
ISTI@TREC Microblog track 2011: exploring the use of

hashtag segmentation and text quality ranking

Giacomo Berardi, Andrea Esuli, Diego Marcheggiani, Fabrizio Sebastiani
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

firstname.lastname@isti.cnr.it

Abstract

In the first year of the TREC Micro Blog track, our participation has focused on
building from scratch an IR system based on the Whoosh IR library. Though the design
of our system (CipCipPy) is pretty standard it includes three ad-hoc solutions for the
track: (i) a dedicated indexing function for hashtags that automatically recognizes the
distinct words composing an hashtag, (ii) expansion of tweets based on the title of any
referred Web page, and (iii) a tweet ranking function that ranks tweets in results by
their content quality, which is compared against a reference corpus of Reuters news. In
this preliminary paper we describe all the components of our system, and the efficacy
scored by our runs. The CipCipPy system is available under a GPL license.

1 Introduction

Microblogging is a form of personal content sharing that derives from blogging, and it has a
focus on concision, space and time locality, and social network-style interactions [5]. While
conventional blogging has been for many year the subject of a TREC track [7], this is the
first year that microblogging is the subject of a TREC track. Twitter1 is currently the
dominant platform for microblogging, and it has been selected as the source of data for the
microblog track.

Twitter enforces a strong policy on short messages, allowing only a maximum length of
140 characters2. In addition to simple text, a tweet can contain three types of references:

• URLs to external content. External links are typically used to extend a tweet with
other media, e.g., an image shot by the user with her mobile phone, or to point to a
web content the tweet comments upon.

1http://twitter.com
2Twitter text length limitation derives from the original possibility of sending/receiving tweets on cell

phones via SMS, which have a maximum length of 160 characters, with 20 characters reserved by Twitter
for the id of the author of the tweet.

1

• Mention of names of other Twitter users, e.g., “@aesuli”. This is a way to credit
the mentioned user for the content of the tweet or a way to establish an exchange of
public messages other user may be interested to read and join the discussion.

• hashtags: a hashtag is defined by any string prefixed with a #, e.g., “#whyalwaysme”,
“#iwould”. The string can be a single word, an acronym, or multiple words joined
together, and usually identifies the subject topic of the tweet (e.g., “#SPIRE2011”)
or expresses a comment about it (e.g., “#epicwin”).

In our participation to the microblog track we have focused on using the information
contained in linked content and in hashtags in order to improve the quality of a baseline
search system that performs a simple search on tweet content using the query text.

We have also explored the use of a text quality ranking measure to filter out “slang”
tweets and promote high quality tweets, under the hypothesis that a well written tweet
probably contains more relevant information for the user issuing the query.

We have left to future investigation, and to eventual future editions of the track, other
equally relevant aspects, e.g., analysing the distribution of tweets along time and geographic
locations3, observing the propagation of tweets in the social network determined by men-
tions, retweets, and the “follow” relation4.

The problem of retrieval and ranking in microblogging has been already investigated
(see, e.g., [3] [8] [11]), but the 2011 TREC Microblog Track is the first large scale initiative
that has focused on microblogging.

2 Downloading the collection

We have downloaded the Twitter corpus using the downloader provided by the organizers.
Table 1 reports some statistics on the full corpus and on the various subsets we have defined
in order to build our indexes, which are described in Section 3.

The download process took much more time than predicted to complete, notwithstand-
ing that our organization has a fast connection and also that it is closely connected to the
Italian internet backbone. If the downloader was able to keep the peak download rate dur-
ing all the download process, it would have required in theory just five days to complete. In
practice, due to various issues, such as crashes in the download process due to lack of mem-
ory, hardware failures, variation of the network speed, timeouts connection with Twitter,
it required about one month to complete the download.

We have indexed only the tweets in English, filtering out non-English tweets. We have
used a language recognition system that we have implemented along the lines of [2], in
order to recognize English tweets.

The English set, the only part we have actually indexed, resulted to be roughly a quarter
of the entire corpus. We have then indentified two subsets of the English set: a Hashtag set

3Though only less than 10% of tweets contain location information, according to [10].
4We have downloaded the corpus using the HTML crawler, that does not allow us to gather most of this

information. For the next year, we plan to redownload the corpus using the Twitter API, that exposes also
this information.

2

total effective retweets null hashtags users

Entire corpus 16.141.812 13.812.346 1.104.780 1.224.686 655.850 5.356.842
English set 4.510.329 4.068.158 442.171 288.753 2.021.759

Hashtags subset 791.464 640.870 150.594 288.753 514.401
Link subset 676.957 674.471 2.486 14.399 400.631

Table 1: Some statistics from the corpus and the subsets we have selected for indexing,
the total number of tweets is divided in effective tweets (http status 200), retweets (http
status 302) and null tweets (http status 301/403/404). The hashtags column indicates the
number of unique hashtags.

that contains only English tweets that have hashtags in them, and a Link set that contains
only English tweets with URLs in them. The two subsets show a similar ratio of tweets with
at least one hashtag/URL with respect to tweets without hashtag/URL (1:5.6 for hashtags,
1:6.6 for URLs).

