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Abstract
Current state-of-the-art statistical machine translation (SMT) relies on simple feature func-

tions which make independence assumptions at the level of phrases or hierarchical rules. How-
ever, it is well-known that discriminative models can benefit from rich features extracted from
the source sentence context outside of the applied phrase or hierarchical rule, which is avail-
able at decoding time. We present a framework for the open-source decoder Moses that allows
discriminative models over source context to easily be trained on a large number of examples
and then be included as feature functions in decoding.

1. Introduction

Phrase-based and hierarchical SMT represent the state of the art for many language
pairs. Both of these methods model translation through decomposing the input into
segments (phrases, or source sides of hierarchical rules) and translating each one sepa-
rately. In other words, the translation units are considered independent of each other.
Generally, these are scored using relative frequencies. This strong independence as-
sumption often prevents phrase-based or hierarchical models to correctly choose be-
tween ambiguous segments. As an example, consider the polysemous French noun-
phrase “un rapport” where “un” is the masculine indefinite article in French, and
“rapport” is a noun which can mean “report” or “relationship”. Figure 1 shows sam-
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ple training data with 2 parallel sentences (let us assume that the word alignment is
correct, i.e., 1-to-1 and monotonic in both cases).

Sentence 1: il a rédigé un rapport . he has written a report .
Sentence 2: un rapport entre les coûts et ... a relationship between the costs and ...

Figure 1. Example parallel data for an SMT system.

For this data, the maximum likelihood estimates for “un rapport” - “a relation-
ship” and “un rapport” - “a report” are both 0.5, since they both occur once. If we
then observe a test sentence containing “rédigé” (to write), the direct phrasal trans-
lation feature function is unable to distinguish between the two translations of “un
rapport”, although it is clear that the “report” sense should be more probable. The
only component in the translation model able to perform some disambiguation in this
case is the language model, which is typically employed to ensure the coherence of
MT output. However, it only has a limited scope and its estimation suffers from data
sparsity when the window size is increased. Consequently, phrase-based and hierar-
chical models leave space for improving translation quality by conditioning the choice
of translation units on contextual information. There have indeed been a number of
successful attempts to exploit context on the source (input) side.

In this work, we integrate a discriminative classifier into the open-source decoder
Moses in order to score translation rules using richer models of their source context.
Related work on discriminatively trained word and phrase lexica will be presented
and discussed in Section 5. We provide a complete framework for both phrase-based
and hierarchical translation that allows the training of discriminative models over
source-side context and the inclusion of classifier predictions in decoding.

The paper is organized as follows: Section 2 describes the relationship between
SMT and discriminative classification and provides details of our machine learning
setting. In Section 3, we describe the integration into Moses, including the interface
for defining new classifier features. Section 4 discusses our experiments. Section 5
concludes the paper with a discussion.

2. Discriminative Classification

We have integrated the high-speed streaming classifier Vowpal Wabbit (VW) into
Moses to act as a discriminative phrase lexicon. In this section, we first present the
integration of our discriminative model into the Moses translation model. In a sec-
ond step, we discuss how VW works as discriminative classifier, using a set of label-
dependent features. Finally, we show how to train our model using VW.
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2.1. Integration into the Moses Translation Model

In Moses, the translation model is implemented as a so-called log-linear model,
see Formula 1, which is a linear model that uses feature functions which often look
like log probabilities.

pλ(E,A, S|F) ∝ exp(
∑
i

λihi(A, S, E, F)) (1)

In Formula 1, hi are feature functions and λi are the corresponding weights. The
formula expresses the probability of sentence E, full sentence word alignment A, and
source phrasal segmentation S, given source sentence F. We use lowercase e, f to de-
note phrases, and a to denote a phrasal word alignment. Feature functions in current
(phrasal or hierarchical) SMT systems are typically dense, i.e., they output a small,
fixed number of features (feature scores). Baseline features include direct and in-
verse phrase translation probabilities p(e, a|f), p(f, a|e), lexical weights plex(e, a|f),
plex(f, a|e), the English language model score p(E) (often implemented as a 5-gram)
and others. The conceptually most important feature function in Moses is the fea-
ture function modeling p(e, a|f), where f is a source-language phrase, e is a target-
language phrase and a is the word alignment between e and f. This is often referred
to as the direct phrasal translation probability.

