
Synonym-based Query Expansion and Boosting-based Re-ranking:
A Two-phase Approach for Genomic Information Retrieval

Zhongmin Shi, Baohua Gu, Fred Popowich and Anoop Sarkar
School of Computing Science

Simon Fraser University
Burnaby, BC V5A1S6 Canada

{zshi1,bgu,popowich,anoop}@cs.sfu.ca

Abstract

We describe in this paper the design and
evaluation of the system built at Simon
Fraser University for the TREC 2005 ad-
hoc retrieval task in the Genomics track.
The main approach taken in our system
was to expand synonyms by exploiting a
fusion of a set of biomedical and gen-
eral ontology sources, and apply machine
learning and natural language process-
ing techniques to re-rank retrieved docu-
ments. In our system, we integrated En-
trezGene, HUGO, Eugenes, ARGH, GO,
MeSH, UMLSKS and WordNet into a
large reference database and then used
a conventional Information Retrieval (IR)
toolkit, the Lemur toolkit (Lemur, 2005),
to build an IR system. In the post-
processing phase, we applied a boost-
ing algorithm (Kudo and Matsumoto,
2004) that captured natural language sub-
structures embedded in texts to re-rank the
retrieved documents. Experimental results
show that the boosting algorithm worked
well in cases where a conventional IR sys-
tem performs poorly, but this re-ranking
approach was not robust enough when ap-
plied to broad coverage task typically as-
sociated with IR.

1 Introduction

The TREC 2005 Genomics track consists of the ad-
hoc retrieval task and the categorization task. We
were participating in the ad-hoc retrieval task only,
due to the considerable effort we spent on building
the framework of the biomedical IR system. This

is the first time that our team is competing in any
TREC task.

The ad-hoc retrieval task aims at the retrieval of
MEDLINE records relevant to the official topics. In
constrast with the free-form topics of the 2004 task,
the 2005 topics are more structured and better de-
fined. A set of 5 generic topic templates (GTTs) was
developed following the analysis of the the 2004 top-
ics and the information needs from 25 biologists1.
Ten topic instances was then derived from each of
GTTs. As with last year’s ad-hoc retrieval task, the
document collection of the 2005 task is a 10-year
MEDLINE subset (1994-2003), about 4.6M records
and 9.6G bytes in total. The relevance judgement
was made by the same pooling method used in the
2004 task, where top ranking documents of every
topic from all submitted runs are given to human ex-
perts, who then determined each document as defi-
nitely relevance (DR), possible relevance (PR) or not
relevance (NR) to the topic.

Three run types were accepted this year: auto-
matic, manual and interactive, which differed de-
pending on how the queries were constructed. Each
participant was allowed to submit up to two runs.
Our submission was in the manual category, since
our queries were manually constructed. One of
our goals was to determine how natural language
processing (NLP) techniques could be used for re-
ranking in a post-retrieval step. In our current sys-
tem, we only apply such techniques for re-ranking.
In the future we plan to apply similar techniques to-
wards query expansion.

2 System Architecture

In general, the performance of an IR system largely
depends on the quality of the query expansion. Most

1http://ir.ohsu.edu/genomics/2005protocol.html



participants of the ad-hoc retrieval task in previ-
ous years applied reference database relevance feed-
back, a technique that finds synonyms and relevant
terms from the outside term databases and adds them
in the query. Over the past decade, the biomedi-
cal databases have evolved dramatically in terms of
both the number and the volume, but from the re-
views of previous work in this task, most of par-
ticipants only employed a couple of them to build
the reference database. In our system, we collected
terms from EntrezGene (EntrezGene, 2005), HUGO
(HUGO, 2005), euGenes (euGenes, 2005), ARGH
(ARGH, 2005), MeSH (MeSH, 2005), GO (GO,
2005), UMLS (UMLS, 2005) and WordNet (Word-
Net, 2005), and integrated them into a large refer-
ence database which we then use in our system.

Traditional NLP techniques have been generally
not successful in improving retrieval performance
(Voorhees, 1999), but there is still interest in exam-
ining how the linguistic and domain specific knowl-
edge contained in NLP models and algorithms might
be applied to specific IR subtasks to improve per-
formance. In this work, we applied a classifica-
tion technique: a boosting algorithm to capture sub-
structures embedded in texts (Kudo and Matsumoto,
2004) in the second phase of our IR system. Dif-
ferent from the typical bag-of-words approach, the
algorithm takes each sentence as a labeled ordered
tree and classifies it by assigning a relevance score
as either relevant (positive) or not (negative). The
relevance of each document is then calculated from
relevance scores of the sentences in the document.