3 The retrieval system

Our system, named CipCipPy5, is an indexing and retrieval system based on the Whoosh6

IR library, written in Python. The source code of CipCipPy is available for download at
http://tag.isti.cnr.it/cipcippy/.

We have built an index for each of the three set of tweets we have identified in the
corpus. We have not indexed retweets, since the guidelines and discussions in the mailing
list of the track stated that retweets would be considered not relevant by default.

The index of the English set indexes the text of each tweet as is, without any special
processing of the text.

The index of the Hashtag set indexes only the hashtags contained in tweets. Each hash-
tag is indexed in two ways: (i) the hashtag text “as is”, e.g., #epicfail, and (ii) the distinct
words resulting from hashtag text segmentation (detailed in Section 3.1), e.g., (epic, fail).
We choose to index both versions of the hashtags, i.e., unsegmented and segmented, be-
cause it is not possible to tell a priori which of the two versions gives the largest contribute
of information. For example, the word “skype” extracted from the hashtag #skypeisnot-
workingagain, is probably more useful for retrieval than the original hashtag, because the
word “skype” clearly identifies the topic of the tweet and has a relatively high statistical
relevance in the corpus while the hashtag #skypeisnotworkingagain is a hapax. On the
other side, a hashtag like #yeswecan is much more important for retrieval than each of the
distinct words composing it.

The index derived from the Link set indexes only the titles (i.e., the text included in the

5“Cip Cip” is the Italian word for the sound of birds, while “Py” identifies the Python programming
language.

6https://bitbucket.org/mchaput/whoosh/wiki/Home

3

Figure 1: Modules and information flow of CipCipPy

<title> tag of the html page) of web pages referred by URLs in tweets. If a tweet contains
more than one URL, the titles of the referred pages indexed as consecutive sentences of the
same piece of text.

3.1 #splittingwordsinhashtags

A common practice in tweets is to identify their subject topic by means of a hashtag, e.g.,
#Mancherster, #LiesPeopleAlwaysTell, #toobad, #ff, #skypeisnotworkingagain,. Given
that a hashtag cannot contain white spaces, people usually concatenate more words to-
gether, to form a short phrase.

Recognizing the distinct words composing a hashtag is not a simple task to be autom-
atized. Some users identify the distinct words using a CamelCase style, i.e., capitalizing
the first letter of each word, other leave the words all in lowercase or uppercase. Other use
underscores “ ” to separate words, but it is not a common case because is wastes characters.
Usually words are just juxtaposed without any evident or coherent use of separation signs
and actually there are no common rules one can rely on to segment hashtags.

We treated our hashtag splitting problem as a compound word segmentation problem.
Choosing a sequence of words of sense given a word compound is difficult even for a human,
for example the hashtag compound #airportend can be split as air portend, or as airport
end, and also as air port end. The method we used to solve word compound segmentation is
based on the Viterbi Algorithm [4]. As the model of words distribution, used by the Viterbi
algorithm to calculate the most probable sequence, we have taken words frequencies from

4

an English corpus7.
Given the words distribution model and a hashtag, the hashtag segmentation module

converts the hashtag to a vector of words composing them (eventually returning just a
single word equal to the original hashtag).

3.2 Ranking by text quality

Quality of microblog content can be rather poor. Twitter content refers often to personal
topics, so the language style is grammatically and syntactically incorrect, conversational,
full of “vulgar” expressions. Only a small portion of tweets comes from authoritative sources
[1]. Following the hypothesis that a well written tweet has more probability to be relevant
for a query, we designed a ranking function to filter out unreliable tweets and increase the
importance of well formed tweets.

We have designed a simple method to assign a score of linguistic quality to a text,
following an approach that is typical of authorship attribution literature [6]. We represent
any text document, i.e., a tweet, with a vector of linguistic features:

• Ratio between the unique POS8 (parts of speech) and the total number of possible
POS (i.e., 36, from the NLTK), averaged on sentences.

• Ratio between the unique words and total number of words, averaged on sentences.

• Average length of sentences, in terms of words.

• Average length of words.

With this representation we can compare two texts on these linguistic features, so the more
similar a tweet vector is to a well written text vector, the more the tweet quality is likely
to be high.

