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Abstract

This paper describes our participation in TREC 2015 Microblog track, which includes
two tasks related to Scenario A and Scenario B. For Scenario A, we build a real-time tweet
push system, which is mainly composed by three parts: feature extraction, relevance
prediction and redundancy detection. Only the highly relevant and nonredundant tweets
are sent to users based on the interest profiles. For Scenario B, we apply three query
expansion methods, namely the web search based, the TFIDF-PRF based and the Terrier
embedded PRF based. In addition, three state-of-the-art information retrieval models as
the language model, BM25 model and DFRee model are utilized. The retrieval results
are combined for final delivery. The experimental results in both scenarios demonstrate
that our system obtains convincing performance.

1 Introduction

The TREC 2015 Microblog Track still focuses on the real time filtering. The goal is to push
interesting content to a user according to his/her interest profile. Specifically, two concrete tasks
are given to simulate two scenarios as Scenario A and Scenario B.
Scenario A is about pushing notifications on a mobile phone. A system for this scenario is allowed

to return a maximum of 10 tweets per day per interest profile. The evaluation metric will penalize
the gap between the tweet time and the notification time. To fulfill this task, we build a real-time
tweet push system, whose architecture is shown in Figure 1. The system mainly consists of three
parts: feature extraction, relevance prediction and redundancy detection. Only the tweets which are
both relevant and nonredundant are finally sent to users. The performance of our submitted runs
proves the e↵ectiveness of the system.
Regarding to Scenario B, it focuses on the periodic email digest. Specifically, a system for this

scenario is required to deliver a batch of up to 100 ranked interesting tweets per day per interest
profile. For this task, we leverage the Terrier search engine for indexing and retrieval, where the
obtained tweets are indexed and retrieved by the hour. Three query expansion methods, namely the
web search based [2], TFIDF-PRF based [2] and the Terrier embedded pseudo relevance feedback
based [5], are applied for query expansion. In addition, we leverage three state-of-the-art information
retrieval (IR) models, namely the language model [6], the BM25 model [7] and the DFRee model
[1]. Just before the day ends, all the results are combined and merged together to send to users.



2 Scenario A: Push Notifications on a Mobile Phone

2.1 System Overview

In this section, we demonstrate the architecture of our system, which is shown in Figure 1. It
shows that our system mainly consists of three parts, namely feature extraction, relevance prediction
and redundancy detection. The details of each part are demonstrated in the following sections.
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Figure 1: System Architecture
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Figure 2: Relevance Prediction Framework

2.2 Feature Extraction

We mainly focus on the three types of features as follows: (1) f(Q, T): the text similarity between
the original query and the tweet; (2) f(GT, T): the text similarity between the Google searched
titles and the tweet; (3) f(GS, T): the text similarity between the Google searched snippets and
the tweet.
To calculate the text similarities, two widely used measures as the Jensen-Shannon Divergence

(JSD) [3] and the Overlap Similarity(OS) are applied. Therefore, a total of six features can be
extracted based on the text similarities. For the sake of simplicity, we only demonstrate how to
extract f(Q, T). The features as f(GT, T) and f(GS, T) can be obtained in a similar way.
For the JSD measure, both the queries and tweets are required to be probability vectors, where all

the entries sum up to 1. In our experiment, we obtain the vectors by normalized TF weighting with
smoothing. Specifically, given a query vector as VQ and a tweet vector as VT , the JSD similarity is
calculated as follows:

JSD(Q,T ) =
1

2
KL(VQ||M) +

1

2
KL(VT ||M) (1)

where M is the average vector of the query and tweet. KL(VQ||M) denotes the Kullback-Leibler
divergence [4] between the distributions of VQ and M .



To calculate the Overlap Similarity (OS) between a query and a tweet, we first obtain the corre-
sponding word sets as S(Q) and S(T ). Then, OS(Q,T ) is formulated as:

OS(Q,T ) =
|S(Q) \ S(T )|

|S(Q)| or
|S(Q) \ S(T )|

|S(T )| (2)

where S(Q)\ S(T ) represents the intersection of S(Q) and S(T ), and |.| denotes the size of the set.

