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Abstract
We present efmaral, a new system for efficient and accurate word alignment using a Bayesian

model with Markov Chain Monte Carlo (MCMC) inference. Through careful selection of data
structures and model architecture we are able to surpass the fast_align system, commonly
used for performance-critical word alignment, both in computational efficiency and alignment
accuracy. Our evaluation shows that a phrase-based statistical machine translation (SMT) sys-
tem produces translations of higher quality when using word alignments from efmaral than
from fast_align, and that translation quality is on par with what is obtained using giza++, a
tool requiring orders of magnitude more processing time. More generally we hope to convince
the reader that Monte Carlo sampling, rather than being viewed as a slow method of last resort,
should actually be the method of choice for the SMT practitioner and others interested in word
alignment.

1. Introduction

Word alignment is an essential step in several applications, perhaps most promi-
nently phrase-based statistical machine translation (Koehn et al., 2003) and annota-
tion transfer (e.g. Yarowsky et al., 2001). The problem is this: given a pair of transla-
tionally equivalent sentences, identify which word(s) in one language corresponds to
which word(s) in the other language. A number of off-the-shelf tools exist to solve this
problem, but they tend to be slow, inaccurate, or both. We introduce efmaral, a new
open-source tool1 for word alignment based on partially collapsed Gibbs sampling in
a Bayesian model.

1The source code and documentation can be found at https://github.com/robertostling/efmaral
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2. Background

In order to understand the present work, we first need to formalize the problem
and introduce the family of models used (Section 2.1), describe their Bayesian exten-
sion (Section 2.2), the Markov Chain Monte Carlo algorithm used for inference (Sec-
tion 2.3) and its particular application to our problem (Section 2.4).

2.1. The IBM models

The IBM models (Brown et al., 1993) are asymmetric generative models that de-
scribe how a source language sentence generates a target language sentence though a set
of latent alignment variables. Since the task at hand is to align the words in the source
and target language sentences, the words in both sentences are given, and we are left
with inferring the values of the alignment variables.

Formally, we denote the k:th sentence pair ⟨s(k), t(k)⟩with the source sentence s(k)

containing words s(k)i (for each word index i ∈ 1 . . . I(k)) and the target sentence t(k)

containing words t(k)j (for j ∈ 1 . . . J(k)).
Each sentence pair ⟨s(k), t(k)⟩ is associated with an alignment variable a(k), where

a
(k)
j = i indicates that target word t(k)j was generated by source word s(k)i . This

implies an n-to-1 mapping between source and target words, since each target word
is aligned to exactly one source word, while each source word can be aligned to zero
or more target words.

Sentences are assumed to be generated independently, so the probability of gen-
erating a set of parallel sentences ⟨s, t⟩ is

P
(
t|s,a

)
=

K∏
k=1

P
(
t(k)|s(k),a(k)

)
(1)

For simplicity of notation, we will drop the sentence index (k) in the following dis-
cussion and let ⟨s, t⟩ instead denote a single sentence pair, without loss of generality
due to the independence assumption between sentences.

A source word type e is associated with a lexical distribution, modeled by a categor-
ical distribution with parameter vector θe. In the simplest of the IBM models (model
1), the probability of generating a target sentence t is defined as the probability of
independently generating each of the J target words independently from the lexical
distributions of their respective aligned source words.

P
(
t|s,a

)
∝

J∏
j=1

θsaj
,tj (2)

IBM model 1 assumes a uniform distribution for P
(
a
)
, which effectively means

that the word order of the sentences are considered irrelevant. This is clearly not true
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in real translated sentences, and in fact aj and aj+1 tend to be strongly correlated.
Most research on word alignment has assumed some version of a word order model
to capture this dependency. Perhaps the simplest version is used in IBM model 2
and the fast_align model (Dyer et al., 2013), which are based on the observation that
j/J ≈ aj/I, in other words that sentences tend to have the same order of words in
both languages. This is however a very rough approximation, and Vogel et al. (1996)
instead proposed to directly model P

(
aj+1 − aj = x|I

)
, which describes the length

x of the “jump” in the source sentence when moving one word forward in the target
sentence, conditioned on the source sentence length I.

Although the IBM models allow n-to-1 alignments, not all values of n are equally
likely. In general, high values of n are unlikely, and a large proportion of transla-
tions are in fact 1-to-1. The value of n depends both on the particular languages in-
volved (a highly synthetic language like Finnish translated into English would yield
higher values than a French to English translation) and on the specific word type. For
instance, the German Katze ‘cat’ would typically be translated into a single English
word, whereas Unabhängigkeitserklärung would normally be translated into two (inde-
pendence declaration) or three words (declaration of independence). This can be modeled
by defining the fertility ϕ(i) =

∑J
j=1 δaj=i of a source token si, and introducing a

distribution for P (ϕ(i) = n|si = e) for each source word type e.
A large number of models based on the same general assumptions have been ex-

plored (Brown et al., 1993; Toutanova et al., 2002; Och and Ney, 2003), and the inter-
ested reader may want to consult Tiedemann (2011) for a more thorough review than
we are able to provide in this work.

