.31) corresponding to the polynomial trend model of
Example 4.1. Show that these equations are ill-conditioned (see Section A.4 of
Appendix A). More exactly, show that the condition number of the matrix (®T®)
satisfies
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cond(®*®) = O(N*/(2r + 1))  for N large

where r denotes the polynomial degree.
Hint. Use the relations

}‘-max(A) = max (aii)
Amin(A) < min (a;;)
which hold for a symmetric matrix A = [a;].

Problem 4.6 Fourier harmonic decomposition as a special case of regression analysis
Consider a regression model of the form (4.1) where

0 = (a1 ... ay b1 ce bn)T
@) = (cos 0y ... COS Wyt sin Wit ... sin w,t)T
2m . .
w; = 5 N = number of data points
N .
n< [-5] (the integer part of N/2)

Such a regression model is a possible way of preventing the following harmonic
decomposition model:

y(@) = 2 (ar cos wyt + b sinogt) t=1,...,N
k=1

Show that the least squares estimates of {a,} and {b,} are equal to the Fourier
coefficients

y(f) cos wt

=2

I
418
M=

7
KA

by y(¢) sin wgt

I
2w
M=z

7
A

Hint. First show that the following equalities hold:
al N
D' oS Wt cos Wyt = 5 ko
t=1
o . N
> sin gt sin w,t = 5 Sep
t=1
N
> cos wyt sin wyt = 0
t=1

Problem 4.7 Minimum points and normal equations when ® does not have full rank
As a simple illustration of the case when @ does not have full rank consider
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(1)

Find all the minimum points of the loss function V() = ||Y — ®6|?. Compare them with
the set of solutions to the normal equations

(@TD)0 = OTY

Also calculate the pseudoinverse of ®(see Section A.2) and the minimum norm solution
to the normal equations.

Problem 4.8 Optimal input design for gain estimation
Consider the following straight-line (or static gain) equation:

Y(O) = Ou() + e(f)  Ee(f)e(s) = 125,

which is the simplest case of a regression. The parameter 6 is estimated from N data
points { y(f), u(#)} using the least squares (LS) method. The variance of the LS estimate 6
of 0 is given (see Lemma 4.2) by

N
0% & var(8) = 22 / 3 W)
=1 .
Determine the optimal sequence {u(1), ..., u(N)} which minimizes o under the
constraint |u(f)] < p. Comment on the solution obtained.

Problem 4.9 Regularization of a linear system of equations

When a linear system of equations is almost singular it may be regularized to make it less
sensitive to numerical errors. This means that the identity matrix multiplied by a small
number is added to the original system matrix. Hence, instead of solving

Ax =b 1)
the modified system of equations

A+dhx=0> (ii)
is solved.

Assume that the matrix A is symmetric and positive semidefinite (and hence singular).
Then it can be factorized as

A = BBT  where Bis (n|]p), rankB=p<n (iii)
To guarantee that a solution exists it must be assumed that
b= Bd (iv)

for some (p|1) vector d.
Derive and compare the following solutions:

(a) The minimum-norm least squares solution, x; = A'h, where A" denotes the pseudo-
inverse of A.
Hint. Use properties of pseudoinverses; see Section A.2 of Appendix A.
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(b) Writing the equations as B(B™x — d) = 0 we may choose to drop B and get the
system BTx = d, which is underdetermined. Find the minimum norm least squares
solution of this system, x, = (BT)'d.

(c) The regularized solution is x3 = (4 + 8I)'b. What happens when § tends to zero?

Problem 4.10 Conditions for least squares estimates to be BLUE
For the linear regression model
y=®0+e Ee=0 Eee'=R>0
rank ® = dim 6

show that (i) and (ii) below are two equivalent sets of necessary and sufficient conditions

for the least squares estimate of 6 to be the best linear unbiased estimate (BLUE).
ORI — (@T®)'®T] =0 (i)
R® = OF for some nonsingular matrix F (ii)

Give an example of a covariance matrix R which satisfies (i), or equivalently (ii).

Hint. For a nontrivial example of R satisfying (i), consider R = I + agg”’ where ¢ is
any column of ® and «a is such that R > 0.

Problem 4.11 Comparison of the covariance matrices of the least squares

and Markov estimates

Consider the linear regression model of Problem 4.10. Let Pr g and Py denote the
covariance matrices of the least squares and the Markov estimates respectively of the
parameter vector 0 (see (4.16) and (4.19)). It follows from Lemma 4.3 that

Pis = Py

Provide a simple direct proof of this inequality. Use that proof to obtain condition (i) of
Problem 4.10 which is necessary and sufficient for the least squares estimate (LSE) to be
BLUE.

Hint. Use some calculations similar to proof B of Lemma 4.3.

Problem 4.12 The least squares estimate of the mean is BLUE asymptotically
The least squares estimate of a in

y(®) = a + e(¥) t=1,...,N

where the vector of measurement errors [e(1) ... e(N)]T has zero mean and
covariance R, has variance given by

Pis = (®"®) '@TRO(®T®)! T =[1 ... 1]
(see (4.16)). The variance of the BLUE is
PgLue = (@'RT'®)7!

Let the process {e(f)} be stationary with spectral density ®.(w) > 0 for w € (-, ) and
covariance function r(k) = Ee(f)e(t — k) decaying exponentially to zero as kK — .
Then show that
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Alllm NPLS = Al,lm NPBLUE = 231:@6(0)

Hint. For evaluating ]\l/im NPg uE, first use the fact that Ap;,(R) > 0 (see e.g.
Complement C5.2) to establish that

N
IRl = max 3 [(R™")ip| < CVN
p=1
for some constant C.

Remark. The result above follows from a more general result first presented by
Grenander and Rosenblatt (1956). The latter result states, essentially, that the least
squares estimate of the regression parameters is asymptotically (for N — «) BLUE
provided the spectrum of the residuals is constant over all the elements of the ‘spectrum’
of the regression functions.

Bibliographical notes

There are many books in the statistical literature which treat linear regression. One
reason for this is that linear regressions constitute a ‘simple’ yet fundamental class of
models. See Rao (1973), Dhrymes (1978), Draper and Smith (1981), Weisberg (1985),
Astrom (1968), and Wetherill et al. (1986) for further reading. Nonlinear regression is
treated by Jennrich (1969) and Ratkowsky (1983), for example. The testing of statistical
hypotheses is treated in depth by Lehmann (1986).

For the differentiation (4.26), see for example Rogers (1980), who also gives a number
of related results on differentiation with respect to a matrix.

Complement C4.1
Best linear unbiased estimation under linear constraints

Consider the regression equation
Y=00+e Ee=0 Eee"=R>0
and the following linear restrictions on the unknown parameter vector 6:
A8 =b A of dimension (m|n8)
rank A = m < nb

The problem is to find the BLUE of 8. We present two approaches to solve this problem.

Approach A

This approach is due to Dhrymes (1978), Rao (1973) and others.
The Lagrangian function associated with the above problem is
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F(8, o) = (Y — ®0)TR™Y(Y — @) + aT(40 — b)

(see Problem 4.3) where a denotes the vector of Lagrange multipliers. By equating the
derivatives of F with respect to 6 and a to zero, we get

—®"TRY(Y — ®0) + ATa =0 (C4.1.1)

AB = b (C4.1.2)
Let Q 2 (®TR™'®)~1. Multiplication of (C4.1.1) on the left by AQ gives

AQATa = AQO®™R™'Y — A6 = A6 — b

where § = Q®TR 'Y is the unconstrained BLUE (see (4.17), (4.18)). Thus, since AQAT
is positive definite,

o = (AQAT) 146 — b)
which inserted into (C4.1.1) gives the constrained BLUE
8 = QO®™R7'Y — QA"a

or

6 =6— QAT(A0AT)"1(46 - b) (C4.1.3)

Approach B

The problem of determining 6 can be stated in the following way: find the BLUE of  in
the following regression equation with singular residual covariance matrix

(- (k- 6

The covariance matrix of the residuals is

)
0 e
with ¢ = 0. First take € > 0 (which makes the matrix nonsingular) and then apply the
standard BLUE result (4.18). Next suppose that € tends to zero. Note that it would also

be possible to apply the results for a BLUE with singular residual covariance matrix as
developed in Complement C4.3. The BLUE for € > 0 is given by

-l o e ol )

Provided the limit exists, we can write

6 = lim 6,

e—0
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With Q = (®TR™'®)~! the expression for 6, becomes

-1

0, = (Q“l -+ %ATA> <<I>TR’1Y + %ATb)
Next note that
0!

€
(see Lemma A.1). Thus

1

ATA)_I -0- Q%AT<I + %AQAT>— AQ

0. = 6 — QAT(el + AQAT)1AH + %QATb

-1
~ —i—QAT<I + %AQAT> AQ%ATb

0 — QAT(el + AQAT) 146

+ %—QAT<I + %AQAT>_1[<I + —-IS—AQAT> - %AQAT]b

6 — QAT(el + AQAT) (46 — b)
— 6 — QAT(AQAT)"Y(A6 — b) as &— 0.

This is precisely the result (C4.1.3). )
The covariance matrix of the constrained BLUE 0 can be readily evaluated. From

B —0=(0—0)— 0AT(AQA)'A(B - 0)
= [I - QAT(4QA™)'4](6 - 6)
it follows (recall that cov(d — 8) = Q) that

cov(é - 0) = [I — QAT(AQAT)'A1Q[I — AT(AQAT)'AQ]

cov(d — 0) = Q — QAT(AQAT)'AQ

Note that
cov(® — 8) < cov(f — )

which can be seen as an illustration of the ‘parsimony principle’ (see Complement
Cl11.1). That is to say, taking into account the constraints on 6 leads to more accurate
estimates. Finally note that 6 obeys the constraints

AB = A6 — AQAT(AQAT) 1 (46 — b) = b

as expected. As a consequence the matrix cov(® — 0) must be singular. This is readily
seen since A cov(6 — 0) = 0.
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Complement C4.2
Updating the parameter estimates in linear regression models

New measurements

Consider the regression equation
Y=060+c¢ (C4.2.1)

where
Y=<1_/>}ny ¢=<¢>}ny . <81)}ny
6/}n6 I/}n6 €/ }nb

and

Ee =0  Eee' = S O}ny>0
0 P/}nb

The equation 6 = 6 + ¢, (the last block of (C4.2.1)) can be viewed as ‘information’
obtained in some previous estimation stage. The remaining equation, viz. Y = ®0 + g, is
the information provided by a new set of measurements. The problem is to find the
BLUE of 6 by properly updating 6.

The BLUE of 8 is given by

o= [ Cy el oG ]
0 p! 0 p!
= (®"S7'® + P~H"Y@®TS'Y + P71)
=0+ (®TS7'® + P H)'®TST[Y — 06
(see (4.18)). Since
(®TS7'® + P7)"! = P — POT(S + dPOPT)'DP
(cf. Lemma A.1), it follows that
(@TS™'® + P 1®TS™! = POT(S + OPDT) (S + DPDT)
— opoT|S! (C4.2.3)
= POT(S + PPPT)!

(C4.2.2)

Inserting this into (C4.2.2) gives

6 =6+ POT(S + PPOT) (Y — ©6) (C4.2.4)

This expression for 6 is computationally more advantageous than (C4.2.2) since in
general ny < n6 (quite often ny = 1). Thus the matrix inverse to be computed in (C4.2.4)
in general has a smaller dimension than that in (C4.2.2).
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The covariance matrix of 6 is given (cf. (4.19)) by
~ S—I 0 ~ -1
P = [cpT( 0 P_1><p] = (®Ts '@ + p~H!

which can be rewritten as in the preceding derivation to give

P =P - POY(S + ®oP®T) 0P (C4.2.5)

Note that it follows explicitly that P < P. This means that the accuracy of 6 is better
than that of 6, which is very natural. The use of the additional information carried by Y
should indeed improve the accuracy.

Decreasing dimension

Consider the regression model

Y=®0+¢ Ee=0 Eee'=R>0 (C4.2.6)
for which the BLUE of 6,

6= Qd™R"'Y Q2 (d"R'®)!

has been computed. In some situations it may be required to compute the BLUE of the
parameters of a reduced-dimension regression, by ‘updating’ or modifying 6. Specifically,
assume that after computing 6 it was realized that the regressor corresponding to the last
(say) column of @ does not influence Y. The problem is to determine the BLUE of the
parameters in a regression where the last column of @ was eliminated. Furthermore this
should be done in a numerically efficient manner, presumably by ‘updating’ 6.

This problem can be stated equivalently as follows: find the BLUE 0 of 6 in (C4.2.6)
under the constraint

A6=b A=0 ... 0 1) b=20
Making use of (C4.1.3),
6 =[1 - QAT(AQAT)'A)0 (C4.2.7)
Let (Y1 ... .e) denote the last column of Q, and let 6, be the ith component of b.
Then, from (C4.2.7),
~ 1_!)1 ~
0, — 0,
1 O e 0 —IP1/'ane ! ‘-Pne 0
6 = o : 6 = ‘ (C4.2.8)
1 —Yne—1/Vne ) _ Wne-14
né—1 né
Wne

0 0 0
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The BLUE of the reduced-order regression parameters are given by the first (n6 — 1)
components of the above vector.

Note that the result (C4.2.8) is closely related to the Levinson—Durbin recursion
discussed in Complement C8.2. That recursion corresponds to a special structure of the
model (more exactly, of the ® matrix), which leads to very simple expressions for {1;}.

If more components of § than the last one should be constrained to zero, the above
procedure can be repeated. The variables \; must of course then be redefined for each
reduction in the dimension. One can alternatively proceed by taking

A=[0 1 b=0

where A is (m|n6) if the last m components of 6 should be constrained to zero. By
partitioning Q and 8 as

0= <Q11 Q12>}’19 —m b= (E:)l)}ne - m
0", 0n)}m 6,/ }m
equation (C4.2.7) becomes

Ao él _ O 14
o= () (&) o

6= (él - Q12Q22—1é2)
0

or

(C4.2.9)

Complement C4.3
Best linear unbiased estimates for linear regression models with possibly
singular residual covariance matrix

Consider the regression model

Y=®0 +e Ee' =R (C4.3.1)
(see (4.11), (4.15)). It is assumed that
rank ® = dim 6 = no (C4.3.2)

However, no assumption is made on rank R. This represents a substantial generalization
over the case treated previously where it was assumed that R > 0. Note that assumption
(C4.3.2) is needed for unbiased estimates of 0 to exist. If (C4.3.2) is relaxed then
unbiased estimates exist only for certain linear combinations of the unknown parameter
vector 0 (see Werner, 1985, and the references therein for treatment of the case where
neither rank @ nor rank R are constrained in any way).

The main result of this complement is the following.
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Lemma C4.3.1
Under the assumptions introduced above the BLUE of 0 is given by

0* = [®T(R + ®DT)'®] ' dT(R + ®OT)TY (C4.3.3)

where A" denotes the Moore—Penrose pseudoinverse of the matrix A. (see Section A.2
or Rao (1973) for definition, properties and computation of the pseudoinverse).

Proof. First it has to be shown that the inverse appearing in (C4.3.3) exists. Let

R =R + ®07 (C4.3.4)
and for any n@-vector a let

B = ®a (C4.3.5)
We have to show that

a"®TR'®0 = 0 (C4.3.6)
implies oo = 0. The following series of implications can be readily verified:

(C43.6) = BRBP=0=B"R"=0=B"RRIR=0=R'RB=0=Rp =0

=>B(R+ PPN =0=dB=0= (®"@P)o=0=a=0

which proves that only a = 0 satisfies (C4.3.6) and thus that ®TR'® is a positive definite
matrix. Here we have repeatedly used the properties of pseudoinverses given in Lemma
A.15.

Next observe that 6* is an unbiased estimate of 0. It remains to prove that 6* has the
smallest covariance matrix in the class of linear unbiased estimators of 0:

6 =2"y

where by unbiasedness Z*® = I (see (4.17), (4.20)). The covariance matrix of 68* is given
by

cov(0*) = (®TR'®)'®TR'RR'®(®TR @) !
= (®"R'®)'®"RY(R — ®@"R'®(®TR'®)™!
= (®TR'®)™! - I
Since cov(é) = Z"RZ (see (4.21)), it remains only to prove that
Z'RZ + I — (®"R'®) 1 =0 (C4.3.7)
Using the constraint Z'® = I on the matrix Z, the inequality above can be rewritten as
Z'RZ + ZT®[I — (®"R'®)"'|®TZ = ZT[R — ®(®"R'®)"'®T]Z = 0 (C4.3.8)

The following identity can be readily verified:
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R — ®(@"R'®)'®T = [R — ®(®"R'®)'®T|R'[R — ©(®TR'®)107]
— (I = RR)®(®"R'®d) T (C4.3.9)
— ®(®TR'®)"'®T(I — R'R)

Next we show that

(I — RRH® =0 (C4.3.10)
Let o be an nB-vector and let

B = (I — RRHY®a = (I - R'R)®a (C4.3.11)
In (C4.3.11) we have used Lemma A.15. It follows from (C4.3.11) that

RBp =0 (C4.3.12)
which due to (C4.3.4) implies that

BT® =0 (C4.3.13)

Premultiplying (C4.3.11) by B and using (C4.3.12), (C4.3.13), we get
BB = [B"® — B"RR'®Ja = 0

Thus B = 0, and since o is arbitrary, (C4.3.10) follows. Combining (C4.3.9) and
(C4.3.10) the following factorization for the right-hand side of (C4.3.8) is obtained:

Z"R — ®(®"R'®)"'®"|Z = Z'[R — ®(®"R'®)"'®T|R"
X [R — ®(®'R'®) 0Tz
Since R' = 0 it can be concluded that (C4.3.8) or equivalently (C4.3.7) is true. |

(C4.3.14)

It is instructive to check that (C4.3.3) reduces to the standard Gauss—Markov estimate,
(4.17), (4.18), when R > 0. For R > 0, a straightforward application of Lemma A.1 gives
OT(R + ®d") ! = ®T[R™! — R7'®(I + ©'R7'®)'®@TR7]
=+ ®R'® - ®'R7'®)(I + 'R '®)" 'R
=+ ®"R'®)'@"'R!
Thus
0* = (@"R™'®)7I(I + P'TRT'®)(I + ®"RT'D)'Q@TR™Y
= (®"R7'®) '®"R"Y
which is the ‘standard’ Markov estimate given by (4.17), (4.18).

In some applications the matrix R is nonsingular but ill-conditioned. The estimation of
sinusoidal frequencies from noisy data by using the optimally weighted overdetermined
Yule—Walker method (see Stoica, Friedlander and S6derstrom (1986) for details) is such
an application. In such cases the BLUE could be computed using the standard formula
(4.17), (4.18). However, the matrix R + ®®T may be better conditioned to inversion

than R and thus the (theoretically equivalent) formula (C4.3.3) may be a better choice
even in this case.
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Complement C4.4
Asymptotically best consistent estimation of certain nonlinear
regression parameters

Earlier in the chapter several results for linear regressions were given. In this comple-
ment some of these results will be generalized to certain nonlinear models. Consider the
following special nonlinear regression model:

YN = g(eo) + en (C441)

where Yy and ey are M-vectors, g(+) is a vector-valued differentiable function, and 6 is
the vector of unknown parameters to be estimated. Both Y and e depend on the integer
N. This dependence will be illustrated below by means of an example. It is assumed that
the function g(-) admits a left inverse. The covariance matrix of ey is not known for
N < «. However, it is known that

lim NEeyek = R(8)) (C4.4.2)

Note that R is allowed to depend on 6. It follows from (C4.4.1) and (C4.4.2) that the

difference [Yy — g(6o)] tends to zero as 1/VVN when N — . Thus Yy is a consistent

estimate of g(8); it is sometimes called a root-N consistent estimate. Note that it is

assumption (C4.4.2) which makes the nonlinear regression model (C4.4.1) ‘special’.
Let

0 = f(Yn) (C4.4.3)

where f(-) is a differentiable function, denote a general consistent (for N — «) estimate
of 8y. The objective is to find a consistent estimate of 68, which is asymptotically best in
the following sense. Let 6 denote the asymptotically best consistent estimate (ABCE) of
09, assuming such a 6 exists, and let

Py(0) = lim NE(6 — 85)(6 — 6,)"
be its asymptotic covariance matrix (as N tends to infinity). Then
Pu(6) = Py (6) (C4.4.4)

for any other consistent estimate 6 as defined by (C4.4.3).

An example

As an illustration of the above problem formulation consider a stationary process x(f)
whose second-order properties are completely characterized by some parameter vector
6y. An estimate of 6, has to be made from observations x(1), ..., x(N). In a first stage
indirect information about 6, is obtained by calculating the sample covariances
] Nk
rk-—"—NZx(t)x(t+k) k=0,...,M—-1

t=1
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Under weak conditions the vector Yy = (fy ... ;) is a root — N consistent esti-
mate of the vector of theoretical covariances g(8y) = (ro ... ra—1)". Furthermore,
an expression for the asymptotic covariance matrix R(6,) of the estimation error
VN[YN — g(60)] is available (see Bartlett, 1946, 1966; Stoica et al., 1985c; and also
Appendix B.8). Therefore (C4.4.1) and (C4.4.2) hold.

In a second stage 6, is determined from Y. In particular, it may be required to
calculate the ABCE of 6. Note that the first few sample covariances {7y, ..., a1}
where M < N, may contain almost all the ‘information’ about 8, in the initial sample
(x(1) ..., x(N)). Thus it may be advantageous from the computational standpoint to
base the estimation on {7y, . .., Fas—1} rather than on the raw data {x(1), ..., x(N)}. See
Porat and Friedlander (1985, 1986), Stoica et al. (1985c) for details.

After this brief digression we return to the nonlinear regression problem at the beginning
of this complement. In the following a number of interesting results pertaining to this
problem are derived.

A lower bound on the covariance matrix of any consistent estimator of 6,

The assumed consistency of 0, (C4.4.3), imposes some restriction on the function f(-).
To see this, note first that the continuity of f(-) and the fact that e, — 0 as N — o imply

Jlim 6 = f(g(60))
Since 0 is a consistent estimate it follows that

f(g(60)) = 6 (C4.4.5)

As this must hold for an arbitrary 6y, it follows that f(-) is a left inverse of g(+). Moreover
(C4.4.5) implies

of 0g
- == =] C4.4.6
ag 8=g(8y) 69 6=8, ( )
With
F = Q%%S_’) an (n6|M) matrix
£=s @) (C4.4.7)
_ 9% :
= 96 oo, an (M|n0) matrix

the condition (C4.4.6) can be written more compactly as
FG =1 (C4.4.8)

Next we derive the asymptotic covariance matrix (for N — «) of 6 in (C4.4.3). A Taylor
series expansion of 8 = f(Yy) around 6y = f(g(6o)) gives

8 =0, + F[Yn — g(80)] + O(lenl®)

which gives
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VN — 8,) = FVNey + O(1/VN)
Therefore

Pp(0) = lim NE(6 — 60)(8 — 8)T = FRFT

where for brevity the argument 6, of R has been omitted.
We are now in a position to state the main result of this subsection. Let

Py = (GTR™IG)™! (C4.4.9)
Then
Py(8) = FRFT = P}, (C4.4.10)

To prove (C4.4.10) recall that F and G are related by (C4.4.8). Thus (C4.4.10) is
equivalent to
FRF* = FG(G™R™'G)"'G"F*

However, this is exactly the type of inequality encountered in (4.25). In the following it is
shown that the lower bound PY, is achievable. This means that there exists a consistent
estimate of 6y, whose asymptotic covariance matrix is equal to PYy.

An ABC estimate
Define

6 = arg min V(6) (C4.4.11a)
where

V() = 3[¥x = gOFROY - 2©O)] (C4.4.11b)

The asymptotic properties of ) (for N — ) can be established as follows. A simple
Taylor series expansion gives

0= V'(6)" = V'(8)T + V'(85)(6 — 8p) + O(l6 — 62 (C4.4.12)
Using the fact that ey = O(1/V'N), one can write
T OR"'(8)

en en
90
V'(8p)" = ~G"R len + L :1
0 NT2 6R‘.1(9) (C4.4.13a)
€1TJW€N 0=8,

= —G™R ey + O(L/IN)
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and

V"(8y) = G'R™'G + O(1/VN) (C4.4.13b)
It follows from (C4.4.12), (C4.4.13) that

(6 — 8y) = O(1/VN)
and that

VN — 8;) = (GTR™'G)"'G"R™'"V/Ney + O(1/VN) (C4.4.14)
assuming the inverse exists. From (C4.4.14) it follows that

Py(®) = (GTR™'G)™' = PY, (C4.4.15)

which concludes the proof that 6 is an ABCE of 6,.

It is worth noting that replacement of R(8) in (C4.4.11) by a root-N consistent
estimate of R(0y) does not change the asymptotic properties of the parameter estimate.
That is to say, the estimate

6 = arg min{ 1vy — @R, — 5@)1}

where R — R(8y) = O(1/VN), is asymptotically equal to 6. Indeed, calculations
similar to those made above when analyzing 6 show that

6 — 0,) = (GTR™IG)"'GTR ey + O(I/N) = (6 — 8)) + O(1/N)

Note that 6 is more convenient computationally than 6, since the matrix R does not need
to be re-computed and inverted at each iteration of a minimization algorithm, as does
R(0) in (C4.4.11). However, 6 can be used only if a consistent estimate R of R is
available.

Remark. In the case of the nonlinear regression model (C4.4.1), (C4.4.2) it is more
convenient to consider consistent rather than unbiased estimates. Despite this
difference, observe the strong analogies between the results of the theory of unbiased
estimation of the linear regression parameters and the results introduced above (for
example, compare (4.20) with (C4.4.6), (C4.4.8); Lemma 4.3 with (C4.4.9), (C4.4.10);
etc).

Some properties of P},

Under weak conditions the matrices {P},} form a sequence of nonincreasing positive
definite matrices, as M increases. To be more specific, assume that the model (C4.4.1) is
extended by adding one new equation. The ABCE of 6, in the extended regression has
the following asymptotic (for N — o) covariance matrix (see (C4.4.15)):

Pir = (Ghs1 R Gagrr) ™!
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_(Ru B
Ruos = (g 0)

showing explicitly the dependence of G, R and P° on M. The exact expressions for the
scalar o and the vectors v and f (which correspond to the new equation added to
(C4.4.1)) are of no interest for the present discussion.

Using the nested structure of G and R and Lemma A.2, the following relationship can
be derived:

(Phs) ™! = (G wﬁ{(é) Ry'(I 0)
N <—R1;JIB)(—BTR;41 1)/y}<C:PM) (C4.4.16)
= (Pi) ™ + [v" = GLRMBIV" — GuRaBI' Ny
where
v = o — BTRyB
Since Rjs.1 > 0 implies y > 0 (see Lemma A.2), it readily follows from (C4.4.16) that

PS> PO, (C4.4.17)

which completes the proof of the claim introduced at the beginning of this subsection.
Thus by adding new equations to (C4.4.1) the asymptotic accuracy of the ABCE
increases, which is an intuitively pleasing property. Furthermore, it follows from
(C4.4.17) that P$, must have a limit as M — «. It would be interesting to be able to
evaluate the limiting matrix
P = lim P§,

However, this seems possible only in specific cases where more structure is introduced
into the problem.

