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Abstract

We describe a collection of open source tools for learning tree-to-string and tree-to-tree
transducers and the extensions to the cdec decoder that enable translation with these. Our
modular, easy-to-extend tools extract rules from trees or forests aligned to strings and trees
subject to different structural constraints. A fast, multithreaded implementation of the Cohn
and Blunsom (2009) model for extracting compact tree-to-string rules is also included. The
implementation of the tree composition algorithm used by cdec is described, and translation
quality and decoding time results are presented. Our experimental results add to the body of
evidence suggesting that tree transducers are a compelling option for translation, particularly
when decoding speed and translation model size are important.

1. Tree to String Transducers

Tree-to-string transducers that define relations on strings and trees are a popu-
lar formalism for capturing translational equivalence where syntactic tree structures
are available in either the source or target language (Graehl et al., 2008; Galley et al.,
2004; Rounds, 1970; Thatcher, 1970). The tools described in this paper are a restricted
version of top-down tree transducers that support multi-level tree fragments on one
side and strings on the other, with no copying or deletion (Huang et al., 2006; Cohn
and Blunsom, 2009). Such transducers can elegantly capture syntactic regularities in
translation. For example see Fig. 1, which gives the rules necessary to translate be-
tween English (an SVO language with ditransitive verbs) and Welsh (a VSO language
with prepositional datives). In our notation, transducers consist of a set of rules
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s[NP (vP[VBD][NP][NP]) & [2][1][4]i[3] S
(NP (DT a) [NN) NP/\VP
(VBD gave) < rhoddodd |
(NN book)) < lyfr NNP
(NP (PRP me)) « mi \ VBD NP NP
(NP (NNP John)) < Ioan

me a  book

cdec text format of above transducer (with example features):

(S [NP] (VP [vBD] [NP] [NP])) [[| [2] [1] [4] i [3] ||| logP(s|t)=-0.2471

(NP (DT a) [NNI) ||] [11 ||| logP(s|t)=-0.6973 Delete a=1

(VBD gave) ||| rhoddodd ||| logP(s|t)=-2.3613

(NN book) ||| lyfr ||| logP(s|t)=-0.971

(NP (PRP me)) ||| mi ||| logP(s|t)=-1.3688

(NP (NNP John)) ||| Ioan ||| logP(s|t)=0

cdec input text format of above tree:
(S (NP (NNP John)) (VP (VBD gave) (NP (PRP me)) (NP (DT a) (NN book))))

Figure 1. Example single-state transducer that transduces between the SVIO English
tree (upper right of figure) and its VSOP Welsh translation: rhoddodd loan lyfr i mi.

(also called edges) which pair a tree fragment in one language with a string of ter-
minal symbols and variables in a second language. Frontier nonterminal nodes in
the tree fragment are indicated with a box around the nonterminal symbol, and the
corresponding substitution site in the string is indicated by a box around a number
indexing the nonterminal variable in the tree fragment (counting in top-down, left to
right, depth first order). Additionally, tree-to-string transducers can be further gen-
eralized so as to have multiple transducer states, shown in Fig. 2. The transducers in
Fig. 1 can be understood to have a single state. For formal properties of tree-to-string
transducers, we refer the reader to the above citations.

Tree-to-string transducers define a relation on strings and trees and, in translation
applications, are capable of transforming either source trees (generated by a parser)
into target language strings or source strings into target-language parse trees. Run-
ning the transducer in the tree-to-string direction can avail itself of specialized algo-
rithms similar to finite state composition (§4); in the string-to-tree direction, they can
be trivially converted to synchronous context free grammars and transduction can be
carried out with standard CFG parsing algorithms (Galley et al., 2004).
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qo: (S|NP](VP|[VB][NP]) [1]: qo[2]: qo[3]: qace
do : (NP (DT the) [NN )) ¢ der[1]: qo
Qacc : (NP (DT the) ) e den[1]: qo

qo : (NN dog) «» Hund

cdec text format of above transducer (with example features):

[Qel ||| (S [NP] (VP [VB] [NP1)) ||| [Q®,1] [Q0,2] [QACC,3] ||| 1p=-2.9713
[Q@]1 ||| (NP (DT the) [NNI) ||| der [Q®,1] ||| lp=-1.3443

[QACCT ||| (NP (DT the) [NNI) ||| den [QO,1] ||| lp=-2.9402

[Q0] ||| (NN dog) ||| Hund ||| 1p=-0.3171

Figure 2. A tree-to-string transducer with multiple states encoding structural
information for choosing the proper nominal inflection in English-German translation.