2.2. Bayesian IBM models

The IBM models make no a priori assumptions about the categorical distributions
that define the model, and most authors have used maximum-likelihood estimation
through the Expectation-Maximization algorithm (Dempster et al., 1977) or some ap-
proximation to it. However, when translating natural languages the lexical distribu-
tions should be very sparse, reflecting the fact that a given source word tends to have a
rather small number of target words as allowable translations, while the vast majority
of target words are unimaginable as translations.

These constraints have recently been modeled with sparse and symmetric Dirichlet
priors (Mermer and Saraçlar, 2011; Mermer et al., 2013; Riley and Gildea, 2012) which,
beyond capturing the range of lexical distributions we consider likely, also turn out to
be mathematically very convenient as the Dirichlet distribution is a conjugate prior to
the categorical distribution. The d-dimensional Dirichlet distribution is defined over
the space of d-dimensional categorical distributions, and is parameterized by the d-
dimensional vector α > 0. If X ∼ Dir

(
α
)
, the probability density function of X is
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given by

P
(
X = x

)
=
1

Z

d∏
i=1

xαi−1
i (3)

where the normalization constant Z is given by the multinomial beta function

B
(
α
)
=

∏d
i=1 Γ

(
αi

)
Γ
(∑d

i=1 αi

) (4)

A symmetric Dirichlet distribution has αi = αj for all i, j, with the interpretation in
our case that no particular translation is preferred a priori for any source word type,
as this has to be estimated from the data. By also setting α≪ 1we favor sparse lexical
distributions where most probabilities are close to zero.

While it is possible to treat α as a latent variable to be inferred, good results can
be obtained by using a fixed value roughly in the range of 10−6 to 10−2 (Riley and
Gildea, 2012). Another direction of research has explored hierarchical distributions
such as the Pitman-Yor process (Pitman and Yor, 1997) instead of the Dirichlet distri-
bution for the translation distribution priors (Gal and Blunsom, 2013; Östling, 2015).
Such distributions offer even greater flexibility in specifying prior constraints on the
categorical distributions, but at the cost of less efficient inference. Since the gain in
accuracy has turned out to be limited and computational efficiency is an important
concern to us, we will not further consider hierarchical priors in this work.

2.3. Markov Chain Monte Carlo

Several different methods have been used for inference in IBM alignment mod-
els. Starting with Brown et al. (1993), maximum-likelihood estimation through the
Expectation-Maximization (EM) algorithm has been a popular choice. This method
is generally efficient for simple models without word order or fertility distributions,
but computing the expectations becomes intractable for more complex models such
as IBM model 4 so approximative hill-climbing methods are used instead.

Another disadvantage of using plain EM inference with the IBM models is that
it is unable to incorporate priors on the model parameters, and as was pointed out
in the previous section this deprives us of a powerful tool to steer the model towards
more realistic solutions. Riley and Gildea (2012) presented a method to extend the EM
algorithm to IBM models with Dirichlet priors, through Variational Bayes inference.
Unfortunately, their method inherits the complexity issues of earlier EM approaches.

The inference approach chosen by most authors working on Bayesian IBM models
(Mermer and Saraçlar, 2011; Gal and Blunsom, 2013; Östling, 2015) is Gibbs sampling
(Gelfand and Smith, 1991), a special case of the Markov Chain Monte Carlo (MCMC)
method which we will briefly summarize here.
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Given a probability functionpM(x) of some modelM on parameter vector x, MCMC
provides us with the means to draw samples from pM. This is done by construct-
ing a Markov chain with values of x as states, such that its stationary distribution
is identical to pM. In practice, this means deriving expressions for the transition
probabilities P

(
x ′|x

)
of going from state x to state x ′. Since the number of states is

enormous or infinite in typical applications, it is essential that there is some way of
sampling efficiently from P

(
x ′|x

)
. With Gibbs sampling, this is done by sampling

one variable from the parameter vector x at a time, conditioned on all other variables:
P
(
xi|x1, x2, . . . , xi−1, xi+1, . . . , xm

)
which we will write as P

(
xi|x

(−i)
)

to indicate con-
ditioning on all elements of x except at index i. All positions i are then sampled in
some arbitrary but fixed order. By choosing suitable distributions for the model, the
goal in designing a Gibbs sampler is to make sure that this distribution is easy to
sample from.

2.4. Gibbs sampling for Bayesian IBM models

The Bayesian version of IBM model 1 defines the following probability over the
parameter vector, which consists of the alignment vectora and the lexical distribution
vectors θe for each e in the source target vocabulary:

P
(
a,θ

)
= P

(
s, t,a,θ,α

)
∝

 K∏
k=1

J(k)∏
j=1

θ
s
(k)

a
(k)
j

,t
(k)
j

 ·

(
E∏

e=1

F∏
f=1

θαf−1
e,f

)
(5)

since s, t and α are constant.
A straightforward Gibbs sampler can be derived by observing that

P
(
xi|x

(−i)
)
=

P
(
x
)

P
(
x(−i)

) =
P
(
x(−i), xi

)
P
(
x(−i)