The problem of estimating the parameters of a finite-order model of a stationary
process from sample covariances was touched on previously. For this case it was proved
in Porat and Friedlander (1985, 1986), Stoica et al. (1985c) that P% = Pcg; where Pcg
denotes the Cramér—Rao lower bound on the covariance matrix of any consistent
estimate of 6 (see Section B.4). Thus, in this case the estimate 0 is not only asympto-
tically (for N — ) the best estimate of 6, based on a fixed number M of sample
covariances, but when both N and M tend to infinity it is also the most accurate possible
estimate.



Chapter 5

INPUT SIGNALS

5.1 Some commonly used input signals

The input signal used in an identification experiment can have a significant influence on
the resulting parameter estimates. Several examples in Chapter 2 illustrated this fact, and
further examples are given in Chapters 10 and 12. This chapter presents some types of
input which are often used in practice. The following types of input signal will be
described and analyzed:

Step function.

e Pseudorandom binary sequence.

e Autoregressive moving average process.
e Sum of sinusoids.

Examples of these input signals are given in this section. Their spectral properties are
described in Section 5.2. In Section 5.3 it is shown how the inputs can be modified in
various ways in order to give them a low-frequency character. Section 5.4 demonstrates
that the input spectrum must satisfy certain properties in order to guarantee that the
system can be identified. This will lead to the concept of persistent excitation.

Some practical aspects on the choice of input are discussed in Section 12.2. In some
situations the choice of input is imposed by the type of identification method employed.
For instance, transient analysis requires a step or an impulse as input, while correlation
analysis generally uses a pseudorandom binary sequence as input signal. In other
situations, however, the input may be chosen in many different ways and the problem of
choosing it becomes an important aspect of designing system identification experiments.

We generally assume that the system to be identified is a sampled data system. This
implies that the input and output data are recorded in discrete time. In most cases we will
use discrete time models to describe the system. In reality the input will be a continuous
time signal. During the sampling intervals it may be held constant by sending it through a
sample and hold circuit. Note that this is the normal way of generating inputs in digital
control. In other situations, however, the system may operate with a continuous time
controller or the input signal may not be under the investigator’s control (the so-called
‘normal operation’ mode). In such situations the input signal cannot in general be
restored between the sampling instants. For the forthcoming analysis it will be sufficient
to describe the input and its properties in discrete time. We will not be concerned with
the behavior of the input during the sampling intervals.

With a few exceptions we will deal with linear models only. It will then be sufficient
to characterize signals in terms of first- and second-order moments (mean value and

96
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covariance function). Note however, that two signals can have equal mean and covari-
ance function but still have drastically different realizations. As an illustration think of a
white random variable distributed as A4(0, 1), and another white random variable
that equals 1 with probability 0.5 and —1 with probability 0.5. Both variables will have
zero mean and unit variance, although their realizations (outcomes) will look quite
different.

There follow some examples of typical input signals.

Example 5.1 A step function
A step function is given by

u(t) = {30 ;; 8 (5.1)

The user has to choose only the amplitude uy. For systems with a large signal-to-noise
ratio, an input step can give valuable information about the dynamics. Rise time,
overshoot and static gain are directly related to the step response. Also the major time
constants and a possible resonance can be at least crudely estimated from a step
response. ]

Example 5.2 A pseudorandom binary sequence
A pseudorandom binary sequence (PRBS) is a signal that shifts between two levels in a
certain fashion. It can be generated by using shift registers for realizing a finite state
system, (see Complement C5.3; Davies, 1970; or Eykhoff, 1974), and is a periodic signal.
In most cases the period is chosen to be of the same order as the number of samples in
the experiment, or larger. PRBS was used in Example 2.3 and is illustrated in Figure 2.5.
When applying a PRBS, the user must select the two levels, the period and the clock
period. The clock period is the minimal number of sampling intervals after which the
sequence is allowed to shift. In Example 2.3 the clock period was equal to one sampling
interval. |

Example 5.3 An autoregressive moving average sequence

There are many ways of generating pseudorandom numbers on a computer (see, for
example, Rubinstein, 1981; or Morgan, 1984, for a description). Let {e(?)} be a pseudo-
random sequence which is similar to white noise in the sense that

N
}1\? >ee(t+ 1) >0 asN—oo (T#0) (5.2)
=1
This relation is to hold for t at least as large as the dominating time constant of the
unknown system. From the sequence {e(#)} a rather general input u(¢) can be obtained
by linear filtering as follows:
u(t) + cu(t = 1) + ... + cut —m) = e(t) + die(t — 1) + ... (5.3)
+ d,e(t — m) '
Signals such as u(f) given by (5.3) are often called ARMA (autoregressive moving
average) processes. When all ¢; = 0 it is called an MA (moving average) process, while
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for an AR (autoregressive) process all d; = 0. Occasionally the notation ARMA (m,, m,)
is used, where m; and m, denote the number of c- and d;-coefficients, respectively.
ARMA models are discussed in some detail in Chapter 6 as a way of modeling time
series.

With this approach the user has to select the filter parameters m, {c;}, {d;} and the
random generator for e(t). The latter includes the distribution of e(¢) which often is taken
as Gaussian or rectangular, but other choices are possible.

The filtering (5.3) can be written as

C(gHu(r) = D(g~Ye(?) (5.42)
or
u(t) = 28:1)) ) (5.4b)

where g1 is the backward shift operator (g~ 'e(f) = e(t — 1), etc.) and

-1\ — -1 -m
C@g)=14+cqg + ...+ c@q (5.40)

Digh=1+dg '+ ... +d,q""
The filter parameters should be chosen so that the polynomials C(z) and D(z) have all
zeros outside the unit circle. The requirement on C(z) guarantees that u(¢) is a stationary
signal. It follows from spectral factorization theory (see Appendix A6.1) that the re-
quirement on D(z) does not impose any constraints. There will always exist an
equivalent representation such that D(z) has all zeros on or outside the unit circle, as
long as only the spectral density of the signal is being considered. The above requirement
on D(z) will be most useful in a somewhat different context, when deriving optimal
predictors (Section 7.3).

Different choices of the filter parameters {c;, d;} lead to input signals with various
frequency contents and various shapes of time realizations. Simulations of three different
ARMA processes are illustrated in Figure 5.1. (The continuous curves shown are
obtained by linear interpolation.)

The curves (a) and (b) show a rather periodic pattern. The ‘resonance’ is more
pronounced in (b), which is explained by the fact that in (b) C(z) has zeros closer to
the unit circle than in (a). The curve for (c) has quite a different pattern. It is rather
irregular and different values seem little correlated unless they lie very close together.

|
Example 5.4 A sum of sinusoids
In this class of input signals u(f) is given by
ut) = > a; sin(wt + @) (5.5a)
j=1
where the angular frequencies {w;} are distinct,
Isoy<m<...<o,==n (5.5b)

For a sum of sinusoids the user has to choose the amplitudes {g;}, the frequencies {w;}
and the phases {@;}.
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FIGURE 5.1 Simulation of three ARMA processes.
@ Cgh=1-15¢"+4+079%D(q") =1
(b) C(g7")=1-15¢""+09¢72, D(g™") = 1.
() CgHy=1,D(@g"H=1-15¢"+ 0772
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u(t)

0 ' 50 t 100
(©

A term with w; = 0 corresponds to a constant a; sin ¢;. A term with w,, = 7t will
oscillate with a period of two sampling intervals. Indeed, for w,, = =,

a,, sin(w,,(t + 1) + 9,,) = —a,, sin(w,,t + ©,,)

Figure 5.2 illustrates a sum of two sinusoids. Both continuous time and sampled signals
passed through a zero-order holding device are shown. |

5.2 Spectral characteristics

In many cases it is sufficient to describe a signal by its first- and second-order moments
(i.e. the mean value and the covariance function). When dealing with linear systems and
quadratic criteria, the corresponding identification methods can be analyzed using first-
and second-order properties only as will be seen in the chapters to follow.

For a stationary stochastic process y(¢) the mean m and the covariance function r(t) are
defined as

m & Ey(t)

(5.6a)
r(v) & E[y(t + v) — m]ly(®) — m]"

where E denotes the expectation operator.



u(r)

(@

u(r)

(b)

FIGURE 5.2 A sum of two sinusoids (2; = 1,a, =2, w; = 0.4, 0, = 0.7, ¢; = ¢, = 0).
(a) The continuous time signal. (b) Its sampled form. )
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For a deterministic signal the corresponding definitions are obtained by substituting
for E the limit of a normalized sum:

3
>
5

S

Ny
=

(5.6b)

I>
5
Z|=
M=
<
e~
+
)
|
S
=\
N
|
3
...]

r(t) &

assuming that the limits exist. (See also Appendix AS5.1.)
Note that for many stochastic processes, the definitions (5.6a) and (5.6b) of m and r(t)
are equivalent. Such processes are called ergodic (see Definition B.2 in Appendix B).
For stochastic processes and for deterministic signals the spectral density ¢p(w) can be
defined as the discrete Fourier transform of the covariance function:

©

o(w) 2 2_17E > r(re™ (5.7)

= —00

(see also (A3.1.2)).

The function ¢(w) is defined for w in the interval (—, ). It is not difficult to see from
(5.7) that ¢(w) is a nonnegative definite Hermitian matrix (i.e. ¢*(w) = ¢(w) where *
denotes transpose complex conjugate). In particular, this implies that its diagonal
elements are real valued and nonnegative even functions, ¢;(w) = ¢;(—w) = 0 (see
also Problem 3.5). The inverse transformation to (5.7) is given by

r(t) = f i d(w)e™dw (5.8)

(cf. (A3.1.3)).

The spectral density will have drastically different structures for periodic signals than
for aperiodic signals. (See Appendix A5.1 for an analysis of periodic signals.)

The examples that follow examine the covariance functions and the spectral densities
of some of the signals introduced at the beginning of this chapter.

Example 5.5 Characterization of a PRBS
Let u(f) be a PRBS that shifts between the values a and —a, and let its period be M. Its
covariance function can be shown to be (see complement C5.3)

{az =0, =M, +2M, ...
r(t) =

—a*/M elsewhere
The spectral density of the signal can be computed using the formulas derived in
Appendix AS.1; the result is

(5.92)
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M-1 k
du(w) = > Ck6<w — 2 M) (5.9b)
k=0
The coefficients {C,} are given by (AS5.1.15). Using (5.9a),
1 M-1

C0=A_42

=0

2 2
ro(t) = All(az M- 1)%) ik (5.9¢)

and for k > 0 (using the convention a £ eZVM)

1 M-1
C, = M(az - > a""aZ/M>

=1
&2 ( 1 - a—(M-1)k)
= M- a B (5.9d)
a’ ( a k- a_M> a’
“we\M T T ) T D

(Observe that o™ = 1.) Combining (5.9b)—(5.9d) the spectral density is obtained as

2 M-1 k
o () = e Sw) + (M + 1) ,Zl Slo — ZJtA—/[ (5.9¢)
The spectral properties of a PRBS are investigated further in Example 5.8. ]

Example 5.6 Characterization of an ARMA process
In the case of a white noise process u(t),

r(t) = M. 0 (5.10a)

where 8. ¢ is Kronecker’s delta (8, o = 1if t = 0, , o = 0if T # 0). The spectral density is
easily found from the definition (5.7). It turns out to be constant
}\2
Py () = E (5.10b)

Next consider a filtered signal u(?) as in (5.3). Applying (A3.1.10), the spectral density in
this case is

2\3— D(eim)D(e—iw) B E 2

_ D(e™)
Pul(@) = 2n C(e®)C(e™™) ~ 2m

C(eiu))

(5.10c)

From this expression it is obvious that the use of the polynomial coefficients {c;, d;} will
considerably affect the frequency content of the signal u(f). If the polynomial C(z) has
zeros close to the unit circle, say close to €' and e, then ¢,(w) will have large
resonance peaks close to the frequency w = wy. This means that the frequency o = w,
is strongly emphasized in the signal. Similarly, if the polynomial D(z) has zeros close to
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e'® and e "0 then ¢,(wy) will be small and the frequency component of u(f) correspond-
ing to @ = w, will be negligible. Figures 5.3 and 5.4 illustrate how the polynomial
coefficients {c;, d;} affect the covariance function and the spectral density (5.10c),
respectively.

Figures 5.3 and 5.4 illustrate clearly that the signals in cases (a) and (b) are resonant
(with an angular frequency of about 0.43 and 0.66 respectively). The resonance is
sharper in (b). Note how these frequencies also show up in the simulations (see Figure
5.1a, b). Figures 5.3c, 5.4c illustrate the high-frequency character of the signal in
case (c). |

Example 5.7 Characterization of a sum of sinusoids
Consider a sum of sinusoids as in Example 5.4,

u(t) = > a; sin(wt + @) (5.11a)
j=1
with
0swi<wy .. <w,s=n (5.11b)

To analyze the spectral properties of u(f) consider first the quantity

10
r(%)

> _

-10

-
0 10 T 20

(a)
FIGURE 5.3 The covariance function of some ARMA processes. (a) A> = 1,

Cz)=1-15z2+0722D(z)=1.(b)\>=1,C(z) =1 — 1.5z + 0.92%, D(z) = 1.
©)A\=1,C(z)=1,D(z) =1~ 1.5z + 0.72%
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FIGURE 5.4 The spectral densities of some ARMA processes. (a) \> = 1,
C(z)=1-15z2+072%4D(z) = 1. (b)\>=1,C(z) = 1 — 1.5z + 0.922, D(2) = 1.
)N =1,C() =1,D(z) =1- 1.5z + 0.72%
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du(w)

14

(©)

1 N
Sv=vy > sin(wt + @)

=1

If w is a multiple of 2rt then Sy = sin ¢. For all other arguments,

N o _ JioN
Sy = %Im > gllerte) — %Im{e’q’e“"l—e—}

1 — eiw
=1
and
s<ill=ewl 1 2 11
NMEN 1T =€ T N[e®? - e 2 T N sin 0/2
Hence

as N — o«

S {sin @ if o = 2nk (k an integer)
N 0 elsewhere

(5.12a)

(5.12b)

Since u(t) is a deterministic function the definitions (5.6b) of m and r(t) must be applied.

From (5.12a, b), the mean value is

_{al sin @; if 0, =0
1o if o, # 0

(5.12¢)

In the case w; = O this is precisely the first term in (5.11a). Thus the signal u(t) — m
contains only strictly positive frequencies. To simplify the notation in the following
calculations u(f) — m will be replaced by u(f) and it is assumed that w; > 0. Then
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r(t) = hm - Z u(t + t)u(r)

I
M3
Ms
2
5

N >, sin(w;t + ot + @) sin(oef + k)
=1

N

m m 1
=> > g hm ﬁ\l {cos(w;t + ;T + @; — 0t — @)
j=1 k=1 =1

— cos(jt + ;T + @; + it + @)}
Application of (5.12a, b) produces

N
lim %Z cos(w;t + o;T + @ — Wrt — Qi)

N— o
t=1

N n
E m((wk - )t + 50T gt cpk)

ZIH

= Siﬂ(% — Q)/I —_ (p] + @k) 6j,k = COS((})jT)Bj’k

fw,<morj+ k< 2m,
N
AI/I_I)HOONE cos(w;t + wit + ;T + @ + @)

t=1
1Y !
NE (u)j+wk)t+—2———w,-t—q)j—q)k =0

while for w,, = n, j = k = m,
N

lim %2 cos(w;t + Wit + 0T + @ + i)

N— oo
t=1

T
= ]\lll_r)nm —A—/ 2 sm< 2mt + 5 Ot = 2cpm>

cos(mtt + 29,,)

From these calculations the covariance function can be written as

r(t) = > C; cos(w;T)
= (5.12d)
a
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If w,, = = the weight C,, should be modified. The contribution of the last sinusoid to r(t)
is then, according to the previous calculation,

2

ap, ay,
> cos(w,,T) — > cos(w,,T + 2¢,,)

: [cos(rtt) — cos(mtt) cos(2g,,) + sin(wt) sin(2g,,)]

2
2
7’" cos mt[1 — cos(2¢,,)]

a2, sin*(@,,) cos(sr)
Thus for this particular case,
C,, = a2, sin* @, (5.12e)

Note that (5.12e) is fairly natural: considering only one sinusoid witha = 1, ® = & we
get y(1) = —sin @,,, y(2) = sin @,,, and in general y(f) = (—1)'sin @,,. This gives
r,(t) = sin® @,,(—1)°, which is perfectly consistent with (5.12d, e).

It remains to find the spectral density corresponding to the covariance function
(5.12d). The procedure is similar to the calculations in Appendix A5.1. An expression
for ¢(w) is postulated and then it is verified by proving that (5.8) holds. We therefore
claim that the spectral density corresponding to (5.12d) is

m

d() = > %[6(&) - o) + (0w + )] (5.12f)

j=1

Substituting (5.12f) in (5.8),

r(t) = fn g 4 (0 — o)) + 3o + w)]e™do

C; cos(w;T)

s

I
-

m C
Z __é_[ n:co —n:u),-] —

]

which is precisely (5.12d). _
As a numerical illustration, Figure 5.5 illustrates the covariance function r(t) for the
sum of sinusoids depicted in Figure 5.2. ]

Similarities between PRBS and white noise

In the informal analysis of Chapter 2 a PRBS was approximated by white noise. The
validity of such an approximation is now examined.

First note that only second-order properties (the covariance functions) will be
compared here. The distribution functions can be quite different. A PRBS has a two-
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7(t)

0 T 50

FIGURE 5.5 Covariance function for the sum of two sinusoids u(r) =
sin 0.4¢ + 2 sin 0.7¢, Example 5.4.

point distribution (since it can take two distinct values only) while the noise in most cases
has a continuous probability density function.

A comparison of the covariance functions, which are given by (5.9a) and (5.10a),
shows that they are very similar for moderate values of T provided A = a* and M is large.
It is therefore justifiable to say that a PRBS has similar properties to a white noise. Since
a PRBS is periodic, the spectral densities, which are given by (5.9¢) and (5.10b), look
quite different. The density (5.9¢) is a weighted sum of Dirac functions whereas (5.10b)
is a constant function. However, it is not so relevant to compare spectral densities as
such: what matters are the covariances between various filtered input signals (cf.
Chapters 2, 7 and 8). Let

xi(t) = Gulg u(t)  xa(t) = Galg™"u(r)
where G,(g¢™") and G,(g™") are two asymptotically stable filters. Then the covariance
between x;(¢f) and x,(f) can be calculated to be

Exl(t)X2(t) = J’n Gl(eﬂ“’)Gz(ei“’)q)u(w)dw

(cf. Problem 3.6; equation (5.8); and Appendix A3.1). Hence it is relevant to consider
integrals of the form

I= f " f@)p@)do

where f(w) is a continuous function of w, and ¢(w) is the spectral density of a PRBS or a
white noise sequence. Using the spectral density (5.10b) the integral becomes
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aZ 7 a2 27
Using the spectral density (5.9¢) the integral becomes
a2 M-1 ( k )
L = —Ap[f(o) + M+ 1) k; 2o (5.13b)

Now assume that the integral in (5.13a) is approximated by a Riemann sum. Then the
interval (0, 2m) is divided into M subintervals, each of length 2n/M, and the integral
is replaced by a sum in the following way:

a? 2; M1 < k)
~ — —) 4
Il m M k§=:0 21 M = 13 (513C)
The approximation error tends to zero as M tends to infinity. It is easy to see that I, and
I are very similar. In fact,

a2

M-1 k

W[(l - o) + 3 f(2n M)] (5.13d)
k=1

which is of order O(1/M).

The following example illustrates numerically the difference between the covariance
functions of a filtered PRBS and a filtered white noise.

12—I3=

Example 5.8 Comparison of a filtered PRBS and a filtered white noise
Let u,(f) be white noise of zero mean and variance A? and define y,(¢) as

yit) — ayi(t — 1) = wi(9) (5.14a)
The covariance function of y,(¢) is given by
2
ri(t) = #a‘ (t=0) (5.14b)
Let u,(f) be a PRBS of period M and amplitude A\ and set
ya(t) — ays(t — 1) = ux(?) (5.15a)

The covariance function of y,(#) is calculated as follows. From (5.8), (5.9¢) (see also
Appendix A3.1),

r(t) = f i q)yz(w)e‘“"du)

2 .
el‘(u)d(l)

= Re f ({)uz(u)) lT—_—laF

-2 2"[5(@) L ))S 8o - an%)] (5.150)

0 k=1

1
X
1+ a®> — 2a cos ®

cos(tw)dw

B + (M + 1) 5 L s(th£>
T M| (1 - ap kgl 1 + o — 2a cos(2nkiM) *° M
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FIGURE 5.6 Plots of r(t) and ry(t) versus t. The filter parameter is a = 0.9; r,(1) is
plotted for M = 500, 200, 100, 50 and 20.

Figure 5.6 shows the plots of the covariance functions r;(t) and r,(t) versus T, for
different values of M. It can be seen from the figure that r;(t) and r,(t) are very close for
large values of M. This is in accordance with the previous general discussion showing that
PRBS and white noise may have similar properties. Note also that for small values of M
there are significant differences between ri(t) and ry(7). H

5.3 Lowpass filtering

The frequency content of an input signal and its distribution over the interval [0, 7] can
be of considerable importance in identification. In most cases the input should emphasize
the low-frequency properties of the system and hence it should have a rich content of low
frequencies. This section examines some ways of modifying a white noise process (which
has a constant spectral density) into a low-frequency signal. In this way it should be
possible to emphasize the low-frequency properties of the system during the identifica-
tion experiment. Example 12.1 will show how the frequency content of the input can
influence the accuracy of the identified model in different frequency ranges. The
modifications which are aimed at emphasizing the low frequencies can be applied to
signals other than white noise, but the discussion here is limited to white noise in order to
keep the analysis simple. The different approaches to be illustrated in the following
examples are:
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e Standard filtering.
e Increasing the clock period.
¢ Decreasing the probability of level change.

Example 5.9 Standard filtering

This approach was explained in Examples 5.3 and 5.6. The user has to choose the filter
parameters {c;, d;}. It was seen in Example 5.6 how these parameters can be chosen to
obtain various frequency properties. In particular, u(f) will be a low-frequency signal if
the polynomial C(z) has zeros close to z = 1. Then, for small , |C(e'®)| will be small and
¢(w) large (see (5.10c)). ]

Example 5.10 Increasing the clock period

Let e(¢) be a white noise process. Then the input u(¢) is obtained from e(f) by keeping the
same value for N steps. In this case N is called the increased clock period. This means
that

u(t) = e(lzt—%/—l—] + 1> t=1,2, ... (5.16a)

where [x] = integer part of x. This approach is illustrated in Figure 5.7.

Assume that e(f) has zero mean and unit variance. The signal w(f) will not be
stationary. By construction it holds that u(¢) and u(s) are uncorrelated if [t — s| = N.
Therefore let t = ¢t — s € [0, N — 1]. Note that Eu(¢ + t)u(?) is a periodic function of ¢,
with period N.

The covariance function will be evaluated using (5.6b), which gives

| M
Hr) = A}jlinm i > u(t + tyu(r)

Note that this definition of the covariance function is relevant to the asymptotic be-
havior of most identification methods. This is why (5.6b) is used here even if M(¢) is not
a deterministic signal.

Now set M = pN and

v,(s)———-—lﬁﬁ u(sN — N + k + tu(sN — N + k)

k=1
Then
12 &
r(t) = lim;l—vz > u(sN = N + k + tju(sN — N + k)
p=e s=1 k=1

Il
3
R
<
a
&

Now v.(s1) and v.(s,) are uncorrelated for |s; — s,| > 2, since they then are formed from
the input of disjoint intervals. Hence Lemma B.1 can be applied, and
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0
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FIGURE 5.7 The effect of increasing the clock period. (a) {e(k)}. (b) {u(k)};
N = 3.
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N

r(t) = Evy(s) = % > Eu(sN — N + k + tu(sN — N + k)
k=1

1

N
~ (k + Du(k)
N,;:: Eu U

2I>—*
=

[2 Eu(k + t)u(k) + g: Eu(k + t)u(k):'

k= k=N—t+1

I:NZ Ee(1)e(1) + g Ee(2)e(1)]

k=1 k=N-t+1

- T
= N (5.16b)

The covariance function (5.16b) can also be obtained by filtering the white noise e(¢)
through the filter

-1 1 -1 ~N+1 1 1-q7"
H(q ):Wvﬂ“l +...+¢q )=W1—_—q—: (5.16¢)

This can be shown using (A3.1.9). For the present case we have

~_JUVN j=0,...,N—1
h(j) = {0 elsewhere

Then (A3.1.9) gives

r(v) = Y > h(Dh(k)r(tv — j + k)

j=0 k=0

N-1 N-1 1

2 z N t—j+k,0

j=0 k=0

1 N—1—-t N -1

N2 Ty
k=0
which coincides with (5.16b). |

Remark. There are some advantages of using a signal with increased clock period over
a white noise filtered by (5.16¢). In the first case the input will be constant over long
periods of time. This means that in the recorded data, prior to any parameter estimation,
we may directly see the beginning of the step response. This can be valuable information
per se. The measured data will thus approximately contain transient analysis. Secondly, a
continuously varying input signal will cause more wearing of the actuators. |

Example 5.11 Decreasing the probability of level change
Let e(f) be a white noise process with zero mean and variance A*. Define u(f) as
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u(t) = {u(t — 1) with probability a (5.17a)

e(?) with probability 1 — «

The probability described by (5.17a) is independent of the state in previous time steps.

It is intuitively clear that if o is chosen close to 1, the input will remain constant over
long intervals and hence be of a low-frequency character. Figure 5.8 illustrates such a
signal.

When evaluating the covariance function r,(t) note that there are two random
sequences involved in the generation of u(f). The white noise {e(#)} is one sequence,
while the other sequence accounts for occurrence of changes. These two sequences are
independent. We have

u(t + 1) = e(ty) forsomet; <t -+t (5.17)
u(t) = e(t,) for some t, <1t
Thus for T = 0,
r.(t) = Eu(t + t)u(t) = Ee(t))e(t)
= E[e(t,)e(t,)|t; # t,]P(at least one change has occurred in the interval [z, ¢ + ]
+ Ele(ty)e(t,)|t; = t;]P(no change has occurred in the interval [¢, ¢ + T])

=0 X% (1-a") + A"

=)\a" (5.17¢)
u(r)
1 4
- - i
0 1
. - i
0 t 50

FIGURE 5.8 A signal u(f) generated as in (5.17a). The white noise {e(f)} has a
two-point distribution (P(e(t) = 1) = P(e(t) = —1) = 0.5). The parameter a = 0.8.
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This covariance function would also be obtained by filtering e(¢) with a first-order filter

H(g™") = (L:%?‘;f (5.17d)
To see this, note that the weighting sequence of this filter is given by

h(j) = (1= )% j=0
Then from (A3.1.8),

=SS B — j + k)
-0

= )2 i h(k)h(k + )
k=0

— }\'2(1 _ (1.2) Z a2k+1: — )\'2(11
k=0
which coincides with (5.17c¢). |

These examples have shown different methods to increase the low-frequency content of a
signal. For the methods based on an increased clock period and a decreased probability
of change we have also given ‘equivalent filter interpretations’. These methods will give
signals whose spectral properties could also be obtained by standard lowpass filtering
using the ‘equivalent filters’.

The next example illustrates how the spectral densities are modified.