2. Heuristic Hypergraph-based Grammar Extraction

In this section we describe a general purpose tree-to-string and tree-to-tree rule
learner. We will consider the tree-to-tree alignment problem in this case (the tree-
to-string case is a straightforward simplification). Instead of extracting rules from
a pair of aligned trees, rules from a pair of aligned hypergraphs (any tree can easily
be transformed into an equivalent hypergraph; an example of such a hypergraph is
shown in Fig. 3). By using hypergraphs, the rule extraction algorithm can use forest
outputs from parsers to capture parse uncertainty; furthermore (as discussed below),
it simplifies the rule extraction algorithm so that extraction events—even of so-called
“composed rules” (Galley et al., 2006)—always apply locally to a single edge rather
than considering larger structures. This yields a simpler implementation.

The rule extraction process finds pairs of aligned nodes in the hypergraphs based
on the terminal symbol alignment. We will call a source node S and a target node
T node-aligned if the following conditions hold. First, S and T must either both be
non-terminals or both be terminals. Aligning a terminal to a non-terminal or vice-
versa is disallowed. Second, there must be at least one alignment link from a terminal
dominated by S to a terminal dominated by T. Third, there must be no alignment
links from terminals dominated by S to terminals outside of T or vice-versa.

We define a “rule” to be pair of hyperedges whose heads are node-aligned and
whose non-terminal children are node-aligned in a one-to-one (bijective) manner. For
example, in the sample tree, we see that the source node PP4 ¢ is node-aligned to
the target node PP5 7 and their children are node-aligned T04 5 to PREPs5 ¢ and NNs ¢
to NP5 7. This edge pair corresponds to the rule [PP::PP] — [T0,1] [NN,2] |||
[PREP,1] [NP,2]. Note in this formalism, no edges headed by terminals, so we will
not extract any rules with terminal “heads”.
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The above formulation allows the extraction of so-called “minimal” rules that do
not contain internal structure, but it does not yet include any mechanism for extract-
ing more complex rules. Rather than adding extra mechanisms to the rule extractor,
we create extra edges in the hypergraph so that “composed” edges are available to
the extractor. To do so, we recursively add edges from non-overlapping sets of de-
scendent nodes. For example, one hyperedge added to the source side of the sample
hypergraph pair is VP3 ¢ — walked T04 5 NN5 ¢. Independently, on the target side
we add an edge VP3 7 — a marché PREPs5 ¢ NP5 7.

Now when we extract rules, we will
find these two edges will give rise to the Sor
rule [VP::VP] — walked [TO,1] [NN,2] 5 i N s
||| a marché [PREP,1] [NP,2],acom- i VRSN
posed rule not extractable by the bald al- f'
gorithm. i

While using composed edges allows Ny
us to extract all permissible rules from i
a pair of aligned trees, to be consis-
tent with previous work, we introduce ey
one more type of hypergraph augmen- ‘ ]‘ i ‘

)

B \
— | N |

hs (
) | )
= | N |

|
I NNys  VBD3s  TOss NNsg  PUNCor
the young boy walked to school; g L

marché a r école

tation. Hanneman et al. (2011) allow for ., ..
adjacent sibling non-terminal nodes to \\\,,,\},4 y \ = |
be merged into one virtual node, which whs //m.g{m:‘_,, \ [ N
may then be node-aligned to opposite \ ( S /
nodes, be they “real” or virtual. To en- \ ' N
able this, we explicitly add virtual nodes \ s /
to our hypergraph and connect them to N =
their children with a hyperedge. Fur- i
thermore, for every hyperedge that con-
tained all of the sibling nodes as non-
terminal tails, we add a duplicate hyper-
edge that uses the new virtual node in-
stead.

