
Question Answering with Lydia
(TREC 2005 QA track)

Jae Hong Kil, Levon Lloyd, and Steven Skiena

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
{jkil, lloyd, skiena}@cs.sunysb.edu

1 Introduction

The goal of our participation in TREC 2005 was to determine how effectively our entity recogni-
tion/text analysis system, Lydia (http://www.textmap.com) [1–3] could be adapted to question
answering. Indeed, our entire QA subsystem consists of only about 2000 additional lines of
Perl code. Lydia detects every named entity mentioned in the AQUAINT corpus, and keeps
a variety of information on named entities and documents in a relational database. We can
collect candidate answers by means of information kept in the database. To produce a response
for the main task or a ranked list of documents for the document ranking task, we rank the
collected candidate answers or documents using syntactic and statistical analyses.

A significant distinction from other question answering systems [4–6] presented earlier at
TREC is that we do not use web sources such as Wikipedia and Google to generate candidate
answers or answers. Rather, we only use syntactic and statistical features of the test set of
questions and corpus provided. Our approach is independent of other sources, and finds answers
from the text provided.

We describe the design of Lydia and associated algorithms in Section 2, and focus on the
design and algorithms of the QA system in Section 3. We then analyze the performance of
the QA system in Section 4, and conclude this paper with discussion on future directions in
Section 5.

2 The Lydia System

Lydia is designed for high-speed analysis of online text, and it analyzes thousands of curated
text feeds daily. Lydia is capable of retrieving a daily newspaper like The New York Times and
then analyzing the resulting stream of text in under one minute of computer time.

These design criteria force us to abandon certain standard techniques from natural language
processing as too slow, most notably grammar-based parsing techniques. Instead, we use part of
speech tagging [7] to augment the performance of special-purpose pattern matchers to recognize
names, places, and other proper nouns, as well as related patterns of interest.

A block diagram of the Lydia processing pipeline appears in Figure 1.

2.1 Named Entity Recognition

Fundamental to Lydia is a problem referred to as named entity recognition within the natural
language processing literature, where one seeks to detect every named entity mentioned in
a document. The most important phases of our system for named entity recognition are as
follows:

Type 2ReformatterType 1ReformatterDocument Identity ExtractorPart of Speech TaggingSyntactic Tagging PipelineProper Noun Phrase Classification Alias ExpansionRule-Based Processing

Juxtaposition AnalysisSynset Identification
Applications

HeatmapGeneration
Geographic Normalization
Database

Type 1 Document Type 2 Document

Fig. 1. Block Diagram of the Lydia Processing Pipeline

Part of Speech Tagging To extract proper noun phrases from text, we tag each input word
with an appropriate part of speech tag (noun, verb, adjective, etc.) on the basis of statistical
predication and local rules. We employ Brill’s popular part of speech (POS) tagger in our
analysis.

Syntactic Tagging In this phase of the pipeline, we use regular-expression patterns imple-
mented in Perl to markup certain classes of important text features such as dates, numbers,
and unit-tagged quantities.

Proper Noun Phrase Classification Each proper noun phrase in a text belongs to some
semantic class, such as person, city, or company. We first attempt to classify each entity by
looking it up in a series of gazetteers. If that fails, then we employ a Bayesian classifier[8].

Rule-Based Processing Compound entities are difficult to handle correctly. For example,
the entity name State University of New York, Stony Brook spans both a comma and an
uncapitalized word that is not a proper noun. By comparison, China, Japan, and Korea refers
to three separate entities. Our solution is to implement a small set (∼ 60) of hand-crafted rules
to properly handle such exceptions.

Alias Expansion A single entity is often described by several different proper noun phrases,
e.g. President Kennedy, John Kennedy, John F. Kennedy, and JFK, even in the same document.
We identify two common classes of aliasing, suffix aliasing and company aliasing, and take
appropriate steps to unify such representations into a single set.

Geographic Normalization Geographic names can be ambiguous. For example, Albany is
both the capital of New York State and a similarly-sized city in Georgia. We use a geographic
normalization routine that identifies where places are mentioned, resolves any ambiguity using

population and locational information, and replaces the name with a normalized, unambiguous
representation.