Example 5.12 Spectral density interpretations
Consider first the covariance function (5.16b). Since it can be associated with the filter
(5.16¢), the corresponding spectral density is readily found to be
1 1—e™N2 1 12-2cosNo 1 11— cosNw
¢l( ) 27,5

VN 1=e™

" 2tN 2-2coso  2xN 1-cosw
Next consider the covariance function (5.17c) with A> = 1. From (5.17d) the spectral
density is found to be
1-o? 1 1- o
Pa(w) = 27& 1 — e 211+ o — 20 cos @

These spectral densities are illustrated in Figure 5.9, where it is clearly seen how the
frequency content is concentrated at low frequencies. It can also be seen how the low-
frequency character is emphasized when N is increased or o approaches 1. [ ]

5.4 Persistent excitation

Consider the estimate (3.30) of a truncated weighting function. Then, asymptotically (for
N — ), the coefficients {h(k)}o' are determined as the solution to
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FIGURE 5.9 (a) llustration of ¢;(w), N = 3, Example 5.12. (b) Similarly for N = 5.
(c) Similarly for N = 10. (d) Illustration of ¢,(w), for M=1a=03,07
and 0.9, Example 5.12.
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r.(0) v (M= 1) h(0) ryu(0)

1

: - : ; : (5.18)
r(M-1) ... r,(0) h(M - 1) Fyu(M — 1)

For a unique solution to exist the matrix appearing in (5.18) must be nonsingular. This
leads to the concept of persistent excitation.

Definition 5.1
A signal u(r) is said to be persistently exciting (pe) of order n if:

(i) the following limit exists:
1 & T
ru(t) = Alll_ﬁ N Z u(t + Hu'(o); (5.19)

and

(ii) the matrix

r.(0) r(l) ... r(n—-1)
Ry(n) = r“(:_l) 0 ‘ (5.20)
r.(1 - n) —_— r.(0)
is positive definite. E

Remark 1. As noted after (5.6), many stationary stochastic processes are ergodic. In
such cases one can substitute

1 N
MmN 2

in (5.19) by the expectation operator E. Then the matrix R,(n) is the usual covariance
matrix (supposing for simplicity that u(¢) has zero mean). =

Remark 2. In the context of adaptive control an alternative definition of pe is used (see
e.g. Anderson, 1982; Goodwin and Sin, 1984; Bai and Sastry, 1985. See also Lai and
Wei, 1986.) There u(t) is said to be persistently exciting of order n if for all ¢ there is an
integer m such that

t+m

ol > > (k)@ (k) > ol (5.21)

k=t
where @1, 02 > 0 and the vector @(¢) is given by
o) = W'@t-1) ... u"@t—n)"

To see the close relation between Definition 5.1 and (5.21), note that the matrix (5.20)
can be written as
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N— oo

Rn) = lim 3 (08" (0 (5.22)
t=1
]

As illustration of the concept of persistent excitation, the following example considers
some simple input signals.

Example 5.13 Order of persistent excitation
Let u(f) be white noise, say of zero mean and variance 0. Then r,(t) = 0%0¢, and
R,(n) = o°I,, which always is positive definite. Thus white noise is persistently exciting
of all orders.

Next, let u(t) be a step function of magnitude o. Then r,(t) = o? for all T. Hence R,(n)
is nonsingular if and only if n = 1. Thus a step function is pe of order 1 only.

Finally, let u(f) be an impulse: u(¢) = 1 for t = 0, and 0 otherwise. This gives r,(t) =
for all T and R,(n) = 0. This signal is not pe of any order. [ |

Remark 1. Sometimes one includes a term corresponding to an estimated mean value
in (5.19) for the definition of pe signals. This means that (5.19) is replaced by

my

11m — Z u(t)
(5.23)

r(t) = lim - E [u(t + ©) = m,J[u"(5) — my]
In this way the order of persistent excitation can be decreased by at most one. This can
be seen to be the case since

Ru(n)new — Ru(n)old _ mmT
mt = (mL ... m))

and therefore rank R, (n)*" = rank R,(n)°'? — 1. With this convention a white noise is
still pe of any order. However, for a step function we now get r,(t) = 0 all T. Then R, (n)
becomes singular for all #n. Thus a step function is not pe of any order with this alternative
definition. ]

Remark 2. The concept of persistent excitation was introduced here using the
truncated weighting function model. However, the use of this concept is not limited to
the weighting function estimation problem. As will be seen in subsequent chapters, a
necessary condition for consistent estimation of an nth-order linear system is that the
input signal is persistently exciting of order 2n. Some detailed calculations can be found
in Example 11.6. In some cases, notably when the least squares method is applied, it is
sufficient to use an input that is pe of order n. This result explains why consistent
parameter estimates were not obtained in Example 2.6 when the input was an impulse.
(See also Complement C5.1.) |
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Remark 3. The statements of Remark 2 are applicable to consistent estimation in noisy
systems. For noise-free systems, it is not necessary that the input is persistently exciting.
Consider for example an nth-order linear system initially at rest. Assume that an impulse
is applied, and the impulse response is recorded. From the first 2z (nonzero) values of
the impulse it is possible to find the system parameters (cf. Problem 3.11). Hence the
system can be identified even though the input is not persistently exciting. The reason is
that noise-free systems can be identified from a finite number of data points (N < «)
whereas persistent excitation concerns the input properties for N — o (which are
relevant to the analysis of the consistency of the parameter estimates in noisy systems).

]

Remark 4. Sometimes it would be valuable to have a more detailed concept than
the order of persistent excitation. Complement C5.2 discusses the condition number of
R,(n) as a more detailed measure of the persistency properties of an input signal, and
presents some results tied to ARMA processes. |

In what follows some properties of persistently exciting signals are presented. Such an
analysis was originally undertaken by Ljung (1971), while an extension to multivariable
signals was made by Stoica (1981a). To simplify the proofs we restrict them to stationary
ergodic, stochastic processes, but similar results hold for deterministic signals; see Ljung
(1971) for more details.

Property 1

Let u(f) be a multivariable ergodic process of dimension nu. Assume that its spectral
density matrix is positive definite in at least n distinct frequencies (within the interval
(—m, m)). Then u(t) is persistently exciting of order n.

Proof. Let g = (gf ... gNHT be an arbitrary n X nu-vector and set G(g™ ') =
Y. g:q " Consider the equation

0 = g"Ru(n)g = E[G" (g~ Hu()][G" (g~ Hu(D]"
= f " G )0u0) G )do

where ¢,(w) is the spectral density matrix of u(#). Since ¢,(w) is nonnegative definite,
GT(e™)9u()G(e™) = 0
Thus G(e ') is equal to zero in n distinct frequencies. However, since G(z) is a (vector)

polynomial of degree n — 1 only, this implies g = 0. Thus the matrix R,(n) is positive
definite and u(?) is persistently exciting of order n. B

Property 2
An ARMA process is persistently exciting of any finite order.

Proof. The assertion follows immediately from Property 1 since the spectral density
matrix of an ARMA process is positive definite for almost all frequencies in (—x, ). B
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For scalar processes the condition of Property 1 is also necessary for u(t) to be pe of order
n (see Property 3 below). This is not true in the multivariable case, as shown by Stoica
(1981a).

Property 3
Let u(¢) be a scalar signal that is persistently exciting of order n. Then its spectral density
is nonzero in at least n frequencies.

Proof. The proof is by contradiction. From the calculation of Property 1,
= g"Ru(n)g = ¢ (0)|G()* = 0

Assume that the spectral density is nonzero in at most n — 1 frequencies. Then we can
choose the polynomial G(z) (of degree n — 1) to vanish where ¢,(w) is nonzero. This
means that there is a nonzero vector g such that g"R,(n)g = 0. Hence u is not pe of
order n. This is a contradiction and so the result is proved. ]

A scalar signal that is pe of order » but not of order » + 1 has a spectral density which
is nonzero in precisely n distinct points (in the interval (—, t)). It can be generated as a
sum of [n/2 + 1] sinusoids (cf. Example 5.17).

Property 4

Let u(t) be a multivariable ergodic signal with spectral density matrix ¢,(®). Assume
that ¢,(w) is positive definite for at least n distinct frequencies. Let H(g™') be an
(nu|nu) asymptotically stable linear filter and assume that det[H(z)] has no zero on
the unit circle. Then the filtered signal y(f) = H(q ")u(t) is persistently exciting of
order n.

Proof. Since

¢(0) = H(e )P, (0) H (')
the result is an immediate consequence of Property 1. |

The preceding result can be somewhat strengthened for scalar signals.

Property 5

Let u(f) be a scalar signal that is persistently exciting of order n. Assume that H(g™')
is an asymptotically stable filter with k zeros on the unit circle. Then the filtered signal
y(£) = H(q ")u(?) is persistently exciting of order m with n — k < m < n.

Proof. We have
dy(@) = oy ()| H(e"™)?

Now ¢,(w) is nonzero in n points; |H(e')|? is zero in precisely k points; hence ¢,(w)
is nonzero in m points, where n — k < m < n. The result now follows from
Property 1. |

Note that the exact value of m depends on the location of the zeros of |[H(e'*)|* and
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whether ¢,(w) is nonzero for these frequencies. If in particular H(g™') has no zeros

on the unit circle then u(¢) and H(g™")u(f) are pe of the same order.

Property 6
Let u(¢) be a stationary process and let

z(t) = i Hiu(t — i)

i=1

Then Ez(£)z"(¢) = 0 implies H; = 0,i = 1, ..., nif and only if u(¢) is persistently exciting
of order n.
Proof. Set
H=H, ... H)" o@0=@w'¢t-1) ... u'(t—n)"

Then z(f) = H (#) and
0 = Ez(1)z'(2) = EH o()e" ()H = H'[E@()¢"()]H
= H'R,(n)H
Thus Ez(t)z"(f) = 0 implies H = 0 if and only if R,(n) is positive definite. However,

this condition is the same as u(f) being pe of order n. [ ]

The following examples analyze the input signals introduced in Section 5.1 with respect
to their persistent excitation properties.

Example 5.14 A step function
As already discussed in Example 5.13, a step function is pe of order 1, but of no greater
order. |

Example 5.15 A PRBS

We consider a PRBS of period M. Let & be an arbitrary non-zero n-vector, where n < M.
Set

e=(1 1 ... DT (n|1)
The covariance function of the PRBS is given by (5.9a). Therefore, for n # 0
a ... —ad’ M
KR (n)h = KT —“,Z/M . C o
—a.z/M . &

2 2 2
= hT[<a2 + i—/I)I - aﬁeeleh = a2<1 + -;Z)hTh - aM(hTe)2

1 a? 1 n
= a2<1 + M) hW'h — —A/—IhTheTe = athh[l 0 1\_/1] >0
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The inequality follows from the Cauchy—Schwartz inequality.
In addition,

a? -a)M ... a*
-a#IM @ —a*/M
RM+ 1) = ' )
—a’M
@  —-adlM ... a*
Since the first and the last row are equal, the matrix R, (M + 1) is singular. Hence a
PRBS with period M is pe of order equal to but not greater than M. [ |

Remark. A general periodic signal of period M can be persistently exciting of at most
order M. This can be realized as follows. From (A5.1.8) it may be concluded that the
spectral density is positive in at most M distinct frequencies. Then it follows from
Properties 1 and 3 that the signal is pe of an order » that cannot exceed M. For the
specific case of a PRBS we know from Example 5.5 that the spectral density is positive
for exactly M distinct frequencies. Then Property 1 implies that it is pe of order M. =

Example 5.16 An ARMA process
Consider the ARMA process u(f) introduced in Example 5.3. It follows from Property 2
that u(f) is pe of any finite order. |

Example 5.17 A sum of sinusoids
Consider the signal

ut) = > a;sin(w;t + @)
j=1
O0soy<w, ... <o0,<x
which was introduced in Example 5.4. The spectral density was given in (5.12f) as

m

0u@) = 3 T — @) + 3w + v,)

j=1
Thus the spectral density is nonzero (in the interval (—m, xt]) in exactly »n points, where

2m if 0<w,w,<x
n=92m-1 f0=w;orw, =xn (5.24)
2m -2 if 0=w;and w,, = n
It then follows from Properties 1 and 3 that u(?) is pe of order n, as given by (5.24),
but not of any greater order. |
Summary

Section 5.1 introduced some typical input signals that often are used in identification
experiments. These included PRBS and ARMA processes. In Section 5.2 they were
characterized in terms of the covariance function and spectral density.
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Section 5.3 described several ways of implementing lowpass filtering. This is of interest
for shaping low-frequency inputs. Such inputs are useful when the low frequencies in a
model to be estimated are of particular interest.

Section 5.4 introduced the concept of persistent excitation, which is fundamental when
analyzing parameter identifiability. A signal is persistently exciting (pe) of order n if its
covariance matrix of order # is positive definite. In the frequency domain this condition is
equivalent to requiring that the spectral density of the signal is nonzero in at least »
points. It was shown that an ARMA process is pe of infinite order, while a sum of
sinusoids is pe only of a finite order (in most cases equal to twice the number of
sinusoids). A PRBS with period M is pe of order M, while a step function is pe of order
one only.

Problems

Problem 5.1 Nonnegative definiteness of the sample covariance matrix
The following are two commonly used estimates of the covariance function of a
stationary process:

Rk = ‘A‘/ t=zl y(t)y (t + k) R_k = Rk k=0
and
Ro= i S yoy'c+ k) R=RI k=0
k — N . k P y(t)y (t + ) —k k =

where {y(1), ..., y(N)} is the sample of observations.

(a) Show that the sample covariance matrix [R;_;] is not necessarily nonnegative
definite.

(b) Let R, =0, |k| = N. Then show that the sample covariance matrix of any dimension
[R;—;] is nonnegative definite.

Problem 5.2 A rapid method for generating sinusoidal signals on a computer
The sinusoidal signal

u(t) = a sin(®t + @) t=1,2, ...
obeys the following recurrence equation
u(t) — 2 cos du(t — 1) +ut—-2) =0 @)

Show this in two ways: (a) using simple trigonometric equalities; and (b) using the
spectral properties of sinusoidal signals and the formula for the transfer of spectral
densities through linear systems. Use the property above to conceive a computationally
efficient method for generating sinusoidal signals on a computer. Implement this method
and study empirically its computational efficiency and the propagation of numerical
errors compared to standard procedures.
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Problem 5.3 Spectral density of the sum of two sinusoids
Consider the signal

u(t) = a; sin ¢ + a, sin Wyt

where w; = 2nk;/M (j = 1, 2) and k4, k, are integers in the interval [1, M — 1]. Derive the
spectral density of u(f) using (5.12d), (A5.1.8), (AS5.1.15). Compare with (5.12f).

Problem 5.4 Admissible domain for 9, and @, of ‘a stationary process
Let {r,} denote the covariance at lag k of a stationary process and let g, = r,/ry be the
kth correlation coefficient. Derive the admissible domain for 9y, 0,.

Hint. The correlation matrix [g;—;] must be nonnegative definite.

Problem 5.5 Admissible domain of o, and @, for MA(2) and AR(2) processes

Which is the domain spanned by the first two correlations @;, 0, of a MA(2) process?
What is the corresponding domain for an AR(2) process? Which one of these two
domains is the largest?

Problem 5.6 Spectral properties of a random wave
Consider a random wave u(#) generated as follows:

ut) = t a

u(t) = {

where 0 < a < 1. The probability of change at time ¢ is independent of what happened at
previous time instants.

u(t — 1) with probability 1 — «
—u(t — 1) with probability o

(a) Derive the covariance function.
Hint. Use the ideas of Example 5.11.

(b) Determine the spectral density. Also show that the signal has low-frequency
character (¢p(w) decreases with increasing w) if and only if o < 0.5.

Problem 5.7 Spectral properties of a square wave
Consider a square wave of period 2n, defined by

u(t) = 1 t=0,...,n—-1
u(t + n) = —u(t) all ¢

(a) Derive its covariance function.
(b) Show that the spectral density is given by

o) = 3 Z——L (0 - Zaj - 1))

j=1 1 — cos nzj

n—1

n—1 n—1
. d : z 1-2
i il — J = —
Hint. i§=0: jz e j§=0: z n ) + T =22

(c) Of what order will u(¢) be persistently exciting?
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Problem 5.8 Simple conditions on the covariances of a moving average process
Let {ri}%=o0 denote some real scalars, with r, > 0. Show that

(a) {r} are the covariances of a nth-order MA process if
i Ire] < %ro (sufficient condition)
k=1
(b) {ry} are the covariances of a nth-order MA process only if
i Irel < %ro (necessary condition)
k=1
Problem 5.9 Weighting function estimation with PRBS

Derive a closed-form formula for the weighting coefficient estimates (5.18) when the
input is a PRBS of amplitudes *1 and period N = M. Show that

R N M-1 . ' .
M) = T DN T [2 Fuli) + (N = M + 2)ryu(k):|

i=0

ik
If N is much larger than M show that this can be simplified to h(k) = 7yu(k). Next observe
that for N = M, the formula above reduces to h(k) = f,,(k) + L' 7,,(i). This might
appear to be a contradiction of the fact that for large N the covariance matrix of a
PRBS with unit amplitude is approximately equal to the identity matrix. Resolve this
contradiction.

Problem 5.10 The cross-covariance matrix of two autoregressive processes obeys a
Lyapunov equation
Consider the following two stationary AR processes:

A+ ag + ...+ a,qg )y = e(d)

(1 + -blq_l + ... + bmq_m)x(t) _ e(t) EE(t)e(s) - 6t,s

Let
ye =1
R=E : x@-1) ... x(t—m) (cross-covariance matrix)
y(t = n)
—a —0n-1 a,
1 0
A= 0o .
0 1 0
‘—bl —bm—l bm
P
0 :
1 0
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Show that
R — ARB" = u,u},
where W, is the first nth-order unit vector; thatis w, = (1 0 ... 0)T.

Bibliographical notes

Brillinger (1981), Hannan (1970), Anderson (1971), Oppenheim and Willsky (1983), and
Aoki (1987) are good general sources on time series analysis.

PRBS and other pseudorandom signals are described and analyzed in detail by Davies
(1970). See also Verbruggen (1975).

The concept of persistent excitation originates from Astrém and Bohlin (1965). A
further analysis of this concept was carried out by Ljung (1971) and Stoica (1981a).

Digital lowpass filtering is treated, for example, by Oppenheim and Schafer (1975),
and Rabiner and Gold (1975).

Appendix A5.1
Spectral properties of periodic signals

Let u(f) be a deterministic signal that is periodic with period M, i.e.
u(t) = u(t — M) allt (A5.1.1)

The mean value m and the covariance function r(t) are then defined as

1 M
m & 1\1}1_) NZ u(t) = 2 u(t)
=1 M=
r(t) & Jim %;N [u(t + 1) — m][u(®) — m]* (A5.1.2)
| M
=M g [u(t + ©) — m]u(®) — m]"

The expressions for the limits in the definitions of m and r(t) can be readily established.
For general signals (deterministic or stochastic) it holds that

r(=1) = r'(v) (A5.1.3)
In addition, for periodic signals we evidently have

r(M + ) = r(7) (A5.1.4)
and hence

HM - k) = F(k) (A5.1.5)
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The general relations (A3.1.2), (A3.1.3) between a covariance function and the
associated spectral density apply also in this case. However, when r(t) is a periodic
function, the spectral density will no longer be a smooth function of . Instead it will
consist of a number of weighted Dirac pulses. This means that only certain frequencies
are present in the signal.
An alternative to the definition of spectral density for periodic signals in (A3.1.2)
o) =5 3 e

T=—0o0

is given by the discrete Fourier transform (DFT)

- M_l .
b= > rme™>™™  n=0,...,M-1 (A5.1.6)

=0

Then instead of the relation (A3.1.3),

r(t) = fn e™d(w)dw

we have
1 M1
r(m =47 X Gue M (A5.1.7)
n=0

We will, however, keep the original definition of a spectral density. For a treatment of
the DFT, see Oppenheim and Schafer (1975), and Cizek (1986). The relation between
¢(w) and {¢,} will become clear later (see (AS.1.8), (AS5.1.15) and the subsequent
discussion).

For periodic signals it will be convenient to define the spectral density over the interval
[0, 2x] rather than [—mx, m]. This does not introduce any restriction since ¢p(w) is by
definition a periodic (even) function with period 2.

For periodic signals it is not very convenient to evaluate the spectral density from
(A3.1.2). An alternative approach is to try the structure

o(w) = Mjl Ck6<w - 2:%) (A5.1.8)

k=0

where C, are matrix coefficients to be determined. It will be shown that with certain
values of {C;} the equation (A3.1.3) is satisfied by (AS5.1.8).
First note that substitution of (A5.1.8) in the relation (A3.1.3) gives

2w M—1 k )
f Z Ck6<u) - Zﬂ:A—/I>e do

0 k=0

r(v)
o (A5.1.9)
= Z Ckak'
k=0
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where

a & M (A5.1.10)
Note that

a#1,a¥ =1 (A5.1.11)

It follows directly from (A5.1.11) that the right-hand side of (A5.1.9) is periodic with
period M. It is therefore sufficient to verify (AS5.1.9) for the valuest=0, ..., M — 1. For
this purpose introduce the (M|M) matrix

1 1 1 1
. 1 « a? aM-1
U= ___ 2 4 : (A5.1.12)
vl ¢ :
.1 a";'"l az(}”_l) R
Then note that (A5.1.9) fort =0, ..., M — 1 can be written in matrix form as
r(0
8 @
r
] =(VMU®I) ( : ) (AS5.1.13)
’ Car—
M - 1) M=t

where ® denotes Kronecker product (see Section A.7 of Appendix A). The matrix U
can be viewed as a vanderMonde matrix and it is therefore easy to prove that it is
nonsingular. This means that {C, }¥=¢' can be derived uniquely from {r(t)}?.". In fact
U turns out to be unitary, i.e.

Ut=u* (A5.1.14)

where U* denotes the complex conjugate transpose of U. To prove (A5.1.14) evaluate
the elements of UU*. When doing this it is convenient to let the indexes vary from 0 to
M — 1. Since Uy, = o/*/ VM,

M-1 1 M-1 )
(UU = 3, UpUpe = 37 >, oo
p=0 p=0
1 M-1 )
- = aPU—k)
M =
Hence
1 M1
ou*),; = — 1=1
M =
and for j # k
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These calculations prove that UU* = I, which is equivalent to (AS5.1.14).
Using (A5.1.12)-(AS5.1.14) an expression can be derived for the coefficients {C,} in
the spectral density. From (AS5.1.14) and Lemma A.32,

(U®I)_1= U*® 1
Thus

C, = —I—[U,’gor(O) + Upr(D) + ... + Ui yo1r(M — 1)]
VM :

LIHO) + atr() + L+ D — 1))

or

LM
Cr = ” > ar(j) (A5.1.15)

j=0

Note that from (AS5.1.6) and (AS5.1.15) it follows that

1-
Ck=*A,‘I¢k

Hence the weights of the Dirac pulses in the spectral density are equal to the normalized
DFT of the covariance function.

In the remaining part of this appendix it is shown that the matrix C, is Hermitian and
nonnegative definite. Introduce the matrix

r(0) r(l) ... r(M-1)
Ro| DO
r(1 - M) o .. r(0)
N ut — 1) —m
=}\l]ivr)110—;72 : Wt —1)-m" ... Ut - M) —m")
= \u(t — M) —m

which by construction is nonnegative definite. Further, introduce the complex-valued
matrix

a1 o o* ... aM D]

The quadratic form a;Raj is a Hermitian and nonnegative definite matrix by con-
struction. Then (AS5.1.5), (A5.1.10), (AS5.1.11) give
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M-1 M—1
aRaf = rOM + > (M - r(v)o™ " + > (M- )r(—1)ak
=1 =1
M-1 M-1
=rOM+ > (M - r(t)a ™ + > Ir(Da*M=1
=1 =1
M-1 ‘
= M[r(O) + Z r(r)a_’“:l = M?C,
=1
This calculation shows that the Cy, for k = 0, ..., M — 1, are Hermitian and non-

negative definite matrices. Finally observe that if u(¢) is a persistently exciting signal of
order M, then R is positive definite. Since the matrices a; have full row rank, it follows
that in such a case {Cy} are positive definite matrices.

Complement C5.1
Difference equation models with persistently exciting inputs

The persistent excitation property has been introduced in relation to the LS estimation of
weighting function (or all-zeros) models. It is shown in this complement that the pe
property is relevant to difference equation (or poles—zeros) models as well. The output
y(¢) of a linear, asymptotically stable, rational filter B(q')/A(g~!) with input u(¢) can be
written as

A(g~Ny(®) = B(g~Hu(®) + () (C5.1.1)
where

A =1+aqg '+ ... + aug ™™

Blgh)=big '+ ... + bupg ™
and where &(f) denotes some random disturbance. With

@) & (=y(t—1) ... —y(t—na) ut—1) ... u(t— nb)"

02 (@ ... G, by ... by)T

the difference equation (C5.1.1) can be written as a linear regression

y(®) = @"(1)8 + () (C5.1.2)

Similarly to the case of all-zeros models, the existence of the least squares estimate 6
will be asymptotically equivalent to the nonsingularity (positive definiteness) of the
covariance matrix

R = E@()o"(?)

As shown below, the condition R > 0 is intimately related to the persistent excitation
property of u(f). The cases &(f) = 0 and &(¢) # 0 will be considered separately.
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Noise-free output

For ¢(f) = 0 one can write

—by ... ~buy () )
na ——u(t — 1)
0 A(@™)
—by ... —bp :
e() = 1 -
ay ... Qu, O 1
nb ’ s A—_l—u(t — na — nb)
0 (¢7)
la; ... @,

4 A(—B, A1)
Thus
R = A(—B, AE@1)¢"(1)./T(-B, A) & A(-B, A)RST(-B, A)
which shows that
{R > 0} < {/ nonsingular and R > 0}

Now /(—B, A) is the Sylvester matrix associated with the polynomials —B(z) and A(z)
(see Definition A.8). It is nonsingular if and only if A(z) and B(z) are coprime (see
Lemma A.30).

