Incrementality, Half-life, and Threshold Optimization
for Adaptive Document Filtering

Avi Arampatzis* Jean Beney!

C.H.A. Koster

T.P. van der Weide

Proceedings of the Ninth Text REtrieval Conference (TREC-9),
Gaithersburg, Maryland, November 13-16, 2001.
Department of Commerce, National Institute of Standards and Technology (NIST).

1 Introduction

This paper describes the participation by researchers
from KUN (the Computing Science Department of the
Katholieke Universiteit Nijmegen, The Netherlands) in
the TREC-9 Filtering Track. As first-time TREC par-
ticipants, our group participated in all three subtasks
— adaptive, batch, and routing — while concentrating
mainly on adaptive tasks. We have made use of two dif-
ferent systems:

e FiLTERIT, for the adaptive and batch-adaptive!
tasks: a pure adaptive filtering system developed in
the context of our TREC-9 participation. It is based
on the Rocchio algorithm.

e LCS, for the routing and batch filtering tasks: a
multi-classification system based on the Winnow al-
gorithm.

In adaptive filtering, our contribution has been three-
fold. Firstly, we have investigated the value of retrieved
documents as training examples in relation to their time
of retrieval. For this purpose we have introduced the no-
tion of the half-life of a training document. Secondly,
we have introduced a novel statistical threshold selec-
tion technique for optimizing linear utility functions. The
method can be also applied for optimizing other effective-
ness measures as well, however, the resulting equation
may have to be solved numerically. Thirdly and most
importantly for adaptive long-term tasks, we have devel-
oped a system that allows incremental adaptivity. We
have tried to minimize the computational and memory
requirements of our system without sacrificing its accu-

*Computing Science Institute, Faculty of Mathematics and In-
formatics, University of Nijmegen, Postbus 9010, 6500 GL Ni-
jmegen, The Netherlands,
tel: +31 6 51 408838, fax: +31 24 3553450,
e-mail: avgerino@cs.kun.nl, http://www.cs.kun.nl/~avgerino

TOn sabbatical leave from INSA de Lyon.

1We see the batch-adaptive task as an adaptive rather than a
batch filtering task.

racy. In the batch and routing tasks, we have experi-
mented with the use of the Winnow algorithm, including
a couple of small improvements.

From the two topic-sets given, we have experimented
only with the 63 OHSUMED queries. We did not submit
any runs on the 4904 MeSH topics; these were simply too
many to be processed by our present systems in a reason-
able time and space. All experiments were done using a
keyword-based representation of documents and queries,
with traditional stemming and stoplisting, although our
long-term intention is to use phrase representations [2],
and apply more sophisticated term selection methods [3].
Table 1 summarizes our official TREC-9 runs.

Next, we will briefly describe the pre-processing applied
to the data. The FILTERIT and LCS systems are described
in Sections 3 and 4, respectively. In Section 5 we give an
overall view to how our systems performed in relation to
other participants.

2 Stream pre-processing

We used only the title and abstract fields (.T and .-W tags)
of the OHSUMED documents; their MeSH-headings were
discarded. The pre-processing of the documents and top-
ics was minimal and quite traditional. It consisted of (in
the order of application): replacement of all non-letters
by spaces, deletion of all one-letter words, lowercasing,
stoplisting?, stemming®, deletion of all one-letter stems,
and DF-stoplisting (removal of the top-100 stems with
the highest document frequencies in ohsumed.87).

In summary, our pre-processing was quick-and-dirty.
There was no special treatment of proper names, all num-
bers were lost, and we made no use of multi-word terms
such as phrases or word clusters. Moreover, we used no
external resources such as online dictionaries or thesauri.

2We used the standard stoplist of the SMART system,
english.stop, available from:
ftp://ftp.cs.cornell.edu/pub/smart/

3We used the Porter stemmer of the Lingua: : Stem (version 0.30)
library extension to PERL

Task Topics Optimized for | System | Run-tag
adaptive OHSUMED T9U FiLterIT | KUNalT9U
adaptive OHSUMED T9U FiLterIT | KUNa2T9U
adaptive OHSUMED TOP FiuTerIT | KUNalT9P
adaptive OHSUMED TOP FiuTerIT | KUNa2T9P
batch-adaptive | OHSUMED T9U FiLTeErRIT | KUNbaT9U
batch OHSUMED T9U LCS KUNbD
routing OHSUMED — LCS KUNr1
routing OHSUMED — LCS KUNr2

Table 1: TREC-9 filtering runs submitted by KUN.

3 The FiLTERIT System

The FILTERIT system, which we used for performing the
adaptive and batch-adaptive tasks, has been developed
in the context of our TREC-9 participation. It is a pure
adaptive filtering system based on Rocchio’s method [10].
Rocchio’s method performs well in a situation where only
a few training documents are available, see e.g. [9], and
this is exactly the case in the adaptive task. In such a
situation, the initial query becomes important and the
method can moreover deal in a suitable way with the
topic descriptions.

We have modified the formula traditionally used for rel-
evance feedback in order to allow for weighing of training
documents according to their time-stamps. Moreover, the
implementation of the algorithm we will present, allows
very accurate incremental training of classifiers, without
using any document buffers, so its memory and compu-
tational power requirements are low. In order to limit
further the memory requirements of our system per topic,
we also use a form of on-the-fly term selection.

Our system adapts queries and thresholds indepen-
dently for each topic, meaning that the filtering model
for a topic is updated after the retrieval of every single
document for that topic. In the runs optimized for the
T9P measure, threshold adaptations are even triggered
independently of document retrievals.

For optimizing the filtering thresholds, we have intro-
duced a new statistical technique which takes into account
the relative density of relevant to non-relevant documents
seen in the stream, and their score distributions. Most
of the quantities that our technique requires can be up-
dated incrementally, but a small document buffer seems
unavoidable.

