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Abstract 
Our group participated in the categorization task of the TREC Genomics Track. We introduced and 
investigated a cluster-based approach for classifying documents. We first clustered the abstracts of the 
negative training examples based on their term distribution, then built a classifier to distinguish between 
each cluster and the set of positive examples. The large number of resulting classifiers (a total of 14-19 
classifiers per domain) was combined to categorize the test set. We also conducted experiments for cluster-
based feature selection; Rather than select features from the whole negative and positive training sets, we 
selected features from each of the clusters and took the union of these features as the selected features for 
representing the whole training and test data. 

We compared our cluster-based multi-classifier approach against a simple naïve Bayes classification. We 
also compared the cluster-based feature selection strategy with the commonly used Chi-square-based 
feature selection. 

1. Introduction 
Text categorization was one of the two tasks in the TREC 2005 Genomics Track. It was concerned with the 
classification of articles from four major categories, including alleles of mutant phenotypes, embryologic 
gene expression, tumor biology, and gene ontology (GO) annotation. The task was to identify documents 
that are relevant to these categories, using a classifier trained on the labeled data.  

The full text articles for both training and test set were given, although we used only title, abstract and 
MeSH terms in our experiments. All articles in the training set were published in 2002, while articles in the 
test set were published in 2003. Therefore, both the training and test examples are not selected uniformly at 
random. The text categorization task provides the crosswalk files for both the training and test data as well. 
The corresponding PubMed ID (PMID) of each article is given in these files. 

The evaluation measure for the text categorization task is the normalized utility score Unorm for each 
category, which is defined as follows: 

Unorm = Uraw / Umax , 

 where: 

• Uraw is the raw utility score, defined as the difference between the weighted true positives 
(TP) and the false positives (FP) :   

FPTPuU rraw −×= )( , 
where ru  is the relative utility of a relevant document; 

• Umax  is the best possible utility score, defined as the sum of the weighted TP and the false 
negatives (FN):  

)(max FNTPuU r +×=  . 

This evaluation measure penalizes misclassification on the relevant documents (false negatives) ru  times 
more than misclassification of the irrelevant documents (false positives). It therefore favors high recall and 
compromises precision.  



In our experiments, we considered the categorization task as four separate binary classification tasks. We 
investigated a new, cluster-based approach for classifying documents into these four categories. The 
observation underlying our approach is that the distribution of negative vs. positive examples, in both the 
training and the test data, is biased. The negative examples are abundant and may discuss a variety of topics, 
while the number of positive examples is small and their topic is usually focused. Hence, we first separated 
the abstracts in the negative training set into multiple clusters, based on their term distribution, by applying 
a probabilistic theme generation algorithm [Shatkay and Wilbur 00, Shatkay et al 00]. A classifier was then 
built to distinguish between each cluster and the set of positive examples.  The resulting classifiers were 
combined into a single classifier. We applied the combined classifier to the test set. 

We also tried to address the feature selection issue, noted as “conceptual drift” in last year’s TREC [Cohen 
et al. 04], using cluster-based feature selection. Our experimental results suggest an improvement by 
selecting features that distinguish each individual cluster from the positive data set.  

The rest of this paper is organized as follows: In the next section we introduce our methods, the theme 
generation technique, the cluster-based classification and the feature selection approach. Section 3 
discusses our experimental results and a brief analysis is given. Finally, we conclude our work and suggest 
some future directions.  

2. Methods 
We approached the text categorization task as four separate binary classification tasks, one for each of the 
four categories. For each task, the irrelevant documents were viewed as belonging to the irrelevant 
category. Our experiments mainly focused on the cluster-based classification approach, which will be 
introduced in Section 2.2. As a baseline for comparison and as a basic building block in our own 
categorization we use a naïve Bayes classifier. This is because the naïve Bayes technique is simple and still 
effective for text categorization. The version we employed is the one introduced by John and Langley [John 
and Langley, 95], and implemented as WEKA’s NaiveBayes utility [Witten and Frank 05]. This version 
allows both discrete and numerical features. When the classification model is built on the whole training set, 
without using clusters, we refer to it as the single-model classification. 

