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ABSTRACT
In TREC 2016, we focus on tackling the challenges posed by
the Dynamic Domain (DD) track. The goal of the TREC
DD track is to support research in dynamic, exploratory
search within a complex domain. To this end, our partici-
pation investigates the suitability of multiple diversification
approaches for dynamic information retrieval. In particu-
lar, based on fine-grained real-time feedback obtained from a
simulated user, we apply diversification strategies that make
use of single-source as well multi-source information for min-
ing flat or hierarchical query aspects.

1. INTRODUCTION
The TREC 2016 Dynamic Domain (DD) track [5] consists

of performing an interactive search task in a specific domain.
In particular, the goal of this track is to cover multiple as-
pects of the user’s information need as early as possible.
Therefore, in this track, each participant relies on a simu-
lated user (called “the jig”) to get real-time feedback on a
short list of documents that the participant’s system returns.
This process repeats until the participant’s system decides
that the user has fulfilled his or her information need.

The central theme of our participation in the TREC 2016
DD track is to investigate the suitability of search result di-
versification as a mechanism to increase the coverage of the
possible aspects underlying the user’s query while requiring
as little as possible user interaction. We make use of the ex-
ploratory and explicit nature of the user’s inputs, whereby he
or she directly assists our system in assigning aspects to doc-
uments passages. In particular, we investigate approaches
for diversification that leverage either flat or hierarchical as-
pects from a single or from multiple sources. Along with
the diversification approaches, we investigate three strate-
gies proposed in the literature for reducing the number of
iterations of the retrieval-feedback cycle needed to fulfill the
aspects that are of interest to the user.

The remainder of this paper is structured as follows. In
Section 2, we briefly formalize the task tackled in the TREC
2016 DD track and provide an overview of our system. In
Section 3, we discuss the results of our official and unofficial
runs. In Section 4, we present our conclusions.

2. INTERACTIVE DIVERSIFICATION
The TREC DD track invites participants to propose search

systems capable of interactively satisfying the multiple as-
pects associated with the information need of a (simulated)
target user. Given a query q posed by the target user, a

search system may return a batch D of documents to the
user. For each document d ∈ D, the user provides the sys-
tem with a feedback set F . Each feedback f ∈ F is defined
as a tuple f = 〈p, a, g〉 comprising a passage p that the user
deemed relevant to aspect a at a given relevance level g. The
search system may then return another batch of documents
for more feedback or decide to stop the search process.

Our approach has three components: (i) a baseline ranker,
which retrieves a candidate set of documents given a query
q; (ii) a diversification strategy, which interactively re-ranks
the candidate set to improve the coverage of the possible
aspects underlying q; and (iii) a stopping strategy, which
determines when to stop the interactive process.

2.1 Baseline Ranker
In our experiments, we use Elasticsearch1 for both index-

ing and retrieval, after applying Krovetz stemmer and re-
moving standard English stopwords. In particular, we in-
dex the title, content, and anchor-text of each document.
As a baseline ranker, we use a field-based query likelihood
model with Dirichlet smoothing. We set µ = 2, 500, and the
weights for the title, content, and anchor-text fields to 0.3,
0.7, and 0.1, respectively. For each query, we retrieve the
top 1,000 documents as a candidate set R.

2.2 Diversification Strategies
Given a query q and an initial ranking R produced for

this query, we build a new ranking D by iteratively selecting
the highest scored document d ∈ R \ D according to:

d∗ = arg max
d∈R\D

(1− λ)rel(q, d) + λdiv(q, d,D), (1)

where rel(q, d) and div(q, d,D) are the estimated relevance of
d given q and the estimated diversity of d given the already
selected documents in D. While rel(q, d) is estimated by
the aforementioned relevance ranker, we experiment with
multiple diversification strategies for estimating div(q, d,D).

2.2.1 Flat Diversification
Santos et al. [4] introduced the xQuAD framework, which

estimates div(q, d,D) as the probability that document d
covers explicitly identified aspects S underlying the query q
that are not well covered by the already selected documents

1https://www.elastic.co/products/elasticsearch



in D. Precisely, xQuAD defines div(q, d,D) as follows:

divX(q, d,D) =
∑
s∈S

P(s|q)P(d|q, s)
∏

dj∈D

(1− P(dj |q, s)),

(2)

where P(s|q) denotes the relative importance of aspect s
given q, P(d|q, s) denotes the coverage of document d with
respect to this aspect, and the rightmost product denotes the
novelty of any document covering this aspect, based upon
how badly this aspect is covered by documents in D.