For example, in Fig. 3, we have
added a new non-terminal node labeled
VB3s+VBN3 5 to the hypergraph. This
node represents the fusion of the VB3s3 4 and VBN4 5 nodes. We then add a hyperedge
headed by the new VB3s+VBN3 5 with tails to both VB3s3 4 and VBN4 5. Furthermore,
we make a copy of the edge VP3 7 — VB3s3 4 VBN4 5 PP5 7, and replace the VB3s3 4
and VBN4 5 tail nodes with a single tail, VB3s+VBN3 5, to form the new edge VP3 ; —
VB3s+VBN3 5 PP5 7. The addition of this new hyperedge allows the extraction of the
rules [VBD: :VB3s+VBN] — walked ||| a marché and [VP::VP] — [VBD,1] [PP,2]

V B}ws 1 VBNi5 PREPsg DTsz N .i:r PUNCso
| \ | \ ] |
/ | N J |

Figure 3. A pair of aligned hypergraphs.
NPy 3 represents an NP over the span [0, 3).
An example virtual node and its
corresponding virtual edges is shown in
red.
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|| [VB3s+VBN,1] [PP,2], both of which were unextractable without the virtual
node.

With the addition of virtual nodes, our work is directly comparable to Hanneman
et al. (2011), while being more modular, extensible and provably correct. One partic-
ularly interesting extension our hypergraph formulation allows is the use of weighted
parse forests rather than 1-best trees. This helps our rule extractor to overcome parser
errors and allows us to easily handle cases of ambiguity, in which two or more trees
may be equally likely for a given input sentence.

3. Bayesian Synchronous Tree to String Grammar Induction

Although HyperGrex, the tool described in the previous section, is flexible, it relies
on heuristic word alignments that were generated without knowledge of the syntactic
structure or the final translation formalism they will be used in. In this section, we
present our open source implementation of the synchronous tree-to-string grammar
induction algorithm proposed by Cohn and Blunsom (2009).! This model directly
reasons about the most likely tree-to-string grammar that explains the parallel corpus.
Tree-to-tree grammars are not currently supported.

The algorithm relies on a Bayesian model which incorporates a prior preference
for learning small, generalizable STSG rules. The model is designed to jointly learn
translation rules and word alignments. This is important for capturing long distance
reordering phenomena, which might otherwise be poorly modeled if the rules are
inferred using distance penalized alignments (e.g. as in the heuristic proposed by
Galley et al. (2004) or the similar one used by HyperGrex).

The model represents the tree-to-string grammar as a set of distributions {G} over
the productions of each non-terminal c. Each distribution G is assumed to be gener-
ated by a Dirichlet Process with a concentration parameter o and a base distribution
Po(- | ¢), i.e. G¢ ~ DP(a¢,Po(- | ¢)). The concentration parameter o controls the
model’s tendency towards reusing rules or creating new ones according to the base
distribution and has a direct influence on the size of the resulting grammar. The base
distribution is defined to assign probabilities to an infinite set of rules. The proba-
bilities decrease exponentially as the sizes of the rules increase, biasing the model
towards learning smaller rules.

Instead of representing the distributions G, explicitly, we integrate over all the
possible values of G.. We obtain the following formula for estimating the probability
of a rule r with root ¢, given a fixed set of derivations r for the training corpus:

N, + x:Po(r]c)

T|rc o, Po) =
p(‘) Cy O) nc‘i‘(xc

, @

where n, is the number of times r occurs in r and n. is the number of rules with root
cinr.

10ur code is publicly available here: https://qithub.com/pauldb89/worm.
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Cohn and Blunsom (2009) train their model using Gibbs sampling. To simplify
the implementation, an alignment variable is defined for every internal node in the
parsed corpus. An alignment variable specifies the interval of target words which
are spanned by a source node. Alternatively, a node may not be aligned to any target
words or may span a discontiguous group of words, in which case it is annotated
with an empty interval. Non-empty alignment variables mark the substitution sites
for the rules in a derivation of a parse tree. Overall, they are used to specify a set of
sampled derivations r for the entire training data. Alignment spans are constrained
to subsume the spans of their descendants and must be contained within the spans of
their ancestors. In addition to this, sibling spans belonging to the frontier of the same
rule must not overlap.