We augment the translation model given in Formula 1 with a new feature function
conditioning not only on the source-language phrase but also on the context around
it. Formally, we define p(e, a|f, f ′), where f ′ represents the input source-language
sentence context external to the source-phrase f being translated by this phrase pair.
We use discriminative classification to compute this probability because it allows us
to use arbitrary information on the source side. We also take advantage of factored
machine translation by overloading f and e using factors (we use one factor of mor-
phological tags, and one factor of lemmas). Finally, we allow the external source-side
context f ′ to also access the same factored information (tags and lemmas) in the source
sentence external to the phrase being translated. We will sometimes abuse notation
to drop a.

2.2. VW as a Discriminative Phrase Lexicon Model

We train VW to choose a target-language (English) phrase e and a word alignment
a given a source-language (French) phrase f and all other information available about
the source-language sentence F, which we denote f ′. We accomplish this by train-
ing the classifier on examples extracted from each aligned phrase-pair instance (e, f)
in the automatically word-aligned parallel training data. For a new input sentence
and particular source-language phrase f, we would like to choose the correct target-
language phrase e based on the similarity of f and f ′ to examples in the training data.
To accomplish this, we use label-dependent classification, as outlined below.
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Label-dependent Features. In the Discriminative Phrase Lexicon scenario we wish
to estimate the probability for a target-language phrase e given a source-language
phrase f and the source sentence external context f ′. We therefore associate one set
of features used for classification with the fixed source phrase and source external
context, and have another set of features which varies with the target-language phrase
e (i.e., label-dependent). We define the feature space as the S×T cross-product – this is
similar to simply concatenating each source feature with each target feature. We also
take the features themselves without concatenation. Figure 2 shows the implemented
features on a sample sentence. By taking the cross-product of the source and target
features, we obtain a powerful final representation for classification. For instance, we
implement the featurization of a discriminative word (rather than phrase) lexicon by
taking the cross-product of source-context-bag-of-words and source-phrase-bag-of-
words with target-phrase-bag-of-words.

Context
Form: nous ne le savons pas encore .

Lemma: il ne le savon pas encore .
Tag: CLS ADV DET NC ADV ADV PONCT

Phrase Pair
Source: ne le savons pas
Target: do not know
Alignment: 0-1 1-2 2-2 3-1
Scores: -7.5 -9.2 -1.6 -7.5

Features
Source indicator: pˆne_le_savons wˆpas
Target indicator: pˆdo_not_know
Source internal: wˆne wˆle wˆsavons wˆpas
Target internal: wˆdo wˆnot wˆknow
Context: cˆ0_-1_nous cˆ1_-1_il cˆ2_-1_CLS cˆ0_1_encore ...
Paired: pˆne_not pˆle_know pˆsavons_know pˆpas_not
Scores: scˆ0_-10 scˆ0_-9 scˆ0_-8 scˆ1_-10 scˆ2_-10 ...

Figure 2. Implemented Features

Vowpal Wabbit. To implement label-dependent classification, we chose to use
Vowpal Wabbit (VW),1 implemented by John Langford. VW has a fast implementation
of stochastic gradient descent and L-BFGS for many different loss functions. VW is

1http://hunch.net/~vw/
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widely used for machine learning tasks. VW was built into a library for the work
reported here. VW has built-in support for:

• Feature hashing (scaling to billions of features)
• Caching (no need to re-parse text)
• Different losses and regularizers
• Reductions framework to binary classification/regression
• Multithreading/multicore processing.