3.1 Incremental Query Training

The version of Rocchio’s method traditionally used for
relevance feedback is
>. D,

1 1
= + B — E D—~v—r-ro

DeER

(1)

where @ the initial query, R and N the sets of relevant
and non-relevant documents respectively, and |.| denotes
the number of elements in a set. The parameters o, S,
and 7 control the relative contribution of the initial query,
and that of the relevant and non-relevant documents to
the new query Q. All components which end up with
negative weights in () are removed.

The initial query and the documents are usually repre-
sented by vectors weighted in a tf.idf fashion?. While the
tf components are usually independent of corpus statis-
tics, the idf components depend on the collection. Since
in filtering the whole collection is not available in ad-
vance, the idf components should be updated over time
(incremental idf). Therefore, it would be more suitable
for filtering to keep these quantities separately. As a re-
sult, queries and documents in our system are only tf-
weighted, e.g., a document D; is represented by

D = [tfy, .. (2)
where K the total number of terms known by the system
at one point in time. Any document or query is a sparse
array since it contains far less non-zero components than
K, so they are implemented by hash arrays.

Since all vectors are only tf-weighted, we have moved
the impact of idfs into the similarity function, which for
a query @ and a document D has been defined as:

'atfiK] ’

S(Q,D) = Q IDFDT (3)
where IDF is the diagonal matrix diag(idf;,...,idfy),
and X7 denotes the transposed array of X. Such an im-
plementation allows, at any time, the usage of the latest
1df values.

4tf.idf denotes here the family of weighting schemes which weigh
a term proportionally to its frequency in a document or query and
inversely proportional to its frequency across the collection. In prac-
tice, tf and idf are implemented by some monotonically increasing
functions of the corresponding frequencies. We consider the deci-
sion to use a tf.idf-type weighting scheme as an architectural choice,
while the exact form of the functions is an implementational choice.
‘We give our implementational choice in Section 3.3.

Now, formula 1 can be calculated incrementally by sim-
ply re-writing it as

1

- ’YF"C'IL)

Qn=aQo+ 57 B @)
n

where B,,, C,, are the accumulated sums of the term fre-
quency vectors of relevant and non-relevant documents
respectively, and R,,, N,, are the numbers of documents
in each category®. When document D,, is retrieved, Q,, is
calculated in two steps. First, all time-dependent quan-
tities (everything on the right side of the formula which
has the subscript n) in the last formulation are updated.
Then, the query @, is calculated using the updated quan-
tities.

Summarizing, the architecture we have just described
allows the most accurate incremental training with Roc-
chio. No training documents have to be discarded, as
would have been necessary in a sliding window adaptive
system. Moreover, no document buffers are necessary,
except B, and (), in which all training documents are
accumulated. In order to achieve all these, the only re-
quirement is that tfs are static in the sense that they can
be calculated only once when a document arrives.

Of course, there is another minor concession we make
here, that is to allow counting registers of infinite width
(the values of the components of B,,, C,, and the vari-
ables R,, N,, can grow up to infinity). Double precision
arithmetic approximates this assumption well. In any
case, when a number approaches the maximum width, all
quantities can be divided by a constant without invali-
dating the model.

3.2 Convergence, Responsiveness,
and Decay

The goal of the incremental training we have described
so far is to gradually converge to a perfect classifier.
All training documents, irrespective of their time of re-
trieval, are taken into account with equal importance in
constructing the classifier. Systems that implement this
kind of converging adaptivity we shall call asymptotically
adaptive. The use of an asymptotically adaptive system
for filtering implicitly assumes that topics are stable, i.e.
there are no topic drifts.

If there are topic drifts, the position of the perfect
classifier moves in the document-space. Therefore, it is

5The convention we use for the subscript n is: n is the total
number of training documents available (relevant and non-relevant).
Training documents are the ones given at the time of bootstrapping
(as for the batch-adaptive task), and all retrieved ones during fil-
tering since their relevance judgment can be seen. Thus, @ is the
classifier built using n training documents. If r of them are relevant,
then R, = r and N, = n—r, and By, Cy contain the sum of » and
n — r document vectors respectively.

beneficial for a filtering system to be capable of track-
ing a topic rather than converging. This capability can
be achieved by weighing more heavily training documents
that are retrieved recently. We call such systems locally
adaptive. The choice between local adaptivity and asymp-
totic adaptivity should be made depending on whether
convergence Or responsiveness is more important. More
about various forms of adaptivity for filtering systems and
the nature of topics in filtering can be found in [1].

In TREC-9, topics are assumed to be stable, suggest-
ing that an asymptotic behaviour would be more proper.
However, the OHSUMED collection consists of docu-
ments collected in a period of five years and it is likely that
for a topic the content of its relevant documents changes
over the years, e.g., think of new treatments developed
for the same sickness. The effect of such document con-
tent drifts is equivalent to user interest drifts in the sense
that the idea of relevance changes.

In order to weigh training documents differently, we re-
place the average vectors in the Rocchio formula of Eq. 1
with weighted averages. This does not invalidate the mo-
tivation of the formula. For instance, the average vector

of relevant documents becomes
1 1
Y D= > LD,
|R| Z Zi:D,’E'R l" 11;73

(5)

where [; represents the weight with which the document
D; contributes to the average.

A heavier weighting of recently retrieved training doc-
uments may be implemented by a decay operation with
half life h, i.e. the age that a document must be before it
is half as influential as a fresh one in updating the query.
If a document D; is retrieved at time ¢;, and the current
time is t,,, we set

l; = 0.5t —t)/h (6)

where t,,, t;, and h are measured in the same units, e.g.,
months.

Whether the initial query Qo should decay or not de-
pends on the nature of a topic. For a drifting user inter-
est, Qo should decay. For a stable interest with document
content drifts (as we argued to be true for TREC-9), any
of the two choices can be motivated (it rather depends on
how Qg is formulated). For our official TREC-9 runs, we
chose to decay Q.

