Dublin City University at the TREC 2006
Terabyte Track

Paul Ferguson, Alan F. Smeaton and Peter Wilkins
Centre for Digital Video Processing & Adaptive Information Cluster
Dublin City University, Glasnevin, Dublin 9, Ireland
{pferguson, asmeaton, pwilkins}@computing.dcu.ie

Abstract

For the 2006 Terabyte track in TREC, Dublin City University’s participation was focussed on
the ad hoc search task. As per the pervious two years [7, 4], our experiments on the Terabyte track
have concentrated on the evaluation of a sorted inverted index, the aim of which is to sort the
postings within each posting list in such a way, that allows only a limited number of postings to
be processed from each list, while at the same time minimising the loss of effectiveness in terms of
query precision. This is done using the Fisréal search system, developed at Dublin City University
4, 8]

1 Introduction

As in the previous two years, the Terabyte Track experiments in TREC 2006 were run on the
GOV2 collection; a collection of over 25 million documents, crawled from the .gov domain in early
2004.

This year Dublin City University participated in the ad hoc search task. The aim of this task
was to investigate the performance of systems on a static set of documents with a set of previously
unseen topics. For this task NIST provided the participants with 50 new topics to search for
relevant documents on. Participants were then and asked to return a ranked set of the 10,000
most highly-ranked documents for each of these topics.

In this paper section 2 will describe the sorted index used in our experiments. Section 3 outlines
the search engine set up that we used, while section 4 explains the experiments we carried out for
this years ad hoc search task. Finally, section 5 explores the outcome of these results and draws
some conclusions from the work.

2 Sorted Inverted Index

The conventional approach for sorting posting lists, within an inverted index is to sort them in
ascending order based on the document identifier. This allows for easy compression, based on
storing the difference between consecutive identifiers (d-gaps). However it has been found that
sorting based on other measures may allow for faster processing of queries, by processing only the
postings early in the list, as defined by the sorting metric.

Persin et al [11, 12] proposed a frequency sorted index, based on the within document term
frequency for each term, so that documents may be filtered, in order to reduce the number of
documents to be processed, and in doing so, reducing both the main memory in use, as well as the
query time. This reduction is achieved by “processing only the most informative parts of the term
entries”, and to allow this the postings lists are sorted in descending order of the within document
frequency of each posting.

Anh and Moffat [2, 3, 1] proposed an impact sorted index. They suggest a term-impact, where
the impact is calculated based on the influence of a term within a document, similar to [5], as well



as a document-centric impact, which calculates the impact at a document, rather that a global
level.

Garcia et al [10], alternatively suggest sorting the inverted index based on access counts.
Founded on the idea that even with a large number of different queries the same documents
are quite often ranked highly, while other documents are rarely if ever returned to the user, the
postings are ordered so that the documents relevant for most queries are towards the top of the
lists and the less retrieved documents are stored towards the bottom.

2.1 BM25 Sorting

The Okapi BM25 model was proposed by Robertson et al [13], and remains one of the most widely
used methods of assigning similarity between documents and a query, and so is widely using in
information retrieval.

For an ad hoc retrieval and ignoring any repetition of terms in the query, as is the case for the
vast majority of web queries, this function can be simplified to:

- N —tfi+0.5 (k1 + 1)dfs
bm25(q, d) = Zlog< i+ 05 ) (1= b) + b22) + dfs v

teq

where df; is the number of documents in the collection that contain the term i.

This calculates a similarity score between a query and a document, and with this formulation
the scores for all query terms are summed to give a final score. However if we use this at indexing
time on a term by term basis to calculate the BM25 scores for each of the documents within
that posting list and then sort the posting list using these scores, this is in effect a pre-calculated
BM25 ranking for each posting list, and the only missing element from calculating a full query-
dependent score is the summation with other scores from the relevant query terms. This of course
is something that can only be known at query time. Therefore it is as close at we can get to a
query-dependent estimation of the query-dependent BM25 score.

