
PRIS at 2012 TREC Medical Track: 

Query Expansion, Retrieval and Ranking 
Jiayue Zhang, Lin Lin, Shudang Diao, Yukun Li, Runnan Liu, Weiran Xu, Jun Guo 

School of Information and Communication Engineering 
Beijing University of Posts and Telecommunications 

 

1 Data Preprocessing 
1.1 XML parsing  
The official datasets are XML format so we have to parse them before indexing. We choose 
Lucene  as our tool for indexing and searching ,we select the Jakarta-commons-Digester (the 
following we referred to as digester) to parse the xml documents. 
The xml document is processed by the Digester to be a java object and then we can get the fields 
that we would use from the java object .In addition, we also process the tag "report_text" in the 
xml documents so that we can get the age and sexuality information  which are very important 
fields for searching task. 
1.2 Negation Detection 
  People always find some phrases like "did not have head pain" or "there is no pain in your 
leg"in the medical diagnosis reports .These phrases will make some boring troubles in the medical 
text retrieval. For example, when we want to find someone who have a headache we may get a 
report like this 
  This patient is a**AGE[in 50s]-year-old male with a past medical history of multiple 
transplants including small bowel, liver, and pancreas in 1998 and status post kidney transplant in 
2006, presents with fever. The patient states he woke this morning and thought to have fevers and 
chills. He also has had some vomiting and diarrhea. Denies any belly pain. He states he feels a 
little short of breath. He denies any chest pain. No sore throat. No headache..... 
In fact, this patient just has fevers and chills. To solve this problem, we use the famous NegEx 
algorithm .NegEx [5] algorithm is mostly known to Text Mining researchers for finding terms 
used in negative senses. While, there is a java class to implement Wendy Chapman's NegEx 
algorithm. This class' author is Junebae Kye .On the base of this class, we write a program to 
finish the negation detection work and the result show us that this method takes us a better 
performance. 
2 Indexing 
Model main component is a search engine based on Apache Lucene. Lucene is a powerful Java 
library that lets you easily add document retrieval to any application. In recent years Lucene has 
become exceptionally popular and is now the most widely used information retrieval library 
We utilized Lucene for indexing purpose. Lucene provided the function to achieve this goal. 
Documents and fields are Lucene's fundamental units of indexing and searching. A document is 
Lucene's atomic unit of indexing and searching. It is a container that holds one or more fields, 
which in turn contain the real content. Each field has a name to identify it, a text or binary value, 
and a series of detailed options that describe what Lucene should do with the field value. We use 
the "age","sex","icd9 code"...as the fields to build the index. This process is not very difficult. 



2. Concept-based Query Expansion 
In medical search, we have the challenge of ‘semantic gap’, that is, the vocabulary mismatch 
between relevant documents and topic description. A large part of the reason is the diversification 
of expression in the medical field. For instance, “Hypertension” in a report has the same meaning 
with “high blood pressure” in the topic plain text. The presence of a certain organism in a report 
may also denote a certain disease described in a topic. So it’s import for us to expand the query 
with expressions that refer to the same meaning. 
We expanded our queries with the help of UMLS (Unified Medical Language System) 
meta-thesaurus and SNOMED medical domain knowledge. First, we used the Meta-Map program 
to extract UMLS Meta-thesaurus concepts associated with the original query. Second, we mapped 
the concepts to their SNOMED-CT equivalents using the UMLS Meta-thesaurus. Then, we had 
our query concepts expanded with SNOMED-CT descriptions. Now, each query concept is 
replaced by a group of thesauruses. We call it concept group. 

3. Queries Construction 
Queries were constructed for Lucene to search different texts against  various indexed fields. 
Each query is consisted of a collection of filters and clauses containing subqueries. （Each 
subquery contained search terms for only one field, and most of the subqueries had a boost 

Table 1. Query fields and relations 

applied 
to them in order to improve precision by keeping certain clauses from dominating the scoring 
algorithm.） In different runs, we  had different ways to generate the boosts. Table 1 shows the 
fields and their relations to the parent-query.  

Fields Relations 
contents MUST/MUST_NOT 
chief_complaint MUST/MUST_NOT 
admit_diagnosis SHOULD/MUST_NOT 
age MUST 
sex MUST 
We use negEx to detect the negative contents in the topics. For negative contents, we make the 
relation of the relate subqueries MUST_NOT.  
And each subquery referring to field of contents and chief_complaint consisted of several concept 
group subqueries connecting with relation MUST. Each concept group subquery was made up of 
several phrases included in the group with relation SHOULD. Graph 1 shows the construct of one 
example query. 

 
Graph 1. Query Construct Example 

4. Retrieval 



We use Lucene to realize our retrieval. And except for the basic run, our retrieval contained two 
stages. On the first stage, we retrieve relative reports using the queries generated on the previous 
step. Then we map the results to visit ids. We set a threshold of 15. When the number of result 
visit ids was less than the threshold, and no less than one subquery got visit id number which less 
than 100, we abandoned the subquery which got least visit ids to relax the requirements. Then we 
go into the second stage of retrieving. We looped this process until we got visit id number greater 
than the set threshold, or when we had only one subquery left. 
 

5. Learning to rank 
In our buptpris_Lrank run, we tried to make the ranking of our results more meaningful. We refer 
to a semi-supervised approach to learing to rank that uses Boosing[1]. We have 5 features for 
learning: the Lucene average scores for fields of contents, chief_complaint, admit_diagnosis, sex 
and age. By this way, we got more suitable boosts for queries. 
Because of the limit of deadline, we did’t have much research on this method. But it did improve 
our ranking. 
 

6. Our Runs 
The descriptions of our runs: 
buptpris_Base: A baseline using Lucene,with query expanded by several tools including 
MetaMap,UMLS Metathesaurus and SNOMED,and ICD9 information mining.The weight of each 
indexed field is defined by personal experiences.Result scores computed with lucene retrival 
scores. 
buptpris_Int: To make improvement to buptpris_Base,this run split a query into several 
subquerys,and compute the intersection of their retrival results.At the same time,this run include a 
algorithm to deal with the topics returning few results. 
buptpris_Cscore: The buptpris_Cscore run considers "contents" field exclusively when getting 
the final score of each returned visit.With intersection algorithm and few-result-deal algorithm the 
same as buptprisInt. 
buptpris_Lrank: A try to improve the ranking with learning to rank algorithm on the basis of 
buptpris_Int run. 
 

References 
[1]Rong Jin, Hamed Valizadegan, Hang Li, 

 

Ranking Refinement and Its Application for Information Retrieval, in 

International Conference on World Wide Web (WWW), 2008. 