Our system consists of two major phases, shown
in Figure 1. In the first phase (left to the dashed
line in Fig 1), we applied extensive synonym ex-
pansion with a conventional IR system, the Lemur
toolkit 4.1 (Lemur, 2005). The details of our syn-
onym expansion phase and reference database con-
struction are introduced in §3. The second phase is a
post-processing step, in which the boosting classifi-
cation algorithm (Kudo and Matsumoto, 2004) was
used to re-rank the list of retrieved documents from
the first phase. §4 describes its implementation de-
tails, experiments and evaluations of the boosting-
based classification.

The experiments and evaluations in the second
phase was not accomplished when we submitted the
runs, but we include them in this report and explic-

itly distinguish them from the submitted results.

3 Conventional IR Module

3.1 Extensive Synonym Expansion
Our system involves the manual selection of key
words from the official topics (for most topics the
key words were already given in the tabular version
of topics) according to the given GTTs. The names
and symbols related to each key word, for instance,
synonyms, acronyms, hyponyms and similar names,
were then matched with the public biomedical and
generic databases that include synonyms and rele-
vant terms. Specifically, for gene/protein names, we
automatically integrated EntrezGene, HUGO, Eu-
genes and ARGH into a large gene/protein database
with 1,620,947 entries, each of which consists of
names and symbols that represent the same biomedi-
cal substance, and then matched them with each key
word in the topics. Similarly, for diseases, organ-
isms and drugs, related names and symbols were au-
tomatically matched with entries in MeSH; molecu-
lar functions, biological processes and cellular com-
ponents made use of GO, and general words/phrases
were matched (manually so far) in WordNet. In
addition, all sets of related names and symbols
were further expanded by searching via the UMLS
Knowledge Source (UMLSKS) Socket Server. Fig-
ure 2 illustrates the procedure of constructing the
reference databases.

3.2 Document Retrieval
In this project, we use the Lemur Language Mod-
eling Toolkit 4.1. The Lemur system was designed
to facilitate research in language modeling and in-
formation retrieval (IR), such as the ad-hoc and dis-
tributed retrieval, structured queries, cross-language
document retrieval, summarization, filtering, and
categorization.

We use the following three modules provided in
Lemur 4.1:

1. Parsing Query module

2. Building index module

3. Structured Query Retrieval Module

In the following subsections, we will briefly de-
scribe how each module was used in our system.



Figure 1: The system architecture

Figure 2: Extensive synonym expansion



3.2.1 Parsing Query

The Parsing Query module contains two utilities
to handle different types of queries, ParseQuery and
pareInQueryOp. ParseQuery handles queries writ-
ten in NIST’s Web or TREC formats, while ParseIn-
QueryOp is used to parse structured queries written
in a structure query language. Both types of queries
are then converted into the BasicDocStream format,
an document format used inside Lemur. In our ex-
periments, we tried both types of queries and found
that the structured queries generally provided better
results. Therefore, we used the structured queries in
our submitted run.

The structure query language used in Lemur can
be found on its web site2. Briefly, it allows a user
to define various AND/OR/NOT relations, and it
provides for weights of sums (WSUM) among the
terms. It even allows a user to consider a sequence
of single terms by defining them as a phrase. Hence,
the structured query enables more precise query def-
inition.

A sample structured query looks like:
q135 = #band(

#or(

#phrase(cellgrowth)

#phrase(cellexpansion)

#phrase(CellularExpansion)

#phrase(CellularGrowth)

)

#or(

#phrase(Bop)

#phrase(bacterio− opsin)

#phrase(bacterioopsin)

#phrase(bacterio− opsingene)

#phrase(bop)

#phrase(BiocompatibleOsteoconductivePolymer)

)

);

3.2.2 Building the Index

Lemur’s BuildIndex module supports constructi-
ion of four types of indices, specifically: InvIndex,
InvFPIndex, KeyfileIncIndex, and IndriIndex3. We
used the KeyfileIncIndex, which includes the posi-
tion information of a term and can be loaded faster

2http://www.lemurproject.org/lemur/StructuredQuery.html
3http://www.lemurproject.org/lemur/indexingfaq.html

than InvIndex and InvFPIndex while using less disk
space than IndriIndex.

3.2.3 Retrieving Structured Query
The structured queries were passed to the Struct-

QueryEval module, which ran retrieval experiments
to evaluate the performance of the structured query
model using the inquery retrieval method. Note that
for structured queries, relevance feedback was im-
plemented as a WSUM of the original query com-
bined with terms selected using the Rocchio imple-
mentation of the TFIDF retrieval method (Salton and
Buckley, 1988). In our official runs, the parame-
ters (feedbackDocCount,feedbackTermCount, feed-
backPosCoeff) for relevance feedback are: 100, 100,
and 0.5.