We implement Gibbs sampling with the help of two operators: expand and swap.
The expand operator works by resampling a randomly selected alignment variable a,
while keeping all the other alignment variables fixed. The set of possible outcomes
consists of the empty interval and all the intervals assignable to a such that the pre-
vious conditions continue to hold. Each outcome is scored proportionally to the new
rules it creates, using Equation 1, conditioned on all the rules in the training data that
remain unaffected by the sampling operation. The swap operator randomly selects
two frontier nodes labelled with non-terminals belonging to the same STSG rule and
chooses to either swap their alignment variables or to leave them unchanged. The
outcomes are weighted similarly to the previous case. The goal of the swap opera-
tor is to improve the sampler’s ability to mix, especially in the context of improving
word reordering, by providing a way to execute several low probability expand steps
at once.

Our implementation of the grammar induction algorithm is written in C++. Com-
piling the code results in several binaries, including sampler, which implements our
Gibbs sampler. Our tool takes as input a file containing the parse trees for the source
side of the parallel corpus, the target side of the parallel corpus, the word alignments
of the training data, and two translation tables giving p(s | t) and p(t | s) respectively.
The word alignments are needed only to initialize the sampler with the first set of
derivations (Galley et al., 2004). The remaining input arguments (hyperparameters,
rule restrictions, etc.) are initialized with sensible default values. Running the bi-
nary with the - -help option will produce the complete list of arguments and a brief
explanation for each. The tool produces several files as output, including one con-
taining the set of rules together with their probabilities, computed based on the last
set of sampled derivations. The documentation released with our code shows how to
prepare the training data, run the tool and convert the output to the cdec format.

Our tool leverages the benefits of a multithreaded environment to speed up gram-
mar induction. At every sampler iteration, each training sentence is dynamically al-
located to one of the available threads. In our implementation, we use a hash-based
implementation of a Chinese Restaurant Process (CRP) (Teh, 2010) to efficiently com-
pute the rule probabilities given by Equation 1. The data structure is updated when-
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ever one of the expand or swap operators is applied. To lock this data structure with
every update would completely cancel the effect of parallelization, as all the basic op-
erations performed by the sampler are dependent on the CRP. Instead, we distribute
a copy of the CRP on every thread and synchronize the data structures at the end of
each iteration. Although the CRPs diverge during an iteration through the training
data, no negative effects are observed when inferring STSGs in multithreaded mode.

4. Tree-to-string translation with cdec

) (Aab) e xy b e @
2 (Aa) e x ® @
 6Fc0 1 QB0

TRCEC,
(r1) (r3) @

Figure 4. DFA representation of a tree transducer (above) and an input tree (middle).
This transducer will transduce the input tree to the hypergraph (below) yielding a
single string x y z, using rules (r1) and (r3). Red octagons are closing parentheses.

The cdec decoder (Dyer et al., 2010) has a modular decoder architecture that fac-
tors the decoding problem into multiple stages: first, a hypergraph is generated that
represents the translation search space produced by composing the input (a string,
lattice, or tree) with the relevant transducer (a synchronous context-free grammar,
a finite state transducer, etc.); second, the hypergraph is rescored—and possibly re-
structured (in the case of adding an n-gram language model)—with generic feature
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extractors; finally, various outputs of interest are extracted (the best translation, the
k-best translations, alignments to a target string, statistics required for parameter op-
timization, etc.).

The original cdec implementation contained hypergraph generators based on a
variety of translation backends, although SCFG translation is the most widely used
(Chiang, 2007). In this section, we describe the tree-to-string algorithm that generates
a translation forest given a source language parse tree and a tree-to-string transducer.