2.3. Training the discriminative Model

For each (e, f) instance in the file with extracted phrase pairs, we create a training
example. We first perform significance testing (Johnson et al., 2007) to reduce the
total number of (e, f) types in the phrase table. We then extract one training example
per (e, f) instance extracted. We generate a line for each possible translation of f in
the reduced phrase table. The correct translation is assigned a loss of zero, all other
translations of f get a loss of 1.

Example. As an example, consider the polysemous French noun-phrase “un rap-
port” introduced in Section 1, which can either be translated as “report” or “relation-
ship”. We have shown that although the translation model cannot adequately choose
between these translations, it is clear that in a test sentence containing “rédigé” (to
write), the “report” translation should be more probable. We can operationalize this
with label-dependent features as shown in Figure 3.

Source Namespace Target Namespace Loss

Sentence 1: pˆun_rapport cˆil cˆa cˆrédigé pˆa_report 0
pˆa_relationship 1

Sentence 2: pˆun_rapport cˆentre cˆles ... pˆa_report 1
pˆa_relationship 0

Figure 3. Training examples with label-dependent features extracted from sample
parallel data.

The features prefixed with “pˆ” are the phrases being modeled. The features pre-
fixed with “cˆ” implement the bag-of-words feature. Implementation details of the
training procedure are given in the next section. In our example, during training the
model can learn from Sentence 1 that the S× T cross-product feature cˆrédigé.pˆa_re-
port should push the loss towards zero. At testing, this allows “a report” to be chosen.

We train VW using the cost-sensitive one-against-all reduction and label-depen-
dent features. We use the dev set (the same dev set as is used for MERT) to perform
early stopping.
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3. Integration of VW into Moses

In this section, we present the engineering details of the integration of VW into
the phrase-based and hierarchical components of Moses. As an overall illustration,
we compare the standard Moses pipeline and a pipeline with integrated classifier. To
this aim, consider again the polysemous French noun-phrase “un rapport” presented
in Section 1. In the standard pipeline, shown in Figure 4 (left), phrases or hierarchical
rules are extracted from the word-aligned parallel data and scored using maximum
likelihood estimation.

During decoding, the scored units are applied. As noted in sections 1 and 2, this
pipeline does not allow to choose the correct translation of “un rapport” given the
source sentence context. In a pipeline where VW is integrated to Moses, shown in
figure 4 (right), the training procedure is augmented with an additional step to train
the discriminative model using VW. The details of classifier training have been pre-
sented in Section 2.3. During decoding, the trained model is queried and the obtained
prediction is added to the log-linear model, as shown in Section 2.1. This additional
score allows the system to choose the correct translation of “un rapport” given the
source context.

Il a rédigé un rapport.
...

Il a rédigé un rapport.

He wrote a report.

rapport
rapport
...

report
relationship
...

He wrote a report.
...

Extract with context

VW Model

Il a rédigé à nouveau notre rapport.
He wrote our relationship again.

Align words

Extract phrases

Translate

rapport | report | a rédigé ...
rapport | relationship | ...

Extract features

   s: p^rapport c^il c^a c^rédigé ...
0 t: p^report ...
1 t: p^relationship ...

✔
✘

Train classifier

Extract features Predict

He wrote our report again.

✘
✔

Standard pipeline: With VW:

Figure 4. Classifier Pipeline. Training examples are extracted along with context which
helps disambiguate phrasal translations.
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We integrate VW in training and decoding. For both tasks an interface between
the MT system (Moses) and the learner (VW) has to be created.

We begin by presenting the overall architecture of the interface between Moses
and VW in Section 3.1. Then we explain how to train such a model in Section 3.2 and
query it during decoding in Section 3.3.