3.3 Evaluation

Among all the official runs submitted to the ad-hoc
task of the TREC-2005 Genome Track, 48 are us-
ing automatic retrieval methods and 12 including
ours are manual ones. Figure 3 shows MAP (upper),
P10 (middle) and P100 (lower) scores of the manual
runs. Three runs are shown in the figure: the best,
the worst and ours on each topic. To better illus-
trate the performance of our system among others,
we plot each value in the figure as the differenece
between the actual score and the median score.

Although we do not know the evaluation results
of every other system, Figure 3 seems to indicate
that our system is above the average. For instance,
for the P10 scores of our system on all 49 topics, 36
are above the median and 10 of them are the best;
for the MAP scores, 32 are above the median and
2 are the best. The automatic runs perform better
than the manual runs on the whole and our system
is around the average of the automatic runs. Our fu-
ture research will involve the invetigation of how our
system performs on each topic and each template,
looking for insights to further tune our system.

4 Post-processing Module

4.1 Boosting-based Classification

Traditional NLP techniques, such as word sense dis-
ambiguation resolution, chunking and parsing, were
examined in the IR community at TREC-5 NLP
track, but few of them were shown successful for



Figure 3: The MAP, P10 and P100 scores of the best, worst manual runs and our system on each topic. Each
value is the actual score minus the median.



good retrieval performance. The reasons may lie in
the broad coverage of the typical retrieval task, the
lack of good weighting schemes for compound in-
dex terms and the statistical nature of the NLP tech-
niques (Voorhees, 1999).

However, the attempts of applying NLP and ma-
chine learning techniques to the IR tasks are still
attractive, since a good understanding of the docu-
ments could be a breakthrough to the IR tasks. In
this project, we adopted Taku Kudo’s Boosting Al-
gorithm for Classification of Trees (BACT), a classi-
fication method that captures the sub-structures em-
bedded in texts. We use the method and implemen-
tation described in (Kudo and Matsumoto, 2004).
BACT takes a set of all subtrees as the feature set,
from which it iteratively calls a weak learner to pro-
duce weak hypotheses. The strong hypothesis is fi-
nally generated by a linear combination of weak hy-
potheses.

We incorporated BACT into the post-processing
step, where the list of retrieved documents from
Lemur was re-ranked by taking the classification of
the documents into account, as shown in the Figure
4. The documents in the training data were parsed
using Charniak’s parser (Charniak, 2000) and then
classified by BACT in terms of relevant (positive) or
irrelevant (negative). A re-ranking mechanism made
the final relevance decision by combining the rele-
vance scores from both Lemur and BACT.

The major difficulty of applying BACT in this
task is that it assigns a classification score (positive
or negative) to each sentence rather than assigning a
score to a document. This resulted in two issues: 1)
the lack of the training data with the label for each
sentence; 2) the lack of a mechanism for combining
sentence scores into a document score.

Since we lacked training data of sufficient qual-
ity and quantity for the classification task, we were
not able to submit the post-processing results to the
TREC in time for the initial deadline. After the re-
sults of the ad-hoc retrieval task were announced
(on Sept. 30, 2005), we were able to test the per-
formance of the post-processing, by taking the fol-
lowing steps to prepare the training and test data for
BACT:

1. The retrieved documents in the first two top-
ics in each TTL were taken as the test data and

those in the remaining topics as the training
data.

2. The irrelevant documents in the training data
were removed due to the unbalance of the train-
ing data (irrelevant documents are much more
common than relevant ones).

3. In the training data, sentences were given “ap-
proximate” labels by matching them against a
disjunction of all terms in the corresponding
query as either matched (+1) or unmatched
(−1).

BACT assigned a real number as the classifica-
tion score to each sentence, with a larger score cor-
responding to a more relevant the sentence. We took
the mean of all sentence scores in each document as
the document score.

4.2 Re-ranking

The goal of re-ranking is to combine RL and RB ,
the ranks from Lemur and BACT respectively, such
that the rank R′ maximizes the evaluation scores, for
example, MAP, P10 and P100. RL, RB and R′ are
score vectors of retrieved documents. We assumed
that such a combination was linear, i.e.:

R′ = RL + i ∗ RB (1)

We thus looked for i′ that maximizes the evalua-
tion function E(R′):

i′ = argmaxi E(RL + i ∗ RB) (2)

4.3 Evaluation

As described in §4.1, we extract relevance scores of
our retrieved documents (by Lemur) from the evalu-
ation results of 2005 ad-hoc retrieval task. For each
TTL, the retrieved documents of the first two topics
were taken as the test data, and those of the remain-
ing topics as the training data.