2.2 Juxtaposition Analysis

A primary goal of Lydia is to measure how entities relate to each other. Given a pair of entities
in the database, we seek to assign a score to the juxtapositionness of them and then for any
given entity we can find the other entities that scored the highest with it.

To determine the significance of a juxtaposition, we bound the probability that two entities
co-occur in the number of articles that they co-occur in if occurrences where generated by a
random process. To estimate this probability we use a Chernoff Bound:

P (X > (1 + δ)E[X]) ≤ (
eδ

(1 + δ)(1+δ)
)E[X]

where δ measures how far above the expected value the random variable is. If we set (1 +
δ)E[X] = F = number of co-occurrences, and consider X as the number of randomized juxta-
positions, we can bound the probability that we observe at least F juxtapositions by calculating

P (X > F) ≤ (
e

F
E[X]

−1

(F
E[X])

(F
E[X]

)
)E[X]

where E[X] = nanb
N , N = number of sentences in the corpus, na = number of occurrences of

entity a, and nb = number of occurrences of entity b, as the juxtaposition score for a pair of
entities. We display − log of this probability for numerical stability and ranking.

3 Question Answering and Document Ranking

Our QA system is designed to answer factoid, list, and other questions, and to rank the relevance
of documents for each question. The QA system performs question answering and document
ranking through three partially overlapped flows by means of information kept in the database
of Lydia and tagged AQUAINT corpus which are acquired by running the AQUAINT corpus
through the Lydia pipeline.

A block diagram of the QA system appears in Figure 2.

3.1 Factoid and List Questions

To produce an answer for a factoid and answers for a list question, our QA system processes
five phases following flowline (1) in Figure 2. The five phases are as follows:

Question Preprocessing To analyze question types, we part of speech tag the test set of
questions provided. We employ Brill’s part of speech (POS) tagger in the questions.

ex) Where is Port Arthur? ⇒ Where/WRB is/VBZ Port/NNP Arthur/NNP ?/.

Question
Question Preprocessing Target ExtractionCandidate Answer CollectionCandidate Answer Elimination & Scoring

Answer Production
Candidate Answer Pruning

Document Collection

Document Ranking

(1) Factoid & ListQuestion (2) Other Question(1) (3) Document Ranking(1),(2)(1)
(1) (2)(2) Document Scoring

(3) (3)
(3)

Answer(s) Ranked list of documents
Lydia DatabaseTagged AQUAINT corpus

AQUAINT corpus

Fig. 2. Block Diagram of the Question Answering System

Target Extraction The Lydia database keeps track of every named entity recognized. To
use information in the database, we extract a target, for example, “Kim Jong Il”. When Lydia
does not recognize a target, we extract one as follows:

– Valid Form Extraction – When a target is not in a valid form such as a plural noun, we use
WordNet [9] to obtain a valid form of the target.

– Partial Extraction – Lydia recognizes proper nouns and various types of numerical nouns
as named entities. However, Lydia does not recognize a phrase or a compound word such
as “Russian submarine Kursk sinks” as a named entity. In that case, we extract a part of
the target, for example, “Kursk” which is recognized by Lydia.

– Synonym Extraction – If a target and any part of the target are not recognized by Lydia,
we acquire synonyms of the target using WordNet, and then choose a synonym which is
recognized by Lydia as a target.

Candidate Answer Collection We identify which sentences in the documents contain the
target by querying the Lydia database, as well as all the entities which are in these sentences.
Since we only identify the sentences where the target is, it takes comparatively less time to
collect candidate answers than with whole documents. In addition, it enables us to more specif-
ically identify which part in the text provides an answer.

Candidate Answer Elimination and Scoring To rank the candidate answers, we use three
types of analysis algorithms.

– Juxtaposition Analysis – We obtain the juxtaposition score between a target and each can-
didate answer querying the Lydia database. More strongly associated terms are likely to

Type Question

1 (What|Which) + (the|an|a|NN of|) + (NN|JJ + NN) Which countries expressed regret about the loss?

2 (List|Name|. . .) + (the|an|a|NN of|) + (NN|JJ + NN) Name players on the French team.

3 How + (NN|JJ|RB) How many students were wounded?

4 (Who|Whose|Whom|When|Where|Why) When was Enrico Fermi born?