2.2.2 Hierarchical Diversification
Hu et al. [2] proposed HxQuAD as an extension of the

xQuAD framework to support diversification using hierar-
chically organized aspects. Such a hierarchy can be mod-
eled as a tree in which each node represents an aspect and
the set of aspects at the i-th level of the tree is denoted Si.
Likewise, we can define the diversity of a document d with
respect to aspects at the i-th level according to:

div i(q, d,D) =
∑
s∈Si

P(s|q)P(d|q, s)
∏

dj∈D

(1− P(dj |q, s)),

(3)

where both P(s|q) and P(d|q, s) are defined recursively, so
that, for any non-leaf aspect s with children C, we have:

P(s|q) =
∑
c∈C

P(c|q) and P(d|q, s) = 1−
∏
c∈C

(1− P(d|q, c)).

(4)

Given these definitions, HxQuAD estimates the overall di-
versity of document d by linearly combining its diversity
estimates at multiple hierarchy levels, according to:

divH(q, d,D) = αdiv1(q, d,D) + (1− α)div2(q, d,D)+

(1− α)2

α
div3(q, d,D) + ...+

(1− α)n−1

αn−2
divn(q, d,D), (5)

where the α hyperparameter controls the influence of dif-
ferent hierarchy levels in the final estimation, with α = 0.5
indicating that all levels are equally weighted.

2.2.3 Multi-Dimensional Diversification
Both xQuAD (Equation (2)) and HxQuAD (Equation (5))

assume that query aspects are mined from a single source.
Inspired by Dou et al. [1], we extend both frameworks to
leverage aspects from multiple sources k ∈ K, such that:

divM (q, d,D) =
∑
k∈K

θkdivk(q, d,D), (6)

where divk(q, d,D) denotes either Equation (2) or Equa-
tion (5) leveraging aspects from source k with corresponding
weight θk. In particular, in our experiments, we consider two
sources of query aspects, as described next.

2.2.4 Aspect Mining
Similarly to previous work [4], we use query suggestions

provided by a major Web search engine as a source of query
aspects. Following Hu et al. [2], we only consider two-level
hierarchical aspects. In particular, for each query, we collect
a first level of aspects by mining suggestions for the initial
query. Then, we generate a second level of aspects by mining
query suggestions for each first-level aspect.

In addition to query suggestions, which provide a static
surrogate for the actual aspects of interest to the user, we
consider a second aspect source built by directly leveraging
the user’s feedback. In particular, recall that, for each re-
trieved document d, a user’s feedback f = 〈p, a, g〉 includes
a passage p that the user deemed relevant to aspect a at a
given relevance level g. For the flat diversification performed
by xQuAD (Equation (2)), because multiple passages can be
deemed relevant to the same aspect, we estimate the cover-
age of document d with respect to aspect a as follows:

P(d|q, a) = max
p∈a

P(d|p), (7)

where P (d|p) denotes the coverage of passage p by docu-
ment d. Before the user’s feedback is received, this proba-
bility is estimated proportionally to the cosine between tf-idf
representations of both the passage and the document. Af-
terwards, this probability is estimated proportionally to the
relevance level g directly assigned by the user. In contrast,
for HxQuAD (Equation (5)), we directly leverage the hier-
archical relationship between the aspect a and each of its
associated passages p ∈ a as contributed by the user.

2.3 Stopping Strategies
Based on stopping strategies investigated by Maxwell et

al. [3], we evaluate three strategies in our participation:

Fixed count. Our system will stop once we have returned
x1 documents to the simulated user. We set x1 = 50,
which corresponds to 10 iterations.

Cumulative off-topic count. Our system will stop once
we have returned a total of x2 off-topic documents to
the simulated user. We set x2 = 10, which corresponds
to off-topic documents worth of 2 iterations.

Windowed off-topic count. Our system will stop once
we have returned x3 off-topic documents in a contigu-
ous window. We set x3 = 10, which corresponds to a
window of 2 iterations.