The decay operation can be performed incrementally.
When D, is retrieved, and assuming that it is found to
be relevant, then it is easy to show that average vectors,
e.g., the one of relevant documents, can be updated as:

1 1
—B,= -
R, IR, 1+1

where g = t, — t,_1 stands for the elapsed time since

the previous query update (i.e., since @,—1 was calcu-
lated). Therefore, when a document is retrieved, all

(IBp_1+Dy) , 1=050/",

time-dependent quantities of equation 4 are multiplied
by the current decay factor [before they are updated
with the new document. To maintain correct decaying
weights, even the quantities which are not going to be
updated have to be multiplied, e.g. even if D,, is relevant,
N, =IN,, 3 and C,, =1C,,_1.

In TREC-9, time is estimated on the number of docu-
ments seen in the stream. It is given that the stream pro-
duces, on average, around 6,000 documents per month.
Therefore, for a half life of n months, we set h = 6,000m,
and g is simply the number of documents filtered since the
previous query update.

3.3 Term Weighting

For term weighting, we “borrowed” the Ltu formula from
[11]. In the Ltu weighting scheme, L is the term frequency
factor, t is the inverted document frequency factor, and
u is the length normalization of the document or query.

The t factors were initialized from ohsumed.87. Then
we used incremental idf: upon the arrival of a new doc-
ument and before any other calculation is performed, all
quantities that contribute to the ¢ factors are updated

The application of the Ltu formula in adaptive filtering
presents a small problem. The average number of unique
terms per document changes over time, therefore, the
term weights of past documents should be re-calculated as
well. We chose to calculate this average document length
on ohsumed. 87 and assume that it will not change in the
future. This allows to calculate the u factor once and for
all, when a document arrives. The assumption that the
average document length will remain the same in the fu-
ture is not far from reality for the OHSUMED collection,
since there is no special reason why medical researchers
should write abstracts of different lengths over time.

Summarizing and using our notation, the exact form of
the term weighting we used is:

tf=Lxu', idf=t, (7

where v’ is the same as u but with the average document
length fixed on its ohsumed.87 value (that was 40.8 after
the pre-processing). This form presents static tf compo-
nents, in the sense that they are calculated once when a
document arrives without the need to re-calculate them
in the future, and dynamic idfs. These features allow for
incremental training, as we have shown in Section 3.1.

3.4 On-the-fly Term Selection

It is empirically known that as the size of a corpus grows,
the number of unique words seen grows with the square-
root of the number of documents. In case of multi-word
terms (phrases), the number of such enriched terms grows
even faster. Therefore, the number of components of B,

and C,, vectors grows, at least, with the square-root of
the number of retrieved documents n. To limit the size
of these vectors we use term selection.

In fact, term selection is more critical for the threshold
optimization technique we will describe in Section 3.5.
The incremental application of the optimization tech-
nique requires matrices as large as the square of the
size of B,, or C,, consequently the memory requirements
may explode soon if no term selection is used (see Sec-
tion 3.5.3).

Term selection was applied for each topic indepen-
dently, before every incremental update of the corre-
sponding query. Our on-the-fly term selection consists
of the following steps. First, a query is constructed using
information only from relevant instances and the current
IDF matrix:

1
Qn,rel = <a QO + ,B_Bn) IDF . (8)
R,

Then, we rank all terms of @, according to their
weight, and select only the top-%k£ ones and the terms oc-
curring in @Qg. The rest of the terms are discarded and
removed from all quantities kept by the system for the
topic (e.g., B, and C},). Then, @, is calculated using the
reduced data.

This technique limits the memory required for filtering
a topic. However, the size of the IDF matrix still grows by
the time, as previously unseen terms occur in documents
of the stream. We consider IDF as stream data rather
than topic data, since it is the same for all topics being
filtered at any point in time. Therefore, we do not limit
its size.

3.5 The Score-Distributional
Threshold Optimization

Let us assume that for some topic a training stream of
n documents is available, of which r are relevant. After
the filtering the stream with some query and a threshold,
each document may be classified under one of the four
categories shown in the contingency table:

relevant non-relevant
retrieved Ry Ny
non-retrieved R_ N_
total r n—r

The variables Ry, Ny, R_, and N_ refer to the num-
ber of documents in each category. Given any evaluation
measure M and a query, a filtering threshold § can be
selected so as to optimize the measure on the training
stream. In this Section, we outline a threshold optimiza-
tion technique which can be applied for any evaluation
measure of the form M(R;,Ny,R_,N_), i.e. M is any
function of the document counts in each category.

The idea is to describe a dataset of document scores
with their probability density function. There are two
such functions, one for relevant and one for non-relevant
document scores. Then, these functions are multiplied
by the corresponding numbers of document scores used
for their estimation, so that the area below each curve
amounts to the number of documents. Now, each variable
of the contigency table can be expressed as a function of
0 by 1ntegrat1n§ a range on the corrensponding curve,
e.g. R, (0) = [,"° rP.(z) dz where P, is the probability
density of relevant document scores. The threshold which
optimizes M is a solution of

aM (R+ (0) 7N+(0)7R7 (0)7N7(9))

do =0.

(9)

Depending on the exact form of function M, equation 9
may not have analytical solutions and it should be solved
numerically.

3.5.1 Score Distributions

In [4] we prove that a Gaussian limit appears for the dis-
tribution P, of relevant document scores. Furthermore,
we show that the distribution approaches the Gaussian
quickly, such that corrections go to zero as 1/Kg, where
K¢ the length of the query. Empirically, Gaussian shapes
form at around K¢q = 250.

For non-relevant documents, we show in the same study
that a Gaussian limit is not likely, and if it appears, then
only at a very slow rate with Kg. Empirically, we have
never seen Gaussian shapes even for all dimensions re-
sulted from massive expansion of queries. Our empirical
data, however, point out that the right tail of the distribu-
tion can be very well approximated with an exponential.

