
ISTI@TREC Microblog track 2012: real-time filtering through

supervised learning

Giacomo Berardi, Andrea Esuli, Diego Marcheggiani
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

firstname.lastname@isti.cnr.it

Abstract

Our approach to the microblog filtering task is based on learning a relevance classifier
from an initial training set of relevant and non relevant tweets, generated by using a
simple retrieval method. The classifier is then retrained using the (simulated) user
feedback collected during the training process, in order to improve its accuracy as the
filtering process goes on. In the official runs the system scored low effectiveness values,
suffering a strong imbalance toward recall.

1 Introduction

Microblogging is a form of personal content sharing that derives from blogging, and it has
a focus on concision, space and time locality, and social network-style interactions [3]. This
is the second year that microblogging is the subject of a TREC track. For this edition
two tasks have been proposed to the participants: Real-time Adhoc search (equivalent to
the task in the 2011 track) and Real-time Filtering1. Twitter2 is currently the dominant
platform for microblogging, and it has been selected as the source of data for the microblog
track.

Twitter enforces a strong policy on short messages, allowing only a maximum length of
140 characters3. In addition to simple text, a tweet can contain three types of references:

• URLs to external content. External links are typically used to extend a tweet with
other media, e.g., an image shot by the user with her mobile phone, or to point to a
web content the tweet comments upon.

1https://sites.google.com/site/microblogtrack/2012-guidelines
2http://twitter.com
3Twitter text length limitation derives from the original possibility of sending/receiving tweets on cell

phones via SMS, which have a maximum length of 160 characters, with 20 characters reserved by Twitter
for the id of the author of the tweet.

1



• Mention of names of other Twitter users, e.g., “@aesuli”. This is a way to credit
the mentioned user for the content of the tweet or a way to establish an exchange of
public messages other user may be interested to read and join the discussion.

• hashtags: a hashtag is defined by any string prefixed with a #, e.g., “#whyalwaysme”,
“#iwould”. The string can be a single word, an acronym, or multiple words joined
together, and usually identifies the subject topic of the tweet (e.g., “#SPIRE2011 ”)
or expresses a comment about it (e.g., “#epicwin”).

In this edition of the track we have participated to the Real-time Filtering task. The
methodology for this task is the same of the adaptive filtering described in [7]. In the case
of tweets, it simulates a scenario in which the system receives feedback from the user, about
the relevance of tweets to a topic, so it can recalibrate the filter and improve the results.
For each topic a time range is defined, the tweets are checked sequentially, starting from the
oldest, in chronological order. No information is given to the system, unless it decides to
classifies as relevant a tweet, then it can know the true relevance of it. No training data is
available to the system, relevance judgment of a tweet can be accessed only in the filtering
phase, after the system has added it to the results.

In our participation we have explored the use of a classification system in which a su-
pervised learning model is retrained with a new example (tweet), each time this is classified
as relevant to the filtering topic. In Section 2 we describe the Tweets2011 corpus; we have
reused the data which was already downloaded for the 2011 microblog track. In Section
3 we describe the system developed for the real-time filtering task; we have combined a
retrieval module, similar to the one used in the 2011 microblog track, and a supervised
learning module. In Section 4 we show the evaluations of two runs of the system.

2 The Tweets2011 collection

The microblog track of this year reuses the Tweets2011 Corpus [4] of the previous year. We
have thus reused the data we downloaded last year using the downloader provided by the
organizers. Table 1 reports some statistics on the full corpus and on the various subsets we
have defined in order to build our indexes, which are described in Section 3.

We have indexed only the tweets in English, filtering out non-English tweets. We have
used a language recognition system that we have implemented along the lines of [2], in
order to recognize English tweets. The English set, the only part we have actually indexed,
resulted to be roughly a quarter of the entire corpus. We have then identified two subsets
of the English set: a Hashtag set that contains only English tweets that have hashtags
in them, and a Link set that contains only English tweets with URLs in them. The two
subsets show a similar ratio of tweets with at least one hashtag/URL with respect to tweets
without hashtag/URL (1:5.6 for hashtags, 1:6.6 for URLs).

2



total effective retweets null hashtags users

Entire corpus 16.141.812 13.812.346 1.104.780 1.224.686 655.850 5.356.842
English set 4.510.329 4.068.158 442.171 288.753 2.021.759

Hashtags subset 791.464 640.870 150.594 288.753 514.401
Link subset 676.957 674.471 2.486 14.399 400.631

Table 1: Some statistics from the corpus and the subsets we have selected for indexing.
The total number of tweets is divided in effective tweets (http status 200), retweets (http
status 302) and null tweets (http status 301/403/404). The hashtags column indicates the
number of unique hashtags.

3 The adaptive filtering system

Our system, named CipCipPy4, is an indexing and retrieval system based on the Whoosh5

IR library, written in Python [1]. In this edition of the Microblog track we have extended
it with to filtering task. The source code of CipCipPy is available for download at http:

//hlt.isti.cnr.it/cipcippy/.
The adaptive filtering task requires to decide, under real time processing constraints, if

a tweet is relevant for a given query. We tackled it as a binary classification task, exploring
the use of a supervised learning classification approach to the problem. We used a Naive
Bayes classifier in order to have a quick training and classification time.