3. EXPERIMENTS

3.1 Runs Summary
We produced a total of 12 runs in our participation in the

TREC DD track, five of which were officially submitted:

• ufmgXS1 (unofficial) applies flat diversification with
single-source aspects and the fixed count stopping con-
dition. We used real-time user feedback as aspects
source and xQuAD diversification parameter λ = 0.8.

• ufmgXS2 (submitted) is similar to ufmgXS1, except
that it applies the cumulative stopping condition.

• ufmgXS3 (unofficial) is similar to ufmgXS1, except
that it applies the windowed stopping condition.

• ufmgXM1 (unofficial) applies flat diversification with
multi-source aspects and fixed count stopping condi-
tion. We use xQuAD diversification parameter λ =
0.8. At the first iteration, we used only search engine’s
suggested aspects and in the remaining iterations we
used real-time user feedback aspects.



Table 1: Results of our runs on TREC 2016 Dynamic Domain track’s official measures

Run Submitted Description Avg Cube Test Cube Test
Model Source Stop @1 @2 @10 @1 @2 @10

TREC avg N/A N/A N/A N/A 0.1472 0.1361 0.1045 0.2049 0.1388 0.0849
TREC median N/A N/A N/A N/A 0.1516 0.1352 0.0985 0.2174 0.1281 0.0801

ufmgXS1 7 X F 1 0.1751 0.1587 0.0877 0.2309 0.1506 0.0452
ufmgXS2 3 X F 2 0.1751 0.1587 0.1188 0.2309 0.1506 0.0786
ufmgXS3 7 X F 3 0.1751 0.1587 0.1146 0.2309 0.1506 0.0764
ufmgXM1 7 X F+S 1 0.1750 0.1612 0.0882 0.2474 0.1574 0.0452
ufmgXM2 3 X F+S 2 0.1750 0.1612 0.1237 0.2474 0.1574 0.0852
ufmgXM3 7 X F+S 3 0.1750 0.1612 0.1169 0.2474 0.1574 0.0797

ufmgHS1 7 H F 1 0.1751 0.1601 0.0892 0.2309 0.1578 0.0457
ufmgHS2 3 H F 2 0.1751 0.1601 0.1219 0.2309 0.1578 0.0801
ufmgHS3 7 H F 3 0.1751 0.1601 0.1172 0.2309 0.1578 0.0763
ufmgHM1 7 H F+S 1 0.1751 0.1601 0.0893 0.2309 0.1577 0.0463
ufmgHM2 3 H F+S 2 0.1751 0.1601 0.1219 0.2309 0.1577 0.0842
ufmgHM3 3 H F+S 3 0.1751 0.1601 0.1181 0.2309 0.1577 0.0808

Table 2: Results of our runs on TREC 2016 Dynamic Domain track’s unofficial measures

Run α-nDCG nERR-IA P@R
@1 @2 @10 @1 @2 @10 @1 @2 @10

TREC avg 0.2999 0.3339 0.3552 0.2821 0.2985 0.3048 0.3486 0.3387 0.2957
TREC median 0.2952 0.3142 0.3142 0.2691 0.2777 0.2778 0.3208 0.3038 0.2811

ufmgXS1 0.3516 0.3987 0.4852 0.3383 0.3622 0.3849 0.4000 0.4283 0.3547
ufmgXS2 0.3516 0.3987 0.4324 0.3383 0.3622 0.3723 0.4000 0.4283 0.3871
ufmgXS3 0.3516 0.3987 0.4458 0.3383 0.3622 0.3759 0.4000 0.4283 0.3787
ufmgXM1 0.3559 0.4028 0.4786 0.3355 0.3588 0.3786 0.4226 0.4038 0.3000
ufmgXM2 0.3559 0.4028 0.4265 0.3355 0.3588 0.3667 0.4226 0.4038 0.3504
ufmgXM3 0.3559 0.4028 0.4364 0.3355 0.3588 0.3698 0.4226 0.4038 0.3452

ufmgHS1 0.3516 0.4079 0.4921 0.3383 0.3664 0.3887 0.4000 0.4075 0.3479
ufmgHS2 0.3516 0.4079 0.4367 0.3383 0.3664 0.3758 0.4000 0.4075 0.3794
ufmgHS3 0.3516 0.4079 0.4504 0.3383 0.3664 0.3794 0.4000 0.4075 0.3714
ufmgHM1 0.3516 0.4055 0.4897 0.3383 0.3653 0.3877 0.4000 0.4075 0.3335
ufmgHM2 0.3516 0.4055 0.4367 0.3383 0.3653 0.3754 0.4000 0.4075 0.3716
ufmgHM3 0.3516 0.4055 0.4481 0.3383 0.3653 0.3784 0.4000 0.4075 0.3654