3.1. Overall Architecture

We integrate the learner (VW) into the MT system (Moses) by defining a single li-
brary used for training the discriminative model as well as getting model predictions
during decoding. Using this library avoids code duplication but even more impor-
tantly assures consistent definition and configuration of features for model training
and prediction. Also, it makes the overall architecture simple and extensible. The
design of the library is inspired by the Producer/Consumer pattern: we decouple (i)
feature extraction from training and input data and (ii) generation of features pro-
vided to the learner. (i) is implemented by the Feature Extractor interface and (ii) by
the Feature Consumer interface. The design chosen also allows us to clearly separate
the logic of feature generation from the specificities of the learner. The only require-
ment needed to add different learners is the implementation of the FeatureConsumer
interface. For instance, it would be easy to add such an interface for MegaM,2 which
we leave for future work.

The FeatureExtractor interface supports extraction of various types of features from
the source sentence context as well as from the source and target side of phrases (for
phrase-based SMT) or hierarchical rules (for hierarchical SMT). Feature extraction is
controlled through the specification of a configuration file. The current implementa-
tion supports the features presented in Section 2.2.

We provide 3 implementations of the FeatureConsumer. The two first are used to
train the discriminative model and the third to get model predictions. More precisely,
the VWFileTrainConsumer extracts features for training VW in text format and stores
them in an output file. We use this class in training to visually inspect the generated
features before training the VW model. Otherwise, it is possible to feed the features
directly into VW and train the model using VWLibraryTrainConsumer. In decoding,
VWLibraryPredictConsumer is used to get VW predictions.

The same library is implemented in the phrase-based and in the hierarchical com-
ponents of Moses.

3.2. Training the Model

For training our discriminative model, we first modify the phrase and hierarchical
rule extraction algorithms provided in the phrase-based and hierarchical components

2http://www.umiacs.umd.edu/~hal/megam/

35

http://www.umiacs.umd.edu/~hal/megam/


PBML 101 APRIL 2014

of Moses. The modified routines output an additional file indicating in which source
sentence and at which position each phrase and rule have been extracted. These an-
notations allow us to extract ”source sentence context” features for each phrase and
hierarchical rule. In order to provide a richer context, the source side training data is
augmented with a factored annotation containing morphological and POS tags. Us-
ing these annotations as well as the parallel corpus, training examples for VW are
extracted using the feature library described in Section 3.1. The FeatureExtractor, con-
trolled by the configuration file, specifies which features are extracted while the Fea-
tureConsumer generates the training examples for VW.

3.3. Getting Predictions during Decoding

Model predictions queried during decoding are implemented as a feature function
which is added to the log-linear model and consequently tuned on a held-out data
set. In its phrase-based and hierarchical components, Moses offers an interface for
defining feature functions. Our model predictions are integrated into the decoder by
implementing this interface (with some tricks). The feature function for the phrase-
based component is located in the class ClassifierFeature while the feature function for
the hierarchical component is in ContextFeature.

In the phrase-based as well as the hierarchical component of Moses, the task of the
feature function is to re-evaluate each translation option by querying VW according to
the source sentence context in which they occur. More precisely, for each translation
option applying to a given span, source context features are extracted using the library
described in Section 3.1.

Using the extracted features, the VWLibraryPredictConsumer is used to query the
VW model. The obtained predictions are then normalized to transform model scores
(losses) into probabilities. The feature function is evaluated prior to phrase- or rule-
table pruning and decoding. This allows us to save computation and to avoid dis-
carding options which our feature considers good.

Note that in order to implement this behavior, we needed to deviate a little from the
standard feature interface: our feature function is called immediately after translation
options are collected and evaluates all translation options for a given source span at
the same time (to allow normalization).