Regarding the matrix R, it is positive definite if and only if u(z) is pe of order
(na + nb); see Property 5 in Section 5.4. Thus

R > 0} < {u(?) is pe of order (na + nb),
{ } < {u@)is p ( ) (C5.1.3)
and A(z), B(z) are coprime}
Noisy output
Let
_ 1 B(g™Y)
&t) = — ———xe¢ x(t) = — ult
(® A(q 1)() O] A ()
and assume that Eu(f)e(s) = 0 for all ¢t and s. Then one can write
x(t—-1)
x(t — na)
R=E xt—-1) ... x(t—na) u(t—1) ... u( — nb))

u(t — 1)

u(t - nb)
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gr—1)

gt - na) | _ _
+ E 0 Et-1) ... &t—na) 0 ... 0 (C5.1.49)

0

A B A0
& +
BT C 0 0
Clearly the condition C > 0 is necessary for R > 0. Under the assumption that A>0,
it is also sufficient. Indeed, it follows from Lemma A.3 that if C > 0 then
A-BC'BT=0
and
rank R = nb + rank (A + A — BC'B")
Thus, assuming A > 0,
rank R = na + nb

The conclusion is that under weak conditions on the noise &(¢) (more precisely A > 0),
the following equivalence holds:

{R > 0} <= {u(?) is pe of order (nb)} (C5.1.5)

Complement C5.2
Condition number of the covariance matrix of filtered white noise

As shown in Properties 2 and 5 of Section 5.4, filtered white noise is a persistently
exciting signal of any order. Thus, the matrix
u(t — 1)
R, =E : (it —=1) ... u(lt—m)) u@)=H(g Ye(r) (C52.1)
u(t — m)
where Ee(t)e(s) = 8,,, and H(q™') is an asymptotically stable filter, is positive definite
for any m. From a practical standpoint it would be more useful to have information on

the condition number of R,, (cond (R,,)) rather than to just know that R,, > 0. In the
following a simple upper bound on

COIld(Rm) é xmax(Rm)/)‘min(Rm) (C522)

is derived (see Stoica et al., 1985c; Grenander and Szegd, 1958).
First recall that for a symmetric matrix R the following relationships hold:
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T
. . X Rx

Amin = Inf

min X xTx

T

A = su
max xp xTx

Since the matrices R,,,; and R, are nested, i.e.
R,, *
Rm+1 = < % *)
it follows that
)"min(Rm-H) = }"min(Rm)
)"max(Rm+1) = xmax(Rm)
Thus
cond(R,,+1) = cond(R,) (C5.2.3)

Next we prove that

Omin & lim Apin (R,,) = inf|H(e®)|? (C5.2.4)
Omax £ M Aax (Rn) = sup [H(e™)? (C5.2.5)

Let ¢ be a real number, and consider the matrix R,,, — ol. The (k, p) element of this
matrix is given by

1

i " imy |2 iw(k—p) _ =
| HEPE 0~ 0de, =5

j [|H(e"))* — g]e’*Pdw (C5.2.6)

If o satisfies
[HE*))> —o0=0 forw e (—m, m) (C5.2.7)

then it follows from (C5.2.6) that R,,, — o/ is the covariance matrix of a process with the
spectral density function equal to the left-hand side of (C5.2.7). Thus

R,, = ol for all m (C5.2.8)

If (C5.2.7) does not hold, then (C5.2.8) cannot be true. Now o;, is uniquely defined by
the following two conditions:

R,, = Oninl for all m
and
R, = (Opin + €)1 some € > 0, cannot hold for all m

From the above discussion it readily follows that o,,;, is given by (C5.2.4). The proof of
(C5.2.5) is similar and is therefore omitted.
The result above implies that
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cond(R,,) < sup|H(e**)|%inf |H(e")|? (C5.2.9)

with equality holding in the limit as 7 — o. Thus, if H(g™") has zeros on or close to the
unit circle, then the matrix R, is expected to be ill-conditioned for large m.

Complement C5.3
Pseudorandom binary sequences of maximum length

Pseudorandom binary sequences (PRBS) are two-state signals which may be generated,
for example, by using a shift register of order n as depicted in Figure C5.3.1.

The register state variables are fed with 1 or 0. Every initial state vector is allowed
except the all-zero state. When the clock pulse is applied, the value of the kth state is
transferred to the (k + 1)th state and a new value is introduced into the first state through
the feedback path.

The feedback coefficients, a4, ..., a,, are either 0 or 1. The modulo-two addition,
denoted by @ in the figure, is defined in Table C5.3.1. The system operates in discrete
time. The clock period is equal to the sampling time.

Clock

State State State u(t)

FIGURE C5.3.1 Shift register with modulo-two feedback path.

TABLE C5.3.1 Modulo-two
addition of two binary

variables
Uy U u; @ u,
0 0 0
1 0 1
0 1 1
1 1 0
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The system shown in Figure C5.3.1 can be represented in state space form as

a ... a,
1 0
et D= 0 0 (C5.3.1)
10
w@) = (0 ... 0 Dx(r)

where all additions must be carried out modulo-two. Note the similarity with ‘standard’
state space models. In fact, with appropriate interpretations, it is possible to use several
‘standard’ results for state space models for the model (C5.3.1). Models of the above
form where the state vector can take only a finite number of values are often called
finite state systems. For a general treatment of such systems, refer to Zadeh and Polak
(1969), Golomb (1967), Peterson and Weldon (1972).

It follows from the foregoing discussion that the shift register of Figure C5.3.1 will
generate a sequence of ones and zeros. This is called a pseudorandom binary sequence.
The name may be explained as follows. A PRBS is a purely deterministic signal: given
the initial state of the register, its future states can be computed exactly. However, its
correlation function resembles the correlation function of white random noise. This is
true at least for certain types of PRBS called maximum length PRBS (ml PRBS). For
this reason, this type of sequence is called ‘pseudorandom’. Of course, the sequence is
called ‘binary’ since it contains two states only.

The PRBS introduced above takes the values 0 and 1. To generate a signal that shifts
between the values a and b, simply take

y(@®) = a + (b — a)u(t) (C5.3.2)

In particular, if b = —a (for symmetry) and b = 1 (for simplicity; it will anyhow act as a
scaling factor only), then

y(@) = -1+ 2u(r) (C5.3.3)

This complement shows how to generate an m.l. PRBS by using the shift register of
Figure C5.3.1. We also establish some important properties of ml PRBS and in
particular justify the claim introduced above that the correlation properties of ml PRBS
resemble those of white noise.

Maximum length PRBS

For a shift register with n states there is a possible total of 2" different state vectors
composed of ones and zeros. Thus the maximum period of a sequence generated using
such a system is 2”. In fact, 2" is an upper bound which cannot be attained. The reason is
that occurrence of the all-zero state must be prevented. If such a state occurred then the
state vector would remain zero for all future times. It follows that the maximum possible
period is

M=2 -1 (C5.3.4)
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where
n = order (number of stages) of the shift register

A PRBS of period equal to M is called a maximum length PRBS. Whether or not an nth-
order system will generate an m.1. PRBS depends on its feedback path. This is illustrated
in the following example.

Example C5.3.1 Influence of the feedback path on the period of a PRBS
Let the initial state of a three-stage (n = 3) shift register be (1 0 0)T. For the following
feedback paths the corresponding sequences of generated states will be determined.

(a) Feedback from states 1 and 2, i.e. a; = 1, a, = 1, a3 = 0. The corresponding
sequence of state vectors
1
1
0

1 1 0 1
0 1 1 0
0/, 0/, 1/, 1/,
(b) Feedback from states 1 and 3, i.e. a; = 1, a, = 0, a3 = 1. The corresponding

has period equal to 3.

sequence of state vectors
1 0 0
0 1 0
1/, \0o/, \1/,

(). 2 6. )

has the maximum period M = 2°> — 1 = 7.
(c) Feedback from states 2 and 3, i.e. a; = 0, a, = 1, a3 = 1. The corresponding

sequences of state vectors
1
0
0

1 0 1 1 1 0 0
0 1 0 1 1 1 0
O 9 0 9 1 P 0 ’ 1 bl 1 > 1 ’
(d) Feedback from all states, i.e. a; = 1, a, = 1, a3 = 1. The corresponding sequence

has again the maximum possible period M = 7.
of the state vectors

1 1 0 0 1
0 1 1 0 0
0/, \0/, \1/, \1/, \O
has period equal to 4. ]

There are at least two reasons for concentrating on maximum length (ml) PRBS:

e The correlation function of an ml PRBS resembles that of a white noise (see below).
This property is not guaranteed for nonmaximum length PRBSs.

e As shown in Section 5.4, a periodic signal is persistently exciting of an order which
cannot exceed the value of its period. Since persistent excitation is a vital condition for
identifiability, a long period will give more flexibility in this respect.
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The problem of choosing the feedback path of a shift register to give an ml PRBS is
discussed in the following.
Let

A@qH=10aq ' ®agq?>® ... Dag™" (C5.3.5)

where g~ is the unit delay operator. The PRBS u(f) generated using (C5.3.1) obeys the
following homogeneous equation:

A(@ Du() =0 (C5.3.6)
This can be shown as follows. From (C5.3.1),

x(t+)=x,;00) j=1,...,(n—1)
and

Al Hu@) = x,() @ ax,(t — 1) @ ... @ a,x,(t — n)
=xit—-n+1)@ax(t —n® ... Da,x,(t —n) =0

The problem to study is the choice of the feedback coefficients {a;} such that the
equation (C5.3.6) has no solution u(#) with period smaller than 2" — 1. A necessary and
sufficient condition on {a;} for this property to hold is provided by the following lemma.

Lemma C5.3.1
The homogeneous recursive equation (C5.3.6) has only solutions of period 2" — 1, if and
only if the following two conditions are satisfied:

(i) The binary polynomial A(q~') is irreducible [i.e. there do not exist any two
polynomials A,(g”") and A,(q~"') with binary coefficients such that A(g~") =

Ai(g~HA2g ]
(i) A(g™")is afactor of 1 @ g~ butis not a factorof 1 @ g7? forany p < M = 2" — 1.

Proof. We first show that condition (i) is necessary. For this purpose assume that
A(g™") is not irreducible. Then there are binary polynomials A;(g~") and A,(g~") with
deg Ay =n, >0 degA,=n,>0 andn; +nm=n
such that the following factorization holds:
A(g™h = Alg™HAAg™)
Let u(f) and u,(¢) be solutions to the equations

Alg () =0

(C5.3.7)
Ax(q Hua(t) = 0
Then
u(t) = w(1) @ ux(r) (C5.3.8)

is a solution to (C5.3.6). Now, according to the above discussion, the maximum period of
u;(t)is 2" — 1 (i = 1, 2). Thus, the maximum possible period of u(t), (C5.3.8), is at most
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equal to (2™ — 1)(2™ — 1), which is strictly less than 2" — 1. This establishes the
necessity of condition (i).

We next show that if A(g ") is irreducible then the equation (C5.3.6) has solutions of
period p if and only if A(g™") is a factor of 1 ® g77.

The ‘if’ part is immediate. If there exists a binary. polynomial P(q™") such that
AlgHP@@ ) =1®q7"
then it follows that

(1 ® gP)u(r) = P(g7HIA(@ Hu®] = 0

which implies that u(¢) has period p.
The ‘only if’ part is more difficult to prove. Introduce the following ‘z-transform’ of the
.binary sequence u(f)

U(z) = é u(t)z' (C5.3.9)

=0
where & denotes modulo-two summation. Let
P(z) = u0) @ u(l)z @ ... @ u(p — 1)z¢7!

Due to the assumption that the period of u(?) is equal to p, we can write

U(z) = P(z2) @ 2°P(z) ® Z¥P(2) ® ... = PR)1 @ 22 ® ¥ @ .. ]
Hence
U(z)[1 @ 2#] = P(2) (C5.3.10)

On the other hand, we also have (cf. (C5.3.6))

U@z) = é [}’.;: au(t — i)]Z’ = é a;z' ,% u(t — i)z

=0 Li=1 t=0

(C5.3.11)

= é a,-z‘[ g u()z' ® U(z)] =Q0(z) ® l:é aiz’:l U(z2)

t=—i i=1
where
n -1
02) &Y a Y u®)z" (C5.3.12)
i=1 t=—1I

is a binary polynomial of degree (n — 1), the coefficients of which depend on the initial
values u(—1), ..., u(—n) and the feedback coefficients of the shift register. It follows
that

U(z) = 0(2) @ [A(2) ® 1]U(2)
= 0(z) ® A(2)U(z) @ U(z)

and hence
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0(z) = A(2)U(2) (C5.3.13)
Now, (C5.3.10) and (C5.3.13) give
A(Z)P(z) = 0(2)[1 ® 2F] (C5.3.14)

Since A(z) is assumed to be irreducible, it must be a factor of either Q(z) or 1 @ z7.
However, the degree of Q(z) is smaller than the degree of A(z). Hence A(z) cannot be a
factor of Q(z). Thus, A(z) is a factor of 1 @ z, which was the required result.

The necessity of condition (ii) and the sufficiency of conditions (i) and (ii) follow
immediately from this last result. =

Tables of polynomials satisfying the conditions of the lemma are available in the litera-
ture. For example, Davies (1970) gives a table of all the polynomials which satisfy the
conditions (i) and (ii), for n from 3 to 10. Table C5.3.2 lists those polynomials with a
minimum number of nonzero coefficients which satisfy the conditions of the lemma, for n
ranging from 3 to 10. (Note that for some values of n there are more than two such
polynomials; see Davies (1970).)

TABLE C5.3.2 Polynomials A(z) satisfying
the conditions (i) and (ii) of Lemma C5.3.1

(n=3,...,10)
n A(2)
3 1®z20 2 192207
4 1®z@z* 192@ 2
5 1©22@7° 19202
6 1®z@ 2 1®22@ 2°
7 1®z@ 7 1@2@ 77
8 19z2@022@7 @28 19202927 @ 2%
9 1®z4@ 2° 192202
10 1®© 2@ 1® 27 @ 2

Remark. In the light of Lemma C5.3.1, the period lengths encountered in Example
C5.3.1 can be understood more clearly. Case (a) corresponds to the feedback polynomial

A@H=10q"'Oq7?

which does not satisfy condition (ii) of the lemma since
A@Hl®qgh)=1®47°

Case (b) corresponds to
AgH)=10q'®q7

given in Table C5.3.2. Case (c) corresponds to

A@H=1®q¢g7®q
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given in Table C5.3.2. Case (d) corresponds to

A@H=10q'®q2@q7°
which does not satisfy condition (ii) since

A@H1@ g H=1®4* -

Covariance function of maximum length PRBS

The ml PRBS has a number of properties, which are described by Davies (1970). Here
we will evaluate its mean and covariance function. To do so we will use two specific
properties, denoted by P1 and P2 below.

Property P1
If u(¢) is an ml PRBS of period M = 2" — 1, then within one period it contains
(M + 1)2 = 2! ones and (M — 1)/2 = 27! — 1 zeros. =

Property P1 is fairly obvious. During one period the state vector, x(¢), will take all
possible values, except the zero vector. Out of the 2" possible state vectors, half of them,

i.e. 2"7!, will contain a one in the last position (giving u(f) = 1).

Property P2

Let u(t) be an ml PRBS of period M. Then fork =1, ..., M — 1,
ut) ® u(t — k) = u(t = 1) (C5.3.15)
for some [ € [1, M — 1] that depends on k. [ |

Property P2 can be realized as follows. According to (C5.3.6), A(g ")u(f) = 0 for all
initial values. Conversely, if A (g~ ")u(f) = 0 then u(¢) is an ml PRBS which is the solution
to (C5.3.6) for some initial values. Now

Ag)[u® @ u(t = k)] = [A@@Hu@®] © [A(g ut — k)] =0

Hence u(t) @ u(t — k) is an ml PRBS, corresponding to some initial values. Since all
possible state vectors appear during one period of u(f), the relation (C5.3.15) follows.
One further simple property is required, which is valid for binary variables.

Property P3
If x and y are binary variables, then

xy=zx+y—(x®y) (C5.3.16)

N

Property P3 is easy to verify by direct computation of all possible cases; see Table C5.3.3.
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TABLE C5.3.3 Verification of property P3

1
x y x®@y Sty - @x®y) xy
0 0 0 0 0
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1

The mean and the covariance function of an ml PRBS can now be evaluated. Let the
period be M = 2" — 1. According to Appendix AS5.1,

m=—$2u(t)

o (C5.3.17)
M) = 22 S [t + 1) = mlu@) — m]
=1
and r(t) is periodic with period M.
Property P1 gives
1(M+1 1 1
m = M( 5 > =3 + M (C5.3.18)
The mean value is hence slightly greater than 0.5.
To evaluate the covariance function note first that
1 2 _1 &, 2
r0) = 3 3 [u@) = mP = 32 3 W) = m
=1 =1
1 & 2 2
= > u(t) —m* =m—m>=m( - m) (C5.3.19)
=1
M+1M-1_ M -1
2M 2M 4M?
The variance is thus slightly less than 0.25. Next note that fort =1, ..., M — 1,
properties P1-P3 give
1 M
r(v) = 57 2 @ + 1) — mlu@) — m]
=1
- L § u(t + Yu() — m?
M =1
1 X )
=M 2 [ut + v + u@®) — {u@ + 1) @ u@®}] —m (C5.3.20)
t=1
= —LM (t+1—10) —m?
m— o u m
=1
_m 5, m. M+1
=5 - m =50 =2m AM?
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Considering the signal y(f) = —1 + 2u(?) from (C5.3.3), the following results are
obtained:
1
m, = -1+ 2m, = u 0 (C5.3.21a)
ry(0) = 4r,(0) =1 — *]Vlli =1 (C5.3.21b)
_ 1 1 1 _
ry('c) = 4ry(t) = "“M - W = _M t=1,...,. M -1 (C5.3.21C)

The approximations in (C5.3.21) are obtained by neglecting the slight difference of the
mean from zero.

It can be seen that for M sufficiently large the covariance function of y(f) resembles
that of white noise of unit variance. The analogy between ml PRBS and white noise is
further discussed in Section 5.2.

Due to their easy generation and their convenient properties the ml PRBSs have
been used widely in system identification. The PRBS resembles white noise as far as
the spectral properties are concerned. Furthermore, by various forms of linear filtering
(increasing the clock period to several sampling intervals being one way of lowpass
filtering; see Section 5.3), it is possible to generate a signal with prescribed spectral
properties. These facts have made the PRBS a convenient probing signal for many
identification methods.

The PRBS has also some specific properties that are advantageous for nonparametric
methods. The covariance matrix [r(i — j)] corresponding to an ml PRBS can be inverted
analytically (see Problem 5.9). Also, calculation of the cross-correlation of a PRBS with
another signal needs only addition operations (multiplications are not needed). These
facts make the ml PRBS very convenient for nonparametric identification of weighting
function models (see, for example, Section 3.4 and Problem 5.9).



Chapter 6

MODEL
PARAMETRIZATIONS

6.1 Model classifications

This chapter examines the role played by the model structure .# in system identifica-
tion, and presents both a general description of linear models and a number of examples.
In this section, some general comments are made on classification of models. A distinc-
tion can be made between:

o ‘Intuitive’ or ‘mental’ models.
e Mathematical models. These could also include models given in the form of graphs or
tables.

Models can be classified in other ways. For example:

o Analog models, which are based on analogies between processes in different areas. For
example, a mechanical and an electrical oscillator can be described by the same
second-order linear differential equation, but the coefficients will have different
physical interpretations. Analog computers are based on such principles: differential
equations constituting a model of some system are solved by using an ‘analog’ or
‘equivalent’ electrical network. The voltages at various points in this network are
recorded as functions of time and give the solution to the differential equations.

e Physical models, which are mostly laboratory-scale units that have the same essential
characteristics as the (full-scale) processes they model.

In system science mathematical models are useful because they can provide a descrip-
tion of a physical phenomenon or a process, and can be used as a tool for the design
of a regulator or a filter.

Mathematical models can be derived in two ways:

o Modeling, which refers to derivation of models from basic laws in physics, economics,
etc. One often uses fundamental balance equations, for example net accumulation =
input flow — output flow, which can be applied to a range of variables, such as
energy, mass, money, etc.

o Identification, which refers to the determination of dynamic models from experimental
data. It includes the set-up of the identification experiment, i.e. data acquisition, the
determination of a suitable form of the model as well as of its parameters, and a
validation of the model.

These methods have already been discussed briefly in Chapter 1.
146
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Classification

Mathematical models of dynamic systems can be classified in various ways. Such models
describe how the effect of an input signal will influence the system behavior at sub-
sequent times. In contrast, for static models, which were examplified in Chapter 4, there
is no ‘memory’. Hence the effect of an ‘input variable’ is only instantaneous. The ways of
classifying dynamic models include the following:

o Single input, single output (SISO) models—multivariable models. SISO models refer to
processes where a description is given of the influence of one input on one output.
When more variables are involved a multivariable model results. Most of the theory in
this book will hold for multivariable models, although mostly SISO models will be
used for illustration. It should be noted that multi-input, single output (MISO) models
are in most cases as easy to derive as SISO models, whereas multi-input, multi-output
(MIMO) models are more difficult to determine.

e Linear models—nonlinear models. A model is linear if the output depends linearly on
the input and possible disturbances; otherwise it is nonlinear. With a few exceptions,
only linear models will be discussed here.

o Parametric models—nonparametric models. A parametric model is described by a set of
parameters. Some simple parametric models were introduced in Chapter 2, and we
will concentrate on such models in the following. Chapter 3 provided some examples
of nonparametric models, which can consist of a function or a graph.

o Time invariant models—time varying models. Time invariant models are certainly the
more common. For time varying models special identification methods are needed. In
such cases where a model has parameters that change with time, one often speaks
about tracking or real-time identification when estimating the parameters.

o Time domain models—frequency domain models. Typical examples of time domain
models are differential and difference equations, while a spectral density and a Bode
plot are examples of frequency domain models. The major part of this book deals with
time domain models.

e Discrete time models—continuous time models. A discrete time model describes the
relation between inputs and outputs at discrete time points. It will be assumed that
these points are equidistant and the time between two points will be used as time unit.
Therefore the time ¢ will take values 1, 2, 3 ... for discrete time models, which is the
dominating class discussed here. Note that a continuous time model, such as a
differential equation, can very well be fitted to discrete time data!

o Lumped models—distributed parameter models. Lumped models are described by or
based on a finite number of ordinary differential or difference equations. If the number
of equations is infinite or the model is based on partial differential equations, then it is
called a distributed parameter model. The treatment here is confined to lumped
models. ’

e Deterministic models—stochastic models. For a deterministic model the output can be
exactly calculated as soon as the input signal is known. In contrast, a stochastic model
contains random terms that make such an exact calculation impossible. The random
terms can be seen as a description of disturbances. This book concentrates mainly on
stochastic models.
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Note that the term ‘linear models’ above refers to the way in which y(¢) depends on
past data. Another concept concerns models that are linear in the parameters 0 to be
estimated (sometimes abbreviated to LIP). Then y(¢f) depends linearly on 6. The
identification methods to be discussed in Chapter 8 are restricted to such models. The
linear regression model (4.1),

YO = ¢"(0)0

is both linear (since y(¢) depends linearly on ¢(#)) and linear in the parameters (since y(z)
depends linearly on 8). Note however that we can allow ¢(#) to depend on the measured
data in a nonlinear fashion. Example 6.6 will illustrate such a case.

The choice of which type of model to use is highly problem-dependent. Chapter 11
discusses some means of choosing an appropriate model within a given type.

6.2 A general model structure

The general form of model structure that will be used here is the following:

M(0): y(t) = G(g7"; O)u(t) + H(g™'; 8)e(r)

6.1)
Ee(t)e'(s) = A(8)S,,

In (6.1), y(¢) is the ny-dimensional output at time ¢ and u(f) the nu-dimensional input.
Further, e(f) is a sequence of independent and identically distributed (iid) random
variables with zero mean. Such a sequence is referred to as white noise. The reason for
this name is that the corresponding spectral density is constant over the whole frequency
range (see Chapter 5). The analogy can be made with white light, which contains ‘all’
frequencies. In (6.1) G(¢™*; 0) is an (ny |nu)-dimensional filter and H(g™*; 0) an (ny |ny)-
dimensional filter. The argument ¢g~* denotes the backward shift operator, so ¢~ u(t) =
u(t — 1), etc. In most cases the filters G(¢™*; 0) and H(g™"; 6) will be of finite order.
Then they are rational functions of ¢~!. The model (6.1) is depicted in Figure 6.1.

The filters G(g™'; 8) and H(g™'; ) as well as the noise covariance matrix A(6) are
functions of the parameter vector 8. Often 8 (which we assume to be n6-dimensional) is
restricted to lie in a subset of 22"°. This set is given by

1 e(t)

H(g™")

u(1) A\ y(@®)
‘ >

— G(g7) ),

FIGURE 6.1 Block diagram of the model structure (6.1).
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D = {0|H *(q~'; 0) and H *(q"'; 0) G(¢~; 0) are asymptotically stable,

G(0; 8) = 0, H(0: 8) = I, A(B) is nonnegative definite} (6.2)

The reasons for these restrictions in the definition of & will become clear in the next
chapter, where it will be shown that when 0 belongs to & there is a simple form for the
optimal prediction of y(f) given y(t — 1), u(t — 1), y(t — 2), u(t — 2), ...

Note that for the moment H(g™'; 0) is not restricted to be asymptotically stable. In
later chapters it will be necessary to do so occasionally in order to impose stationarity of
the data. Models with unstable H(g~'; 8) can be useful for describing drift in the data as
~ will be illustrated in Example 12.2. Since the disturbance term in such cases is not
stationary, it is assumed to start at ¢ = . Stationary disturbances, which correspond to an
asymptotically stable H(q™'; 6) filter can be assumed to start at t = —oo.

For stationary disturbances with rational spectral densities it is a consequence of the
spectral factorization theorem (see for example Appendix A6.1; Anderson and Moore,
1979; Astrém, 1970) that they can be modeled within the restrictions given by (6.2).
Spectral factorization can also be applied to nonstationary disturbances if H'(g™*; 0) is
a stable filter. This is illustrated in Example A6.1.4.

Equation (6.1) describes a general linear model. The following examples describe
typical model structures by specifying the parametrization. That is to say, they specify
how G(¢™%; 0), H(g™'; 6) and A(6) depend on the parameter vector 6.

Example 6.1 An ARMAX model
Let y(f) and u(f) be scalar signals and consider the model structure

A(g~hy(®) = B(g u(®) + C(g™Me(?) (6.3)

where
A(q"l) =1+ alq“l + ...+ ag™
Blg)=bg '+ ...+ bug™” (6.4)
C@h=14+cag '+ ... +cuqg™

The parameter vector is taken as

0=( ... Guw b1 ... by ¢ ... Cu)T (6.5)
The model (6.3) can be written explicitly as the difference equation

y(@) + ayy(t = 1) + ...+ a,,y(t — na) = byu(t — 1) + ... + bu(t — nb)

+ e(t) + cie(t — 1) + ... + c,.e(t — nc) (6.6)

but the form (6.3) using the polynomial formalism will be more convenient.
The parameter vector could be complemented with the noise variance
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A2 = Eez(t) 6.7)
so that
e/ — (eT )\'Z)T

is the new parameter vector, of dimension na + nb + nc + 1.

The model (6.3) is called an ARMAX model, which is short for an ARMA model
(autoregressive moving average) with an exogenous signal (i.e. a control variable u(f)).
Figure 6.2 gives block diagrams of the model (6.3).