In our retrieval system, for each query, we retrieve the first r (r = 10) results from the
Reuters website9, using Google to search on that website. We consider that set of result
to be an example of well written content on the topic. A single linguistic vector from the
union of these result pages is created, and then compared with each vector of the tweets
retrieved with the same query. We have used the classic Cosine similarity as the similarity
function, thus the higher is the score, the higher we consider the linguistic quality of a
tweet.

3.3 Query processing

For the official runs we have defined a weight function (used to compute the retrieval score of
the tweets) that is a variant of the BM25 function [9]. The difference between our function
and the BM25 function is in the computation of term weight. In the BM25 approach,
frequency of the term in a document is used, while in our approach we use the inverse of

7http://norvig.com/big.txt
8We have used the Natural Language Toolkit (http://www.nltk.org/) to perform POS-tagging.
9http://www.reuters.com/

5

the frequency of the term in a tweet. Given a query q composed by terms q1...qn, the score
assigned to document d is:

score(d, q) =
n∑

i=1

IDF (qi) ·
(1/TF (qi, d)) · (k1 + 1)

(1/TF (qi, d)) + k1 · (1− b+ b · |d|avgdl)
(1)

where avgdl is the average length of the documents in the collection, k1 and b are parameters
set to the default values of the whoosh library (k1 = 1.2 and b = 0.75). The IDF function
returns the inverted document frequency of a term:

IDF (qi) = log
(N − |{d : qi ∈ d}|) + 0.5

|{d : qi ∈ d}|+ 0.5
(2)

where N is the total number of documents in the collection. The intuition is that in a short
text, composed of few unique words, the repetition of the same word is an indicator of poor
quality of the text.

We have used hashtags in order to implement a simple result re-ranking method. Given
the original query q, we first get the top k results (k = 30) for the English set index, and
we extract all the hashtags we find in these results. Then we use our hashtag segmentation
method (see Section 3.1) to build a vector h of relevant hashtag-related words. Each word
in the vector h is weighted by its frequency in the k results described above. The vector is
then normalized by the L2 norm. The h vector is thus designed to identify a weighted set
of keywords that describe the topic of the query.

We have also adopted a query expansion method based on hashtags. An expanded
query q is formulated as the union, based on the ANDMAYBE10 Whoosh operator, of the
original query q with the vector h (in which each term is considered to be in disjunction
with the others). In this way the score a tweet receives for matching the original query q
is increased with the score it receives for matching with any of the words in the weighted
vector h. The q′ query does not retrieve more tweets than the q query, but it is designed
to push the rank of tweets that have matches with the h vector.

We retrieve n results (n=1000) from each of the three indexes using the q query. At
this point, we have three score vectors, of size n.

In the successive phase we compute the cosine similarity between the linguistic vectors
of tweets, retrieved from the first index, and the Reuters pages, retrieved using the query
q, as described in Section 3.2.

Each of the four score vectors is then normalized using L2 norm. The four score vectors
are linearly combined, with parameters wtweet, whashtag, wtitle and wquality. After removing
duplicates (i.e. identical tweets posted after the original), we filter out tweets with score
values below a threshold parameter α. We have empirically set the α value to 0.03, that
results in filtering out a relatively small part of low-scored tweets (from 1 to 10% for each
query). The remaing tweets, ordered by time, are the answer to the query.

10http://packages.python.org/Whoosh/api/query.html#whoosh.query.AndMaybe

6

4 Official runs

We have been able to submit only two official runs, runNeMIS and runNeMISext.
The runNeMIS run only uses “internal” information, i.e., the weights wtitle and wquality

are set to zero, while wtweet = whashtag = 0.5. In this way only the information contained
in tweets is used to perform the search.

The runNeMISext uses also the external information, i.e., wtweet = whashtag = wtitle =
wquality = 0.25.

Tables 2 and 3 resumes the precision@30 values scored by the two run, compared with
the baseline run, the best and median performance values made available to us by the
organizers. Results indicates that our system performs worse than the median reference,
which is clearly not a satisfactory result. It is interesting to note that, as expected, the run
with external information performs better than the run that does not use such information.

runNeMIS runNeMISext Baseline Best Average Median Average

P30 0.139 0.171 0.099 0.612 0.259

Table 2: AllRel evaluation

runNeMIS runNeMISext Baseline Best Average Median Average

P30 0.049 0.062 0.106 0.265 0.069

Table 3: HighRel evaluation

5 Post-conference runs

After the TREC conference we have collected feedback on the system and modified it in
order to improve it, producing additional runs. First, we have better explored the space of
parameters (i.e., k, n, r, w∗, α).

One relevant modification to the system is the use of a simple IDF weighting function
instead of our custom BM25 weighting. After a manual inspection of our official runs, we
hypothesized that the BM25 measure could be not well suited for the task, given the short
and relatively compact distribution of the text lengths. We then adopted for the additional
runs the IDF measure for weighting.