Figure 1 shows the empirical score distributions for
TREC topic 352 on the Financial Times collection. We
collected these data as follows. First, we trained a classi-
fier using all relevant documents and an equal number of
the top-scoring non-relevant using the query zone®. Then,
we calculated the scores of relevant and non-relevant doc-
uments for the classifier. The middle plot shows the
empirical distribution of relevant document scores, and
the corresponding Gaussian multiplied by the number of
scores. The left plot shows the empirical distribution of
the top-100 non-relevant scores, and exponential curves
of the form c;e~°27 fitted on the top 100, 50, 25, and 10
scores. It seems that at least 50 or more scores are needed
for an accurate threshold estimate. The right plot shows
the optimal T9U threshold. As we will prove in Sec-
tion 3.5.2, the optimal T9U threshold is the intersection
of the probability densities of relevant and non-relevant
document scores, weighted as 2r and n — r respectively.

8For the query-zoning method, see Section 3.6.2 or [12].

3.5.2 Optimizing Linear Utility Functions

Let U any linear utility function of the form

Ui o s na) = MRy + XNy + 3R+ AN, (10)
where A1, A2, A3, A4 denote the gain or cost associated
with each document that falls in the corresponding cate-
gory. The linearity of such measures allows for analytical
solutions of Eq. 9, since the integrals describing the docu-
ment counts cancel out with the derivative of the measure.
Consequently, and after a few calculations, Eq. 9 becomes
Az — A
N\ = 3 1 . p= T
A2 — g

)‘ppr(o) = Pnr(e)a (11)

n—r
p is the relative density of relevant to the non-relevant
documents in the training stream. For T9U, A = 2. P,
and P,, are the density functions of the probability dis-
tributions of relevant and non-relevant document scores.

Let P, be a Gaussian density with mean u, and stan-
dard deviation o, and P,; an exponential density of the
form c; e~ 2% estimated on the right tail of the distribution
of the non-relevant scores. Then, the solution of Eq. 11,
i.e. the optimal threshold, is:

0={ (b—+vA)ja if A>0

+0o0 if A<0’
1
a=—, b:u—+cz, c—&—Zl <

T JT UT

A=b%—ac,

Ap

cin/2mo?)

(12)
Note that since the exponential corresponds to the top
non-relevant scores, it does not extend accurately to low
scores. Consequently, the method gives more accurate
results when there is no contribution of N_ into the utility
score, i.e. for Ay = 0, which holds for T9U.

3.5.3 Incremental Mean and Deviation

The method we have described for threshold optimization
uses the mean of the relevant document scores and their
standard deviation. In general, means and deviations can
be calculated incrementally. However, in the case of fil-
tering every update of the query causes the scores of the
previous training documents to change. The choice that
we have made in Section 3.1 to have query and docu-
ments only t¢f-weighted and keep idfs separately, allows
for incrementality also here.

For query @, the average score of r relevant documents

Dq,...,D, with scores s1,...,5, can be written as
1
Ly = ;(51 +-o48p)
1
= - (Qn IDFDT +--- + Q, IDF DY)
r

DISTRIBUTION OF SCORES OF THE TOP-100 NON-RELEVANT DOCUMENTS FOR TOPIC FT-352

DISTRIBUTION OF SCORES OF RELEVANT DOCUMENTS FOR TOPIC FT-352

OPTIMAL T9U THRESHOLD FOR FT-352

T

rélevant document scores i 2247 * Gaussian
247 * Gaussian ------- H exp 100 ———

150 200 400 50 0
score

100 250 300 350

400

score

Figure 1: Score distributions and the optimal T9U threshold.

1 - 1
=-Q,IDFS DI =2Q, IDFBT . 13
-Q ; i=2Q neo (18)
Obviously, the individual document scores s1,...,s, are

not needed, but only the accumulated sum of the relevant
document vectors B,,. Using B,,, the current query Q,,
and the most recent IDF matrix, the mean score can
be calculated accurately and incrementally. This way of
keeping an average score accurate has been seen before in
[6]; we have merely re-formulated it, using matrices, for
compactness.

The standard deviation may be obtained from the for-
mula 02 = HSZ) —p2, where pﬁz) is the mean of the squares
of the relevant document scores. The proof of the incre-
mental formula for ,u£2)
only the final formula:

is more complex; here we give

p? = = (Qn IDF) Bayaq,n (Qn IDF)™

N | =

T
Bayad,n = ZDZ-TD,- .

i=1

(14)

Consequently, a K x K matrix Bgyaq,, is required for
keeping the deviation of the scores accurate, however, this
matrix can be updated incrementally. K grows with a
square-root, so Bgyad,, grows linearly in time. This makes
term selection indispensable (see Section 3.4).

3.5.4 Optimizing T9P

The S-D threshold optimization we have introduced in
Section 3.5 can be applied to optimize T9P. However, in
this case Eq. 9 does not have analytical solutions, there-
fore it has to be solved numerically. Regrettably, we did
not bother to do that.

The technique we used lowers the threshold after every
“quiet” month with respect to how many documents are
missing according to the pro-rata adjusted minD value.
It goes as follows:

1. right after a query update, start collecting the doc-
ument scores in the range [uy,, 0], where py,, is the
mean score of the NT-documents and # the optimal
S-D threshold for U = Ry — N;.

. if after one month of documents nothing is retrieved,
calculate how many should have been retrieved by
the current time (pro-rata).

check how many are missing;:
m = pro-rata—retrieved.

if m > 0, lower the threshold to s,,, where s,,, the
top-m score seen below 6.

The method works, in the sense that it retrieves around
minD(= 50) documents or more. Moreover, it retrieves
the ones that score the highest. It assumes, however, that
the distribution of relevant documents in the stream is
uniform (or their relative density is approximately con-
stant), in general a false assumption. Another draw-
back of the method is that it optimizes the threshold for
U = R, — Ny and not for precision. All of these, we
believe, make our submitted T9P runs moderately satis-
factory.

After all, we should have at least tried to solve Eq. 9
numerically. Although analytical formulas are mathemat-
ically more elegant, in practice, numerical methods are
efficient and easy to implement.

3.6 Experiments with FILTERIT

The FILTERIT system presents two features which we are
interested in comparing their effectiveness with other sys-
tems: the threshold optimization for linear utility func-
tions (see Section 3.5.2), and the decay of training docu-
ments (see Section 3.2). The tuning parameters were nu-
merous, and the runs allowed for submission to TREC-9
were limited to 4 for adaptive and to 2 for batch filtering
(including batch-adaptive). Moreover, we submitted one

of the two batch filtering runs with the LCS system de-
scribed in Section 4. These limits do not allow extensive
comparisons, and some choices had to be made.