• ufmgXM2 (submitted) is similar to ufmgXM1, except
that it applies the cumulative stopping condition.

• ufmgXM3 (unofficial) is similar to ufmgXM1, except
that it applies the windowed stopping condition.

• ufmgHS1 (unofficial) applies hierarchical diversifica-
tion with single-source aspects and the fixed count
stopping condition. We used real-time user feedback
as aspects source and HxQuAD diversification param-
eters λ = 0.8 and α = 1.0.

• ufmgHS2 (submitted) is similar to ufmgHS1, except
that it applies the cumulative stopping condition.

• ufmgHS3 (unofficial) is similar to ufmgHS1, except
that it applies the windowed stopping condition.

• ufmgHM1 (unofficial) applies hierarchical diversifica-
tion with multi-source aspects and the fixed count stop-
ping condition. We used HxQuAD diversification pa-
rameters λ = 0.8 and α = 1.0. At the first iteration,
we used only search engine’s suggested aspects and in

the remaining iterations we used real-time user feed-
back aspects.

• ufmgHM2 (submitted) is similar to ufmgHS1, except
that it applies the cumulative stopping condition.

• ufmgHM3 (submitted) is similar to ufmgHS1, except
that it applies the windowed stopping condition.

3.2 Results
Table 1 shows the results of our unofficial as well as our

officially submitted runs to this task for the official mea-
sures Average Cube Test at the 1st, 2nd and 10th itera-
tions. Firstly, we organize the table into models with X
and H standing for xQuAD and HxQuAD. Secondly, we di-
vide the table into single-source and multi-source aspects in
which F and S mean user real-time feedback and query sug-
gestions, respectively. Finally, we distinguish between the
three considered stopping condition strategies where 1, 2
and 3 indicate fixed, cumulative off-topic and windowed off-
topic count, respectively. Table 2 shows the results of our
runs for unofficial measures and is organized in the same
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Figure 1: Cube Test and Average Cube Test over the iterations (averaged for all topics) for our official runs.

way as Table 2. Additionally, Figure 1 shows our system
progress over the iterations for our officially submitted runs.
We summarize our findings as follows:

• Our best result uses flat diversification with multi-
source aspects for the Cube Test, α-nDCG and P@R
measures at the 1st iteration and Average Cube Test
and P@R at the 2nd iteration. We note improve-
ments regarding Cube Test, α-nDCG and nERR-IA
at the 2nd iteration with hierarchical diversification
with single-source aspects.

• Our best result in terms of Average Cube Test and
Cube Test at the 10th iteration uses hierarchical diver-
sification with multi-source aspects and a cumulative
stopping condition. However, in terms of P@R, our
best result at the 10th iteration uses flat diversifica-
tion with single-source aspects with cumulative stop-
ping condition. In terms of nERR-IA and α-nDCG,
our best result at the 10th iteration uses hierarchical
diversification with single-source aspects with a fixed
count stopping condition.

• Based on the official measures, our best officially sub-
mitted run was ufmgXM2. In Figure 1, we show how
our officially submitted runs perform over all 10 itera-
tions. For the Average Cube Test measure, ufmgXM2
performs distinctively well toward the last iterations,
whereas for Cube Test, it outperforms the other alter-
natives toward the first iterations.

4. CONCLUSIONS
In TREC 2016, we participated in the Dynamic Domain

track. Our participation focused around diversification ap-
proaches, as well as stopping strategies to fulfill the informa-
tion need of the user as early as possible. Overall, our results
on diversification with multi-source aspects in an interactive
search process ranked high across iterations compared with
the runs submitted by other participants in this track.
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