In addition to the already described scores, we have added a date score vector, in which
the values are proportional to the time difference between the query date and the date of
the tweets. This result vector for dates is normalized, similarly to the others, by the L2

norm. The final tweet score is the linear combination of all the previous scores, multiplied
by the relative parameters, plus the date score multiplied by wdate.

Considering the low recall of the official runs, the queries have been reformulated to
increase the recall of the system. Instead of a conjunction of all the terms, the q query is

7

defined as the disjunction of the conjunction of every pair of terms of the official query, plus
each single term. We have then simplified the query expansion method based on hashtags
and the ANDMAYBE operator, combining instead the results retrieved with the new q
query with the results retrieved using the the hashtag terms in the h vector as a disjoint
query.

runNeMISNew1 runNeMISNew2 runNeMIS runNeMISext

MAP 0.252 0.249 0.096 0.119

P5 0.506 0.489 0.346 0.326

P30 0.355 0.352 0.139 0.171

Table 4: Result evaluations for three new runs and the old runs (AllRel), with the measures
of Mean Average Precision (MAP), precision@5 (P5) and precision@30 (P30).

In the Table 4 a selection of two runs with a setting of parameters that scored good
results are shown. We’d like to stress that these new runs are somewhat optimized on test
data, so we don’t look for any comparison with official runs from other participants, but
we consider them just as an indicator of the potential of the system when it is possible to
fine tune it. We have found that a slightly higher value of α = 0.04 produces a relevant
improvement in precision, and all the new runs have this filtering threshold. In runNe-
MISNew1 the other parameters are k = 5, wtweet = 0.8, wtitle = whashtag = wdate = 0.07
and wquality = 0, this is one of the best run in terms of P30. The runNeMISNew2 run is
very similar to the runNeMISNew1 run in terms of efficacy; the only non zero weight is
wtweet = 1, and k = 0, so this run is equivalent to a simple text retrieval using only the
IDF weighting, and the new q query formulation.

In general, we have found that rather different configurations of parameter values pro-
duced similarly good results, but we have not yet found a dominant component in the
configurations.

6 Conclusion and future work

Creating a system for a TREC track is often a difficult task, and this year made no dif-
ference. We regard as a good result of our participation the successful development, from
scratch, of a complete retrieval system, with some interesting modules designed ad-hoc for
the task.

The development effort unfortunately limited us from performing a complete and rig-
orous exploration of our hypotheses and proposals, and lead to poor results. Many of the
parameters of the system have been hardcoded to rather arbitrary values, determined by
a few manual inspections of preliminary results on the sample topics released before the
official topics.

A first exploration of the behaviour of the system in relation to the variation of the pa-
rameters (e.g., k, n, r, w∗, α), shown that the system has a good potential for improvement.

8

A simplification of the weighting function, and a reformulation of the queries in order
to increase recall produced a relevant improvement.

In the future we would like to expand the system to consider additional sources of
information, such as the distribution in space of tweets, their propagation along the Twitter
social network, and also to include the best ideas from other participants.

References

[1] P. Analytics. Twitter study, 2009. Retrieved 03 31, 2010, from
http://www.scribd.com/doc/18548460/Pear-Analytics-Twitter-Study-August-2009.

[2] W. B. Cavnar and J. M. Trenkle. N-Gram-based text categorization. In In Proceed-
ings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information
Retrieval, pages 161–175, 1994.

[3] M. Efron. Information search and retrieval in microblogs. Journal of the American
Society for Information Science and Technology, 62(6):996–1008, 2011.

[4] G. Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973.

[5] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblog-
ging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD
2007 workshop on Web mining and social network analysis, WebKDD/SNA-KDD ’07,
pages 56–65, New York, NY, USA, 2007. ACM.

[6] P. Juola. Authorship attribution. Foundations and Trends in Information Retrieval,
1(3):233–334, 2006.

[7] C. Macdonald, R. L. Santos, I. Ounis, and I. Soboroff. Blog track research at trec.
SIGIR Forum, 44:58–75, August 2010.

[8] R. Nagmoti, A. Teredesai, and M. De Cock. Ranking approaches for microblog search.
In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology - Volume 01, WI-IAT ’10, pages 153–157,
Washington, DC, USA, 2010. IEEE Computer Society.

[9] S. Robertson and H. Zaragoza. The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends in Information Retrieval, 3:333–389, 2009.

[10] S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging during two natural
hazards events: what twitter may contribute to situational awareness. In Proceedings
of the 28th international conference on Human factors in computing systems, CHI ’10,
pages 1079–1088, New York, NY, USA, 2010. ACM.

[11] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential
twitterers. In Proceedings of the third ACM international conference on Web search
and data mining, WSDM ’10, pages 261–270, New York, NY, USA, 2010. ACM.

9