)
which means that

P
(
aj = i|a

(−j),θ
)
=
P
(
a(−j), aj = i,θ

)
P
(
a(−j),θ

) ∝ θsaj
,tj (6)

and

P
(
θe = x|a,θ(−e)

)
=
P
(
θ(−e),θe = x|a

)
P
(
θ(−e)|a

) =

∏F
f=1 x

αf+ce,f−1
f

B
(
αe + ce

) (7)

where ce,f is the number of times that word e is aligned to word f given a, s and t.
Equation (7) is a consequence of the fact that the Dirichlet distribution is a conjugate
prior to the categorical distribution, so that if

x ∼ Dir
(
α
)

z ∼ Cat
(
x
)
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then given a sequence z of |z| samples from Cat
(
x
)

we have

x|z ∼ Dir
(
α+ c(z)

)
(8)

where

c(z)m =

|z|∑
i=1

δzi=m

is the number of samples in z that are equal tom. This can be easily shown from the
definition of the Dirichlet distribution using Bayes’ theorem:

P
(
x|α, z

)
∝ P

(
z|α, x

)
P
(
α, x

)
(9)

∝
d∏

i=1

xαi−1

|z|∏
i=1

xzi
(10)

=

d∏
i=1

xαi−1
∏
m

xc(z)m (11)

=

d∏
i=1

xαi+c(z)−1 (12)

which is the (unnormalized) Dirichlet distribution with parameter α+ c(z).
Equation (6) and Equation (7) can be used for sampling with standard algorithms

for categorical and Dirichlet distributions, respectively, and together they define an
explicit Gibbs sampler for the Bayesian IBM model 1. While simple, this sampler suf-
fers from poor mixing (Östling, 2015, section 3.3) and is not a competitive algorithm
for word alignment. However, much better performance can be achieved by using a
collapsed sampler where the parameters θe are integrated out so that we only have to
derive a sampling equation for the alignment variables P

(
aj = i|a

(−j)
)
.

First we use Equation (5) to derive an expression for P
(
a|s, t,α

)
, from which the

final sampler can be computed as

P
(
aj = i|a

(−j), s, t,α
)
=
P
(
a(−j), aj = i|s, t,α

)
P
(
a(−j)|s, t,α

) (13)

Since the elements of a are exchangeable, a sufficient statistic for a is the count vector
c(·) where each element

c(a,e, f)e,f =

K∑
k=1

J(k)∑
j=1

δ
s
(k)

a
(k)
j

=e∧t
(k)
j

=f
(14)
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represents the number of times that source word type e is aligned to target word type
f under the alignment a. Next, we marginalize over each of the lexical distributions
θe.

P
(
a|s, t,α

)
=

E∏
e=1

∫
∆

P
(
a{j|saj

=e}|θe, s, t,α
)
P
(
θe|s, t,α

)
dθe (15)

Substituting from Equation (5) into the integral we have

P
(
a|s, t,α

)
=

1

B
(
α
) E∏

e=1

∫
∆

F∏
f=1

θ
c(a,s,t)e,f+αf−1

e,f dθe (16)

where the innermost product can be recognized as an unnormalized Dir
(
α+c(a, s, t)

)
distribution which has normalization factor B

(
α+c(a, s, t)

)
, so that the final expres-

sion becomes

P
(
a|s, t,α

)
=

E∏
e=1

B
(
α+ c(a, s, t)

)
B
(
α
) (17)

=

E∏
e=1

Γ
(∑F

f=1 αf

)∏
f Γ
(
αf + c(a, s, t)e,f

)
Γ
(∑F

f=1(αf + c(a, s, t)e,f)
)∏

f Γ
(
αf

) (18)

Combining Equation (13) with Equation (18) gives us an expression where almost all
of the terms are cancelled out, except when si = e and tj = f for which c(a, s, t)e,f
and c(a(−j), s, t)e,f differ by 1. We are left with a remarkably simple sampling distri-
bution:

P
(
aj = i|a

(−j), s, t,α
)
=

αtj + c(a
(−j), s, t)si,tj∑F

f=1

(
αf + c(a(−j), s, t)si,f

) (19)

By repeatedly sampling each aj in turn from Equation (19) we are guaranteed to,
in the limit, obtain an unbiased sample from P

(
a
)

under the model. What we are
really interested in, however, is to estimate the marginal distributions P

(
aj = i

)
as

closely as possible while using as little computation as possible, given a sequence of
correlated samples a(t) for time t ∈ 1 . . . T . Given a sequence of samples a(t) we can
then approximate the marginal distributions

P
(
aj = i

)
= E

P(a)
[δaj=i] =

∞∑
t=1

δ
a

(t)
j

=i
≈ 1

T

T∑
t=1

δ
a

(t)
j

=i
(20)

In practice a(0) will be initialized either from a uniform distribution or by using the
output of a simpler model, and the samples will gradually become more independent
ofa(0) as t increases. Sincea(0) is likely to lie in a low-probability region of the model,
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so do the initial samples, and it is common to use a burn-in period and disregard all
a(t) for t < t0. To further ameliorate the problem of initialization bias, it is possible to
run several independently initialized samplers and average their results. Combining
these methods the marginal distribution approximation becomes