Also if we are only concerned with calculating a score that is only to be used as a means by
which to sort postings and this is done on a term by term basis, there is then no need to include
any global term information such as df; (the number of documents in the collection that contain
the term i). This leaves a simplified calculation of:

(2)

tfi +0.5 1—b) +bz4)

We used this formula for sorting our inverted index for this years experiments.

3 Fisréal Search Engine Setup

For the 2006 TREC experiments, our search system was run on a single machine, a Pentium 4,
2.6 GHz with 1.5 GB of RAM. The entire collection was indexed on this machine and queries were
also run locally on this machine.

3.1 Early Termination

Similar to our previous involvements in the Terabyte track in 2004 and 2005, we again utilised
the top subset approach [7, 4, 9] for selecting the postings to be processed from each query term.
We have found that this is also the same approach that is utilised by Garcia et al [10], where
it is referred to as mazpost. Using this strategy, a maximum number of postings is chosen to
be processed from each posting list, e.g. 100,000, then at query time, for each query term, this
is the maximum number of postings that will be processed for each query term. We have also
experimented with selecting the number of postings to process, based on a percentage of the the
postings, however this is outperformed by the fixed size approach. We believe this approach works
well as it means that a greater percentage of postings from uncommon terms, i.e. those that tend
to affect the ranking more, are processed, while a large percentage of postings from a frequently
occurring term may not be processed, as these terms affect the ranking the least.



3.2 Retrieval

In order to provide the matching between documents and queries, and to allow document ranking,
we again utilised the BM25 formula, as shown in equation 1.

4 Experiments

For this years ad hoc task we submitted a single run, DCUO5BASE (which incidentally should
have been named DCUO6BASE !). For this run we elected to use a top subset size of 200,000 for
each of the posting lists, where the run is automatically processed, using only the title information
for each topic.

The table 1 shows the performance of this run in terms of mean average precision (MAP),
bpref, precision at 5 documents (P5) and precision at 10 documents (P10)

Table 1: Performance figures for DCUO5SBASE

MAP bpref P5 P10
0.2748 0.3577 0.6013 0.5671

4.1 Analysis

To illustrate the usefulness of this approach it is beneficial to look at the tradeoff that is being made
between the accuracy of the retrieval, compared with the amount of processing that is required.

Figure 1 shows that by processing less postings there is certainly a small degradation in terms of
MAP, compared with processing all postings for each query term. Figure 2 shows that there is less
of a decline in terms of precision at 10 documents, by choosing to process less postings per query
term. For example there is only a very small difference between processing 200,000 postings per
term, compared with processing all postings: 0.5671 and 0.5732 respectively. Meanwhile processing
less postings per term requires much fewer postings to be processed overall, as can be seen from
Figure 3, for example by again choosing the 200,000 cutoff point, only 13.9% of all postings are
processed, although it should be clear that this does not translate to 13.9% of the performance of
processing all postings, as this approach aims to process the document entries most likely to be
relevant, first.

AP

0.35
03 —

5 il
= 015
0.1
0.05
1] ! ! ! L L L
10000 50000 100000 200000 300000 400000 All
Paostings

Top subsetsize

Figure 1: MAP performance, using different top subset sizes



P10
0.6
0.58
054 //_/
= 0452
= 05
0.483 c/
0.46
0.44
042 L L L L L L ]
10000 50000 100000 200000 300000 400000 All
Paostings
Top subsetsize

Figure 2: P10 performance, using different top subset sizes

Percentage Postings Processed

100 4
S0 /
a0
70
B0
50
40

a0 _,_4————‘

20

10 ﬂ

0 —_

10000 50000 100000 200000 300000 400000 All
Postings

Percentage postings processed

Top subset size

Figure 3: Percentage of postings processed with different top subset sizes



5 Conclusions

In our participation in the TREC 2006 terabyte ad hoc search task, our main objective was to
further investigate the effectiveness of our sorted index approach in order to allow tradeoffs between
the number of postings that are processed in response to a query, and retrieval effectiveness. To
this end the approach we presented once again seems to offer a viable way of reducing the search
space with only a 0.0366 absolute value reduction in MAP and a 0.0061 absolute value reduction
in P10, having to process only 13.9% of all postings available.