To see how this relates to (6.1), note that (6.3) can be rewritten as

-1 -1
B(q )u(t) 4 G4 )e(t)

0= A" T A

Thus for the model structure (6.3),

G(g™ 8) = Blg_)

Ag™)
H(g™; 0) = EEZ:I; (6.8)
A(8) = A2

The set & is given by
% = {6] The polynomial C(z) has all zeros outside the unit circle}

e(t)
(a)

Clg™h
A(g™)
u(?) B(g™") /EL y(®)
A(g™Y) &/
I
® | <
C(g™)
u(t) B(q-—l) \AE) A(;_l) y(t)

FIGURE 6.2 Equivalent block diagrams of an ARMAX model.
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A more standard formulation of the requirement 0 € & is that the reciprocal
polynomial

C*2) = 2" + 2™ P+ ...+ e = 27C(z7Y)

has all zeros inside the unit circle.
There are several important special cases of (6.3):

o An autoregressive (AR) model is obtained when nb = nc = 0. (Then a pure time series
is modeled, i.e. no input signal is assumed to be present.) For this case

A(g My = e()

(6.9)
6 = (a1 ana)T
¢ A moving average (MA) model is obtained when na = nb = 0. Then
y(6) = C(g™Me(?)
(6.10)

0=1(c1 ... Cuc)"
e An autoregressive moving average (ARMA) model is obtained when nb = 0. Then

A(g™Hy(t) = C(g™Me(r)

9=(a1...ana Cl...CnC)T

(6.11)

When A(g™') is constrained to contain the factor 1 — g~ ! the model is called
autoregressive integrated moving average (ARIMA). Such models are useful for
describing drifting disturbances and are further discussed in Section 12.3.

e A finite impulse response (FIR) model is obtained when na = nc = 0. It can also be
called a truncated weighting function model. Then

y(®) = B(g™u() + e()

(6.12)
0= (by ... byp)T
o Another special case is when nc = 0. The model structure then becomes
A(g )y = B(g Hu() + e
(6.13a)

9=(a1 P/ b1 bnb)T

This is sometimes called an ARX (controlled autoregressive) model. This structure
can in some sense be viewed as a linear regression. To see this, rewrite the model
(6.13a) as

y(®) = @08 + e(?) (6.13b)
where
o) = (—y(t = 1) ... =y(t — na) u(t—1) ... u(t — nb))" (6.13¢)

Note though that here the regressors (the elements of @(f)) are not deterministic
functions. This means that the analysis carried out in Chapter 4 for linear regression
models cannot be applied to (6.13). |
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Example 6.2 A general SISO model structure

The ARMAX structure (6.3) is in a sense quite general. Any linear, finite-order system
with stationary disturbances having a rational spectral density can be described by an
ARMAX model. (Then the integers na, nb and nc as well as 6 and A? have, of course,
to take certain appropriate values according to context.) However, there are alternative
ways to parametrize a linear finite-order system. To describe a general case consider the
equation

C(g™)
D(g™")

B(q™'
F(g™")

A(gYH)y() = u(t) + e(t)  EeXi) = )2 (6.14)

with A(g™"), B(g™"), C(¢™") as in (6.4), and
Di@gHY=1+diqg '+ ... + dug™™
Fgh)y=1+fig "+ ... + fueqg™™

The parameter vector is now

9=(a1...am, bl---bnb C1 ... Cyue d1-~-dnd fl...fnf)T (616)

Block diagrams of the general model (6.14) are given in Figure 6.3.

It should be stressed that it is seldom necessary to use the model structure (6.14) in its
general form. On the contrary, for practical use one often restricts it by setting one or
more polynomials to unity. For example, choosing nd = nf =0 (i.e. D(¢")) = F(q¢™}) =
1) produces the ARMAX model (6.3). The value of the form (6.14) lies in its generality.
It includes a number of important forms as special cases. This makes it possible to
describe and analyze several cases simultaneously.

Clearly, (6.14) gives

(6.15)

| l e(0)

(a) Cg™h
A(g™")D(g™")

u(t) B(g™Y) S y(0)
A(g)F(g™) 2/
le(t)
Cg™h)
(b) D(q~l)
u(t) B(g™) /%\ 1|y
Fg™) \Z/ Alg™)

FIGURE 6.3 Equivalent block diagrams of the general SISO model (6.14).
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gy - B@™H
G0 = AR

g ClgY (6.17)
1™ 0 = XDl

A(B) = 32

The set & becomes
9 = {6| The polynomials C(z) and F(z) have all zeros outside the unit circle}
Typical special cases of (6.14) include the following:
o If nd = nf = 0 the result is the ARMAX model
Ag~y(® = Bg u(t) + Clg~e(® (6.18)

and its variants as discussed in Example 6.1.
o If na = nc = nd = 0 then

y(0) = f,((g;; u(t) + e(t) (6.19)

In this case H(g™'; 0) = 1. Equation (6.19) is sometimes referred to as an output error
structure, since it implies that

B(g") ’
e(®) = y() — —-u(t 6.20
(0 =y Flg D ® (6.20)
is the output error, i.e. the difference between the measurable output y(f) and the
model output B(g~')/F(q " u(t).

e If na = 0 then

B(g™h

) = Feut) + H ety (6.21)

D(q™")

A particular property of this structure is that G(¢™'; 6) and H(q™'; 6) have no
common parameter; see (6.17). This can have a beneficial influence on the identifica-
tion result in certain cases. It will be possible to estimate G(q~; 0) consistently even if
the parametrization of H(g™'; 0) is not appropriate (see Chapter 7 for details).

u(t) +

It is instructive to consider how different versions of the general model structure (6.14)
are related. To describe an arbitrary linear system with given filters G(¢g~ ') and H(g™?),
the relations (6.17) must be satisfied, in which case it is necessary that the model
comprises at least three polynomials. The following types of models are all equivalent in
the sense that they ‘solve’ (6.17) with respect to the model polynomials.

e An ARMAX model implies that D(¢~') = F(q™') = 1. Hence G(¢'; 0) and
H(q™'; ) have the same denominator. This may be relevant if the disturbances enter
the process early (i.e. close to the input). If the disturbances enter late there will often
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be common factors in A(g™") and B(g™') as well as in A(g~") and C(g~'). For
example, if the disturbances enter as white measurement noise then H(g™'; 8) = 1,
which gives A(g™") = C(¢™"). In general A(g~") must be chosen as the (least)
common denominator of G(¢~'; 6) and H(qg™*; 0).

o The model (6.21) implies that A(g~") = 1. Hence the filters G(¢™"; 8) and H(g™!; 8)
are parametrized with different parameters. This model might require fewer
parameters than an ARMAX model. However, if G(¢g™') and H(g™') do have
common poles, it is an advantage to use this fact in the model description. Such poles
will also be estimated more accurately if an ARMAX model is used.

o The general form (6.14) of the model makes it possible to allow G(g™!; ) and
H(gq™'; 6) to have partly the same poles.

Another structure that has gained some popularity is the so-called ARARX struc-
ture, for which C(¢™') = F(g™"') = 1. The name ARARX refers to the fact that the
disturbance is modeled as an AR process and the system dynamics as an ARX model.
This model is not as general as those above, since in this case

1
A(g~"D(g™)

This identity may not have any exact solution. Instead a polynomial D(g~') of high
degree may be needed to get a good approximate solution. The advantage of this
structure is that it can given simple estimation algorithms, such as the generalized least
squares method (see Complement C7.4). It is also well suited for the optimal instru-
mental variable method (see Example 8.7 and the subsequent discussion). |

H(g™"; 6) =

The next two examples describe ways of generalizing the structure (6.13) to the multi-
variable case.

Example 6.3 The full polynomial form
For a linear multivariable system consider the model

A(g™Dy() = B(g™u(®) + e(r) (6.22)

where now A(g™!) and B(q™!) are the following matrix polynomials of dimension
(ny|ny) and (ny|nu) respectively:
Algh=T+Ag'+ ...+ A, ™
' (6.23)
Blg))=Byg '+ ... + Bpg ™

Assume that all elements of the matrices A, ..., 4,4, Bi, ..., B, are unknown. They
will thus be included in the parameter vector. The model (6.22) can alternatively be
written as

y(@) = ¢T()6 + e(r) (6.24)
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¢') 0
oT(t) = Ce (6.25a)
0 <0 |
() = (—yTt = 1) ... =yt — na) W't - 1) ... u"(t — nb)) (6.25b)
61
0=1": (6.25c¢)
o™
ChN
: = (A1 [N Ana Bl RPN Bnb) (625d)
()"

The set & associated with (6.22) is the whole space & ™.
For an illustration of (6.25) consider the case ny = 2, nu = 3, na = 1, nb = 2 and set

3 all a12 b%l b}z b%3 b%l b%Z b%3
Ay = 2 2 By = p2 p2 pB B, = B bR b
Then

) = (yit = 1) =yt =1 wt—1) w(t—1) us(t —1) w(t—2)
u(t — 2) us(t — 2))

61 — (all a12 bi] b%2 b%3 b%l b%Z b%3)T

62 — (a21 a22 b%l b%z b%:; b%l b%Z b%3)T ™

The full polynomial form (6.24) gives a natural and straightforward extension of the
scalar model (6.13). Identification methods for estimating the parameters in the full
polynomial form will look simple. However, this structure also has some drawbacks.
The full polynomial form is not a canonical parametrization. Roughly speaking, this
means that there are linear systems of the form (6.22) whose transfer function matrix
A7Y g HB(g™") cannot be uniquely parametrized by 6. Such systems cannot be
identified using the full polynomial model, as should be intuitively clear. Note, however,
that these ‘problematic’ systems are rare, so that the full polynomial form can be used to
represent uniquely almost all linear systems of the form (6.22). The important problem
of the uniqueness of the parametrization is discussed in the next section. A detailed
analysis of the full polynomial model is provided in Complement C6.1.

Example 6.4 Diagonal form of a multivariable system
This model can be seen as another generalization of (6.13) to the multivariable case.
Here the (ny|ny) matrix A(g~") is assumed to be diagonal. More specifically,
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A(g™"; 0)y(1) = B(g™"; 0)u(r) + e(r) (6.26a)
a(z; 9) 0
A(z; 0) = B (6.26b)
0 a,,(z; 6)
where

ai(z; 0) =1+ ay;z + ... + 4,2
are scalar polynomials. Further,

Bi(z; 0)
B(z; 8) = : (6.26¢)
B,,(z; 6)

where B;(z; 0) is the following row-vector polynomial of dimension nu:

Bi(z; 0) = bz + ... bppi 2™ (by; are (nul|l) vectors)

The integer-valued parameters nai and nbi, i = 1, ..., ny are the structural indices of
the parametrization. The model can be written as
y(@) = 718 + e(r) (6.27a)
where the parameter vector 8 and the matrix ¢(f) are given by
o' @1(1) 0
=1 ": o(t) = R (6.27b)
6™ 0 Pny(1)
(')i = (al,i e am,i’i b{l PN b;bi’i)’r (627C)
Qi) = (=y(t = 1) ... =yi(t — nai) u"(t —1) ... u"(t — nbi))* (6.27d)

The diagonal form model is a canonical parametrization of a linear model of the type of
(6.22) (see, for example, Kashyap and Rao, 1976). However, compared to the full
polynomial model, it has some drawbacks. First, estimation of the parameters in full
polynomial form models may lead to simpler algorithms than those associated with
diagonal models (see Chapter 8). Second, the structure of the diagonal model (6.27)
clearly is more complicated than that of the full polynomial model (6.25). For the model
(6.27) 2ny structure indices have to be determined while the model (6.25) needs
determination of only two structure indices (the degrees na and nb). Determination of a
large number of structural parameters, which in practical applications is most often done
by scanning all the combinations of the structure parameters that are thought to be
possible, may lead to a prohibitive computational burden. Third, the model (6.27) may
often contain more unknown parameters than (6.25), as the following simple example
demonstrates: consider a linear system given by (6.22) with ny = nu and na = nb = 1;
then the model (6.24), (6.25) will contain 2ny* parameters, while the diagonal model
(6.26), (6.27) will most often contain about ny* parameters. ]
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For both the full polynomial form and the diagonal form models the number of
parameters used can be larger than necessary. If the number of parameters in a model is
reduced, the user may gain two things. One is that the numerical computation required
to obtain the parameter estimates will in general terms be simpler since the problem is of
a lower dimension. The other advantage, which will be demonstrated later, is that using
fewer free parameters will in a certain sense lead to a more accurate model (see (11.40)).

The following example presents a model for multivariable systems where the internal
structure is of importance.

Example 6.5 A state space model
Consider a linear stochastic model in the state space form

x(t + 1) = A©)x() + BOu() + v(0)
y(1) = C(O)x(1) + ()

Here v(¢) and é(¢) are (multivariate) white noise sequences with zero means and the
following covariances:

(6.28)

Ev(t)v'(s) = R1(8)d,
Ev(1)e"(s) = Ry2(8)d, (6.29)
Ee(0e"(s) = Ra(0)d,.

The matrices A(8), B(0), C(8), R1(0), R12(0), Rx(8) can depend on the parameter
vector in different ways. A typical case is when a model of the form (6.28) is partially
known but some of its matrix elements remain to be estimated. No particular
parametrization will be specified here.

Next consider how the model (6.28) should be transformed into the general form (6.1)
introduced at the beginning of this chapter. The transfer function G(g™*; 8) is easily
found: it can be seen that for the model (6.28) the influence of the input u(f) on the
output y(¢) is characterized by the transfer function

G(q™'; 0) = C(0)[qI — A(6)]7'B(6) (6.30)

To find the filter H(g™'; 8) and the covariance matrix A(6) is a bit more complicated.
Equation (6.28) must be transformed into the so-called innovation form. Note that in
(6.1) the only noise source is e(f), which has the same dimension as the output y(?).
However, in (6.28) there are two noise sources acting on y(#): the ‘process noise’ v(¢) and
the ‘measurement noise’ &(¢). This problem can be solved using spectral factorization, as
explained in Appendix A6.1. We must first solve the Riccati equation

P(8) = A(B)P(8)AT(8) + Ry(8) — [A()P(0)CT(6) + Rix(6)] 6.31)
x [C(0) P()CT(8) + Ry(8)]'[C(B)P()AT(8) + Rix(6)] '
taking the symmetric positive definite solution, and then compute the Kalman gain

K(8) = [A(8)P(8)CT(8) + Ri2(B)][C(B)P(B)CT(6) + Rx(6)]7" (6.32)
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It is obvious that both P and K computed from (6.31) and (6.32) will depend on the
parameter vector 0. The system (6.28) can then be described, using the one-step

predictions £(¢ + 1|¢) as state variables, as follows:
£ + 1) = A@@)£(t]r — 1) + B(O)u(r) + K(6)y(2) 6.33)
y(o) = COR(r = 1) + y() '

where

y(@) = y() — C(O)2(r
is the output innovation at time ¢. The innovation has a covariance matrix equal to
cov[y()] = C(6)P(B)C(6) + Ry(6) (6.35)

The innovations y(¢) play the role of e(f) in (6.1). Hence from (6.33), (6.35), H(g"*; 6)
and A(0) are given by

H(g™'; 8) = I+ C(0)[g/ — A(B)]'K(6)
A(9) = C(B)P(B)CT(6) + Rx(6)

t—1) (6.34)

(6.36)

Now consider the set &, in (6.2). For this case (6.33), (6.34) give
2t + 1|r) = [A(0) — K(0)C(0)]£(s]t — 1) + B(O)u(r) + K(0)y(?)
y(O) = =COI@ — 1) + y()
Comparing this with
J(@0) = e() = H'(g"'; 0)y(t) = H (g7 0)G(g™"; B)u()
derived from (6.1), it follows that

H™(q™"; 0) = 1 — C(0)[gl — A(6) + K(8)C(6)]'K(6)
H™Y(g™"; 0)G(g™"; 0) = C(B)[q] — A(6) + K(0)C(6)]'B(6)

The poles of H™'(g™"; 8) and H™'(¢"; 8)G(q™"; 0) are therefore given by the
eigenvalues of the matrix A(08) — K(0)C(0). Since the positive definite solution of the
Riccati equation (6.31) was selected, all these eigenvalues lie inside the unit circle (see
Appendix A6.1; and Anderson and Moore, 1979). Hence the restriction 6 € &, (6.2),
does not introduce any further constraints here: this restriction is automatically handled
as a by-product.

Continuous time models

An important special case of the discrete time state space model (6.28) occurs by
sampling a parametrized continuous time model. To be strict one should use a stochastic
differential equation driven by a Wiener process, see Astrom (1970). Such a linear
continuous-time stochastic model can be written as
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dx(¢) = F(B)x()dt + G(®)u(H)dr + dw(r)

(6.37a)
Edw()dw()T = R(0)ds

where w(f) is a Wiener process.

An informal way to represent (6.37a) is to use a (continuous time) white noise process
w(t) (corresponding to the derivative of the Wiener process w(¢)). Then the model can be
written as

#(f) = FO)x(t) + G(O)u(r) + w(f)

Ew(®)w"(s) = R(0)d(t — s) (6.37b)

where 9(¢) is the Dirac delta-function. Equation (6.37b) can be complemented with
y() = CO)x(F) + e(t)  Ee(t)e™(s) = Ry(0)d,, (6.38)

showing how certain linear combinations of the state vector are measured in discrete
time.

Note that model parametrizations based on physical insight can often be more easily
described by the continuous time model (6.37) than by the discrete time model (6.28).
The reason is that many basic physical laws which can be used in modeling are given in
the form of differential equations. As a simple illustration let x(¢) be the position and
x,(t) the velocity of some moving object. Then trivially ¥,(¢) = x,(¢), which must be one
of the equations of (6.37). Therefore physical laws will allow certain ‘structural infor-
mation’ to be included in the continuous time model.

The solution of (6.37) is given by (see, for example, Kailath, 1980; Astrom, 1970)

t
x(f) = eFOUx(z)) + f

fo

14
SOOI + [ O (63%)

)

where x(t,) denotes the initial condition. The last term should be written more formally
as

t
f eFO=9dp(s) (6.39b)

)

Next, assume that the input signal is kept constant over the sampling intervals. Then
the sampling of (6.37), (6.38) will give a discrete time model of the form (6.28), (6.29)
with

A(B) = eFOh
h
B(0) = f ef®*G(0)ds

) (6.40)

h
Ry(6) = J eFOR(G)e” O
0

Rix(0) = 0
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where h denotes the sampling interval and it is assumed that the process noise w(f) (or
w(#)) and the measurement noise é(s) are independent for all ¢ and s.
To verify (6.40) set to = t and t = t + h in (6.39a). Then

x(t + h) = " "x(e) + [ f - eF<6><t+h—f>G(e)ds] u(t) + v(o)

where the process noise v(f) is defined as

t+h
v(t) = f eFOFn=9y(5)ds

t

The sequence {v(f)} is uncorrelated (white noise). The covariance matrix of v(¢) is given
by

Ev(t)vI(9)

t+h  ft+h
E f j eF(G)(H-h—s’)w(S/)WT(S//)eFT(B)(t+h—s")dsrdsn
t t

t+h (t+h
j f eF(e)(t+h—s’)R(6)6(sl _ Srr)eFT(G)(t+h-x”)dS/dsu
t t

t+h
- f eFO(+h—9)p (e)eFT(e)(z+h~s)ds

L

h
= f eF @ R(0)e” JOWT ]
0

So far only linear models have been considered. Nonlinear dynamics can of course
appear in many ways. Sometimes the nonlinearity appears only as a nonlinear trans-
formation of the signals involved. Such cases can be incorporated directly into the pre-
vious framework simply by redefining the signals. This is illustrated in the following
example.

Example 6.6 A Hammerstein model
Consider the scalar model
A(g™D)y(t) = Bi(g Du(®) + Bx(q (1) + ... + Bu(g Hum(®) + () (6.41)
The relationship between u and y is clearly nonlinear. By defining a new artificial input
u(?)
2
t
@) = . :()
d0)
and setting
B =®Big™") Bxag™) ... Bulg™h)

the model (6.41) can be written as a multi-input, single-output equation

A(g~)y() = B(g Hu(t) + e(r) (6.42)
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However, this is a standard linear model if i(f) is now regarded as the input signal.
One can then use all the powerful tools applicable to linear models to estimate the
parameters, evaluate the properties of the estimates, etc. |

6.3 Uniqueness properties

So far in this chapter, a general model structure for linear systems has been described as
well as a number of typical special cases of the structure (6.1). Chapter 11 will return to
the question of how to determine an appropriate model structure from a given set
of data.

Choosing a class of model structures

In general terms it is first necessary to choose a class of model structures and then make
an appropriate choice within this class. The general SISO model (6.14) is one example of
a class of model structures; the state space models (6.28) and the nonlinear difference
equations (6.41) correspond to other classes. For the class (6.14), the choice of model
structure consists of selecting the polynomial degrees na, nb, nc, nd and nf. For a
multivariable model such as the state space equation (6.28), both the structure para-
meter(s) (in the case of (6.28), the dimension of the state vector) and the parametrization
itself (i.e. the way in which 6 enters into the matrices A (8), B(0), etc.) should be chosen.

The choice of a class of model structures to a large extent should be made according to
the aim of the modeling (that is to say, the model set should be chosen that best fits the
final purpose). At this stage it is sufficient to note that there are indeed many other
factors that influence the selection of a model structure class. Four of the most impor-
tant factors are:

e Flexibility. It should be possible to use the model structure to describe most of the
different system dynamics that can be expected in the application. Both the number of
free parameters and the way they enter into the model are important.

e Parsimony. The model structure should be parsimonious. This means that the model
should contain the smallest number of free parameters required to represent the true
system adequately.

e Algorithm complexity. Some identification methods such as the prediction error
method (PEM) (see Chapter 7) can be applied to a variety of model structures.
However, the form of structure selected can considerably influence the amount of
computation needed.

o Properties of the criterion function. The asymptotic properties of PEM estimates
depend crucially on the criterion function. The existence of local (i.e. nonglobal)
minima as well as nonunique global minima is very much dependent on the model
structure used.

Some detailed discussion of the factors above can be found in Chapters 7, 8 and 11.
Specifically, parsimony is discussed in Complement C11.1; computational complexity in
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Sections 7.6, 8.3 and Complements C7.3, C7.4, C8.2 and C8.6; properties of the
criterion function in Complements C7.3, C7.5 and C7.6; and the subject of flexibility is
touched on in several examples in Chapters 7 and 11. See also Ljung and Séderstréom
(1983) for a further discussion of these factors and their role in system identification.

General uniqueness considerations

There is one aspect related to parsimony that should be analyzed here. This concerns the
problem of adequately and uniquely describing a given system within a certain model
structure. To formalize such a problem one must of course introduce some assumptions
on the true system (i.e. the mechanism that produces the data u(1), y(1), u(2), y(2), . . .).
It should be stressed that such assumptions are needed for the analysis only. The appli-
cation of identification techniques is not dependent on the validity of such assumptions.

Assume that the true system . is linear, discrete time, and that its disturbances have
rational spectral density. Then it can be described as

y(0) = Gg™Hu(®) + Hy(q e(r)

(6.43)
Eel(t)ef (1) = Adys
Introduce the set
Dr(/, M) = (6] G(¢7) = G(¢7; 0), Hy(¢™") =H(g™"; 0), (6.44)
A, = AG®)} |

The set D(/, #) consists of those parameter vectors for which the model structure
M gives a perfect description of the true system .. Three situations can occur:

e The set Dy(/, #) may be empty. Then no perfect description of the system can be
obtained in ., no matter how the parameter vector is chosen. One can say that the
model structure has too few parameters to describe the system adequately. This is
called underparametrization.

o The set D7(#, #) may consist of one point. This will then be denoted by 6. This is
the ideal case; 0 is called the true parameter vector.

e The set D7(.#, #) may consist of several points. Then there are several models within
the model set that give a perfect description of the system. This situation is sometimes
referred to as overparametrization. In such a case one can expect that numerical
problems may occur when the parameter estimates are sought. This is certainly the
case when the points of Dy(#, #) are not isolated. In many cases, such as those
illustrated in Example 6.7, the set Dy(/, #) will in fact be a connected subset (or
even a linear subspace).

ARMAX models

Example 6.7 Uniqueness properties for an ARMAX model
Consider a (scalar) ARMAX model, (6.3)-(6.4),



Section 6.3 Uniqueness properties 163

A(gHy(® = B(g Hu(®) + Cg7e()  Ee*(t) = 3 (6.45)
Let the true system be given by

Alqy(0) = Bg Hu(®) + Clg™Des(r)  Eei()) = 1 (6.46)
with

A@hH=1+aiqg"+ ... +a,q"™
Bs(q_l) = b“iq_1 + ...+ bf,bsq_"b‘ (6.47)
C@hH=1+cg'+ ... +ceqg "

Assume that the polynomials A, B, and C; are coprime, i.e. that there is no common
factor to all three polynomials.
The identities in (6.44) defining the set D(/, .#) now become

B(g™) _B@hH G _CaH 2.2
AGD-AGH AGH Aqn H=h (6.48)

For (6.48) to have a solution it is necessary that

na = nag nb = nb; ne = ncg (6.49)

This means that every model polynomial should have at least as large a degree as the
corresponding system polynomial. The inequalities in (6.49) can be summarized as

n* & min(na — nag, nb — nb,, nc — nc;) = 0 (6.50)

One must now find the solution of (6.48) with respect to the coefficients of A, B, C and
A2. Assume that (6.50) holds. Trivially, A> = A2. To continue, let us first discuss the more
simple case of a pure ARMA process. Then nb = nb; = 0 and the first identity in (6.48)
can be dispensed with. In the second identity note that A; and C; have no common factor
and further that both sides must have the same poles and zeros. These observations

imply
A(@™" = AgHD(g ™)
Clg™") = C(g~HD(g™")

where

(6.51)

Di@gh=1+dqg '+ ... +dug ™
has arbitrary coefficients. The degree nd is given by
nd = deg D = min(na — nas, nc — nc;) = n*

Thus if n* > 0 there are infinitely many solutions to (6.48) (obtained by varying d; ...
d,+). On the other hand, if n* = 0 then D(g~') = 1 and (6.48) has a unique solution. The
condition n* = 0 means that at least one of the polynomials A(g~") and C(g™") has the
same degree as the corresponding polynomial of the true system.

Next examine the somewhat more complicated case of a general ARMAX structure.
Assume that A;(¢g™") and C,(g~") have exactly nl/ (nl = 0) common zeros. Then there
exist unique polynomials A¢(q™"), Co(¢™") and L(g™"), such that



164 Model parametrizations Chapter 6
LigYhy=1+hLqg '+ ... + L,q"
Alg™h) = AL
Ci(g™") = Colg™HL(g™") (6.52)
Ao(g™"), Co(q™") coprime
By(q™"), L(g™") coprime
The second identity in (6-.48) gives

Colg™) _ Cg™)
Aog™") AT

Since Ay(g™") and Cy(q~") are coprime, it follows that
A(g™h) = Allg™HM(g™)

e . . (6.53)
Clg™) = Glg™)M(qg™)
where
M@y =1+mq '+ ... +mqg™
has arbitrary coefficients and degree
deg M = nm = min(na — deg Ag, nc — deg Cy)
0 ‘ (6.54)
= nl + min(na — nay, nc — nc,)
Using (6.52), (6.53) in the first identity of (6.48) gives
By(q”! B(g™!

Alg VL) ~ Alg HM(g7Y)

Now cancel the factor Ag(q~"). Since B,(¢~") and L(q™") are coprime (cf. (6.52)), it
follows from (6.55) that

B(q™") = B,(g")D(q™")

(6.56)
M(q™") = L(g HD(@™")
where
Di@hY=1+dqg '+ ...+ dug ™ (6.57a)
has arbitrary coefficients. Its degree is given by
deg D = nd = min(nb — nbs, nm — nl) = n* (6.57b)

Further (6.52), (6.53) and (6.56) together give the general solution to (6.48):
A(g™") = AgHD@E ™
B(g™") = BJ(qg~")D(q™") (6.58)
Clg™") = Cg™HD(g™
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where D(g™') must have all zeros outside the unit circle (cf. (6.2)) but is otherwise
arbitrary.
To summarize, for an ARMAX model:

e If n* < 0 there is no point in the set Dy(/f, A).

o If n* = 0 there is exactly one point in the set D(/, &).

e If n* > 0 there are infinitely many points in Dy(/, #). (More exactly, Dy(/, #)
is a linear subspace of dimension n*.) ]

The following paragraphs present some results on the uniqueness properties of other
model structures.