P
(
aj = i

)
≈ 1

N(T − t0 + 1)

N∑
n=1

T∑
t=t0

δ
a

(n,t)
j

=i
(21)

where N is the number of independent samplers and t0 is the length of the burn-
in period. Finally, a better estimate can be obtained by applying the Rao-Blackwell
theorem (Blackwell, 1947; Gelfand and Smith, 1991), which allows us to re-use the
computations of P

(
aj = i|a(−j)

)
during sampling and averaging these distributions

rather than δ
a

(t)
j

=i
. The final approximation then becomes

P
(
aj = i

)
≈ 1

N(T − t0 + 1)

N∑
n=1

T∑
t=t0

P
(
a
(n,t)
j = i|a(n,t)(−j)

)
(22)

3. Methods

We now turn to the particular models and algorithms implemented in efmaral,
presenting our Bayesian HMM model with fertility, the Gibbs sampler used as well
as the details on how to make it computationally efficient.

3.1. Alignment model

Our goal in this work is to find a word alignment algorithm that is both accurate
and efficient. Previous studies have shown that good word order and fertility models
are essential to high accuracy (Brown et al., 1993; Och and Ney, 2003), along with rea-
sonable priors on the parameters (Mermer and Saraçlar, 2011; Östling, 2015). As was
discussed in Section 2.3, MCMC algorithms and in particular collapsed Gibbs sam-
pling are particularly suitable for inference in this class of models, as long as the con-
vergence of the Markov chain are sufficiently fast. Even within this class of algorithms
there are some trade-offs between accuracy and computational efficiency. In partic-
ular, hierarchical priors have been shown to somewhat improve accuracy (Östling,
2015, p. 65), but in spite of improved sampling algorithms (Blunsom et al., 2009) it
is still considerably more costly to sample from models with hierarchical priors than
with Dirichlet priors.

For these reasons, we use a HMM model for word order based on Vogel et al. (1996)
as well as a simple fertility model, and the complete probability of an alignment is
essentially the same as Equation (5) with extra factors added for the word order and
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fertility model:

P
(
s, t,a,θ,ψ,π,α,β,γ

)
∝

 K∏
k=1

J(k)∏
j=1

θ
s
(k)

a
(k)
j

,t
(k)
j

 ·

(
E∏

e=1

F∏
f=1

θαf−1
e,f

)

·

 K∏
k=1

J(k)+1∏
j=1

ψ
a

(k)
j

−a
(k)
j−1

 ·

(
mmax∏

m=mmin

ψβm−1
m

)

·

 K∏
k=1

I(k)∏
i=1

π
s
(k)
i

,ϕ(i,a(k))

 ·

(
E∏

e=1

nmax∏
n=0

πγn−1
e,n

)
(23)

where ψ ∼ Dir
(
β
)

are the categorical distribution parameters for the word order
model P

(
aj−aj−1 = m

)
, and πe ∼ Dir

(
γ
)

for the fertility model P
(
ϕ(i,a)|si = e

)
. In

our experiments we fix α = 0.001, ψ = 0.5 and γ = 1, but these parameters are not
very critical as long as 0 < α≪ 1.

The IBM models naturally allow unaligned source language words, but in order to
also allow target words to not be aligned we use the extension of Och and Ney (2003)
to the HMM alignment model, where each source word si (from sentence s of length
I) is assumed to have a special null word si+I. The null word generates lexical items
from the distribution θnull, and the word order model is modified so that

P(aj = i+ I|aj−1 = i ′) = pnullδi=i ′ (24)
P(aj = i+ I|aj−1 = i ′ + I) = pnullδi=i ′ (25)

P(aj = i|aj−1 = i ′ + I) = ψi−i ′ (26)

where pnull is the prior probability of a null word alignment (fixed to 0.2 in our ex-
periments).
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We collapse the sampler over θ and ψ in the same manner as was shown in Sec-
tion 2.4 and obtain the following approximate2 sampling distribution:

P
(
aj = i|a

(−j), s, t,α,β,γ
)
∝

αtj + c(a
(−j), s, t)si,tj∑F

f=1

(
αf + c(a(−j), s, t)si,f

)
·
βi−aj−1

+ c ′(a(−j))i−aj−1∑mmax
m=mmin

(
βm + c ′(a(−j))m

)
·
βaj+1−i

+ c ′(a(−j))aj−1−i∑mmax
m=mmin

(
βm + c ′(a(−j))m

)
·
πsi,ϕ(i,a(−j))+1

πsi,ϕ(i,a(−j))

(27)

While collapsing over the θ is essential for acceptable mixing in the Markov chain,
this is not the case for π. Instead, we alternate between sampling from Equation (27)
and

πe ∼ Dir
(
γ+ c ′′(a)e)

)
(28)

where c ′′(a)e is the count vector over the fertility distribution for source word e given
alignments a. The advantage of this is that the last product of Equation (27) can be
precomputed, saving computation in the inner loop in exchange for the (relatively
minor) expense of also sampling from Equation (28).