5 (How|What|Which)+ VB What is Hong Kong’s population?
Table 1. Five Question Types with Example Questions

CARDINAL COMPANY COUNTRY DATE DISEASE PERSON TIMEPERIOD VOLUME WEBSITE

WHO N/A 2 2 N/A N/A 10 N/A N/A N/A

WHOSE N/A 2 2 N/A N/A 10 N/A N/A N/A

WHOM N/A 2 2 N/A N/A 10 N/A N/A N/A

WHEN 10 N/A N/A 10 N/A N/A N/A N/A N/A

WHERE N/A 2 10 N/A 1 1 N/A N/A 1

WHY N/A 1 1 N/A 5 1 N/A N/A N/A

WHAT 2 10 2 2 10 5 2 2 10

WHICH 2 10 2 2 10 5 2 2 10

HOW N/A 1 1 N/A 5 1 N/A N/A N/A
Table 2. Relevance Scores of Nine Interrogatives and Selected Classes

represent answers to commonly asked questions.

– Question Term Analysis – To analyze question terms in a question, we first eliminate in-
terrogative phrases and stop words [10]. We then obtain a valid form of each non-trivial
question term and its synonyms. We weight each candidate answer identified in a sen-
tence with both the target and a non-trivial question term/its synonym using the following
equation:

weight = C × nq

nt

where C is a constant(≈ 100), nq = number of non-trivial question term or its synonym,
and nt = number of total non-trivial question terms.

– Question Type Analysis – Our methods for eliminating and scoring candidate answers vary
with question types. Table 1 shows five question types and their example questions.

• For question types 1 and 2, the class1 of an answer is likely to be the same as the
noun followed by a verb. For example, “country” is the valid form of “countries” in the
example question 1 in Table 1, thus we eliminate candidate answers whose class is not
the same with the noun, country. If the noun followed by a verb does not match with
any class in Lydia, we obtain hypernyms of the noun using WordNet. For example, the
noun, “players” in the example of question type 2 in Table 1 does not match with any
class. However, a hypernym of “players” is person, and the class of the answer for the
question is likely to be person, so we eliminate candidates answers whose class is not
person.

1 Currently, Lydia classifies named entities into about 60 semantic classes, e.g. cardinal, country, date and
university. We are still developing gazetteer-based algorithm and Bayesian classifier to classify entities more
accurately and specifically. Hence, the number of semantic class is steadily increasing.

• The answers for question type 3 are obviously numerical. Therefore, we eliminate candi-
date answers whose class is not numerical such as company, country, disease or person.

• An interrogative or interrogative phrase does not provide a reliable clue to recognize the
class of an answer for question types 4 and 5, thus we use a set of lists, “interrogative,
class, and relevance score” for all interrogatives, which are who, whose, whom, when,
where, why, what, which, and how. Table 2 shows the relevance scores of the nine inter-
rogatives and the selected classes. For example, the interrogative when is on five lists as
follows: WHEN CARDINAL 10, WHEN DATE 10, WHEN MONTH 2, WHEN DAY
2, WHEN TIME 2. This means that when the interrogative of a question is when, the
class of an answer can be only one of the five classes, cardinal, date, month, day, and
time, and the relevance score for each candidate answer whose class is cardinal, date,
month, day, or time is 10, 10, 2, 2, or 2, respectively.

Answer Production To produce an answer for a factoid question or answers for a list ques-
tion, we rank candidate answers as follows:

– Candidate Answer Ranking – We score each candidate answer depending on question type,
for question types 1, 2 and 3:

score = juxtaposition score× weight

for question types 4 and 5:

score = juxtaposition score× weight× relevance scoreC

where C is a constant(≈ 2). We then sort all the candidate answers in descending order of
score.

– Answer Selection – An answer for a factoid question is the entity whose score is the highest,
and answers for a list question are the entities whose scores are higher than a threshold.

3.2 Other Question

To produce answers for an other question, our QA system processes the four phases following
flowline (2) in Figure 2. Answering an other question does not require the question preprocessing
phase since an other question in the test set of questions provided is not in sentence form, but
merely a word, “Other”. The candidate answer pruning phase plays a role in narrowing down
candidate answers as the candidate answer elimination and scoring phase does for a factoid
and a list question.