Table 1, 2 and 3 list the MAP, P10 and P100 be-
fore (i = 0) and after the re-ranking for the TTL #1,
#2 and #3. A linear combination coefficient i′ was
predicted for each TTL following Equation 2. For
the TTL #2, i′ converges at 15 and the linear com-
bination model significantly improves the IR perfor-
mance: MAP increases from 0.0012 to 0.0024 for



Figure 4: The post-processing phase

Topic # Metrics i = 0(i′) i = 10

100

MAP 0.2221 0.1785
bpref 0.8649 0.8649
P10 0.4 0.3
P100 0.28 0.22

101

MAP 0.0685 0.0195
bpref 0.75 0.75
P10 0 0
P100 0.07 0.01

Table 1: Performances of re-ranking on the TTL #1

the topic #110 and from 0.0492 to 0.1602 for the
topic #111; Same situations for P10 and P100. How-
ever, for the TTL #1 and #3, no linear combination
model can improve the IR performance, i.e., i′ = 0.
The scores at i = 10 are also listed in Table 1 and
3 to show that the performance dropped when the
linear combination models were applied.

4.4 Discussion

Our experiments show that BACT as the post-
processing does help when bpref (proportion of
judged relevant documents that are retrieved) of the
conventional IR system is low, for instance, 0.25 and
0.4356 in the TTL #2. For the TTL #1 and #3 where
BACT failed, the average bpref is very high, above
0.8.

It seems as if our current use of BACT for re-
ranking cannot scale to the broad coverage of rel-
evant documents in the retrieved document set, es-
pecially in the case where bpref is high. This is a

Topic # Metrics i = 0 i = 15(i′)

110

MAP 0.0012 0.0024
bpref 0.25 0.25
P10 0 0
P100 0 0.01

111

MAP 0.0492 0.1602
bpref 0.4356 0.4356
P10 0.1 0.7
P100 0.1 0.4

Table 2: Performances of re-ranking on the TTL #2

Topic # Metrics i = 0(i′) i = 10

120

MAP 0.6113 0.2410
bpref 0.8145 0.8145
P10 1 0.3
P100 0.88 0.29

121

MAP 0.6697 0.0328
bpref 0.8810 0.8810
P10 0.8 0
P100 0.34 0

Table 3: Performances of re-ranking on the TTL #3



common problem of NLP techniques when applied
to the IR task. However, employing machine learn-
ing and NLP techniques such as BACT as the post-
processing step may help the conventional IR system
when the recall is low, by re-ranking the retrieved
documents towards a better performance.

Acknowledgments

We thank Yang Wendy Wang for the helpful discus-
sions and the constructive comments during the sys-
tem design and experiments. We greatly acknowl-
edge the organization committee of the TREC 2005
genomics track and those who participated in the
topic generation and relevance judgment for their
valuable work.

References
ARGH. 2005. Biomedical Acronym Resolver.

http://invention.swmed.edu/argh/.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Meeting of the North American Chapter of
the ACL, pages 132–139.

EntrezGene. 2005. National Cen-
ter of Biotechnology Ingormation.
http://www.ncbi.nlm.nih.gov/entrez/query.fagi?db=gene.

euGenes. 2005. Genomic Information for Eukaryotic
Organisms. http://eugenes.org/.

GO. 2005. The Gene Ontology.
http://www.geneontology.org/.

HUGO. 2005. Gene Nomenclature Committee.
http://www.gene.ucl.ac.uk/nomenclature/.

Taku Kudo and Yuji Matsumoto. 2004. A boosting algo-
rithm for classification of semi-structured text. In Pro-
ceedings of Empirical Methods of Natural Language
Processing (EMNLP 2004).

Lemur. 2005. Language Modeling Toolkit 4.1.
http://www.lemurproject.org/lemur/doc.html.

MeSH. 2005. Medical Subject Headings.
http://www.nlm.nih.gov/mesh/meshhome.html.

G. Salton and C. Buckley. 1988. Term eighting ap-
proaches in automatic text retrieval. Information Pro-
cessing and Management.

UMLS. 2005. Unified Medical Language Sys-
tem. Ntional Institute of Health, United States,
http://www.nlm.nih.gov/research/umls/.

Ellen M. Voorhees. 1999. Natural language processing
and information retrieval. In SCIE, pages 32–48.

WordNet. 2005. A lexicon database for English Lan-
guage. http://www.cogsci.princeton.edu/̃wn/.