3.2. Computational efficiency

From Equation (27) it is clear that the computational complexity of sampling sen-
tence k is O

(
I(k)J(k)

)
, since every alignment variable a(k)j for each j ∈ 1 . . . J(k) needs

to evaluate the expression in 27 once for each i ∈ 1 . . . I(k), and each evaluation re-
quires constant time assuming that the sums are cached. Since sentence lengths are
approximately proportional across languages, I(k) ≈ λJ(k) for some constant λ, this
gives a total complexity of O

(∑
I2
)

per iteration of sampling a. Note that the com-
plexity does not change as we go from Equation (19) for the simple IBM model 1 to
Equation (27) for the more complex model with word order and fertility.

In contrast, the corresponding Expectation-Maximization (EM) algorithm for IBM
alignment models has O

(∑
I2
)

complexity in the E-step only for models with sim-
ple or no word order model. The HMM-based model of Vogel et al. (1996) can still
be implemented relatively efficiently using dynamic programming, but complexity
increases to O

(∑
I3
)
. For models with fertility computing the expectations instead

becomes intractable, and previous authors have solved this by using approximative

2The approximation consists of ignoring the dependence between the two draws from the word order
jump distribution (second and third factors).
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greedy optimization techniques (Brown et al., 1993) or local Gibbs sampling (Zhao
and Gildea, 2010). The main advantage of EM over a collapsed Gibbs sampler is
that the former is trivial to parallelize, which makes well-implemented parallel EM-
based implementations of simple alignment models with O

(∑
I2
)

complexity, such
as fast_align (Dyer et al., 2013), a strong baseline performance-wise.

Algorithm 1 Inner loop of our sampler for IBM model 1

function sample(a(k)(−j)
j )

▷ Initialize cumulative probability
s← 0

for all i ∈ 1 . . . I(k) do
▷ Load denominator reciprocal (small array random access)
D−1 ← dk,i
▷ Load numerator index (sequential access)
L← lk,i,j
▷ Load numerator (large array random access)
N← uL

▷ Compute unnormalized probability (one multiplication)
p̂← D−1U

▷ Accumulate probabilities (one addition)
s← s+ p̂
▷ Store cumulative probability (sequential access)
pi ← s

end for
▷ Sample from a uniform distribution on the unit interval
r ∼ Uniform(0, 1,)
r← r · pI
▷ Find the lowest i such that pi > r
i← 1

while pi ≤ r do
i← i+ 1

end while
a
(k)
j ← i

end function

If a collapsed Gibbs sampler is to be a viable option for performance-critical appli-
cations, we must pay attention to details. In particular, we propose utilizing the fixed
order of computations in order to avoid expensive lookups. Recall that variables a(k)j

are sampled in order, for k = 1 . . . K, j = 1 . . . J(k). Now, for each pair ⟨k, j⟩ we need
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to compute

αtj + c(a
(−j), s, t)si,tj∑F

f=1

(
αf + c(a(−j), s, t)si,f

)
which, if the numerator sum and the reciprocal of the denominator sum are cached
in memory, involves two table lookups and one multiplication. Since multiplication
is fast and the denominator reciprocal is stored in a relatively small dense array, most
attention has to be paid to the numerator lookup, which apart from the constant αtj

is a sparse matrix with non-zero counts c(a(−j), s, t)si,tj only where si and tj are
aligned. The standard solution would therefore be to use a hash table with ⟨si, tj⟩ as
keys to ensure memory efficiency and constant-time lookup. However, most counts
are in fact guaranteed to always be zero, as only words from the same parallel sentence
pair can be aligned. We are therefore able to construct a count vector u and an index
table l such thatulk,i,j

= c(a(−j), s, t)si,tj+αtj . At the expense of some extra memory
usage we are able to achieve the lookup with only two operations, one of which is a
cache-efficient sequential memory access. With this method, the inner loop of the
sampler for IBM model 1 thus contains only six operations, outlined in algorithm
1. Adding the HMM word order model, two more sequential memory loads and two
multiplications are needed, and adding the fertility model requires one more memory
load and a multiplication.

4. Related work

In this section we relate our work mainly to the literature on Bayesian models of
word alignment, as well as computationally efficient methods for this problem. A
comprehensive survey of word alignment methods is beyond the scope of this article,
for this we refer the reader to Tiedemann (2011).

Much of research into word alignment has been based on the pioneering work of
Brown et al. (1993), and we have already introduced part of their family of IBM align-
ment models in Section 2.1. Their most advanced models still perform competitively
after nearly two decades, but due to their complexity (with exact inference being in-
tractable) many have suggested simpler alternatives, typically by keeping the lexical
translation model intact and introducing computationally convenient word order and
fertility models so that inference with the Expectation-Maximization (EM) algorithm
remains tractable. Notable examples include the simple HMM-based model of Vogel
et al. (1996) and the even simpler reparametrized IBM model 2 of Dyer et al. (2013).
Neither of these include a model for word fertility, but Toutanova et al. (2002) showed
that a simplified fertility model (which only counts alignments from consecutive tar-
get words) can be added to the HMM model without increasing the complexity of
inference, and more recently this has also been achieved for a general fertility model
(Quirk, 2013).
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The EM algorithm requires computing the expected values of the alignments,
E [δaj=i], given the current values of the model parameters. The authors cited above
all dealt with this fact by analytically deriving expressions for exact computation of
these expectations in their models. Zhao and Gildea (2010) instead chose to use Gibbs
sampling to approximate these expectations, which allowed them to perform efficient
inference with EM for a HMM model with fertility. Riley and Gildea (2012) later
showed how Variational Bayesian techniques can be used to incorporate priors on the
parameters of the IBM models, with only minor modifications to the expressions for
the alignment expectations.