Our strategy in deciding what to submit was as follows.
For the two of the four adaptive runs we did not use any
of the two features but rather conventional techniques.
In this way, we expected to have at least two runs with
conventional effectiveness, in case our techniques would
have failed. The other two adaptive and the single batch
filtering run combine all the new features. All parameters
were set at “safe” values, as these were determined by our
experiments with the Financial Times (FT) collection.
More aggressive settings have yielded better effectiveness
on FT, however, we do not believe that these generalize
in all collections.

3.6.1 Rocchio Parameters, and
Initial Query Elimination

All adaptive runs use @ = S = 7 for Rocchio. These
tasks start with a query and only 2 relevant training doc-
uments. In pilot runs on FT, traditional settings with
a < [seemed to overfit the classifiers on those 2 relevant
documents. Therefore, such small training sets should not
be trusted and the initial query Qo should be weighted
fairly high, e.g., as high as o = §. As a filter is collect-
ing more and more relevant documents, the contribution
of the initial query can gradually be eliminated. Con-
sequently, we moreover multiply Q¢ with 10/(R,, + 10)
while calculating the new query @,,. We do not use such
an initial query elimination for the runs with decay since
the initial query decays anyway.

For the batch-adaptive task, « is set at the one-fourth
of B. Since larger training sets are given for this task,
the danger of overfitting is smaller. When using query
zones, [12] have shown that § = v is a reasonable setting.
This also explains why we set 8 = <y also for the adaptive
tasks. Thresholding document scores during filtering can
been seen as a form of on-the-fly query zoning. Any non-
relevant documents retrieved in this way are indeed the
most interfering with the query. This setting has worked
out well for us in our experiments on FT.

3.6.2 Submitted Runs

Table 2 summarizes the runs we submitted, their param-
eter settings, and the final results obtained.

KUNalT9U and KUNalT9P do not use decay, term
selection, or the threshold optimization described in this
article. The threshold per topic is set at the midpoint
of the average scores of relevant and non-relevant docu-
ments. In fact, for KUNalT9U we set thresholds at the
one-third of the distance between the non-relevant and
the relevant mean score to reflect the fact that the gain of
retrieving a relevant document is double than the cost of

retrieving a non-relevant one (definition of T9U). There-
fore, the thresholds should be lower than the midpoints
to retrieve more relevant documents.

KUNa2T9U and KUNa2T9P use a decay for training
documents with half life set to 2 years; we have found
this value reasonable for filtering medical articles. Term
selection cutoff is set at the top-500 terms; a light cutoff
because our threshold optimization seems to require at
least 250 terms in a classifier (Section 3.5.1), and more-
oever, long classifiers are necessary when tracking rele-
vance drifts [1]. Thresholds are S-D optimized, however,
not exactly as we have described in this article.

Our S-D method was in an early stage at the time of
submition. What we did was to approximate the N
document scores with a Gaussian. Repeatedly adapting
a query causes the distribution of non-relevant retrieved
document scores to look more like a bell-shaped distri-
bution. This is an artifact of re-training, however, and
does not correspond to what is really happening below
the threshold. Nevertheless, it has worked out resonably,
suggesting that a Gaussian approximation may be usable
since it still gives some estimation of the spread of the
non-relevant scores; however, it is of dubious accuracy.
We will come back to this in Section 3.6.3.

For KUNbaT9U (batch-adaptive) we basically use the
same settings as for KUNa2T9U, except for the Rocchio
parameters. Moreover, we apply document sampling and
query zoning [12]. The training stream (ohsumed.87)
consists of around 54,000 documents, and only a few of
them are relevant for a topic. For efficiency reasons we do
random sampling with probability 0.1 to reduce the num-
ber of non-relevant training documents. Then we apply
query zoning to select and use for training only the top-r
scoring non-relevant documents, where r is the number
of relevant training documents. We calculate the query
zone with formula 1 for v = 0.

The adaptive runs do not show large differences in ef-
fectiveness, mainly because of the modest parameter set-
tings for term selection cutoff, half life value, and the fact
that the S-D threshold optimization technique is triggered
only when at least 5 relevant and 5 non-relevant training
documents are made available. Many topics did not reach
these numbers, so they were actually filtered with thresh-
olds set at weighted midpoints.

3.6.3 More Runs

In this Section, we provide the extras runs we made in
order to find where some the parameters of FILTERIT
peak, and determine which techniques actually work. All
runs reported here use (unless otherwise is noted): query
zoning to select for training only the top-r non-relevant
documents, term selection cutoff set at 500, no decay, and
thresholds set at weighted midpoints for T9U.

Runs

KUNalT9U | KUNa2T9U | KUNalT9P | KUNa2T9P | KUNbaT9U

Task adaptive batch-adapt.

Rocchio a=pB=1v da=0F=1vy
() zoning — top-r
Qo elimination || 10/(10 + R,,) no 10/(10+ R,,) no no
T-opt. for T9U T9U T9P ToP T9U
T-opt. method || (1 + 24n:) /3 S-D (fr + par) /2 S-D S-D
half life (o) 2 yrs (o) 2 yrs 2 yrs
T.S. cutoff — 500 — 500 500

| Result || +16.8 | +17.3 | 0.258 | 0.231 | +19.4 |

Table 2: Parameter settings for adaptive and batch-adaptive submitted runs.

Document Sampling and Query Zoning. We have
investigated the effect of sampling the non-relevant docu-
ment space. We have run a batch-adaptive task with 3 dif-
ferent samples. Table 3 presents T9U and F-measure re-
sults. All samples are made by selecting randomly one out

sample TIU Fi

A (official) | 19.5 | 0.406
B 19.8 | 0.406
C 19.1 | 0.403

Table 3: The effect of sampling the non-relevant training
document space.

of ten non-relevant training documents from ohsumed. 87.
Then query zoning is applied before training the initial
classifier. The results do not show significant differences.