Diagonal form and full polynomial form

Consider first the diagonal form (6.26)—(6.27) for a multivariable system, and
concentrate on the deterministic part only. The transfer function operator from u(¢) to
y(?) is given by

G(g™';8) =A"(¢g7"; 8)B(g™"; 0)
Bi(g™"; 0)lai(q™; 6) (6.59)

B,,(q7"; 0)/a,(q~"; 6)
The condition n* = 0, (6.50), can now be generalized to
n} & min(nai — nais, nbi — nbig) = 0 i=1,...,ny (6.59b)

which is necessary for the existence of a parameter vector 6 that gives the true transfer
function. The condition required for 8, to be unique is

nf =0 i=1,...,ny (6.59¢c)

The full polynomial form (6.22) will often but not always give uniqueness. Exact
conditions for uniqueness are derived in Complement C6.1. The following example
demonstrates that nonuniqueness may easily occur for multivariable models (not
necessarily of the full polynomial form).

Example 6.8 Nonuniqueness of a multivariable model
Consider a deterministic multivariable system with ny = 2, nu = 1 given by

(i) — (“ 2= 0‘) Y — 1) = (1) u(t — 1) (6.60a)

a 2—a

where a is a parameter. The corresponding transfer function operator is given by

N o N =
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which is independent of o. Hence all models of the form (6.60a), for any value of o, will
give the same transfer function operator G(¢™'). In particular, this means that the
system cannot be uniquely represented by a first-order full polynomial form model. Note
that this conclusion follows immediately from the result (C6.1.3) in Complement C6.1.

State space models

The next example considers state space models without any specific parametrization, and
shows that if all matrix elements are assumed unknown, then uniqueness cannot hold.
(See also Problem 6.3.)

Example 6.9 Nonuniqueness of general state space models
Consider the multivariable model
x(t + 1) = Ax(¢) + Bu(t) + v(t)
y(1) = Cx(1) + e(t)

where {v(f)} and {e(¢)} are mutually independent white noise sequences with zero means
and covariance matrices R; and R,, respectively. Assume that all the matrix elements are
free to vary. Consider also a second model

£t + 1) = Ax(f) + Bu(t) + v(9)
y(0) = Ci(t) + e(0)
Ev(t)vT(s) = RS,  Ee(t)e'(s) = Ry0,,
Ev(He'(s) = 0

(6.61a)

(6.61b)

where
A=QA0"" B=QB C=CQ"'
R = QR Q"

and Q is an arbitrary nonsingular matrix. The models above are equivalent in the sense
that they have the same transfer function from u to y and their outputs have the same
second-order properties. To see this, first calculate the transfer function operator from
u(t) to y(t) of the model (6.61b).

G(g™) = Clgl - A]"'B

= CQ7'[ql — QAQ™'7'OB
ClQ gl — QAQ™"}Q]™'B
= C[ql — A]"'B

This transfer function is independent of the matrix Q. To analyze the influence of the
stochastic terms on y(f), it is more convenient in this case to examine the spectral density
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¢,(w) rather than to explicitly derive H (¢”") and A in (6.1). Once ¢, () is known,
H(g™") and A are uniquely given, by the spectral factorization theorem. To evaluate
¢,(w) for the model (6.61b), set u() = 0. Then

2nd,(w) = C[e] — A]7'Ri[e™™I — AT]7'CT + R,
= CQ7'[e — A]7'QR,Q"[e™ — AT]7'Q7TCT + R,
= C[Q7'(*l — A)Q] 'Ry[QT(e™™1 — ANQTT'CT + R,
= C[el — A]"'Ry[e™™I — AT]"'CT + R,

Thus the spectral density (and hence H(g™") and A) are also independent of Q. Since Q
can be chosen as an arbitrary nonsingular matrix, it follows that the model is not unique
in the sense that Dy(/, #) consists of an infinity of points. To get a unique model it is
necessary to impose restrictions of some form on the matrix elements. This is a topic that
belongs to the field of canonical forms. See the bibliographical notes at the end of this
chapter for some references. |

6.4 Identifiability

The concept of identifiability can be introduced in a number of ways, but the following is
convenient for the present purposes.

When an identification method .# is applied to a parametric model structure .# the
resulting estimate is denoted by 8(N; ./, A, F, &). Clearly the estimate will depend not
only on .¥ and .# but also on the number of data points N, the true system ., and the
experimental condition Z.

The system ./ is said to be system identifiable under #, ¥ and &, abbreviated
S, F, &), if

O(N; S, M, I, &) — Dp(F, M) as N— (6.62)

(with probability one). For SI(#, #, &) it is in particular required that the set
Dy(#, A ) (introduced in (6.44)) is nonempty. If it contains more than one point then
(6.62) must be interpreted as

1\]].1_13100 ew;gﬁyﬂ) |O(N; S, A, F, &) — 6] =0 (6.63)
The meaning of (6.63) is that the shortest distance between the estimate 6 and the set
D(/, #) of all parameter vectors describing G(¢~!) and H(g ') exactly, tends to zero
as the number of data points tends to infinity.

We say that the system ./ is parameter identifiable under #, ¥ and %, abbreviated
PI(#, 7, &), if itis SI(#, F, &) and D(#, #) consists of exactly one point. This is
the ideal case. If the system is PI(#, ., £&) then the parameter estimate 6 will be unique
for large values of N and also consistent (i.e. 6 converges to the true value, as given by
the definition of D(/, #)).

Here the concept of identifiability has been separated into two parts. The convergence
of the parameter estimate 6 to the set D(#, #A) (i.e. the system identifiability) is a



168 Model parametrizations Chapter 6

property that basically depends on the identification method .#. This is a most desirable
property and should hold for as general experimental conditions & as possible. It is then
‘only’ the model parametrization or model structure .# that determines whether the
system is also parameter identifiable. It is of course desirable to choose the model
structure so that the set Dy(#, #) has precisely one point. Some practical aspects on
this problem are given in Chapter 11.

Summary

In this chapter various aspects of the choice of model structure have been discussed.
Sections 6.1 and 6.2 described various ways of classifying model structures, and a general
form of model structure for linear multivariable systems was given. Some restrictions on
the model parameters were noted. Section 6.2 gave examples of the way in which some
well-known model structures can be seen as special cases of the general form (6.1).
Section 6.3 discussed the important problem of model structure uniqueness (i.e. the
property of a model set to represent uniquely an arbitrary given system). The case of
ARMAX models was analyzed in detail. Finally, identifiability concepts were introduced
in Section 6.4.

Problems

Problem 6.1 Stability boundary for a second-order system
Consider a second-order AR model
Y1) + ary(t = 1) + axy(t = 2) = e(1)
Derive and plot the area in the (a;, a,)-plane for which the model is asymptotically
stable.

Problem 6.2 Spectral factorization
Consider a stationary stochastic process y(#) with spectral density

1 5—4cosw
q)y(m)_E&Z-—Scosw

Shew that this process can be represented as a first-order ARMA process and derive its
parameters.

Problem 6.3 Further comments on the nonuniquenéss of stochastic state space models
Consider the following stochastic state space model (cf. (6.61)):

x(t + 1) = Ax(t) + Bv()

y(®) = Cx(®) + e(t) @

where
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Ecg%ﬂﬂe%m=R@s
It was shown in Example 6.9 that the representation (i) of the stochastic process y(#) is
not unique unless the matrices A, B and C are canonically parametrized.

There is also another type of nonuniqueness of (i) as a second-order representation of
y(t), induced by an ‘inappropriate’ parametrization of R (the matrices A, B and C being
canonically parametrized or even given). To see this, consider (i) with

A=12 B=1 C=1
301
10-20 > | i
12 22 | oe (10 &
R =
1
50 e

Note that the matrix R is positive definite as required. Determine the spectral density
function of y(f) corresponding to (i), (ii). Since this function does not depend on g,
conclude that y(¢) is not uniquely identifiable in the representation (i), (ii) from second-
order data.

Remark. This exercise is patterned after Anderson and Moore (1979), where more
details on representing stationary second-order processes by state space models may be
found.

Problem 6.4 A state space representation of autoregressive processes
Consider an autoregressive process y(f) given (see (6.9)) by

y@O + ay@t = 1) + ... + a,y(t — n) = e(?)
A@)=14az+ ... +a,2"#0 for|z| <1
Derive a state space representation of y(r)
x(t + 1) = Ax(f) + Be(t + 1)
y(1) = Cx(2)

with the matrix A in the following companion form:

(i)

—a; ... =4, a,
1 0
A= , 0 )
0 1 0

Discuss the identifiability properties of the representation. In particular, is it uniquely
identifiable from second-order data?

Problem 6.5 Uniqueness properties of ARARX models
Consider the set D(/, #) for the system
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-1 _ -1 1
As(q )Y(t) - Bs(q )u(t) + Cs(q_l) e(t)

and the model structure

Ala™(0) = B@ ™0 + grmme

(which we call ARARX), where
AghH=1+aiqg "+ ... +an,qg "™
B(g ) =big '+ ... + bpg ™
C(gH)=1+cig"+ ... +cheqg™™
A@q Y =1+aqg + ... +a,qg ™
B(@Y)=biqg '+ ... + bpqg ™
CgH)y=1+cqg '+ ... +ceq™
(a) Derive sufficient conditions for Dy(, #) to consist of exactly one point.

(b) Give an example where D(/, #) contains more than one point.

Remark. Note that in the case of overparametrization the set Dy consists of a finite
number of isolated points. In contrast, for overparameterized ARMAX models Dris a
connected set (in fact a subspace) (see Example 6.7). A detailed study of the topic of this
problem is contained in Stoica and Soderstrom (1982e).

Problem 6.6 Uniqueness properties of a state space model
Consider the state space model

Xt + 1) = (:Z ZZ) () + (3) u(t)

0= (ay ap ap b)'
Examine the uniqueness properties for the following cases:

(a) The first state variable is measured.
(b) The second state variable is measured.
(c) Both state variables are measured.

Assume in all cases that the true system is included in the model set.

Problem 6.7 Sampling a simple continuous time system
Consider the following continuous time system:

X = (8 Ig)x + (I()() u + (?)v Ev(H)v(s) = rd(t — s)

y=(@1 0x
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(This can be written as
K K
Y(s) = ?U(s) + ?V(s).)

Assume that the gain K is unknown and is to be estimated from discrete time mea-
surements

yo)=(@1 Ox() t=1,...,N

Find the discrete time description (6.1) of the system, assuming the input is constant over
the sampling intervals.
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Leontaritis and Billings (1985) as well as Carrol and Ruppert (1984) deal with various
forms of nonlinear models.

Nguyen and Wood (1982) give a survey of various results on identifiability.
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Appendix A6.1
Spectral factorization

This appendix examines the so-called spectral factorization problem. The following
lemma is required.

Lemma A6.1
Consider the function

flz) = i fz"  fi = f-x (real-valued)  f, # 0 (A6.1.1a)

k=—n
Assume that
fe*) =0 alow (A6.1.1b)

The following results hold true:
(i) If z is a zero of f(z), so is 27 1.
(ii) There is a polynomial
gz2)=z"+gz" '+ ...+ g,
with real-valued coefficients and all zeros inside or on the unit circle, and a (real-
valued) positive constant C, such that

f(z) = Cg(2)g(z™")  allz (A6.1.2)

(i) If f(e') > 0 for all , then the polynomial g(z) can be chosen with all zeros strictly
inside the unit circle.

Proof. Part (i) follows by direct verification:

e = S fet= X fat = Y A=) =0

k=—n k=-—n k=—n

As a consequence f(z) can be written as

f(2) = h(2)h(z" "k (2)

where h(z) has all zeros strictly inside the unit circle (and hence A(z™!') has all zeros
strictly outside the unit circle) and k(z) all zeros on the unit circle. Hence

fe) = hEh(e(E?) = [h(Ee)Ph(e™)

From (A6.1.1b), k(eif”) = 0 for all w. Therefore all zeros of k(z) must have an even
multiplicity. (If Z = ¢'® were a zero with odd multiplicity then k(e'®) would shift sign at
® = @.) As a consequence, the zeros of f(z) can be written as zy, 25, ..., 2,, Z1 ', ...,

z;', where 0 < |z] < 1fori=1, ..., n. Set

s =[[G-2 c=cu /]2
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which gives

g = L[] -2 [] ¢ - 20

LG22 ] ¢ - 2 = )
i=1 k=1

which proves the relation (A6.1.2). To complete part (ii), it remains to prove that g; is
real-valued and that C is positive. First note that any complex-valued z; with |Z;| < 1
appears in a complex-conjugated pair. Hence g(z) has real-valued coefficients. That the
constant C is positive follows easily from

0 < f(e) = Clg(e)
To prove part (iii) note that
0 < f(e') = Clg(e)* al o
which precludes that g(z) can have any zero on the unit circle. |

The lemma can be applied to rational spectral densities. Such a spectral density is a
rational function (a ratio between two polynomials) of cos o (or equivalently of ¢'®). It
can hence be written as

2 ﬁk eikw
d(w) = Ei;ﬁ————— (B-« = Bk, a_; = o, are real-valued) (A6.1.3)

2 (X.jeijw

j=—n

By varying the integers m and n and the coefficients {a;}, {Bx} a large set of spectral
densities can be obtained. This was illustrated to some extent in Example 5.6. Accord-
ing to a theorem by Weierstrass (see Pearson, 1974), any continuous function can be
approximated arbitrarily closely by a polynomial if the polynomial degree is chosen large
enough. This gives a further justification of using (A6.1.3) for describing a spectral

density. By applying the lemma to the rational density (A6.1.3) twice (to the numerator
and the denominator) it is found that ¢(w) can be factorized as

2 C(e*)Ce™)

Q)((l)) = o m (A6.1.4)

where A is a real-valued number, and A(z), C(z) are polynomials
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Alzy =1+ az + ... + a,z"
Cz)=1+cz+ ... +cpz™

with all zeros outside, or for C(z) possibly on the unit circle. The polynomial A (z) cannot
have zeros on the unit circle since that would make ¢(w) infinite. If ¢p(w) > 0 for all ®
then C(z) can be chosen with all zeros strictly outside the unit circle.

The consequence of (A6.1.4) is that as far as the second-order properties are
concerned (i.e. the spectral density), the signal can be described as an ARMA process

A(g )y = ClgDe(t)  Ee*(r) = W (A6.1.5)

Indeed the process (A6.1.5) has the spectral density given by (A6.1.4) (cf. (A3.1.10)). In
practice the signal whose spectral density is ¢(w) may be caused by a number of inter-
acting noise sources. However it is convenient to use the ARMA model (A6.1.5) to
describe its spectral density (or equivalently its covariance function). For many identi-
fication problems it is relevant to characterize the involved signals by their second-order
properties only.

Note that another C(z) with some zeros inside the unit circle could have been chosen.
However, the choice made above will turn out to be the most suitable one when deriving
optimal predictors (see Section 7.3). ]

The result (A6.1.4) was derived for a scalar signal. For the multivariable case the
following result holds. Let the rational spectral density ¢p(w) be nonsingular (det ¢(w) #
0) for all frequencies. Then there are a unique rational filter H(g ') and a positive
definite matrix A such that

0(®) = 5= H(e ) AH" (") (A6.1.62)
H(q™") and H™'(¢™") are asymptotically stable (A6.1.6b)
H(0) =1 (A6.1.6¢)

(see, e.g., Anderson and Moore, 1979). The consequence of this result is that the signal,
whose spectral density is ¢(w), can be described by the model

y(&) = H(g Ye(t)  Ee(t)e"(s) = Ad,, (A6.1.7)

(cf. (A3.1.10)).

Next consider how the filter H(q ') and the covariance matrix A can be found for a
system given in state space form; in other words, how to solve the spectral factorization
problem for a state space system. Consider the model

x(t + 1) = Ax(t) + v(2)
y(0) = Cx(1) + e()

where v(¢) and e(f) are mutually independent white noise sequences with zero means and
covariance matrices R; and R,, respectively. The matrix A is assumed to have all
eigenvalues inside the unit circle. Let P be a positive definite matrix that satisfies the
algebraic Riccati equation

(A6.1.8)
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P = APAT + R, — APCT(CPCT + R,)~'CPA™ (A6.1.9)
Set
K = APCT(CPC™ + R,)™!
H(g™Y) = I + C[gl — A]'K (A6.1.10)
A = CPC" + R,

This has almost achieved the factorization (A6.1.6). It is obvious that H(0) = I and that
H(g™") is asymptotically stable. To show (A6.1.6a), note from (A3.1.10) that

2ndp(w) = R, + C(e'°1 — A)"'Ry(e7 T — AT)~ICT
By the construction of H(g™}),

H(eT)AH (e') = [I + C(e°I — A)'K]A[I + K" (eI — AT)"I1C"]
A + C(e®I — A)T'APCT + CPAT(e I — AT)"ICT
+ C(e"I — A)'APC™(CPCT + R,)"'CPAT

(eI — AT)"1cT

CPCT + R, + C(e°I — A)"'APCT
+ CPAT(e7 I — AT)~ICT
+ C(eI — A)y"YAPAT + R, — P)(e™ I — AT)"1 CT
2nd(w) + C(e@1 — A) (eI — A)P(e™™I — AT)
+ AP(e7I — AT) + (eI — A)PAT
+ APAT — P)(e7*I — AT)"'CT
= 2n¢p(w)

Hence (A6.1.6a) holds for H(q™ ') and A given by (A6.1.10). It remains to examine the
stability properties of H !(g™"). Using the matrix inversion lemma (Lemma A.1 in
Appendix A), equation (A6.1.10) gives

H™' g™ = [+ C(gl — A)~'K]™
=1- Cl(qgl - A) + KC]"'K (A6.1.11)
=1~ Clqgl - (A - KO|'K

Hence the stability properties of H (g ™') are completely determined by the location of
the eigenvalues of A — KC. To examine the location of these eigenvalues one can study
the stability of the system

x(t + 1) = (A — KC)"x(f) (A6.1.12)

since A — KC and (A — KC)™ have the same set of eigenvalues.
In the study of (A6.1.12) the following candidate Lyapunov function will be used
(recall that P was assumed to be positive definite):

V(x) = x"Px
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For this function,
Vix(t + 1)) = V(x(?) = x"()[(A — KC)P(A — KC)* — PJx(¥) (A6.1.13)
The matrix in square brackets can be rewritten (using (A6.1.9)) as
(A— KC)P(A— KC)T — P=(APA™ — P) + (-KCPA™ — APC"K™ + KCPC"K")
=[-R; + K(CPC" + R,)K™]
— 2K(CPC* + R))K' + KCPC'K™
=—R; — KR,K"
which is nonpositive definite. Hence H!(¢™?) is at least stable, and possibly asymptoti-

cally stable, cf. Remark 2 below.

Remark 1. The foregoing results have a very close connection to the (stationary)
optimal state predictor. This predictor is given by the Kalman filter (see Section B.7),
and has the structure

£(t + 1)t) = A(ft — 1) + Ky(2)
y(O= Ci(tt = 1) + y(1)
where y(¢) is the output innovation at time ¢. The covariance matrix of y(¢) is given by
cov[y(t)] = CPCT + R,
From (A6.1.14) it follows that
y(®) = y() + Clgl — A)~'Ky(1)
= H(g™)¥()

One can also ‘invert’ (A6.1.14) by considering y(¢) as input and y(¢) as output. In
this way,

2t + 1)) = A2(tle — 1) + K[y() — Ci(f]t — 1)]
¥(@t) = y(t) — Ce(fle — 1)

(A6.1.14)

or
£t + 1)) = (A — KOx(Ht — 1) + Ky(9) (A6.1.15)

¥(6) = —Ci(tlt — 1) + y(0)

from which the expression (A6.1.11) for H™*(g™") easily follows. Thus by solving the
spectral factorization problem associated with (A6.1.8), the innovation form (or equi-
valently the stationary Kalman filter) of the system (A6.1.8) is obtained implicitly. |

Remark 2. H™*(q™") computed as (A6.1.11) will be asymptotically stable under weak
conditions. In case H !(¢g™') is only stable (having poles on the unit circle), then
A — KC has eigenvalues on the unit circle. This implies that det H(g ") has a zero on
the unit circle. To see this, note that by Corollary 1 of Lemma A.5,
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det H(e™) = det[I + C(e*1 — A)"'K]
= det[l + KC(e*I — A)™']
= det[el®] — A + KC] x det[(e"] — A)™"]
Hence by (A6.1.6a) the spectral density matrix ¢(w) is singular at some w. Conversely,

if ¢(w) is singular for some frequencies, the matrix A — KC will have some eigenvalues
on the unit circle and H'(¢g™") will not be asymptotically stable. ]

Remark 3. The Riccati equation (A6.1.9) has been treated extensively in the literature.
See for example Kudera (1972), Anderson and Moore (1979), Goodwin and Sin (1984)
and de Sousa et al. (1986). The equation has at most one symmetric positive definite
solution. In some ‘degenerate’ cases there may be no positive definite solution, but a
positive semidefinite solution exists and is the one of interest (see Example A6.1.2 for an
illustration). Some general sufficient conditions for existence of a positive definite
solution are as follows. Factorize R; as R; = BBT. Then it is sufficient to require:

(i) R, > 0;
(i) (A, B) controllable (i.e. rank (B AB ... A" 'B) = n = dim A);
(iii) (C, A) observable (i.e. rank (CT ATCT ... (A")""!C") = n = dim A).

Some weaker but more technical necessary and sufficient conditions are given by de
Sousa et al. (1986). [ ]
Remark 4. If v(f) and e(f) are correlated so that
Ev(t)e™(s) = Rz,

the results remain valid if the Riccati equation (A6.1.9) and the gain vector K (A6.1.10)
are changed to, see Anderson and Moore (1979),

P = APAT + R, — (APC™ + Ry,)(CPCT + R,)"}(CPAT + R%,

(A6.1.16)
K = (APC" + Ry,)(CPCT + Ry)™!
]
Example A6.1.1 Spectral factorization for an ARMA process
Consider the ARMA (1, 1) process
y(@O) +ay(t — 1) =e(t) + ce(t — 1) Ja|<1,c#0
(A6.1.17a)
Ee(t)e(s) = O,
The spectral density of y(¢) is easily found to be
1]{1+ce®®> 1 14+ 2cosw
¢(0) = 2n|1 + ae®®| ~ 2n1+ @ + 2a cos @ (A6.1.17b)

(cf. A3.1.10). If |c| < 1 the representation (A6.1.17a) is the one described in (A6.1.6).
For completeness consider also the case |c| > 1. The numerator of the spectral density is
equalto f(z) =cz+ (1 + ) + cz7' = (1 + cz)(1 + cz™"). Its zeros are Z; = —1/c and
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z7! = —c. It can be rewritten as f(z) = c*(z + 1/c)(z™! + 1/c). To summarize, the
following invertible and stable cofactor of the spectral density (A6.1.17b) are obtained:

-1
Case (i): |c| <1 H(g™ = %i—;fl—_l A=1
|+ (1e)g-! (A6.1.17¢)
.y - o L+ 1/c)q™ _ 2
Case (ii): |c| =1  H(g™) Trag i A=c
|
Example A6.1.2 Spectral factorization for a state space model
The system (A6.1.17a) can be represented in state space form as
—-a 1 1
xt+1=< )x(t)+<>e(t+1)
¢+1) 0 0 ¢ (A6.1.18a)

y(@ = (1 0)x(r)

Here

1 ¢
R1= 2 R2=0
cC C

Since the second row of A is zero it follows that any solution of the algebraic Riccati
equation must have the structure

1+a ¢
p_ < 2) (A6.1.18b)

c C

where o is a scalar quantity to be determined. Inserting (A6.1.18b) in (A6.1.9) and
evaluating the 1,1-element gives

(c — a — aa)?

— — a2 2 —
l+a=(c—a+ada+1 T+ o

(A6.1.18c¢)

which is rewritten as
(@ + Dol —a*) — (c —a)?] + [-aa + (c —a)f =0
a2+ aof[—(c—aP+ (1 —-a*)—2ac—a)]=0
ala+1—-c*)=0
This equation has two solutions, o; = 0 and o, = ¢* — 1. We will discuss the choice of

solution shortly. First note that the gain K is given by

1\¢c —a — ao
K = <0)—1—+—a—‘“ (A6.1.18d)

(see (A6.1.10)). Therefore



Appendix A6.1 179

_ 1+ ( q_l)
1\ -1
q+a q1> K= Lta (A6.1.18¢)

_1 —_
Hgy=1+a 0!} e
Ae1+ao (A6.1.18f)

The remaining discussion considers separately the two cases introduced in Example
A6.1.1.

Case (i). Assume |c| < 1. Then the solution a, = ¢ — 1 can be ruled out since it
corresponds to

P = C2 c
B Cc 02

which is indefinite (except for |c| = 1, for which a; = o,). Hence

1
r=(0 )
cC C R
1 (A6.1.18g)
_ 1+ ¢cqg™
H(g™") = T:-agti A=1

Case (ii). Assume |c| = 1. Then

P~1C P_czc
T \e &2 2\ &

with P, positive definite, whereas P; is only positive semidefinite. There are two ways to
conclude that a, is the required solution in this case. First, it is P, that is the positive
definite solution to (A6.1.9). Note also that P, is the largest nonnegative definite
solution in the sense P, — P; = 0. Second, the filter H~'(¢g~") will be stable for a = a,
but unstable for o. = ay. Inserting a, = ¢ — 1 into (A6.1.18e, f) gives

- 1+ (l/c)g™!
1 = )
H(g™ ") = 1+ ag! A=c (A6.1.18h)
As expected, the results (A6.1.18g, h) coincide with the previously derived (A6.1.17c).
]
Example A6.1.3 Another spectral factorization for a state space model
An alternative way of representing the system (A6.1.17a) in state space form is
x(t + 1) = —ax(t) + (c — a)e(?)
(A6.1.19a)

y() = x(t) + e(¥)
In this case
Ri=(c—-a? Rp=(c—-a R=1
The Riccati equation (A6.1.16) reduces to
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(—ap + ¢ — a)?

o (A6.1.19b)

p=dap+(c—a)y-
Note that this equation is equivalent to (A6.1.18c). The solutions are hence p; = 0
(applicable for |c| < 1) and p, = ¢* — 1 (applicable for |c| > 1). The gain K becomes,
according to (A6.1.16),

K = ~app++c1— a
Then
1+ (K+agt 17 ilq
H(g™") = 1(+ aqqu = faq_l A=p+1 (A6.1.19¢)
which leads to the same solutions (A6.1.17c) as before. |

Example A6.1.4 Spectral factorization for a nonstationary process
Let x(¢) be a drift, which can be described as

x(t + 1) = x(t) + v(o) Ev(t)v(s) = A28, (A6.1.20a)
Assume that x(¢) is measured with some observation noise which is independent of v(t)
y(©) = x(1) + e(¥) Ee(t)e(s) = A28, (A6.1.20b)

Since the system (A6.1.20a) has a pole on the unit circle, y(¢) is not a stationary process.
However, after differentiating it becomes stationary. Introduce

2(t) = (1 = g )y = v(t = 1) + e(t) — e(t = 1) (A6.1.20c)

The right-hand side of (A6.1.20c) is certainly stationary and has a covariance function
that vanishes for lags larger than 1. Hence z(f) can be described by an equivalent MA(1)
model:

z2(r) = (1 + cqg Ne(t)  Ee(n)e(s) = A2d,, (A6.1.20d)
Comparison of the covariance functions of (A6.1.20c) and (A6.1.20d) gives
(1 + A=A + 207
(A6.1.20e)
A2 = —)2

These equations have a unique solution satisfying |c| < 1. This solution is readily found
to be

e B (5B

SRS

(A6.1.20f)
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where B = A2/AZ. In conclusion, the measurements can be described equivalently by
() = H(g ()
where H(g™) = (1 + cg ')/(1 — ¢ *) has an asymptotically stable inverse. =
Wilson (1969) and Kucera (1979) have given efficient algorithms for performing spectral
factorization. To describe such an algorithm it is sufficient to consider (A6.1.1a),

(A6.1.2). Rescale the problem by setting C = 1 and let g, be free. Then the problem is to
solve

f(2) = g(2)gz™) (A6.1.21a)

where

f@Q=fo+ iz +2z7H + ... + fu" +277)

B (A6.1.21b)
g(z) = go" + 12" + ...+ g,

for the unknowns {g;}. Note that to factorize an ARMA spectrum, two problems of the
above type must be solved. The solution is required for which g(z) has all zeros inside or
on the unit circle. Identifying the coefficients in (A6.1.21a),

n—k
fo=> 8 k=0,....n (A6.1.21c)

This is a nonlinear system of equations with { g;} as unknowns, which can be rewritten in
a more compact form as follows:

f 8o 81 ---8n 8o
0 . . .
aal : g
Fel = -g T2 T(oe
fn 1 .
gn
&n go (A6.1.22)
: g
= " |2 H(g)g
gn
L
= 1T(9) + H(g)ls

Observe that the matrices 7 and H introduced in (A6.1.22) are Toeplitz and Hankel,
respectively. (T is Toeplitz because T;; depends only on i — j. H is Hankel because Hj;
depends only on i + j.) The nonlinear equation (A6.1.22) can be solved using the
Newton—Raphson algorithm. The derivative of the right-hand side of (A6.1.22), with
respect to g, can readily be seen to be [T(g) + H(g)]. Thus the basic iteration of the
Newton-Raphson algorithm for solving (A6.1.22) is as follows:
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g = g+ (T8 + HEOI {7 - 278 + H(ehle}
_ (A6.1.23)
= 28"+ [T + H(ES

where the superscript k& denotes the iteration number.