2.3 Relevance Prediction Framework

Figure 2 shows the framework of the relevance prediction part. A Logistic Regression model is
trained o✏ine for its simplicity and e↵ectiveness. We use the o�cial results of Microblog Track 2013
and 2014 as the training data set. The relevance judgement degree is ignored, which means both the
relevant (judged as 1) and highly relevant (judged as 2) are assigned with a label 1. The features
applied are demonstrated in Section 2.2. For a coming tweet in the tweet stream, we can quickly
extract the features, and predict the relevance score with the trained model.

2.4 Redundancy Detection Strategy

Since the pushed tweets are expected to be in di↵erent o�cial clusters ideally, we perform re-
dundant detection for the candidates. Specifically, for a candidate tweet specific to a query, we
devise a redundancy detection strategy to determine whether it is redundant or not. The strategy
is demonstrated in Algorithm 1.

Algorithm 1 Redundancy Detection

Input: a candidate pushed tweet T corresponding to query Q, the pushed tweet set P , the max-
imum pushed number n, the similarity threshold determining redundancy �, the redundancy
degree threshold ✓

Output: the Boolean redundancy label L(T ) // True: redundant, False: nonredundant
1: Initialize: redundancy Count = 0, redundancy degree RD(T ) = 0
2: for T 0 2 P do
3: Calculate the Overlap Similarity OS(T, T 0)
4: if JSD(T, T 0) < � then
5: Count += 1
6: end if
7: end for
8: RD(T ) = Count/|P |
9: if RD(T ) > ✓ then

10: L(T ) = True
11: else
12: L(T ) = False
13: end if

3 Scenario B: Periodic Email Digest

3.1 Queries

We apply three query expansion methods, namely the web search based [2], TFIDF-PRF based
[2] and the Terrier embedded pseudo relevance feedback [5] based. By various combinations of the
three methods, we obtain six kinds of queries as follows: (1) Q: the original query; (2) QG: query
expanded by the Google searched results; (3) QT: query expanded with the TFIDF-PRF based
method; (4) QP: query expanded with the Terrier embedded pseudo relevance feedback; (5) QGT:
the union of QG and QT; (6) QGTP: the union of QG, QT and QP



3.2 IR models

With the daily tweet stream, we leverage the Terrier search engine [5] for indexing and retrieval.
Three state-of-the-art information retrieval (IR) models, namely the language model [6], the BM25
model [7] and the DFRee model [1], are utilized for this task. Specifically, with the above six kinds
of queries and three IR models, we can obtain eighteen scores for a tuple as (Query, Tweet).
By assuming that di↵erent retrieval models may compensate each other by combination, we do a

linear combination of the scores to obtain better performance. We use the collection of Tweet2013
for training and try out all kinds of combinations. The best combination strategies are used for this
year’s task.

4 Experimental Setup

4.1 Datasets

The training data sets as Tweet2013 and Tweet2014 is obtained with the o�cial search API1.
In this year’s track, we use the o�cially provided GatherStatusStream tool2 to gather a parallel
sample of tweets from the Twitter public stream during the evaluation period, i.e., from July 20,
2015, 00:00:00 UTC to July 29, 2015, 23:59:59 UTC.
Due to the government policy on networks, we have missed some data on the first day. To obtain

the complete data set, we rent a Linode server and perform experiments on it. The total amount of
tweets we obtained is about 14 million. Since the raw tweet texts contain a lot of noise, we perform
data preprocessing to remove non-English tweets and specific symbols like URLs, mentions and so
on. We also use Natural Language Toolkit3 for tokenization, stemming and stop words removal.