Recently, several authors have disposed with EM altogether, relying entirely on
Gibbs sampling for inference in IBM-based models with Bayesian priors of varying
complexity (Mermer and Saraçlar, 2011; Mermer et al., 2013; Gal and Blunsom, 2013;
Östling, 2015). Of these, Gal and Blunsom (2013) and to some extent Östling (2015)
prioritize maximizing alignment accuracy, which is obtained by using complex hier-
archical models. Mermer et al. (2013) use Dirichlet priors with IBM models 1 and 2
to obtain efficient samplers, which they implement in an approximate fashion (where
dependencies between variables are ignored during sampling) in order to facilitate
parallelization. This article follows previous work by the first author (Östling, 2015),
which however was focused on alignment of short parallel text for applications in lan-
guage typology and transfer learning, rather than efficient large-scale alignment for
use with statistical machine translation systems.

5. Results

In this section we first investigate the effect of different parameter settings in ef-
maral, then we proceed with a comparison to two other influential word alignment
systems with respect to the performance of statistical machine translation (SMT) sys-
tems using the alignments. Since computational efficiency is an important objective
with efmaral, we report runtime for all experiments.

The following three systems are used in our comparison:

giza++: The standard pipeline of IBM models with standard settings of 5 iterations
of IBM 1, 5 iterations of the HMM model, and 5 iterations of IBM model 3 and
4 with Viterbi alignments of the final model (Och and Ney, 2003). Class depen-
dencies in the final distortion model use automatically created word clusters
using the mkcls tool, 50 per language.

fast_align: An log-linear reparameterization of IBM model 2 using efficient infer-
ence procedures and parameter estimations (Dyer et al., 2013). We use the op-
tions that favor monotonic alignment points including the optimization proce-
dures that estimate how close they should be to the monotonic diagonal.

efmaral: Our implementation of the MCMC alignment approach proposed in this
article.
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Since these tools all use asymmetric models, we ran each aligner in both directions
and applied the grow-diag-final-and (Section 5.1) or grow-diag-final (Section 5.2)
symmetrization heuristic (Och and Ney, 2003, p. 33). This method assumes a set of
binary alignments, so for efmaral we produce these by choosing the single most prob-
able value for each aj: arg max

i
P(aj = i). In this way the results are more easily com-

parable to other systems, although some information is lost before the symmetrization
step and methods have been explored that avoid this (Matusov et al., 2004; Östling,
2015, pp. 46–47).

5.1. Alignment quality experiments

As discussed in Section 2.4, there are two ways of trading off computing time
for approximation accuracy: increasing the number of independent samplers, and
increasing the number of sampling iterations. Here we explore the effects of these
trade-offs on alignment accuracy.

Following Och and Ney (2003), most subsequent research has compared the results
of automatic word alignment to hand-annotated data consisting of two sets of links:
S, containing sure tuples ⟨i, j⟩ where the human judgment is that si and tj must be
aligned, and S ⊆ P, containing possible tuples ⟨i, j⟩ where si and tj may be linked.
Given a set A of alignments to be evaluated, they define the measures precision (p),
recall (r), and alignment error rate (AER) as follows:

p =
|A ∩ P|
|A|

(29)

r =
|A ∩ S|
|P|

(30)

AER = 1−
|A ∩ S|+ |A ∩ P|

|A|+ |S|
(31)

While popular, the AER measure is biased towards precision rather than recall and
correlates poorly with machine translation performance. Fraser and Marcu (2007)
instead suggest to use the F-measure, which favors a balance between precision and
recall as defined in Equation (29) and Equation (30):

Fα =

(
α

p
+
1− α

r

)−1

(32)

In our experiments, we report both AER and F0.5.
In order to evaluate alignment quality we are limited to language pairs with an-

notated alignment data. For this reason, we use the corpora and test sets from the
WPT 2003 and 2005 shared tasks (Mihalcea and Pedersen, 2003; Martin et al., 2005).
In addition, we also use the Swedish-English part of the Europarl corpus version 7
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Table 1. Data sets used for our alignment quality experiments. The total number of
sentences in the respective corpora are given along with the number of sentences and

gold-standard (S)ure and (P)ossible alignment links in the corresponding test set.

Corpus Sentences Sentences |S| |P|

Training Test
English-French 1,130,588 447 4,038 17,438
English-Romanian 48,641 200 5,034 5,034
English-Inuktitut 333,185 75 293 1,972
English-Hindi 3,556 90 1,409 1,409
English-Swedish 692,662 192 3,340 4,577

(Koehn, 2005) with test set from Holmqvist and Ahrenberg (2011). The data sets are
presented in Table 1, where it can be noted they differ both in size and in annotation
style. In particular, the English-Romanian and English-Hindi data only have one set
of gold-standard links, so that S = P, the English-French and English-Inuktitut data
have |S| ≪ |P|, while the English-Swedish data lies somewhere in between.