3.4. Integration into the Hierarchical Component

Integration of a discriminative model into a hierarchical system is generally more
challenging than the integration into a phrase-based system. The main reasons are
that (i) many left-hand-sides of hierarchical rules can apply to the same source sen-
tence span and (ii) a single left-hand-side of a hierarchical rule can apply to many
source sentence spans. As a consequence, many more rules have to be collected to gen-
erate training examples and many more translation options have to be re-evaluated
during decoding.
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As an illustration, consider the French segment “patiente diabétique et enceinte”
(an English word-by-word gloss is “patient diabetic and pregnant”, it means “diabetic
and pregnant patient”). Consider that the following hierarchical rules have been ex-
tracted from the training data.

r1 X/X → <X0 enceinte , pregnant X0>

r2 X/X → <X0 enceinte , X0 enclosure>
r3 X/X → <patiente X0 , X0 patient>
r4 X/X → <patiente X0 et X1, X0 and X1 patient>

Each rule consists of lexical items and aligned non-terminal symbols. All rules
presented above match the source segment “patiente diabétique et enceinte” although
rules r1, r3 and r4 have different source language sides. On the other hand, rules with
source side “X enceinte” can apply to the complete segment “patiente diabétique et
enceinte” or to the last three or two words.

As shown in Section 2.2, features extracted to train and query the integrated model
include source context features. The extraction of these features requires information
about the source sentence context surrounding the place where a rule has been ex-
tracted (training) or applied (decoding). In a phrase-based system, the source context
is the context surrounding a single source phrase. In a hierarchical system, the source
context cannot be attached to a single source side of rule because several rules can
match the same source language segment. Hence computing a discriminative score
for hierarchical rules according to their context of occurrence in the source language
sentence requires to collect, for a given span, all hierarchical rules applying to this
span. For instance when considering the context surrounding the linguistic segment
”patiente diabétique et enceinte” all rules applying to the span beginning at ”patiente”
and ending at ”diabetique” have to be collected. Such rules include rules r1,r2 and
r3.

4. Experiments

Performance. In terms of performance, the phrase-based component of Moses
with the discriminative model takes 80% relative longer than the Moses baseline with-
out VW. The hierarchical component is slower (300% relative longer) due to the addi-
tional complexity described in Section 3.4.

We made queries to VW thread-safe and tested all of our code in a parallel setting.
The classifier feature is also fully integrated in Moses’ Experiment Management

System (EMS, experiment.perl) which allows potential new users to quickly create
experiments with our feature.

Phrase-based Experiments. We used our feature in a setting similar to phrase-
sense disambiguation (PSD, Carpuat and Wu, 2007), utilizing all of the classifier fea-
tures described in Section 3.1. We utilized science domain training data consisting of
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113291 French and English parallel sentences, as well as dev and test sets distributed
with this data.3 We computed GIZA++ word alignments by using a much larger par-
allel French/English corpus of over 2 million parallel sentences (this was only used
to improve the word alignment). We trained a 5-gram language model using SRILM
and decoded using KenLM. Table 1 shows the results of our experiment. Our fea-
ture receives a moderately high weight (the weight of the direct phrasal translation
probability is 0.10). Our integrated system beats the baseline by a difference of 0.60
BLEU.

Source Target BLEU Feature
Baseline +Classifier Weight

French English 32.62 33.22 0.05

Table 1. Results of experiment with phrase-based translation

Hierarchical Experiments. The same experiment has been conducted using the
hierarchical component of the system. Table 2 shows the results. Our feature receives
a high weight and the integrated system beats the baseline by a difference of 0.53
BLEU. Overall, the hierarchical system performs worse than phrase-based for this ex-
periment.

Source Target BLEU Feature
Baseline +Classifier Weight

French English 31.08 31.61 0.14

Table 2. Results of experiment with hierarchical translation

5. Discussion and Conclusion

In most SMT architectures, translation rules are scored based on their relative fre-
quency in the parallel training corpus. However, integrating richer information into
translation decisions is an active area of research.