4.2 Evaluation Measures

For Scenario A, two metrics are designed for evaluation. The primary metric is expected latency-
discounted gain (ELG) from the temporal summarization track, which is formulated as:

(1/|tweets|)⇥
X

Gain(tweet) (3)

where |tweets| denotes the total number of returned tweets. For a returned tweet, the gain is
calculated according to the o�cial guidelines4. The secondary metric is the normalized cumulative
gain (nCG), which is formulated as:

(1/Z)⇥
X

Gain(tweet) (4)

where Z is the maximum possible gain (given the 10 tweet per day limit).
In Scenario B, the list of tweets returned per day are treated as a ranked list for each topic. Then,

NDCG@k is computed, where k is relatively small and determined based in part on the pool depth.
The score of a topic is the average of the NDCG@k scores across all days in the evaluation period.
The score of the run is the average over all topics.

5 Results and Discussions

Table 1 shows the results of our submitted runs as well as the best published run for Scenario
A. All the three runs vary in the parameter settings of ↵, �, � and ✓, which are demonstrated
previously. The specific settings for each run is as follows: ECNURUNA1(0.17, 0.3, 0.3, 0.5),

1
https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications

2
https://github.com/lintool/twitter-tools/wiki/Sampling-the-public-Twitter-stream

3
http://www.nltk.org/

4
https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-Guidelines



ECNURUNA2(0.18, 0.4, 0.25, 0.6), ECNURUNA3(0.20, 0.45, 0.20, 0.7). From this table, we observe
that all of our three runs have the same performance with regard to the ELG and nCG metrics. The
best run is human involved. There are total 31 automatic runs and we obtain a rank as 13 among
them.
For Scenario B, the performance of our submitted runs and the best published run are shown in

Table 2. Specifically, ECNURUNB1 is combined by (QGTP, DFRee) and (Q, LM). Here we use
(QGTP, DFRee) to denote the retrieval results configured with the query QGTP and the DFRee
model, and so on. ECNURUNB2 is combined by (QGTP, DFRee), (Q, LM) and (QT, BM25).
ECNURUNB3 is combined by (QGTP, DFRee), (Q, LM), (QG, BM25) and (QGTP, BM25). We
observe that though the first run (ECNURUNB1) is combined by fewer retrieval scores, it performs
the best. Thus, it is important to know the characteristics of each IR model and apply appropriate
combination strategies. Combination by more retrieval results may harm the performance.

Table 1: Performance of our submitted runs and the best published run for Scenario A: (1) Total 33
runs were submitted for this task including 2 manual runs; (2) the best results are shown in the last
column, which incorporated manual interventions and (3) the results of our three automatic runs
are the same, with a rank as 13 among all the 31 automatic runs.

Metrics ECNURUNA1 ECNURUNA2 ECNURUNA3 Bestm

ELG 0.2314 0.2314 0.2314 0.3175
nCG 0.2314 0.2314 0.2314 0.3127

Table 2: Performance of our submitted runs and the best published run for Scenario B: (1) Total
37 runs were submitted for this task including 7 manual runs; (2) the best results are shown in the
last column without any manual interventions (3) all of our three runs are automatic and we obtain
a best rank as 12 among all the 30 automatic runs.

Metrics ECNURUNB1 ECNURUNB2 ECNURUNB3 Best
nDCG@10 0.1610 0.1327 0.1416 0.2200

6 Conclusions

In this paper, we present our work in two scenarios of the TREC 2015 Microblog Track. For
Scenario A about pushing notifications on a mobile phone, we build a real-time tweet push system.
It mainly performs three steps to determine whether to push a tweet or not. We obtain the best rank
as 13 among all the 31 automatic runs. For Scenario B which focuses on the periodic email digest,
we apply three query expansion methods and three state-of-the-art IR models for search. Various
retrieval results are combined for final delivery. We obtain the best performance of nDCG@10 as
0.1610 (rank 12) in this scenario. Noting that the combination strategy does not work very well, we
will extract more useful features and focus on the learning to rank approaches in the future.
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