Table 2: Results of our alignment quality experiments. All timing
and accuracy figures use means from five independently initial-
ized runs. Note that lower is better for AER, higher is better for
F0.5. All experiments are run on a system with two Intel Xeon
E5645 CPUs running at 2.4 GHz, in total 12 physical (24 virtual)
cores.

Quality Time (seconds)
Configuration AER F0.5 CPU Wall

English-French
fast_align 15.3 86.2 4,124 243
1x iterations, 2 samplers 8.2 92.3 741 270
4x iterations, 2 samplers 8.1 92.2 2,700 809
16x iterations, 2 samplers 8.1 92.1 10,557 2,945
1x iterations, 1 samplers 9.1 91.4 470 248
1x iterations, 4 samplers 7.8 92.6 1,324 298
1x iterations, 8 samplers 7.6 92.9 2,456 330

Continued on next page
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Configuration AER F0.5 CPU Wall
English-Hindi

fast_align 67.3 32.7 27 2
1x iterations, 2 samplers 48.3 51.7 107 12
4x iterations, 2 samplers 49.0 51.0 416 46
16x iterations, 2 samplers 51.0 49.0 1,664 183
1x iterations, 1 samplers 49.4 50.6 81 10
1x iterations, 4 samplers 47.5 52.5 146 13
1x iterations, 8 samplers 46.7 53.3 238 17

English-Inuktitut
fast_align 28.7 78.1 752 48
1x iterations, 2 samplers 22.3 81.5 160 62
4x iterations, 2 samplers 19.7 83.7 560 199
16x iterations, 2 samplers 17.3 86.0 2,176 747
1x iterations, 1 samplers 23.8 80.1 98 56
1x iterations, 4 samplers 19.6 84.1 259 64
1x iterations, 8 samplers 18.4 85.3 515 72

English-Romanian
fast_align 32.5 67.5 266 17
1x iterations, 2 samplers 28.7 71.3 167 47
4x iterations, 2 samplers 29.0 71.0 648 173
16x iterations, 2 samplers 29.5 70.5 2,580 682
1x iterations, 1 samplers 29.8 70.2 97 43
1x iterations, 4 samplers 28.2 71.8 320 53
1x iterations, 8 samplers 27.9 72.1 656 59

English-Swedish
fast_align 20.5 79.8 12,298 671
1x iterations, 2 samplers 13.1 87.0 1,606 589
4x iterations, 2 samplers 11.4 88.6 5,989 1,830
16x iterations, 2 samplers 10.6 89.4 23,099 6,519
1x iterations, 1 samplers 13.8 86.3 1,005 538
1x iterations, 4 samplers 13.2 86.8 2,681 626
1x iterations, 8 samplers 11.7 88.3 6,147 839

Table 2 shows the result of varying the number of samplers and iterations for all
the language pairs under consideration. As a baseline for each language pair, we
use fast_align as well as the default efmaral configuration of two independent sam-
plers, running x = ⌊100/

√
K⌋ sampling iterations where K is the number of parallel

sentences in the data (with the additional constraint that 4 ≤ x ≤ 250). Following
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the practice set by Brown et al. (1993), each model is initialized with the output of a
simpler model. For the full HMM+fertility model, we run ⌊x/4⌋ sampling iterations
of IBM model 1 initialized with uniformly random alignments, use the last sample to
initialize the fertility-less HMM model that we also run for ⌊x/4⌋ iterations. Finally, x
samples are drawn from the full model and the final alignments are estimated from
these using Equation (22).

The experiments described in Table 2 were carried out on a system with dual Intel
Xeon E5645 CPUs, with a total of 24 virtual cores available. Even though this setup
strongly favors fast_align’s parallel implementation, efmaral is faster for the largest
corpus (where speed matters most) in terms of both wall time and CPU time, and for
all but the smallest corpora in CPU time. This trend will also be seen in Section 5.2,
where even larger parallel corpora are used for our machine translation experiments.

As expected, increasing the number of independently initialized samplers consis-
tently results in better alignments, in line with research on model averaging for a wide
range of machine learning models. When it comes to increasing the number of sam-
pling iterations the result is less clear: for some pairs this seems even more important
than the number of independent samplers, whereas for other pairs the quality metrics
actually change for the worse. Recall that the samplers are initialized with a sample
from the fertility-less HMM model, and that the correlation to this sample decreases
as the number of samples from the HMM model with fertility increases. Decreasing
quality therefore indicates that for that particular language pair and annotation style,
the fertility model performs worse than the mix between the fertility and fertility-less
models obtained by using a small number of samples. When interpreting these re-
sults, it is also important to keep in mind that the quality metrics are computed using
discretized and symmetrized alignments, which are related in a quite complex way
to the probability estimates of the underlying model.

From a practical point of view, one should also consider that additional indepen-
dent samplers can be run in parallel, unlike additional sampling iterations which have
a serial dependence. For this reason and because of the consistent improvements
demonstrated in Table 2, increasing the number of samplers should be the preferred
method for improving alignment quality at the cost of memory and CPU time.