We integrated a discriminative classifier into Moses in order to score translation
rules using richer models of their source context. This contrasts with the feature-
rich approaches already available in Moses. For instance, factored translation models
(Koehn and Hoang, 2007) can be used to define translation rules based on lemma,
POS, or other representations of phrases, but these rules are still scored using relative

3http://www.umiacs.umd.edu/~hal/damt/
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frequency. Source context features, such as words and part-of-speech tags surround-
ing a given source phrase, can also be directly made available to the decoder as fea-
tures in the log-linear model (Gimpel and Smith, 2008). While this approach presents
the advantage of directly optimizing feature weights for BLEU or other metrics of
translation quality, it suffers from current limitations with large-scale discriminative
training of SMT systems, as discussed in Section 2.

Our approach is inspired by context-dependent phrase lexicons for phrase-based
SMT models (Giménez and Màrquez, 2007; Stroppa et al., 2007; Carpuat and Wu, 2007;
Weller, 2010; Haque et al., 2011). These models generalize early discriminative word
translation models (Berger et al., 1996) to current phrase-based SMT. Unlike in Berger
et al. (1996), our phrasal translations are conditioned on the observed source sentence
context, rather than on the hypothesized target language context, which facilitates
the integration of context on the source side, such as the local and long-distance clues
used in word sense disambiguation.

Other work has focused on word-level discriminative lexicons (Bangalore et al.,
2007; Mauser and Ney, 2009; Venkatapathy and Bangalore, 2009), which predict which
words should occur in the output sentence based on a bag-of-words representation
of the source sentence. Extensions include Niehues and Waibel (2013) who enrich the
bag-of-word context with n-grams and syntactic features, and Jeong et al. (2010), who
focus on translation into morphologically richer languages.

Context-dependent scoring of translation rules can make decoding significantly
more expensive, as context-dependent translation probabilities cannot be pre-com-
puted once and for all at training time. Previous experimental implementations ex-
panded phrase-tables to represent phrase instances rather than types (Giménez and
Màrquez, 2007). In contrast, we integrate a fast online classifier designed for large data
directly into the decoder. Our implementation uses a single global model for disam-
biguating all source phrases, rather than one model per phrase type as in Carpuat
and Wu (2007); Giménez and Màrquez (2007) and in the Moses implementation of
Mauser and Ney (2009).4n addition to making the implementation and training easier
and more efficient, this approach can also potentially capture generalizations across
phrase types as observed for word lexicons in Jeong et al. (2010).

In hierarchical phrase-based SMT, classifiers have been used to disambiguate be-
tween translations of words and short phrases (Chan et al., 2007), and to model re-
ordering decisions (Xiong et al., 2006). In contrast, our implementation lets us directly
score each translation rule, and can simultaneously be used to model soft syntactic
constraints and lexical disambiguation clues.

Our work is also somewhat related to so-called sparse features (implemented in
Moses by Hasler et al., 2011). The weights of these features are trained on the devel-
opment set using MIRA. This is advantageous, as the weights of features associated
with the development set are optimized to maximize the final performance criterion

4http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc32
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(BLEU) directly. However, the development set is typically very small, which limits
the coverage of the features which can be effectively trained. We avoid the problem
of small dev sets by training our VW model on the training set. Our feature is then
just one score in the log-linear model.

We have integrated VW into Moses and provided a proof-of-concept implemen-
tation of a discriminative phrase lexicon. In the future we plan to implement other
feature functions and integrate other classifiers. All of our code is publicly available
in the Moses repository in the branches damt_phrase and syntaxContext.
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A. Installation

1. Download and compile VW:

git clone https://github.com/JohnLangford/vowpal_wabbit.git
cd vowpal_wabbit
./autogen.sh --prefix=`pwd`
make && make install

2. Download and compile Moses:

git clone https://github.com/moses-smt/mosesdecoder.git
cd mosesdecoder
git checkout damt_phrase # or syntaxContext for hiero
./bjam --with-vw=<path-to-vowpal-wabbit>

3. See the provided sample EMS configuration file and INI file for the VW feature
function:

mosesdecoder/scripts/ems/example/config.psd
mosesdecoder/scripts/ems/example/data/psd-features.ini
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