Term Selection. Figure 2 shows the impact of our
term selection method (see Section 3.4) for different cutoff
values. The runs are batch-adaptive using sample A. The
average T9U seems to peak between 500 and 125 terms.

Decay. We have experimented with different half-life
values on an adaptive task. Figure 3 shows that the av-
erage T9U peaks somewhere between 2 and 8 years of
half life. However, further analysis has revealed that ef-
fectiveness peaks at considerably different half-life values
across topics. An optimization of half-life per topic — if
we only had a way to do that — would have resulted in
great improvements of the average T9U.

Threshold Optimization. In [13] we give the TREC-
9 evaluation table of our submitted batch and batch-
adaptive runs. We have made a supplemental batch-
adaptive run with the revised S-D threshold optimization
as described in this paper, i.e. by fitting an exponential on

the top-50 non-relevant training documents’. When the
non-relevant training document buffer exceeds 50 docu-
ments, we sort them according to their scores and discard
the lowest scoring one. The results are presented in the
last column, labeled as FilterIt-ba. They show an im-
provement in the average T9U from 19.4 to 21.3.

TERM SELECTION CUTOFF vs T9U

T9U
&
I
o

1 1 1 1
250 125 68 34
cutoff

L L L
2000 1000 500

TERM SELECTION CUTOFF vs PRECISION, RECALL, and F1

T T — T

macro-average Precision —+—

macro-average Recall ---x--- <
macro-average F1 -- - >

0.42 |

1 1 1 1
250 125 68 34
cutoff

Figure 2: The effect of term selection.

"Note that we have not optimized any other parameter accord-
ing to our post-official runs; we have merely used a better S-D
optimization.

HALF-LIFE vs TOU
18 T

T9U

13 1 1 1 1 1
infinite 8 4 2 1

years

HALF-LIFE vs PRECISION, RECALL, and F1

- T T T T
macro-average Precision —+—
macro-average Recall ---x---
0.38 - macro-average F1 ---*--- 7
0.36 [4

infinite 8 4 2 1

Figure 3: The effect of decay.

One could argue that setting thresholds with the
weighted midpoint method works out comparably to
the S-D optimization (compare e.g. KUNalT9U to
KUNa2T9U), but this is not the case. In fact, the good
performance of the weighted midpoint method has been
purely accidental; the same goes for the aforementioned
Gaussian fit on non-relevant document scores. The mean
score of non-relevant documents p,, has been estimated
on the top-scoring non-relevant documents. This pro-
duces a relatively large p,,, which in its turn results in
tight thresholding. When we have tried to increase the
number of non-relevant documents, the weighted mid-
point method as well as the Gaussian fit have greatly
failed: the more non-relevant documents are used for
training, the lower the uy,, thus lower thresholds. The
methods fall too easily into the selectivity trap of retriev-
ing too many (mostly non-relevant) documents. The re-
vised S-D optimization as described in this article has
proved much more reliable and robust in a range of set-
tings, consistently avoiding such selectivity traps.

4 The LCS System

The routing and batch filtering tasks were carried out by
the LCS system?® [9]. The system is based on the Win-
now mistake-driven learning algorithm [8]. The Winnow
algorithm has, to our knowledge, not been used before
in TREC. It can cope well with large numbers of terms,
which is certainly the case here: after pre-processing, the
training set had some 52,000 different terms.

4.1 The Winnow Algorithm
and Improvements

During training, the Balanced Winnow algorithm [8, 7]
iteratively computes two weights w;" ic and w; o for every
term 4 and class (topic) C. These winnow wezghts are
used to compute the score S(D,C) of a document D for
the class C' as:
S(D,C) = (wie —wig) *uip,

i€D

(15)

where u; p is the term strength (weight) of term 4 in
document D. Classification is achieved by thresholding
S(D, C) using a threshold 6.

Winnow is mistake-driven in the sense that it adjusts
the weights w, and w;, only if their current value, dur-
ing an iteration, leads to a misclassification. If a relevant
document scores below 6, then the winnow weights for
the terms occurring in the document are multiplicatively
updated using a promotion factor Alpha. Similarly, for a
non-relevant document scoring above 6, the weights are
demoted using a demotion factor Beta. The threshold
0 is considered fixed, and the learning stops when there
are no weight updates during an iteration, or earlier even
in order to avoid over-training. Topic descriptions were
considered as normal documents, since Winnow provides
no special mechanism for dealing with requests.

The implementation of Winnow in LCS is similar to
the one described in [7], with two modifications:

1. the document terms u; p are ltc weighted [5], without
the vector length normalization factor. Traditionally,
u;,p are set either to the frequency of ¢ within D, or
to the square-root of the frequency. In experiments
on the FT corpus, ltc has proved to work definitely
better than the former, and slightly better than the
latter.

2. Winnow weights were initialized for training as:

20 _ 0
’(UT'_C == 7o W~)
b ADS b ADS
8Esprit project DOcument ROuting (DORO),
http://www.cs.kun.nl/doro

2iep Ui,D
size(D)
where size(D) is the number of unique terms in docu-

ment D. This initialization improves Winnow’s con-
vergence speed.

ADS = AVG,,

’

The convergence speed of the Winnow algorithm (the
number of iterations needed to learn a stable classifier) de-
pends rather critically on the initial values of the weights.
In [7], all positive weights are initialized as 6/d, where 8
is the threshold and d the average number of “active fea-
tures” in documents. This choice ignores collection statis-
tics for terms. In our initialization, an average document
obtains an initial score equal to 6. Since term strengths
are taken into account, fewer iterations are needed.

4.2 Threshold Setting
by Cross-evaluation

The Winnow algorithm has a “natural” threshold 8 =
1.0 for separating relevant from non-relevant documents,
putting equal importance on precision and recall. T9U
stresses recall more than precision, however. The S-D
threshold optimization, as described in section 3.5, has
not (yet) been implemented in the LCS, so the nec-
essary threshold optimization was performed by cross-
evaluation.