5.2. Machine translation experiments

In order to test the effect of word alignment in a downstream task, we conducted
some experiments with generic phrase-based machine translation. Our models are
based on the Moses pipeline (Koehn et al., 2007) with data coming from the Work-
shop on Statistical Machine Translation. In our setup we use the news translation task
from 2013 with translation models for English to Czech, German, Spanish, French and
Russian and vice versa. Parallel training data comes from Europarl version 7 (Koehn,
2005) (for all language pairs except Russian-English) and the News Commentary cor-
pus version 11. For language modeling, we use the monolingual data sets from Eu-
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Table 3. Data used for training SMT models (all counts in millions). Parallel data sets
refer to the bitexts aligned to English and their token counts include both languages.

Monolingual Parallel
Language Sentences Tokens Sentences Tokens
Czech 8.4 145 0.8 41
German 23.1 425 2.1 114
English 17.3 411 – –
Spanish 6.5 190 2.0 109
French 6.4 173 2.0 114
Russian 10.0 178 0.2 10

roparl and News Commentary as well as the shuffled news texts from 2012. We did
not use any of the larger news data sets from more recent years to avoid possible over-
laps with the 2013 test set. We apply a pipeline of pre-processing tools from the Moses
package to prepare all data sets including punctuation normalization, tokenization,
lowercasing and corpus cleaning (for parallel corpora). Statistics of the final data sets
are listed in Table 3.

All language models use order five with modified Kneser-Ney smoothing and are
estimated using KenLM (Heafield et al., 2013). Word alignments are symmetrized
using the grow-diag-final heuristics and we use standard settings to extract phrases
and to estimate translation probabilities and lexical weights. For reordering we use
the default distance-based distortion penalty and parameters are tuned using MERT
(Och, 2003) with 200-best lists.

Table 4 shows the performance of our SMT models given alignments from the dif-
ferent word alignment systems. The left-hand part of the table contains results when
using full word forms for the word alignment systems, whereas the results in the
right-hand part were obtained by removing any letters after the four first from each
word, as a form of approximate stemming since all the languages in our evaluation
are predominantly suffixing. Though seemingly very drastic, this method improves
accuracy in most cases since data sparsity is a major problem for word alignment.

Next we turn to the computational cost of the experiments just described, these
are found in Table 5. In almost all cases, efmaral runs faster by a comfortable margin.
The only exception is for the smallest dataset, Russian-English, where fast_align uses
slightly less wall time (but still much more CPU time). This trend is also present in
the alignment quality experiments in Section 5.1 with mostly smaller corpora, where
efmaral is only faster for the largest corpus.3

3Due to different computing environments, only four CPU cores were available per aligner in the SMT
experiments, versus 24 cores in the alignment quality experiments.
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Table 4. Results from our SMT evaluation. The BLEU scores are the maximum over the
Moses parameters explored for the given word alignment configuration.

BLEU score
Translation pair No stemming 4-prefix stemming

efmaral giza++ fast_align efmaral giza++ fast_align
Czech-English 23.43 23.29 22.77 23.58 23.57 23.44
English-Czech 16.22 15.97 15.69 16.11 15.96 15.88
German-English 23.60 23.86 22.84 23.54 23.80 23.08
English-German 17.83 17.69 17.50 17.77 17.70 17.65
Spanish-English 28.50 28.43 28.25 28.57 28.69 28.20
English-Spanish 27.39 27.51 27.08 27.49 27.49 27.08
French-English 28.50 28.45 28.06 28.69 28.67 28.33
English-French 27.73 27.57 27.22 27.66 27.71 27.16
Russian-English 20.74 20.14 19.55 20.96 20.65 20.38
English-Russian 15.89 15.55 15.07 16.17 16.13 15.77

Table 5. Timings from the word alignments for our SMT evaluation. The values are
averaged over both alignment directions. For these experiments we used systems with

8-core Intel E5-2670 processors running at 2.6 GHz.

Time (seconds)
Wall CPU Wall CPU Wall CPU

Translation pair Stem efmaral giza++ fast_align
Czech-English no 303 462 13,089 13,083 465 1,759
Czech-English yes 233 361 12,035 12,033 311 1,200
German-English no 511 766 42,077 41,754 1,151 4,407
German-English yes 377 558 43,048 43,023 813 3,115
Spanish-English no 500 782 39,047 39,003 1,034 3,940
Spanish-English yes 346 525 38,896 38,866 758 2,911
French-English no 696 1,088 41,698 41,646 1,681 6,423
French-English yes 383 583 40,986 40,907 805 3,101
Russian-English no 122 206 3583 3581 107 382
Russian-English yes 87 151 3148 3143 78 292
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6. Concluding remarks

We hope that the reader at this point is convinced that Bayesian alignment mod-
els with Markov Chain Monte Carlo inference should be the method of choice for
researchers who need to align large parallel corpora. To facilitate a practical shift to-
wards this direction, we have released the efmaral tool which the evaluations in this
article show to be both accurate, computationally efficient, and useful as a component
of practical machine translation systems.
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