The Naive Bayes classifier requires a training set to learn on, composed by tweets that
are examples of relevant or non-relevant content with respect to the topic. Given that at
the beginning of the retrieval process there are no examples available, our system initially
filters relevant tweets, while bootstrapping a training set, using the adhoc retrieval module
of CipCipPy [1] (see Section 3.1).

Once the training set reaches a reasonable size (the size is a parameter of the system)
that allows to train the classifier the bootstrap phase ends. The Naive Bayes classifier is
then trained and it is used in the classification phase. During this phase the classifier is
used to filter the tweet stream, and it is retrained any time a filtered tweet is considered to
be relevant, adding such tweet to the training set with the proper relevance label assigned
according to the true relevance judgment.

3.1 Ad Hoc retrieval module

We have built indexes of the English set for the first retrieval phase. There is an index
specific to each topic, i.e, containing only the tweets prior to oldest known relevant tweet
for the topic (pre-topic index ), according to the relevance judgements produced by the
2011 evaluation. These indexes, built in this way, do not contain future evidence (e.g.
document frequencies computed on the tweets to be filtered in real-time). We have not

4“Cip Cip” is the Italian word for the sound of birds, while “Py” identifies the Python programming
language.

5https://bitbucket.org/mchaput/whoosh/wiki/Home

3



indexed retweets, since the guidelines and discussions in the mailing list of the track stated
that retweets would be considered not relevant by default.

We have performed a retrieval phase in order to obtain an initial training set of relevant
and non relevant examples. We have used the simple IDF as the weighting function in order
to compute the retrieval score of the tweets. Including the term frequency component into
the weighting could be not well suited for the task, given the short and relatively compact
distribution of the text lengths.

An initial set of p relevant examples for each topic have been retrieved searching on the
index of the English set. The queries have been formulated, from the original topic title,
as the disjunction of the conjunction of every possible pair of terms appearing in the topic
title, plus each single term. The top-p retrieved tweets have been selected to be positive
examples in the training set.

Non relevant examples have been retrieved from the same index. In order to obtain
a varied set of tweets that are non relevant to the topic, we have issued a query that is
the negation of the disjunction of all the terms in the topic title. The top-n tweets in the
ranking have been selected as negative examples for the initial training set.

Although the fact of searching for positive training examples in a set of tweets that by
definition are likely to not contain relevant tweet may seem counterintuitive, note that we
leave the determination of the p and n values to a set of parameter validation experiments
on the validation topics (see Section 4).

During the initial phase of the filtering process, the query used to retrieve the positive
examples from the pre-topic indexes is used to filter tweet, until the classification module
is ready to be used.

3.2 Machine learning based filtering

The ad hoc retrieval module works on a part of the tweet corpus that is antecedent to the
time span that is relevant to the filtering process. Only its query formulation contributes
directly to the filtering process. The actual filtering system is composed by two modules,
the bootstrap module and the classification module.

Bootstrap module The bootstrap module carries on the initial part of filtering process
while the classifier is not yet trained, at the same time it contributes, along with the ad hoc
retrieval module, to the definition of the initial training set for the classifiers. As described
in the previous section, this module considers relevant any tweet that matches the query
used to retrieve the positive examples from the pre-topic indexes.

Following the guidelines on the simulation of relevance feedback, for all the tweets
considered relevant by the bootstrap module the relevance judgments are checked. They are
then added to the training set, with their real relevance category. This process is repeated
until b truly relevant tweets are found, i.e., until a minum number of positive examples
are identified. The bootstrap module then stops and the filtering task is continued by
the classification module, trained on the train set obtained by merging the training sets
generated by the ad hoc retrieval and the bootstrap module.

4



Classification module The classification module classifies one tweet at the time, follow-
ing their temporal order. When the classifier classifies a tweet as relevant, the real relevance
is checked and the tweet is added to the training set with its true relevance class. After
the addition the classifier is re-trained with the new training set, obtaining a new, updated
classifier.

In our system we have used the Scikit-learn [5] implementation of the Multinomial Naive
Bayes classifier. Obviously, the method can be instantiated with almost any learning
algorithm, just taking into account the required balance between the potential accuracy of
the resulting classifier and the cost, in time, necessary to train it.

3.3 Features

As features for the Naive Bayes classifier we have used the bag of words of the tweet status
from the English set, plus some more tweet-specific features:

Linked page titles Words composing the title of the pages linked by a tweet (i.e., the
text included in the <title> tag of the linked html Web page) have been added to the
bag of words. The information contained in the linked page can contribute to the relevance
of a tweet with respect to a query. For example, a tweet can be composed by a sentence
expressing an opinion and a URL that links to a news, and the tweet becomes relevant
because the content linked by the URL gives a proper, relevant, context to the opinion. On
the opposite side, the whole content of a Web page can be misleading, due to the possibility
of including unrelated information (e.g., navigational information, advertisement). For this
reason we chose to include only the title of the Web page.