In terms of our retrieval performance in comparison with other groups in the TREC terabyte
track in 2006, this year our submitted run performed below the median for MAP and bpref, and
above the median for p10. This is contrary to the terabyte track in 2005 where all of our ad hoc
runs performed above the median for MAP, p10 and bpref, when compared with other participants
[7, 6]. However If we were simply concerned with system performance in terms of these measures
then by processing all postings, this would give performance that would be above the median in
terms of MAP, as shown in Figure 1. Future work may include experimenting with both alterna-
tive forms of sorting, as well as document ranking, using functions other than BM25, in order to
increase the overall performance of the system.

Acknowledgement: This work was supported by Science Foundation Ireland, under grant
number 03/IN.3/1361.

References

[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-Space Ranking with Effective Early Termi-
nation. In SIGIR ’01: Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR, 2001.

[2] V. N. Anh and A. Moffat. Impact transformation: effective and efficient web retrieval. In
SIGIR ’02: Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 3—10, 2002.

[3] V. N. Anh and A. Moffat. Improved retrieval effectiveness through impact transformation. In
CRPITS ’02: Proceedings of the Thirteenth Australasian Conference on Database Technolo-
gies, pages 41-47, Darlinghurst, Australia, 2002. Australian Computer Society, Inc.

[4] S. Blott, O. Boydell, F. Camous, P. Ferguson, G. Gaughan, C. Gurrin, N. Murphy, N. E. O.
Connor, A. F. Smeaton, B. Smyth, and P. Wilkins. Experiments in Terabyte Searching,
Genomic Retrieval and Novelty Detectionn for TREC-2004. In Proc. Third Text RFEtrieval
Conference. Proc. Thirteenth Text Retrieval Conference (TREC-13), November 2004.

[5] C.Buckley and A. F. Lewit. Optimization of inverted vector searches. In Proceedings of the 8th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 97 — 110, 1985.

[6] C. Clarke, F. Scholer, and I. Soboroff. The TREC 2005 Terabyte Track. In The Text Retrieval
Conference (TREC), 2005.

[7] P. Ferguson, C. Gurrin, A. F. Smeaton, and P. Wilkins. Dublin City University at the TREC
2005 Terabyte Track. In Proc. Third Text REtrieval Conference. Proc. Fourteenth Text
Retrieval Conference (TREC-14), November 2005.

[8] P. Ferguson, C. Gurrin, P. Wilkins, and A. F. Smeaton. Fisréal: A Low Cost Terabyte Search
Engine. In Proceedings of Furopean Conference in IR. Springer LNCS, March 2005.

[9] P. Ferguson, A. F. Smeaton, C. Gurrin, and P. Wilkins. Top Subset Retrieval on Large
Collections using Sorted Indices. In SIGIR ’05: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 599—
600, 2005.

[10] S. Garcia, H. E. Williams, and A. Cannane. Access-ordered indexes. In CRPIT ’04: Pro-
ceedings of the 27th Conference on Australasian Computer Science, pages 7—14, Darlinghurst,
Australia, 2004. Australian Computer Society, Inc.



[11] M. Persin. Document filtering for fast ranking. In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 339
~ 348, 1994.

[12] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered Document Retrieval with Frequency-Sorted
Indexes. Journal of the American Society of Information Science, 47, 1996.

[13] S.E. Robertson, S. Walker, K. Sparck Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi
at TREC-3. In Proc. Third Text REtrieval Conference (TREC-3), pages 109-126, 1994.