The four phases are as follows:

Target Extraction Basically, the algorithms for an other question are the same with the
ones for a factoid and a list question. In addition, we employ a set of first name-nickname
pairs [11] to expand the target using the first name equivalence, since we need to obtain the
largest set of sentences which might contain definitions of the target. For example, since Jim is
a nickname of James, Jim Inhofe and James Inhofe indicate the same person. Assuming that
two consecutive words starting with a capital in a target represent a person name, we search
the first word in the set of first name-nickname pairs. If found, we use both the original target
and the new target replaced the first word by its pair as targets.

Candidate Answer Collection We obtain the documents which contain a target or targets
by querying the Lydia database, and collect all the sentences which contain the target or
targets.

Candidate Answer Pruning Though every sentence contains information on a target or
targets, we need to prune sentences which are duplicated or not directly related to the target
or targets. Our pruning algorithms are as follows:

– Sentence Preprocessing – At first, we remove meaningless snippets such as newspaper title,
publication date and place in each sentence. We then eliminate too short sentences which
barely convey significant meanings, and sentences whose subjects are the first-person or
the second-person, namely “I”, “We” or “You” since they are highly likely to only contain
a subjective opinion of the subject. In addition, fully or partially duplicated sentences are
eliminated.

– Sentence Scoring – We assign the same initial score to each sentence, and weight or deweight
each sentence. We weight a sentence which fully contains the target more than one with the
target in part, and a sentence which contains the possible syntactic pattern of a definition,
Target + (is|was|who|which|that) or Target(s|es) + (are|were|who|which|that). On the other
hand, we deweight a comparatively long or short sentence (the threshold is determined to
be 100 due to the allowance of characters for each correct nugget [12, 13]) as well as those
which contain unrelated words such as “say”, “ask”, “report”, “If”, “Unless”, interrogatives,
and subjective pronouns. We also deweight a sentence which contains too many non-trivial
words or proper nouns compared to other types of words since the sentence is likely to be
just an enumeration of nouns such as names and places.

Answer Production We sort all the candidate answers in descending order, and then select
sentences whose scores are higher than a threshold.

3.3 Document Ranking

Since our QA system does not rank documents for the purpose of answering three types of
questions, we employ a function of length of a document, number of occurrences of a target
and number of occurrences of marked (tagged) terms, or length of a document and number of
occurrences of marked (tagged) terms in the document scoring phase.

The QA system processes four phases following flowline (3) in Figure 2. The four phases de-
scribed in two sections, target extraction, document collection, document scoring, and document
ranking are as follows:

Target Extraction and Document Collection We extract a target with the same algo-
rithms for a factoid and a list question, and then identify all the documents which contain the
target or synonyms of the target querying the Lydia database.

Document Scoring and Ranking To obtain a ranked list of 1000 documents for each
question, we follow the three steps:

– Documents with the target – We score each document with the function:

score = C1 × ld + C2 × nt + C3 × nm

where C1, C2 and C3 are constants, ld = length of a document, nt = number of occurrences
of a target, and nm = number of occurrences of marked (tagged) terms. We then sort the
documents in descending order.

– Documents with synonyms of the target – The scoring function is the same with the one
for documents with the target. After scoring each document, we sort the documents in
descending order, and scale down the scores of the sorted documents to rank them lower
than the lowest ranked document which contains the target.

– Completing the ranking – To ensure we submit 1000 documents for each query, we attempt
to identify the top 1000 documents for a “null query”, and use these to make up the balance.
We score all the documents in the AQUAINT corpus with the function:

score = C1 × ld + C2 × nm

where C1 and C2 are constants, ld = length of the document, and nm = number of oc-
currences of marked (tagged) terms. We then sort the documents in descending order, and
generate a list of 1000 documents with the highest score. This procedure is done once since
it is independent of questions. Finally, we fill the balance from the 1000 documents if the
number of documents which contain the target and synonyms of the target is less than
1000.

4 Performance Analysis

We submitted three runs for the main task and the document ranking task of TREC 2005
QA track: SUNYSB05qa1, SUNYSB05qa2 and SUNYSB05qa3. These three runs only differ
in settings for answer production. The setting of SUNYSB05qa2 is less conservative than the
one of SUNYSB05qa1, and the setting of SUNYSB05qa3 is more conservative than the one
of SUNYSB05qa1. According to the final results, our QA system for list questions and other
questions performs better when settings are less conservative while for factoid questions it
produces better performance when settings are more conservative.