The construction of the hypergraph takes place by composing the input tree with
the tree-to-string transducer using a top down, recursive algorithm. Intuitively, the
algorithm matches all rules in the transducer that start at a given node in the input
tree and match at least one complete rewrite in the source tree. Any variables that
were used in the match are then recursively processed until the entire input tree is
completed. To make this process efficient, the tree side of the input transducer is
determinized by depth-first, left-to-right factoring—this process is analogous to left
factoring a context-free grammar (Klein and Manning, 2001). By representing the
tree using the same depth-first, left-to-right representation, standard DFA intersection
algorithms can be used to compute each step of the recursion. The DFA representation
of a transducer (tree side) and an input tree (starting at nonterminal S) is shown in
Fig. 4.

To understand how this algorithm
proceeds on this particular input, the Extractor
input tree DFA is matched against the grex 1 24.9M 11.8M
‘S” DFA. The output transductions are  HyperGrex 1 25.9M 12.7M

ks k¢ Instances Types

1

1
stored in the final states of the trans- HyperGrex 1 10 33.3M 17.7M

10

10

ducer DFA, and for all final states in the  HyperGrex 1 33.7M 17.9M
transducer DFA that are reached ina fi-  HyperGrex 10  48.7M  24.3M
nal state of the input DFA, an edge is

added to the output hypergraph, one  Fjgure 5. Grammar sizes using different

per translation option. Variables that grammar extraction set ups. ks (ki)
were used in the input DFA are then represents the number of source (target)
recursively processed, starting from the trees used.

relevant transducer DFA (in this case
since first (r3) will be used which has an
A variable, then ‘A’ DFA will then be invoked recursively).

5. Experiments

We tested our tree-to-tree rule learner on the FBIS Chinese-English corpus (LDC2003E14),
which consists of 302,966 sentence pairs or 9,350,506 words on the English side. We
first obtain k-best parses for both sides of FBIS using the Berkeley Parser? and align
the corpus using fastalign (Dyer et al., 2013). We use a 5-gram language model built

Zhttps:/ /code.google.com /p/berkeleyparser/
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with KenLM on version four of the English GigaWord corpus plus the target side of
FBIS, smoothed with improved Kneser-Ney smoothing. For each set up we extract
rules using grex (Hanneman et al., 2011) or our new tool. When using our tool we
have the option of simply using 1-best trees to compare directly to grex, or using the
weighted forests consisting of all of Berkeley’s k-best parses on the source side, the
target side, or both. For these experiments we use k = 10. Each system is tuned on
mt06 using Hypergraph MERT. We then test each system on both mt03 and mt06.

Details concerning the size of the extracted grammars can be found in Table 5.2
Translation quality results are shown in Table 6.

5.1. Baysiean Grammar Experiments

The Bayesian grammar extractor

Extractor k, k; mt06 mt03 mt08 we describe is constructed to find
grex 1 1 296 318 234 compact grammars that explain a
HyperGrex 1 1 30.1 324 240 parallel corpus. We briefly discuss
HyperGrex 1 10 304 329 243 theperformance of these grammars

HyperGrex 10 1 295 320 231 in a tree-to-string translation task

HyperGrex 10 10 30.0 327 237  relative to a standard Hiero base-

line. Each of these systems was

Figure 6. BLEU results on mt06 (tuning set), ~ tuned on mt03 and tested on mt08.

mt03, and mt08 using various grammar Table. 7 summarizes the findings.

extraction configurations. Although tree-to-string system with

minimal rules underperforms Hiero

slightly, it uses orders of magnitude

fewer rules—in fact the number of rules in the Hiero grammar filtered for the 691-

sentence test set is twice as large as the Bayesian grammar. The unfiltered Hiero
grammar is 2 orders of magnitude larger than the Bayesian grammar.

Extractor iterations rule count mt08

Hiero - 36.6M 27.9

HyperGrex minimal (§2) - 1.4M 26.5
Bayes (§3) 100 0.77M 26.5

Bayes (§3) 1,000 0.74M 26.9

Figure 7. Comparing HyperGrex (minimal rules), the Bayesian extractor after different
numbers of iterations, and Hiero.

3This indicates that grex failed to extract certain valid rules. This conclusion was validated by our team,
and confirmed with the authors of (Hanneman et al., 2011).
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