Merchant and Parks (1982) give some fast algorithms for the inversion of the Toeplitz-
plus-Hankel matrix in (A6.1.23), whose use may be indicated whenever n is large.
Kucera (1979) describes a version of the algorithm (A6.1.23) in which explicit matrix
inversion is not needed. The Newton—Raphson recursion (A6.1.23) was first derived in
Wilson (1969), where it was also shown that it has the following properties:

o If g%(2) has all zeros inside the unit circle, then so does g<*1(z).

e The recursion is globally convergent to the solution of (A6.1.21a) with g(z) having all
zeros inside the unit circle, provided g°(z) satisfies this stability condition (which can
be easily realized). Furthermore, close to the solution, the rate of convergence is
quadratic.

Complement C6.1
Uniqueness of the full polynomial form model

Let G(z) denote a transfer function matrix. The full polynomial form model (6.22),
(6.23) corresponds to the following parametrization of G(z):

G(z) = A'(2)B(2) (ny|nu)
Ay =1+ Az + ... + A2  (ny|ny) (C6.1.1)
B(z) = Biz + ... + B,,z" (ny|nu)

where all the elements of the matrix coefficients {A;, B;} are assumed to be unknown.
The parametrization (C6.1.1) is the so-called full matrix fraction description (FMFD),
studied by Hannan (1969, 1970, 1976), Stoica (1983), Soderstrom and Stoica (1983).
Here we analyze the uniqueness properties of the FMFD. That is to say, we delineate the
transfer function matrices G(z) which, for properly chosen (na, nb), can be uniquely
represented by a FMFD.

Lemma C6.1.1

Let the strictly proper transfer function matrix G(z) be represented in the form (C6.1.1)
(for any such G(z) there exists an infinity of representations of the form (C6.1.1) having
various degrees (na, nb); see Kashyap and Rao (1976), Kailath (1980)). Then (C6.1.1) is
unique in the class of matrix fraction descriptions (MFD) of degrees (na, nb) if and only
if

A(z), B(z) are left coprime (C6.1.2)
rank (A,, B,,) = ny (C6.1.3)
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Proof. Assume that the conditions (C6.1.2), (C6.1.3) hold. Let A~'(z)B(z) be
another MFD of degrees (na, nb) of G(z). Then

A(2) = L(2)A(2)
B(z) = L(2)B(2)

for some polynomial L(z) (Kailath, 1980). Now A (0) = A (0) = I which implies L(0) = I.
Furthermore, (C6.1.3) implies L(z) = I. For if L(z) = I + L,z, for example, then
deg A = na and deg B = nb if and only if

(C6.1.4)

Li(Awa Bpp) =0 (C6.1.5)
But this implies L; = 0 in view of (C6.1.3). Thus the sufficiency of (C6.1.2), (C6.1.3) is
proved.

The necessity of (C6.1.2) is obvious. For if A(z) and B(z) are not left coprime then
there exists a polynomial K(z) of degree nk = 1 and polynomials A(z), B(z) such that

A(z) = K(2)A(z)
B(z) = K(2)B(2)

Replacing K(z) in (C6.1.6) by any other polynomial of degree not greater than nk leads
to another MFD (na, nb) of G(z). Concerning the necessity of (C6.1.3), set L(z) =
I+ Lz in (C6.1.4), where L; # O satisfies (C6.1.5). Then (C6.1.4) is another MFD
(na, nb) of G(z), in addition to {A(z), B(z2)}. [ |

(C6.1.6)

There are G(z) matrices which do not satisfy the conditions (C6.1.2), (C6.1.3) (see
Example 6.8). However, these conditions are satisfied by almost all strictly proper G(z)
matrices. This is so since the condition rank (A4,, B,,) < ny imposes some nontrivial
restrictions on the matrices A,,, B,,, which may hold for some, but only for a ‘few’
systems. Note, however, that if the matrix (4,, B,) is almost rank-deficient, then use
of the FMFD for identification purposes may lead to ill-conditioned numerical problems.

Complement C6.2
Uniqueness of the parametrization and the positive deﬁnlteness of the
input—output covariance matrix

This complement extends the result of Complement C5.1 concerning noise-free output,
to the multivariable case. For the sake of clarity we study the full polynomial form model
only. More general parametrizations of the coefficient matrices in (6.22), (6.23) can be
analyzed in the same way (see S6derstrom and Stoica, 1983). Consider equation (6.22) in
the noise-free case (e(f) = 0). It can be rewritten as

y(®) = ¢'(1)8 (C6.2.1)

where ¢(¢) and 0 are defined in (6.25). As in the scalar case, the existence of the least
squares estimate of 0 in (C6.2.1) will be asymptotically equivalent to the positive
definiteness of the covariance matrix
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R = Eo(¢"(1)

It is shown below that the condition R > 0 is intimately related to the uniqueness of the

full polynomial form.

Lemma C6.2.1
Assume that the input signal u(?) is persistently exciting of a sufficiently high order. Then
the matrix R is positive definite if and only if there is no other pair of polynomials, say
A(2), B(z), having the same form as A(z), B(z), respectively, and such that A ~!(z) B(z)
= A(2)B(2).
Proof. Let 6 be a vector of the same dimension as 0, and consider the equation
6TRO = 0 (C6.2.2)

with 6 as unknown. The following equivalences can be readily verified (A(z) and B(z)
being the polynomials constructed from 0 exactly in the way A (z) and B(z) are obtained
from 0):

(C6.2.2) < ¢T(1)0 = 0 all t < y(t) = ¢ (H)(6 — 6) all ¢
30 = [Aq™Y) + 1 - Al OB — Blg™)u(0) all ¢
< {A7(g B —[A(g™) + 1= A(g"H]I'[B(g™") — B(g™H]u(®)
=0all¢ (C6.2.3)
Since u(t) is assumed to be a persistently exciting signal, (C6.2.3) is equivalent to
A7Y2)B(2) = [A(2) + I — A(2)]"Y[B(2) — B(2)] (C6.2.4)

Hence the matrix R is positive definite if and only if the only solution of (C6.2.4) is
A(z) —I=0, B(z) =0 (i.e. 6 = 0). [ |



Chapter 7

PREDICTION ERROR
METHODS

7.1 The least squares method revisited

In Chapter 4 the least squares method was applied to static linear regressions models.
This section considers how linear regressions can be extended to cover dynamic models.
The statistical analysis carried out in Chapter 4 will no longer be valid.

When applying linear regressions to dynamic models, models of the following form are
considered (cf. (6.12), (6.13)):

A(g™"y(0) = B(g~Hu(t) + &(1) (7.1a)
where
Al =14+aqg '+ ... +a,qg ™
q) 1q (.10)
B(gY) =big '+ ... + bug "

In (7.1a) the term &(¢) denotes the equation error. As noted in Chapter 6 the model (7.1)
can be equivalently expressed as

y(@) = ¢"(0)8 + &(r) (7.2a)
where
') = (—y(t = 1) ... =y(t — na) u(t — 1) ... u(t — nb)) (7.25)

0=1(ay ... aw, by ... by)"

The model (7.2) has exactly the same form as considered in Chapter 4. Hence, it is
already known that the parameter vector which minimizes the sum of squared equation
errors,

Va(8) = 3 €0 (73)

is given by

|

z|=

N -1 N
zwwwﬂ[%zwa] (7.4)

185
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This identification method is known as the least squares (LS) method. The name
‘equation error method’ also appears in the literature. The reason is, of course, that (%),
whose sample variance is minimized, appears as an equation error in the model (7.1).

Note that all the discussions about algorithms for computing 6 (see Section 4.5) will
remain valid. The results derived there depend only on the ‘algebraic structure’ of the
estimate (7.4). For the statistical properties, though, it is of crucial importance whether
o(?) is an a priori given quantity (as for static models considered in Chapter 4), or
whether it is a realization of a stochastic process (as for the model (7.1)). The reason why
this difference is important is that for the dynamic models, when taking expectations of
various quantities as in Section 4.2, it is no longer possible to treat @ as a constant matrix.

Analysis

Consider the least squares estimate (7.4) applied to the model (7.1), (7.2). Assume that
the data obey

Ao(g Ny = Bo(g™Hu(r) + v(0) (7.5a)
or equivalently
y(®) = @' (08 + v(1) (7.5b)

Here 0, is called the true parameter vector. Assume that v(f) is a stationary stochastic
process that is independent of the input signal.

If the estimate  in (7.4) is ‘good’, it should be close to the true parameter vector 8.
To examine if this is the case, an expression is derived for the estimation error

) 1 M1 &
6 — 0, = [—A—/ > cp(t)cpT(t)] [N > e(t)y()

t=1
- {—]1;’ 2 cp(t)(pT(t)} 60] (7.6)
=1

1 N -1 1 N
- [ﬁ > cp(r)cpT(t)] [ﬁ > cp(t)v(z)}

Under weak conditions (see Lemma B.2) the sums in (7.6) tend to the corresponding
expected values as the number of data points, N, tends to infinity. Hence 8 is consistent
(that is, 8 tends to 6y as N tends to infinity) if

Eq@()@"(¢) is nonsingular (7.7a)
Ep(tyv(t) = 0 (7.7b)
Condition (7.7a) is satisfied in most cases. There are a few exceptions:

e The input is not persistently exciting of order nb.

e The data are completely noise-free (v(f) = 0) and the model order is chosen too high
(which implies that Ao(g~") and By(g~') have common factors).

o The input u(f) is generated by a linear low-order feedback from the output.
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Explanations as to why (7.7a) does not hold under these special circumstances are given
in Complements C6.1, C6.2 and in Chapter 10.

Unlike (7.7a), condition (7.7b) is in most cases not satisfied. An important exception is
when v(#) is white noise (a sequence of uncorrelated random variables). In such a case
v(f) will be uncorrelated with all past data and in particular with @(f). However, when
v(#) is not white, it will normally be correlated with past outputs, since y(¢) depends
(through (7.5a)) on v(s) for s < t. Hence (7.7b) will not hold.

Recall that in Chapter 2 it was examplified in several cases that the consistent
estimation of 6 requires v(¢) to be white noise. Examples were also given of some of the
exceptions for which condition (7.7a) does not hold.

Modifications

The least squares method is certainly simple to use. As shown above, it gives consistent
parameter estimates only under rather restrictive conditions. In some cases the lack of
consistency may be tolerable. If the signal-to-noise ratio is large, the bias will be small. If
a regulator design is to be based on the identified model, some bias can in general be
acceptable. This is because a reasonable regulator should make the closed loop system
insensitive to parameter variations in the open loop part.

In other situations, however, it can be of considerable importance to have consistent
parameter estimates. In this and the following chapter, two different ways are given
of modifying the LS method so that consistent estimates can be obtained under less
restrictive conditions. The modifications are:

« Minimization of the prediction error for other ‘more detailed’ model structures. This
idea leads to the class of prediction error methods to be dealt with in this chapter.

e Modification of the normal equations associated with the least squares estimate. This
idea leads to the class of instrumental variable methods, which are described in
Chapter 8.

It is appropriate here to comment on the prediction error approach and why the LS
method is a special case of this approach. Neglecting the equation error £(¢) in the model
(7.1a), one can predict the output at time ¢ as

(@) = —apy(t — 1) — ... — a,,y(t — na) + bu(t — 1)
+ ... + byu(t — nb) (7.8a)
= @' (0o
Hence
e(t) = y() — 91 (7.8b)

can be interpreted as a prediction error. Therefore, the LS method determines the
parameter vector which makes the sum of squared prediction errors as small as possible.
Note that the predictor (7.8a) is constructed in a rather ad hoc manner. It is not claimed
to have any generally valid statistical properties, such as mean square optimality.
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7.2 Description of prediction error methods

A model obtained by identification can be used in many ways, depending on the purpose
of modeling. In many applications the model is used for prediction. Note that this is often
inherent when the model is to be used as a basis for control system synthesis. Most
systems are stochastic, which means that the output at time ¢ cannot be determined
exactly from data available at time ¢ — 1. It is thus valuable to know at time ¢ — 1 what the
output of the process is likely to be at time ¢ in order to take an appropriate control
action, i.e. to determine the input u(t — 1).

It therefore makes sense to determine the model parameter vector 6 so that the pre-
diction error

e(t, 0) = y(1) — y(t

is small. In (7.9), y(¢)t — 1; 6) denotes a prediction of y(¢) given the data up to and
including time ¢t — 1 (i.e. y(t — 1), u(t — 1), y(t — 2), u(t — 2), ...) and based on the
model parameter vector 6.

To formalize this idea, consider the general model structure introduced in (6.1):

y(0) = G(g™"; O)u(r) + H(g™"; B)e(®)
Ee(r)e"(s) = A(8)d,

t—1;0) (7.9)

(7.10)

Assume that G(0; 8) = 0, i.e. that the model has at least one pure delay from input to
output. As a general linear predictor, consider

Y@t — 1;0) = Li(g™"; 0)y(®) + La(g™"; O)u(r) (7.11a)

which is a function of past data only if the predictor filters L;(g™"; 8) and L,(¢™"; 8) are
constrained by

Li(0;0) =0  Ly0;0) =0 (7.11b)

The predictor (7.11) can be constructed in various ways for any given model (7.10). Once
the model and the predictor are given, the prediction errors are computed as in (7.9). The
parameter estimate 6 is then chosen to make the prediction errors g(1, ), ..., &N, 6)
small.

To define a prediction error method the user has to make the following choices:

e Choice of model structure. This concerns the parametrization of G(g~!; 8), H(g™'; 0)
and A(0) in (7.10) as functions of 6.

e Choice of predictor. This concerns the filters L;(¢™"; 0) and L,(g™"; 0) in (7.11), once
the model is specified.

e Choice of criterion. This concerns a scalar-valued function of all the prediction errors
g(1, 0), ..., &N, 6), which will assess the performance of the predictor used; this
criterion is to be minimized with respect to 6 to choose the ‘best’ predictor in the class
considered.
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The choice of model structure was discussed in Chapter 6. In Chapter 11, which deals
with model validation, it is shown how an appropriate model parametrization can be
determined once a parameter estimation has been performed.

The predictor filters L,(g™"; 0) and L,(¢~"; 6) can in principle be chosen in many
ways. The most common way is to let (7.11a) be the optimal mean square predictor. This
means that the filters are chosen so that under the given model assumptions the predic-
tion errors have as small a variance as possible. In Section 7.3 the optimal predictors are
derived for some general model structures. The use of optimal predictors is often
assumed without being explicitly stated in the prediction error method. Under certain
regularity conditions such optimal predictors will give optimal properties of the para-
meter estimates so obtained, as will be shown in this chapter. Note, though, that the
predictor can also be defined in an ad hoc nonprobabilistic sense. Problem 7.3 gives
an illustration. When the predictor is defined by deterministic considerations, it is
reasonable to let the weighting sequences associated with L(¢™"; 0) and L,(g~'; 8) have

- fast decaying coefficients to make the influence of erroneous initial conditions insignifi-
cant. The filters should also be chosen so that imperfections in the measured data are
well damped. :

The criterion which maps the sequence of prediction errors into a scalar can be chosen
in many ways. Here the following class of criteria is adopted. Define the sample covari-
ance matrix

R(8) = —;—] % e(t, 0)E(t, 6) | (7.12)
t=1

where N denotes the number of data points. If the system has one output only (ny = 1)
then &(¢, 0) is a scalar and so is Ry(8). In such a case Ry(0) can be taken as a criterion to
be minimized. In the multivariable case, Ry(8) is a positive definite matrix. Then the
criterion

Vn(B) = h(Rn(6)) (7.13)

is chosen, where h(Q) is a scalar-valued function defined on the set of positive definite
matrices O, which must satisfy certain conditions. V(0) is frequently called a loss
function. Note that the number of data points, N, is used as a subscript for convenience
only. The requirement on the function A(Q) is that it must be monotonically increasing.
More specifically, let O be positive definite and AQ nonnegative definite. Then it is
required that

h(Q + AQ) = h(Q) (7.14)

and that equality holds only for AQ = 0.
The following example illustrates some possibilities for the choice of A(Q).
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Example 7.1 Criterion functions
One possible choice of A(Q) is

hi(Q) = tr SO (7.15a)

where § is a (symmetric) positive definite weighting matrix. Then S = GG" for some
nonsingular matrix G, which implies that

hi(Q + AQ) — h(Q) = tr SAQ = tr GGTAQ = tr G'AQG = 0

Thus the condition (7.14) is satisfied. Note also that if AQ is nonzero then the inequality
will be strict.
Another possibility for A(Q) is

hy(Q) = det Q (7.15b)

Let Q = GG', where G is nonsingular since Q is positive definite. Then
hy(Q + AQ) = hy(Q) = de{Q(I + Q7'AQ)] — det Q
= det Q[det(/ + GG 'AQ) — 1]
= det Q[det(I + G~'AQG™T) — 1]

Il

The above calculations have made use of the relation
det(I + AB) = det({ + BA)

(see the Corollary 1 to Lemma A.5). Let G'AQG T have eigenvalues ,, ..., My -
Since this matrix is symmetric and nonnegative definite, A; = 0. As the determinant of
a matrix is equal to the product of its eigenvalues, it follows that

hay(Q + AQ) — hy(Q) = det Q [ﬁ a+xn) - 1] =0

i=1
Equality will hold if and only if A; = 0 for all i. This is precisely the case when AQ = 0.
]

Remark. 1t should be noted that the criterion can be chosen in other ways. A more
general form of the loss function is, for example,

Va(0) = % i 11, 8, &(t, 6)) (7.16)

=1

where the scalar-valued function /(¢, 8, &) must satisfy some regularity conditions. It is
also possible to apply the prediction error approach to nonlinear models. The only
requirement is, naturally enough, that the models provide a way of computing the
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prediction errors €(¢, 0) from the data. In this chapter the treatment is limited to linear
models and the criterion (7.13). ]

Some further comments may be made on the criteria of Example 7.1:

¢ The choices (7.15a) and (7.15b) require practically the same amount of computation
when applied off-line, since the main computational burden is to find Rx(6). However,
the choice (7.15a) is more convenient when deriving recursive (on-line) algorithms as
will be shown in Chapter 9.

e The choice (7.15b) gives optimal accuracy of the parameter estimates under weak
conditions. The criterion (7.15a) will do so only if S = A, (See Section 7.5 for proofs
of these assertions.) Since A is very seldom known in practice, this choice is not useful
in practical situations.

e The choice (7.15b) will be shown later to be optimal for Gaussian distributed
disturbances. The criterion (7.16) can be made robust to outliers (abnormal data) by
appropriate choice of the function I(-, -, -). (To give a robust parameter estimate,
I(-, -, -) should increase at a rate that is less than quadratic with e.)

The following example illustrates the choices of model structure, predictor and cri-
terion in a simple case.

Example 7.2 The least squares method as a prediction error method
Consider the least squares method described in Section 7.1. The model structure is then
given by (7.1a). The predictor is given by (7.8a):

30 = [1 = A(g Hly(@) + Blg~u()
Hence, in this case
Lig0) =1- A
Ly(g™'; 0) = B(q™")
Note that the condition (7.11b) is satisfied. Finally, the criterion is given by (7.3). =

To summarize, the prediction error method (PEM) can be described as follows:

e Choose a model structure of the form (7.10) and a predictor of the form (7.11).

o Select a criterion function A(Q); see (7.13).

e Determine the parameter estimate 0 as the (global) minimum point of the loss function

h(Rn(6)):

6 = arg min h(Rn(0)) (7.17)

To evaluate the loss function at any value of 6, the prediction errors {e(¢, 0)}/, are
determined from (7.9), (7.11). Then the sample covariance matrix Ry(0) is evaluated
according to (7.12).

Figure 7.1 provides an illustration of the prediction error method.
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u(?) y(0)

Process

(t, 6)

/ \

7
Predictor 9(t, 8)
with adjustable
parameters 0

Algorithm for
minimizing some
function of &(z, 0)

FIGURE 7.1 Block diagram of the prediction error method.

7.3 Optimal prediction

An integral part of a prediction error method is the calculation of the predictors for a
given model. In most cases the optimal predictor, which minimizes the variance of the
prediction error, is used. In this section the optimal predictors are derived for some
general model structures.

To illustrate the main ideas in some detail, consider first a simple example.

Example 7.3 Prediction for a first-order ARMAX model
Consider the model

y(@) + ay(t — 1) = bu(t — 1) + e(t) + ce(t — 1) (7.18)
where e(t) is zero mean white noise of variance 1\?. The parameter vector is

8= b o7

Assume that u(f) and e(s) are independent for ¢ < s. Hence the model allows feedback
from y(-) to u(-). The output at time ¢ satisfies

y(@®) = [—ay(t — 1) + bu(t — 1) + ce(t — 1)] + [e(®)] (7.19)

The two terms on the right-hand side of (7.19) are independent, since e(¢) is white noise.
If y*(¢) is an arbitrary prediction of y(f) (based on data up to time ¢ — 1) it therefore
follows that

E[y(t) = y* ) = E[-ay(t = 1) + bu(t = 1)

.20
+ce(t — 1) — y*(OP + M2 = A2 (7.20)

This gives a lower bound, namely A%, on the prediction error variance. An optimal
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predictor y(¢|t — 1; 0) is one which minimizes this variance. Equality in (7.20) is achieved
for

(it — 1; 0) = —ay(t — 1) + bu(t — 1) + ce(t — 1) (7.21)

The problem with (7.21) is, of course, that it cannot be used as it stands since the term
e(t — 1) is not measurable. However, e(t — 1) can be reconstructed from the measurable
data y(t — 1), u(t — 1), y(t — 2), u(t = 2), ..., as shown below. Substituting (7.18)
in (7.21),

y(tlt — 1;0) = —ay(t — 1) + bu(t — 1) + c[y(t — 1) + ay(t — 2) — bu(t — 2)
— ce(t — 2)]
=(c—a)y(t — 1) + acy(t — 2) + bu(t — 1) — bcu(t — 2)
— Ayt — 2) + ay(t — 3) — bu(t — 3) — ce(t — 3)]
=(c—a)y(t — 1) + (ac — A)y(t — 2) — ac’y(t — 3)
+ bu(t — 1) — beu(t — 2) + bcPu(t — 3) + e(t — 3) (7.22)

t—1

S (¢ = (=0t ~ i) ~ a0/ "(0)

I

+ b i (—o)u(t — i) — (—c)'e(0)

i=1

Under the assumption that |c| < 1, which by definition is true for 6 € & (see Example 6.1),
the last term in (7.22) can be neglected for large ¢. It will only have a decaying transient
effect. In order to get a realizable predictor this term will be neglected. Then

t—1

e = 1;8) = 3 (e = )=yt = i) = a(=)""'y(0)
- (1.23)
+b3 (=) tu(t - i)

=1

The expression (7.23) is, however, not well suited to practical implementation. To derive
a more convenient expression, note that (7.23) implies

(et — 1;0) + cp(t — 1|t — 2;0) = (¢ — a)y(t — 1) + bu(t — 1) (7.24)

which gives a simple recursion for computation of the optimal prediction. The prediction

error (¢, 0), (7.9), will obey a similar recursion. From (7.9) and (7.24) it follows that
et,0) +ce(t—1,8)=y@) + eyt — 1) = [(c — a)y(t — 1) + bu(t — 1)] 7.25)
= y(0) + ay(t — 1) — bu(r — 1) '

The recursion (7.25) needs an initial value (0, 0). This value is, however, unknown. To
overcome this difficulty, £(0,0) is in most cases taken as zero. Since |c| < 1 by
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assumption, the effect of €(0, 8) will only be a decaying transient: it will not give any
significant contribution to &(¢, 6) when ¢ is sufficiently large. Note that setting €(0, 8) = 0
in (7.25) is equivalent to using y(0|—1; 6) = y(0) to initialize the predictor recursion
(7.24). Further discussions on the choice of the initial value €(0, 8) are given in Comple-
ment C7.7 and Section 12.6.

Note the similarity between the model (7.18) and the equation (7.25) for the
prediction error (¢, 0): e(f) is simply replaced by &(z, 8). This is how to proceed in
practice when calculating the prediction error. The foregoing analysis has derived the
expression for the prediction error. The calculations above can be performed in a more
compact way using the polynomial formulation. The output of the model (7.18) can then
be written as

"0 = T2 ) + e

=[ bg”! u(t)+( )‘{1 e(t)} + [e()]

1+a

_ bq_l (c— a)q~1 1 -1
~ [P0 + S (a0

- bq_lu(t)}] + [e()]

[(1 e e (L ™) = (e - g~ u()

#2990 4 o)

1+c"1

- [ + E594050) ) + o)

1+c

Thus

90t — 1;,0) = 2L *1u<) e ‘21‘1_1 y(0 (7.26)
which is just another form of (7.24). When working with filters in this way it is assumed
that data are available from the infinite past. This means that there is no transient effect
due to an initial value. Since data in practice are available only from time ¢ = 1
onwards, the form (7.26) of the predictor implicitly introduces a transient effect. In
(7.22) this transient effect appeared as the last term. Note that even if the polynomial
formalism gives a quick and elegant derivation of the optimal predictor, for practical
implementations a difference equation form like (7.24) must be used. Of course, the
result (7.26) can easily be reformulated as a difference equation, thus leading to a
convenient form for implementation. |

Next consider the general linear model
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y(0) = G(g™"; O)u(r) + H(g™"; )e(®)

(7.27)
Ee(f)e"(s) = A(0)d,,

which was introduced in (6.1); see also (7.10). Assume that G(0; 8) = 0, H(0; 6) = [ and
that H '(¢g™'; 8) and H '(q~'; 8)G(q™"; 0) are asymptotically stable (i.e. 8 € &,
(6.2)). Assume also that u(f) and e(s) are uncorrelated for ¢ < s. This condition holds if
either the system operates in open loop with disturbances uncorrelated with the input,
or the input is determined by causal feedback.