Table 3 shows performance of our three runs and the median scores of 71 runs submitted to
TREC 2005 QA track. The scores of our runs for list questions and other questions are greater
than the median scores of 71 runs, but the score for factoid questions is less than the one of 71
runs. The final scores of our runs are almost the same with the median final score of 71 runs.

Factoid Question List Question Other Question Final Score
SUNYSB05qa1 0.102 0.066 0.194 0.120
SUNYSB05qa2 0.105 0.064 0.196 0.121
SUNYSB05qa3 0.122 0.059 0.179 0.123
Median Score 0.152 0.053 0.156 0.123

Table 3. Performance of SUNYSB Runs in TREC 2005

Table 3 shows that performance of our QA system for list questions and other questions is
better than the one for factoid questions in comparision of performance of other runs submitted
to TREC 2005 QA track. This results from the following features of our QA system. It chooses
answers using syntactic and statistical features of the test set of questions and corpus provided.
The probability of selecting a single correct answer out of candidate answers for a factoid
question is very low. On the other hand, the probability of selecting some correct answers
for a list question and an other question is relatively high now that it is likely that collected
candidate answers include some of the correct answers.

In general, the accuracy of extracting a proper target fairly affects performance of the QA
system. For example, the QA system performs well for a target “Sammy Sosa” since it can
properly extract the target and collect candidate answers based on the target. However, it
does not perform well for complicated targets like “Plane clips cable wires in Italian resort” or
“1998 Baseball World Series.” In addition, in case that a correct answer is a non-named entity,
performance of the QA system is not satisfactory since Lydia which the QA system essentially
depends on mainly detects named entities in text.

5 Conclusions and Future Work

We have presented the design of the Lydia question answering, along with analyzing its per-
formance.

We are continuing to improve Lydia, particularly the entity recognition algorithms, entity
classification, and geographic normalization. Since main phases of the QA system such as
target extraction, candidate answer collection, candidate answer elimination and scoring are
essentially based on Lydia, improvement in Lydia will enhance the performance of the QA
system.

Future directions of work on improving the QA system include exploring the use of a system
which automatically extracts relations between entities by means of analyzing syntactic and
semantic patterns of verbs.

References

1. L. Lloyd, D. Kechagias, and S. Skiena. Lydia: A system for large-scale news analysis. In Proc. 12th Symp.
of String Processing and Information Retrieval (SPIRE ’05), Buenos Aires, Argentina, November 2-4 2005.

2. L. Lloyd, A. Mehler, and S. Skiena. Identifying synonymous names in large news corpra. in preparation,
2005.

3. Y. Bao, X. Li, A. Mehler, Y. Wang, and S. Skiena. Spatial analysis of news sources. in preparation, 2005.
4. David Ahn, Valentin Jijkoun, Gilad Mishne, Karin Muller, Maarten de Rijke, and Stefan Schlobach. Using

wikipedia at the trec qa track, 2004.
5. Dmitri Roussinov, Jose Antonio Robles-Flores, and Yin Ding. Experiments with web qa system and trec2004

questions, 2004.
6. Lide Wu, Xuanjing Huang, Lan You, Zhushuo Zhang, Xin Li, and Yaqian Zhou. Fduqa on trec2004 qa

track, 2004.
7. E. Brill. Some advances in rule-based part of speech tagging. In Proccedings of the Twelfth National

Conference on Artificial Intelligence, 1994.
8. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
9. Wordnet. http://wordnet.princeton.edu/.

10. Dvl/verity stop word list. http://dvl.dtic.mil/stop list.html.
11. Nicknames and their possible full names. http://www.veritasinfo.com/page7.html.
12. Ellen M. Voorhees. Overview of the trec 2003 question answering track. In Proceedings of the Twelfth Text

REtreival Conference (TREC 2003), 2004.
13. Ellen M. Voorhees. Overview of the trec 2004 question answering track. In Proceedings of the Thirteenth

Text REtreival Conference (TREC 2004), 2005.