The training set (ohsumed.87) was split into n subsets
of the same size, which each in turn was used as optimiza-
tion test set while all the other subsets, together with the
topic descriptions, were used as optimization training set.
The scrap of the split was included into the optimiza-
tion test set. After training Winnow with n — 1 subsets,
the documents of the remaining subset (optimization test
set) were ranked according to their scores. Then, by going
down the rank, the threshold value that optimized T9U
was found. We performed the cross-evaluation for n = 2,
3 and 4, and we took the mean of all (2+3 +4 = 9)
optimal threshold values.

4.3 Experiments with LCS
4.3.1 Submitted Runs

We set the Winnow parameters to the values that gave
the best results on the FT corpus (Table 4). We use the
thick separator heuristic [7]: instead of a single threshold
6, a threshold range [0~ : 6] is used. There is a promo-
tion whenever a relevant document obtains a score below
0T and a demotion when a non relevant document gets
a score over ~. This heuristic achieves a better separa-
tion between relevant and non-relevant documents. The
asymmetry around the standard threshold (1.0) forces the
algorithm to perform more promotions than demotions on
the early iterations. This compensates for the asymmetry

10

parameter value
Alpha 1.1
Beta 0.9
ThresholdRange | on
o+ 1.3
0~ 0.9
MaxTters 30

Table 4: Winnow Parameters.

between the numbers of relevant and non-relevant train-
ing documents, speeding up convergence.

We have submitted 2 routing runs, KUNr1 and KUNr2.
LCS has originally been developed for mono-classification
tasks, i.e., each document belongs to exactly one class.
This means that the relevant training documents for one
class are considered as non-relevant training documents
for all other classes. That is certainly not the case in
filtering, so we had to do separate runs per topic assum-
ing two classes: relevant and non-relevant. The routing
results KUNr1 were produced like this.

The approach of separate runs is correct but obviously
inefficient. So, we also tried to process all topics at once
(KUNr2), hoping that they do not have relevant doc-
uments in common, or even if they do, the impact of
this dubious approach on effectiveness would not be that
great. Luckily, in the given dataset, it was not: the av-
erage uninterpolated precision was practically the same.
We obtained 0.237 for KUNrl and 0.234 for KUNr2.

The batch filtering run KUNb was obtained through
the thresholding of the rankings of KUNrl. Threshold-
ing was performed by the cross-evaluation method we de-
scribed in Section 4.2.

4.3.2 More Runs

The KUND results, obtained with separate thresholds per
topic calculated by cross-evaluation, can be compared
with those obtained by a simpler method: a uniform
threshold for all topics. We can choose as a uniform
threshold any value in the threshold range; such a choice
should give the same result if the classification is per-
fect. But two values are special: 1.0 (average document
score before training), and 1.1 (the center of the threshold
range).

Table 5 shows that the results for § = 1.0 are worse
than those for # = 1.1. Moreover, a uniform thresh-
old set at 1.1 gives slightly better results than the sep-
arate thresholds computed by cross-evaluation. It seems
that the cross-evaluation method has failed, mainly be-
cause the training sets had relatively small numbers of
relevant training documents. Splitting the sets for cross-
evaluation, made the things even worse.

Run TIU

separate 0’s via cross-evaluation (KUND) 5.0
uniform 6 = 1.0 -3.5

uniform 0 = 1.1 6.0

best possible thresholdings on KUNrl 17.9

Table 5: Different thresholdings on Winnow.

The best possible thresholdings on the rankings of
KUNr1 would have obtained an average T9U of 17.9; not
very great either, considering that the largest possible
average T9U for the given test set is 104.9. This implies
that the rankings achieved are not very good.

5 Overall Comparison
and Discussion

In [14] we give the TREC-9 evaluation table of our sub-
mitted routing runs with the LCS system. The right-
most column, FilterIt-r, corresponds to a supplemen-
tal routing run with the FILTERIT system. Obviously,
FILTERIT gives better rankings than LCS; the correspond-
ing average uninterpolated precision figures are 0.373 and
0.237. Thresholding the rankings of FilterIt-r with the
optimal S-D thresholds (as these were estimated by the
method described in section 3.5.2) we obtained a (non-
adaptive) batch run with FILTERIT. Its results are pre-
sented under the label FilterIt-b in [13]. An average
TIU of 14.8 is obtained in contrast to 5.0 obtained by
LCS.

Since FilterIt-r and FilterIt-b are not post-factum
optimized, it seems that we should have submitted all
runs, for all filtering tasks, with the FILTERIT system.
The FilterIt-r routing run, with an average precision
of 0.373, would have ranked us as second best system; the
first system scored at 0.385. The FilterIt-b batch run,
with an average T9U of 14.8, would have ranked us clearly
as the best system; the best official batch run scored at
7.5. The official TREC-9 comparison tables of the tasks
we have participated can be found in [15]. At an rate, we
are very satisfied with the performance of the FILTERIT
system in our official runs. We have clearly achieved the
best scores in all adaptive and batch-adaptive tasks op-
timized for T9U. Compare the 17.3 (KUNa2T9U) and
19.4 (KUNDbaT9U) to the 10.7 and 13.6 of the second
best systems in the corresponding tasks. The official T9P
runs are also satisfactory; our best run has achieved 0.258
(KUNalT9P), a rather comparable effectiveness to the
0.294 of the best system. After all, we have not opti-
mized exactly for T9P, but for some other related utility
measure, in order to simplify the calculations (see Sec-
tion 3.5.4).

11

Why are the results with the LCs less satisfactory? Ac-
cording to our experience, Winnow performs better than
Rocchio when large numbers (hundreds) of relevant train-
ing documents are available for each class. This was not
the case in the batch and routing tasks of TREC-9 where
some topics had very few relevant training documents.
This may largely be responsible for Winnow’s weak per-
formance. Furthermore, with 30 iterations in the learning
phase, there is some evidence of overtraining.