The optimal predictor is easily found from the following calculations:

y(0) = G(g™"; 0)u(r) + {H(g™"; 0) — Ite(t) + e(t)
=[G(g™ " 0)u(r) + {H(g™'; 8) — I}H (g7 0){y(»)
- G(g7 % 0)u()}] + e(d) (7.28a)
[H™'(q™"; 0)G(g™"; O)u(®) + {I — H(q™"; )} y(1)] + e(2)
z(1) + e(r)

>

Note that z(¢) and e(r) are uncorrelated. Let y*(¢) be an arbitrary predictor of y(¢) based
on data up to time ¢ — 1. Then the following inequality holds for the prediction error
covariance matrix:

E[y(r) = y*Olly(@) — y*O1"
= E[z(t) + e(t) — y*()][z(0) + e() — y*()]" (7.28b)
= E[z(2) — y*()][z(1) — y*()]" + A(6) = A(8)

Hence z(¢) is the optimal mean square predictor, and e(#) the prediction error. This can
be written as

(e —1;0) = H (g™ 0)G(g™ " 0)u() + {1 — H (g™ 0)} y(2)

(7.29)
e(t, 8) = e(t) = H (g7 0){y(t) — G(g™"; O)u(r)}

Note that the assumption G(0; 6) = 0 means that the predictor y(¢/z — 1; 8) depends only
on previous inputs (i.e. u(t — 1), u(t — 2), ...) and not on u(¢). Similarly, since
H(0; 8) = I and hence H (0, 6) = I, the predictor does not depend on y(¢) but only on
former output values y(t — 1), y(t — 2) ...

Further, note that use of the set &, introduced in (6.2), means that 0 is restricted to
those values for which the predictor (7.29) is asymptotically stable. This was in fact the
reason for introducing the set &.

For the particular case treated in Example 7.3,

bq !

_bg”' 1+eq!
1+aq!

_1. —
G(q s 9) 1+ aq—l

H(g™'; 0) =
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Then (7.29) gives

. o _l4+ag™" bg! [ 1+ aq’l]
y(tlt 1’ 6) - 1+ Cq—l 1 + aq—lu(t) + 1 1+ Cq—l y(t)

-1 1

bq (c —a)q”
1+ Cq—lu(t) + 1 + Cq—l y(t)

which is identical to (7.26).
Next consider optimal prediction for systems given in the state space form (6.28):

x(t + 1) = AO)x() + BOu() + v(©)
y(@) = C(O)x(t) + e(t)

where v(f) and e(¢) are mutually uncorrelated white noise sequences with zero means and
covariance matrices R;(8) and R»(8), respectively. The optimal one-step predictor of y(¢)
is given by the Kalman filter (see Section B.7 in Appendix B; cf. also (6.33)),

2+ 1) = A@)£(@|t — 1) + BO)u(r) + K(0)[y(t) — C(0)%(f]t — 1)]

(7.30)

(7.31)
Yt = 1) = CO)( — 1)
where the gain K(0) is given by
K(8) = A(B)P(0)CT(0)[C(B)P(B)CT(0) + Ry(0)]! (7.32a)
and where P(0) is the solution of the following algebraic Riccati equation:
P(8) = A(0)P(0)AT(0) + R, (8) — K(8)C(8)P(8)AT(0) (7.32b)

This predictor is mean square optimal if the disturbances are Gaussian distributed. For
other distributions it is the optimal linear predictor. (This is also true for (7.29).)

Remark. As noted in Appendix A6.1 for the state space model (7.30), there are strong
connections between spectral factorization and optimal prediction. In particular, the
factorization of the spectral density matrix of the disturbance term of y(f), makes it
possible to write the model (7.30) (which has two noise sources) in the form of (7.27), for
which the optimal predictor is easily derived. B

As an illustration of the equivalence between the above two methods for finding the
optimal predictor, the next example reconsiders the ARMAX model of Example 7.3 but
uses the results for the state space model (7.30) to derive the predictor.

Example 7.4 Prediction for a first-order ARMAX model, continued

Consider the model (7.18)

y(@) +ay(t — 1) = bu(t — 1) + e(®) + ce(t — 1)
(7.33)
Ic| < 1 Ee(f)e(s) = N0,

which is represented in state space form as
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X+ 1) = (0" 1) x(1) + ( )u(t) + <i>e(t+ 1

y@® =1 0)x()
(cf. (A6.1.18a)). As in Example A6.1.2 the solution of the Riccati equation has the form

p =2 1+a0 ¢
B c c?

where the scalar o satisfies

(7.34)

(c — a — an)?

a = (c — a)® + d’a — T a

This gives a = 0 (since |c| < 1). The gain vector K is found to be

- () ge- (5

According to (7.31) the one-step optimal predictor of the output will be

2+ 1)) = ( . 1) 2t — 1) + (g) u(t)

* (c 0 a) {y@ — @ 0@ - 1)} (7.36)

y(ee — 1) = (1 0)2(fr — 1)

This can be written in standard state space form as

2+ 18 = (‘OC é))ﬁ(t]t - 1)+ <8> u(t) + <C o a)y(t)
y(tt — 1) = (1 0)x(tt = 1)

and it follows that

g+c —1\""bu®) + (c — a)y(t)
oy (e

c[bu()) + (¢ — a)y()]

q+

bq~ —a)g~!
- 2y + $5 90

This is precisely the result (7.26) obtained previously. |

We have now seen how to compute the optimal predictors and the prediction errors for
general linear models. It should be stressed that it is a model assumption only that e(f) in
(7.27) is white noise. This is used to derive the form of the predictor. We can compute
and apply the predictor (7.29) even if this model assumption is not satisfied by the data.
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Thus the model assumption should be regarded as a tool to construct the predictor
(7.29). Note, however, that if e(¢) is not white but correlated, the predictor (7.29)
will no longer be optimal. The same discussion applies to the disturbances in the state
space model (7.30). Complement C7.2 describes optimal multistep prediction of ARMA
processes.

7.4 Relationships between prediction error methods and other
identification methods

It was shown in Section 7.1 that the least squares method is a special case of the prediction
error method (PEM). There are other cases for which the prediction error method is
known under other names:

o For the model structure

Alg™y(t) = B(g™"u(t) + D™'(g" e(®) (7.37)
the PEM is sometimes called the generalized least squares (GLS) method, although
GLS originally was associated with a certain numerical minimization procedure.
Various specific results for the GLS method are given in Complement C7.4.

e Consider the model structure

y(t) = G(g™'; B)u(r) + e(r) (7.38)
Then the prediction error calculated according to (7.29) becomes

e(t, 0) = y(t) — G(g~"; B)u(r)

which is the difference between the measured output y(f) and the ‘noise-free model
output’ G(g~"; 8)u(t). In such a case the PEM is often called an output error method
(OEM). This method is analyzed in Complement C7.5.

The maximum likelihood method

There is a further important issue to mention in connection with PEMs, namely the
relation to the maximum likelihood (ML) method.

For this purpose introduce the further assumption that the noise in the model (7.10) is
Gaussian distributed. The maximum likelihood estimate of 6 is obtained by maximizing
the likelihood function, i.e. the probability distribution function (pdf) of the observa-
tions conditioned on the parameter vector 6 (see Section B.3 of Appendix B). Now there
is a 1-1 transformation between { y(f)} and {e(#)} as given by (7.10) if the effect of initial
conditions is neglected; see below for details. Therefore it is equally valid to use the pdf
of the disturbances. Using the expression for the multivariable Gaussian distribution
function (see (B.12)), it is found that the likelihood function is given by

L) = e AT exp[ 3 S €T AT @), e)] (7.39)
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Taking natural logarithms of both sides of (7.39) the following expression for the log-
likelihood is obtained:

N
log L(6) = —-;— > el(t, B)ATH(0)e(t, 6) — %log det A(6) + constant  (7.40)
t=1

Strictly speaking, L(8) in (7.39) is not the exact likelihood function. The reason is that
the transformation of {y(f)} to {&(¢, 6)} using (7.29) has neglected the transient effect
due to the initial values. Strictly speaking, (7.39) should be called the L-function
conditioned on the initial values, or the conditional L-function. Complement C7.7
presents a derivation of the exact L-function for ARMA models, in which case the initial
values are treated in an appropriate way. The exact likelihood is more complicated to
evaluate than the conditional version introduced here. However, when the number of
data points is large the difference between the conditional and the exact L-functions is
small and hence the corresponding estimates are very similar. This is illustrated in the
following example.

Example 7.5 The exact likelihood function for a first-order autoregressive process
Consider the first-order autoregressive model

(&) + ay(t — 1) = e(?) la] <1 (7.41)

where e(f) is Gaussian white noise of zero mean and variance A\*. Set 6 = (a )T and
evaluate the likelihood function in the following way. Using Bayes’ rule,

p(y(D), ..., y(N)) = p(y(N), ..., y2)y(1)p(y(1))
= p(y(N), ..., y3)y2), y1)p(y2)ly(1)p(y(1))

= [H pOy®)|ytk = 1), ..., y(l))]p(y(l))
k=2

For k = 2,
POyt = 1), ..., y(1)) = p(e(k))
_ 1 1 )
= \/(251:))\' eXp[ 2)\'2 ()’(k) + ay(k 1))2]
and
_ 1 1
p(y(1)) = Vo exp[ zozyz(l)]

where 0% = Ey*(f) = M/(1 — a?).
Hence the exact likelihood function is given by

L(8) = p(y(1) ... y(N)|6)

{ﬁ L exp| - 5m00)
V (2m)\ 2k

k=2

Il
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+ay(k - 1))2}} v én)oexp[—g};ﬁ(l)]

The log-likelihood function becomes

log L.(8) = 3 {
% 2 " Voo

1 1
+ log{ Ve exp[— ﬁyz(l)]}

__N 1 & 2
= -5 log 2m — (N — 1) log)»—z}h2 Zz {y(k) + ay(k — 1)}

x| =000 + wtk - 7| |

1 A2 1-a°
- 5 IOg 1 — a2 - 2}\‘2 y2(1)

For comparison, consider the conditional likelihood function. For the model (7.41),

e(t) = y() + ay(t — 1)
The first prediction error, g(1), is not defined unless y(0) is specified: so set it here to

e(1) = y(1), which corresponds to the assumption y(0) = 0. The conditional log-
likelihood function, denoted by log L(8), is given by

__N 1 2 1 5
log L(6) = —7 log 2m ~ Nlog A — 55 kgz {y(k) + ay(k = D}* = 55 y*(1)
(cf. (7.40)). Note that log L.(0) and log L(8) both are of order N for large N. How-
ever, the difference log L,(8) — log L(8) is only of order O(1) as N tends to infinity.
Hence the exact and the conditional estimates are very close for a large amount of data.
With some further calculations it can in fact be shown that

A ~ 1
9exact = econd + O(N)

In this case the conditional estimate écond will be the LS estimate (7.4) and is hence easy
to compute. The estimate Oy, can be found as the solution to a third-order equation,
see, e.g., Anderson (1971). ]

Returning to the general case, assume that all the elements of A are to be estimated and
that g(¢, ) and A(0) have no common parameters. For notational convenience we will
assume that the unknown parameters in A are in addition to those in 6 and will therefore
drop the argument 6 in A(0).

For simplicity consider first the scalar case (ny = 1, which implies that (¢, 6) and A are
scalars). The ML estimates 6, A are obtained as the maximizing elements of L6, A).
First maximize with respect to A the expression

C1N1 &

log L(6, A) = —+ 5 %

e(t, 0) — glog A + constant
=1
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= —g [Ry(8)/A + log A] + constant (7.42)

Straightforward differentiation gives

2og LO.N) _ N (_Ru®) , 1)

A 2 A?
9> log L(B, A) _ (_ 2RN(0) | 1 )
ON? 2 A3 A?

There is only one stationary point, namely
A = Rn(6)

Furthermore, the second-order derivative is negative at this point. Hence it is a maxi-
mum. The estimate of A is thus found to be

A = Ry(6) (7.43)
where 0 is to be replaced by its optimal value, which is yet to be determined. Inserting
(7.43) into (7.42) gives

A N
log L(B, A) = -5 log Rn(B8) + constant

s0 6 is obtained by mlmmlzmg Rn(0). The minimum point will be the estimate 6 and the
minimal value Ry(0) will become the estimate A. So the prediction error estimate can be
interpreted as the maximum likelihood estimate provided the disturbances are Gaussian
distributed.

Next consider the multivariable case (dim y(¢f) = ny = 1). A similar result as above for
scalar systems holds, but the calculations are a little bit more complicated. In this case

log L(6, A) = —g[tr Rn(O)A™! + log det A] + constant (7.44)
The statement that L(0, A) is maximized with respect to A for A = Rx(0) is equivalent
to

tr RA™' + log det A = tr I + log det R <

tr RA™! + log[det A/det R] = ny < (7.45)

tr RA™! — log det RA™! = ny

Next write R as R = GG" and set Y = G'A™'G. The matrix Y is symmetric and posi-
tive definite, with eigenvalues A; ... A,,. These clearly satisfy A, > 0. Now (7.45) is
equivalent to

tr GGTA™! — log det GGTA™' = ny -
tr GTA™'G — log det GTA™!G = ny =
trY —logdetY = ny <
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ny ny
>Sh—log[[h=ny =
i=1 i=1

ny
i=1

Since for any positive A, log A < A — 1, the above inequality is obviously true.
Hence the likelihood function is maximized with respect to A for

A = Rpn(0) (7.46)

where 6 is to be replaced by its value 6 which maximizes (7.44). It can be seen from
(7.44) that 6 is determined as the minimizing element of

V(8) = det Ry(0) (7.47)

This means that here one uses the function h,(Q) of Example 7.1.

The above analysis has demonstrated an interesting relation between the PEM and the
ML method. If it is assumed that the disturbances in the model are Gaussian distributed,
then the ML method becomes a prediction error method corresponding to the loss
function (7.47). In fact, for this reason, prediction error methods have often been known
as ML methods.

7.5 Theoretical analysis

An analysis is given here of the estimates described in the foregoing sections. In
particular, the limiting properties of the estimated parameters as the number of data
points tends to infinity will be examined. In the following, 6y denotes the parameter
estimate based on N data points. Thus 6 is a minimum point of Vn(6).

Basic assumptions

Al. The data {u(f), y(f)} are stationary processes.

A2. The input is persistently exciting.

A3. The Hessian V(8) is nonsingular at least locally around the minimum points
of Vn(0).

A4. The filters G(g~!; 8) and H(g™'; 8) are smooth (differentiable) functions of the
parameter vector 0.

Assumption A3 is weak. For models that are not overparametrized, it is a consequence
of A1, A2, A4. Note that A3 is further examined in Example 11.6 for ARMAX models.
The other assumptions Al, A2 and A4 are also fairly weak.
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For part of the analysis the following additional assumption will be needed:
A35. The set D(/, #) introduced in (6.44) consists of precisely one point.

Note that we do not assume that the system operates in open loop. In fact, as will be seen
in Chapter 10, one can often apply prediction error methods with success even if the data
are collected from a closed loop experiment.

Asymptotic estimates
When N tends to infinity, the sample covariances converge to the corresponding expected

values according to the ergodicity theory for stationary signals (see Lemma B.2; and
Hannan, 1970). Then since the function A(-) is assumed to be continuous, it follows that

Va(0) = h(Rn(0)) — h(R.(0)) & V.(0), as N — (7.48)
where
R.. = Ee(t, 0)e'(¢, 0) (7.49)

It is in fact possible to show that the convergence in (7.48) is uniform on compact (i.e.
closed and bounded) sets in the 6-space (see Ljung, 1978).

If the convergence in (7.48) is uniform, it follows that 6, converges to a minimium
point of V(0) (cf. Problem 7.15). Denote such a minimum by 6*. This is an important
result. Note, in particular, that Assumption AS has not been used so far, so the stated
result does not require the model structure to be large enough to cover the true system.

If the set D(/, #) is empty then an approximate prediction model is obtained. The
approximation is in fact most reasonable. The parameter vector 8* is by definition such
that the prediction error (¢, 6) has as small a variance as possible. Examples were given
in Chapter 2 (see Examples 2.3, 2.4) of how such an approximation will depend on the
experimental condition. It is shown in Complement C7.1 that in the multivariable case 6*
will also depend on the chosen criterion.

Consistency analysis
Next assume that the set D(#, .#) is nonempty. Let 6, be an arbitrary element of
Dy(#, ). This means that the true system satisfies

y(®) = G(g™"; Bo)u(r) + H(g™"; Bo)e(t)  Ee(n)e' (1) = A(Bo) (7.50)

where e(f) is white noise. If the set D(#,.#) has only one point (Assumption AS) then
we can call 8 the true parameter vector. Next analyze the ‘minimum’ points of R..(0). It
follows from (7.29), (7.50) that

e(t, 0) = H '(g7"; 0)[G(q™"; Bo)u(t) + H(qg™"; Bo)e(t) — G(q™"; O)u(r)]
H™ g™ " 0)[G(g™"; 80) — G(g™"; 0)]u(d) (7.51)
+ H™'(q™"; 0)H(q™"; 8o)e(r)

I

il
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Since G(0, 8) = 0, H(0, 8) = H~'(0, 6) = I for all 8,

e(t, 0) = e(f) + a term independent of e(r)
Thus

R..(0) = Ee(t, 0)e™(t, 8) = Ee(t)e™(t) = A(By) (7.52)

This is independent of the way the input is generated. It is only necessary to assume that
any possible feedback from y(-) to u(-) is causal. Since (7.52) gives a lower bound that is
attained for 6 = 6, it follows that 6* = 0, is a possible limiting estimate. Note that
the calculations above have shown that 6, ‘minimizes’ R..(0), but they did not establish
that no other minimizers of R, exist. In the following it is proved that for systems
operating in open loop, all the minimizers of R, are the points 6, of Dr. The case of
closed loop systems is more complicated (in such a case there may also be ‘false’
minimizers not belonging to D7), and is studied in Chapter 10.

Assume that the system operates in open loop so that u(f) and e(s) are independent for
all ¢ and s. Then R..(8) = A(8y) implies (cf. (7.51)):

H7'(g™"; 0)[G(g™"5 80) — G(g™"5 O)]u(r) = 0
H™'(q7"'; 0)H(q™"; 80) = 1
The second relation gives
H(g™'; 8) = H(g™"; 8)

Using Assumption A2 and Property 5 of persistently exciting signals (see Section 5.4)
one can conclude from the first identity that

G(g™'; 8) = G(g™'; 89)

Thus we have 0 € Dy(f, ).

The above result shows that under weak conditions the PEM estimate éN is consistent.
Note that under the general assumptions A1—A4 the system is system identifiable (see
Section 6.4). If AS is also satisfied, the system is parameter identifiable. This is essentially
the same as saying that 6, is consistent.

Approximation
There is an important instance of approximation that should be pointed out. ‘Approxi-

mation’ here means that the model structure is not rich enough to include the true
system. Assume that the system is given by

y() = Gy(qg~u() + Hy(g™"e(?) (7.53)
and that the model structure is
y(0) = G(g™"; 0)u(t) + H(g™'; 82)e(r)  Ee()e'(r) = A(63) (7.54)

Here the parameter vector has been split into three parts, 8, 6, and 05. It is crucial for
what follows that G and H in (7.54) have different parameters. Further assume that there
is a parameter vector 0,y such that
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Gi(q™") = G(g™"; 610) (7.55)

Let the input u(?) and the disturbance e(s) in (7.53) be independent for all ¢ and s. This is
a reasonable assumption if the system operates in open loop. Then the two terms of
(7.51) are uncorrelated. Hence

R..(0) = Ee(t, 0)e(t, 0)

= E[H(q7"; 020 Hy(q De(][H (a5 02)Hy(g™ He(®)]"

Equality holds in (7.56) if 8; = 6,9. This means that the limiting estimate 6* is such that
07 = 0,0. In other words, asymptotically a perfect description of the transfer function
G,(q") is obtained even though the noise filter H may not be adequately parametrized.
Recall that G and H have different parameters and that the system operates in open
loop. Output error models are special cases where these assumptions are applicable,
since H(qg™'; 6,) = I.

(7.56)

Asymptotic distribution of the parameter estimates

Following this discussion of the limit of éN, this subsection examines the limiting dis-
tribution. The estimate 6, will be shown to be asymptotically Gaussian distributed.

The estimate 6 is a minimum point of the loss function V(8). In the following it will
be assumed that the set D7(/, #) has exactly one point, i.e. there exists a unique true
vector 0, (Assumption AS). A Taylor series expansion of V(6y)" around 6, retaining
only the first two terms gives

0 = Vi(Bn)T = Vi(Bo)T + Vi(8o)(Bn — 80)

) (1.57)
~ Vi(8o)T + V%(80)(By — 8p)

The second approximation follows since V7(6¢) — V' (6) with probability 1 as N — .
Here V' denotes the gradient of V, and V" the Hessian. The approximation in (7.57) has
an error that tends to zero faster than || By — 69 | . Since O converges to 6y as N tends
to infinity, for large N the dominating term in the estimation error n — B, can be written
as

VN@Oy — 80) = — [Va(80)] [ VNV(80)"] ' (7.58)

The matrix V7,(6) is deterministic. It is nonsingular under very general conditions when
D(#, M) consists of one single point 6,. However, the vector V' NVj(6,)" is a random
variable. It will be shown in the following, using Lemma B.3, that it is asymptotically
Gaussian distributed with zero mean and a covariance matrix denoted by P,. Then
Lemma B.4 and (7.58) give

dist

VN(by — 6,) —> (0, P) (7.59)

with
P = [VL(80)]*Pol V2 (80)] " (7.60)
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The matrices in (7.60) must be evaluated. First consider scalar systems (dim y(f) = 1).
For this case

_ 1 ad 2 _ 2
Vn(8) = N ’:El e=(¢, 0) V.(0) = Ee(t, 0) (7.61)
Introduce the notation

Y, 0) = — (QE%—B—)) (7.62)

which is an (n6|1) vector. By straightforward differentiation

N

Va(B) = —2 S e, )", 6)

=1

5 N ‘ 5 N 5 (7.63)
VR(0) = & > W, 00w (t, 8) + > €(t, 8) 73 £(t, 6)
=1 =1

For the model structures considered the first- and second-order derivatives of the
prediction error, i.e. (¢, 0) and d%¢(t, )/06%, will depend on the data up to time ¢ — 1.
They will therefore be independent of e(f) = (¢, 6y). Thus

WO = % S e, 6) (7.640)

Vi (80) = 2E9(t, 8% (2, 69) (7.64b)

Since e(f) and y(z, 6,) are uncorrelated, the result (7.59) follows from Lemmas B.3, B.4.
The matrix P, can be found from

Py = lim ENV;V(Go)Tva(eo)

2 Ee(tyy(t, Bo)e(s)yp " (s, 6o)

ZIA
an

N——>

To evaluate this limit, note that e(¢) is white noise. Hence e(¢) is independent of e(s) for
all s # ¢t and also independent of (s, 6;) for s < ¢. Therefore
N -1

v 2 X Be(OEW(E, Bo)e(s)y(s, Bo)

t=1 s=1

lim

N— oo

I

Py

+

N
Mz =

N
2 Ee(t)y(t, 00)y* (s, 60)Ee(s)

=t+1

2z~

N
1l
-

Ee(0)y(t, 8o)e(s)y' (s, 90)} (7.65)

2|4>
uMz

z(t)E‘P(t’ eO)wT(tv 60)

é

ZI4>

4AEw(t, eo)w% 6o)



Section 7.5 Theoretical analysis 207

Finally, from (7.60), (7.64b), (7.65) the following expression for the asymptotic
normalized covariance matrix is obtained:

P = A[Ey(t, 00)y™(, 0)] " (7.66)

Note that a reasonable estimate of P can be found as
A ~ 1 N ~ A _1
P = AI:N 2:1 w(t’ eN)wT(ta eN):I (767)

This means that the accuracy of B can be estimated from the data.
The result (7.66) is now illustrated by means of two simple examples before discussing
how it can be extended to multivariable systems.

Example 7.6 Accuracy for a linear regression
Assume that the model structure is

A(g~"y(1) = B(g Hu(®) + (1)
which can be written in the form
y(®) = ¢'(0)8 + e(r)
(cf. (6.12), (6.13), (7.1)). Since &(t, 0) = y(t) — @ (¢)0, it follows that

T
v, 0) = - (ZLD) — g

Thus from (7.66)

P = A[Ep()e" ()] (7.68)

It is interesting to compare (7.68) with the corresponding result for the static case (see
Lemma 4.2). For the static case, with the present notation, for a finite data length:

(a) B is unbiased
(b) VN(8 — 6,) is Gaussian distributed 410, P) where
1 N - -1
P=A <N ,—21 () (t)> (7.69)
In the dynamic case these results do not hold exactly for a finite N. Instead the following
asymptotic results hold:

(a) B is consistent
(b) VN(6 — 8,) is asymptotically Gaussian distributed A0, P) where

P = A[Ee()e" (] w
Example 7.7 Accuracy for a first-order ARMA process
Let the model structure be

y@O +ayt — 1) =e(t) +cet — 1) E()=A 0=(a c)F (7.70)
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Then
1+ aq

(t, 0) = T ea 1Y)
——1

—(t 0) =17 Cq_ly()

B, 0) = ~ g () = -~ €. )
Thus

P A ( Eyf(t — 1)? —Eyf(t — Def(r - 1))'1

—Eyf(t — Def(t — 1) Eef(t — 1)? 0=6,

where

F 1 F 1

VO = T ® &0 = e ©)

Since (7.70) is assumed to give a true description of the system,

YO = gt e 0 = T e

It is therefore found after some straightforward calculations that

_ Al = a) A1 = ac)\!
P= A(—A/(l —ac) A1 - A )

2 2 2 2 (7.71)
1 < (1 - a*( — ac) (1—a)(1—ac)(1—c))

TP\ -1 —a)1-A) (1 -acPd - A

The matrix P is independent of the noise variance A. Note from (7.71) that the
covariance elements all increase without bound when c approaches a. Observe that when
¢ = a, i.e. when the true system is a white noise process, the model (7.70) is over-
parametrized. In such a situation one cannot expect convergence of the estimate By to a
certain point. For that case the asymptotic loss function V. (0) will not have a unique
minimum since all 0 satisfying @ = ¢ will minimize V. (0). |

So far the scalar case (ny = 1) has been discussed in some detail. For the multivariable
case (ny = 1) the calculations are a bit more involved. In Appendix A7.1 it is shown that

= [Ev()HY ()] [Ev(O) HAHY () Ep(O)HY" (1)] ! (7.72)

Here y(¢) denotes

Y = - (%)T (7.73)

0=0,
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(cf. (7.62)). Now (¢) is a matrix of dimension (n6|ny). Further, in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>