Hash tag splitting As we did in [1], in addition to the words of the tweet, we have used a
hashtag splitter to split the compound words representing the hashtags in common English
words. We have improved the Viterbi-based splitting model feeding it with a dataset larger
than the one used in [1]. We have used the Google N-grams collection6, taking the frequency
of words from the English One Million collection of Google books from years 1999 to 2009.

Named entities We used a named entity recognizer specifically devised for tweets [6],
to mark the presence in tweets of named entities of various types. In addition to the
classic named entities i.e. “Person”, “Location”, “Organization”, this system extracts other
entities such as “Music Band”, “Product”, “Movie”, “Sports Team” and “TV show”. The
rational behind this feature is that a tweet that does not contain the same type of named
entities that (statistically) characterize the positive examples (i.e., the relevant tweets met
during the filtering process until the actual time of the examined tweet) is likely a not
relevant tweet for the topic under examination.

6http://books.google.com/ngrams/datasets

5



4 Results

For the official runs we have optimized the system parameters (p, n, b) by performing a
validation phase using the topics indicated in the track guidelines (MB1, MB6, MB11,
MB16, MB21, MB26, MB31, MB36, MB41, and MB46). The optimization has been based
on the measure of F1 (this choice was made before knowing the official evaluation measures,
which included F0.5 instead of F1). We have explored all the combinations of values {0, 5,
10, 15, 20, 50, 100} for the three parameters. We have achieved the best validation scores
for the configuration p = 0, n = 100, b = 10. This means that considering as positive
examples even few relevant tweets retrieved prior to the oldest known relevant tweet has
a negative impact on performance. Adding negative examples has instead a positive effect
on the filtering process.

We have submitted two runs, one using external information (i.e., features from link
titles and named entities), and one not using it. They are called nemisExt and nemisNotExt
respectively. In Table 2 evaluations are showed, using the official evaluation measures; the
runs are compared with best and median results, averaged on the topics. The obtained
results are well below the median results of the track, except for recall. The system in fact
resulted to be strongly imbalanced toward judging tweets as relevant. As expected, the use
of external information improved the recall, though in this poor performace situation it is
hard to determine the significance of the improvement.

Precision Recall F0.5 Utility

nemisExt 0.0293 0.4433 0.0343 0.0140

nemisNotExt 0.0315 0.4232 0.0370 0.0140

Median Average 0.1766 0.3343 0.1491 0.2076

Best Average 0.9224 0.9462 0.6073 0.5967

Table 2: Evaluations of the runs

The extreme imbalance between recall and precision is mainly generated by the query
formulation we adopted in the bootstrapping phase. Moreover, making an a posteriori
analysis of the system components we also identified a design error, dictated by efficiency
goals in the choice of the learning algorithm. The Naive Bayes classifier uses prior knowledge
on the probability of positive cases to take its classification decisions. By limiting, in the
validation experiments, the value of n to a maximum value of 100, we have limited the prior
probability of positive cases to a minimum value of min b+p

n = 5
100 , when such probability is

much lower (on average on topics, about 1
113000). The fact that the p = 10 configuration has

been selected instead of the p = 5 one is likely due to the fact that five (positive examples)
is a really low absolute value, and doubling that value produces an improvement that easily
counterweights any other negative effect related to prior probabilities. Although one can
think about exploring the use of higher values for the n parameters, e.g., n = 113000, this
is not a flexible solution with respect to possible fluctuations in the class prior distribution
with respect to different topics and also requires a validation set that is representative of

6



the test set.

5 Future work

Our system did not perform well on the task, for two reasons: (i) the poor performance of
the ad hoc retrieval system used in the bootstrapping phase, (ii) the choice of a supervised
learning algorithm that relies on the prior probabilities from the training set. With respect
to the first issue we plan to investigate the performance of the system when using one of
the top-performing retrieval systems from the ad hoc retrieval task for the bootstrap phase.
With respect to the second issue we plan to test the use other learning algorithms, such as
SVMs, which do not use the prior probability of the class, in the classification phase.

References

[1] G. Berardi, A. Esuli, D. Marcheggiani, and F. Sebastiani. ISTI@ TREC Microblog
track 2011: exploring the use of hashtag segmentation and text quality ranking. In
Proceedings of the Twentieth Text REtrieval Conference (TREC 2011), 2011.

[2] W. B. Cavnar and J. M. Trenkle. N-Gram-based text categorization. In In Proceedings
of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval,
pages 161–175, 1994.

[3] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblogging
usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis, WebKDD/SNA-KDD ’07, pages
56–65, New York, NY, USA, 2007. ACM.

[4] R. McCreadie, I. Soboroff, J. Lin, C. Macdonald, I. Ounis, and D. McCullough. On
building a reusable twitter corpus. In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’12, pages
1113–1114, New York, NY, USA, 2012. ACM.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .
Journal of Machine Learning Research, 12:2825–2830, 2011.

[6] A. Ritter, S. Clark, and O. Etzioni. Named entity recognition in tweets: An experimental
study. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1524–1534. ACL, 2011.

[7] I. Soboroff and S. Robertson. Building a filtering test collection for trec 2002. In
Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, SIGIR ’03, pages 243–250, New York, NY, USA,
2003. ACM.

7