Why are the results with FILTERIT so good? Let us
summarize the methods we have used: accurate and incre-
mental adaptivity as soon as a single training document
becomes available (in contrast to re-training in batches),
local adaptivity (training documents of decaying value
in time), on-the-fly term selection (in contrast to just
cutting off classifiers), the S-D threshold optimization
(note that we are talking about “optimization” rather
than “setting”), and initial query elimination. Moreover,
all parameter settings (e.g. Rocchio’s a, 8,7, term selec-
tion cutoff, half life) have either been empirically deter-
mined on the Financial Times collection or at least moti-
vated. There is evidence as well that Ltu weighting and
query zoning have contributed considerably to effective-
ness. The FILTERIT system is a typical example of: the
whole is more than the sum of its parts.

6 Conclusions and
Further Research

In this first-time contribution to TREC, we have focussed
mainly on the adaptive tasks. Our contribution to adap-
tive filtering has been threefold:

e We have investigated the value of retrieved docu-
ments as training examples in relation to their time
of retrieval. For this purpose, we have introduced the
notion of the half-life of a training document. The
approach has presented promising results.

e We have introduced the Score-Distributional (S-D)
threshold optimization method, capable of optimiz-
ing any effectiveness measure defined in terms of the
traditional contingency table. The method has found
to be very effective, and it can moreover be applied
incrementally.

e We have developed a system that allows incremental
adaptivity, minimizing its computational and mem-
ory requirements without sacrificing too much of ac-
curagcy.

In overall, we are very satisfied with our adaptive results;
we have clearly achieved the best utility scores in all adap-
tive and batch-adaptive tasks that we have participated.

The results of the batch and routing tasks are less satis-
factory, but at least the feasibility of using the Winnow
algorithm in these applications has been demonstrated.

Summarizing, our TREC-9 participation has motivated
a great deal of research. As a result, we have finalized
the S-D threshold optimization in [4], and we have re-
considered the nature of the filtering task in [1]. Our
plans for further research include: finding a way of de-
tecting relevance drifts in order to select appropriate half
life values, and to revise the term selection method we
have introduced in [3].

Acknowledgments

The first (and main) author would like to thank André
van Hameren for the fruitful discussions during the devel-
opment of the FILTERIT system.

References

[1] A. Arampatzis and T. P. van der Weide. Document
Filtering as an Adaptive and Temporally-dependent
Process. Technical Report CSI-R0103, University of
Nijmegen, January 2001.

Available from http://www.cs.kun.nl/~avgerino.

[2] A. Arampatzis, T. P. van der Weide, C. H. A.
Koster, and P. van Bommel. Linguistically Moti-
vated Information Retrieval. In A. Kent, editor,
Encyclopedia of Library and Information Science.
Marcel Dekker, Inc., New York, Basel, 2000. To
appear.

Available from http://www.cs.kun.nl/~avgerino.

[3] A. Arampatzis, T. P. van der Weide, C. H. A.
Koster, and P. van Bommel. Term Selection for
Filtering based on Distribution of Terms over
Time. In Proceedings of RIAO’2000 Content-Based
Multimedia Information Access, pages 1221-1237,
Collége de France, Paris, France, April 12-14 2000.
Available from http://www.cs.kun.nl/~avgerino.

[4] A. Arampatzis and A. van Hameren. The Score-
Distributional Threshold Optimization for Adaptive
Binary Classification Tasks. Technical Report
CSI-R0105, University of Nijmegen, January 2001.
Available from http://www.cs.kun.nl/~avgerino.

[5] C. Buckley, G. Salton, and J. Allan. The Effect of
Adding Relevance Information in a Relevance Feed-
back Environment. In W. B. Croft and C. J. van
Rijsbergen, editors, Proceedings of the 17th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
292-300, Dublin, Ireland, June 1994. ACM Press.

12

[6] J. Callan. Learning While Filtering Documents.
In W. B. Croft, A. Moffat, C. J. van Rijsbergen,
R. Wilkinson, and J. Zobel, editors, Proceedings of
the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 224-231, Melbourne, Australia, Au-
gust 1998. ACM Press, New York.

[7] 1. Dagan, Y. Karov, and D. Roth. Mistake-driven
Learning in Text Categorization. In Proceedings of
the Second Conference on Empirical Methods in Nat-
ural Language Processing, 1997.

[8] N. Littlestone. Learning Quickly when Irrelevant
Attributes Abound: a New Linear-threshold Algo-
rithm. Machine Learning, 2:285-318, 1988.

[9] H. Ragas and C. H. A. Koster. Four Text Classi-
fication Algorithms Compared on a Dutch Corpus.
In W. B. Croft, A. Moffat, C. J. van Rijsbergen,
R. Wilkinson, and J. Zobel, editors, Proceedings of
the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 369-370, Melbourne, Australia, Au-
gust 1998. ACM Press, New York.

J. J. Rocchio. Relevance Feedback in Information
Retrieval. In The SMART Retrieval System — FEz-
periments in Automatic Document Processing, pages
313-323, Englewood Cliffs, NJ, 1971. Prentice Hall,
Inc.

[10]

[11] A. Singhal. AT&T at TREC-6. In E. M. Voorhees
and D. K. Harman, editors, The Sixzth Text RFEtrieval
Conference (TREC-6), pages 215-225, Gaithers-
burg, Maryland, November 19-21 1997. Department
of Commerce, National Institute of Standards and

Technology (NIST) Special Publication 500-240.

[12] A. Singhal, C. Buckley, and M. Mitra. Learning
Routing Queries in a Query Zone. In N. Belkin,
D. Narasimhalu, and P. Willett, editors, Proceedings
of the 20st Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 25-32. ACM Press, New York, July

1997.

[13] http://www.cs.kun.nl/~avgerino/

Avi Arampatzis/publications/TREC9/batchT9U.txt .

[14] http://www.cs.kun.nl/~avgerino/
Avi_Arampatzis/publications/TREC9/routing.txt .

[15] http://www.cs.kun.nl/~avgerino/

Avi_Arampatzis/publications/TREC9/averages.txt .