We applied a cost sensitive approach [Breiman et al. 84] to reflect the different penalties on different types 
of misclassification, while using the normalized utility scoring. This was done by re-weighting the positive 
examples in the training set with a weight factor Wp. That is, each positive example is considered as Wp 
positive examples when learning the classifier. Wp is calculated using the formula: 

)#/#( posneguCBW rp ××=  , where: 

• CB is the Cost Bias for adjusting the weight factor, as explained below; 
• neg# is the number of negative examples in the training data; 
• pos# is the number of positive examples in the training data. 

This formula takes into account the ratio between positive and negative data (neg#/ pos#), and the relative 
utility of a relevant document, ur. We introduce the variable CB into the formula so that the weight factor 
Wp becomes adjustable. In our experiments, CB was chosen from the range [0, 5.0]. We adjust CB to find 
the model that produces the highest utility on the training data. The n-fold cross validation was used for the 
single-model classification. The number of folds (n) was set to 10 for the alleles and GO classification, and 
to 3 for the embryologic gene expression and tumor classification.  

2.1 Feature Generation and Weighting 
While the Genomics Track provided the full text for both the training and test set, we generated the features 
for all documents from their Medline records, including only the titles, abstracts, and MeSH terms. Using 
the PMIDs provided in the files train.crosswalk.txt and test.crosswalk.txt, the related Medline records were 
obtained directly from the Medline database. All XML tags in the Medline records were removed before 
the feature generation. Unlike the traditional “bag-of-word” model, by which typically only unigrams are 
extracted as features, we extracted both single words and 2-gram terms as features. Stop-words were 
removed and Porter stemming was applied to each word [Porter 80]. While a variety of feature weighting 
schemes exist, we used the simple binary weights:  1 for present and 0 for absent term. This is because our 



early preparatory experiments indicated that the binary weighting scheme outperformed the TF*IDF 
scheme for learning a naïve Bayes classifier.  

2.2 Cluster-Based Classification 
In the cluster-based approach, we first cluster the negative training examples into subgroups, based on their 
term distribution. This is done by applying a probabilistic theme generation algorithm, which is discussed 
in the next subsection. The generated clusters are referred to as themes. We then built a classifier to 
distinguish between each of the themes and the set of positive examples. Finally, we combined the large 
number of resulting classifiers to categorize the test set. 

2.2.1 Probabilistic Theme Generation 
The probabilistic theme generation algorithm that we used is based on the one introduced a few years ago 
for retrieving Medline documents similar to a given a query document [Shatkay and Wilbur 00], and for 
finding functional relationship among genes [Shatkay et al 00].  A theme T is a set of documents that are 
likely to discuss a common topic. It is characterized by a set of term distributions. Given a database DB, the 
model R for a theme T consists of five components: }}{},{},{},{,{ iiiid DBqpPR λ=  where: 

• Pd is the prior probability of any document DBd ∈  to be in the theme T, )Pr( TdPd ∈= . It is 
assumed fixed by the application.  

• pi is the probability that the term ti occurs in a document d where d is an on-theme document, 
)|Pr( Tddti ∈∈ . 

• qi is the probability that the term ti occurs in a document d when d is not in the theme T, 
)|Pr( Tddti ∉∈ .  

• DBi is the probability that the term ti occurs in any document in the database, )|Pr( DBddti ∈∈ . 

}{ iDB  can be easily estimated from the documents in the database. 
• iλ  is the probability that the term ti is generated according to the general database distribution DBi. 

It is used as a mixture distribution between DBi and the theme-specific parameters pi and qi.  

The main tasks in generating a theme, based on an example document d, is to simultaneously estimate the 
model parameters pi, qi and iλ , while finding other documents in the database that are likely to have been 
generated by the same model. The latter set of documents is called the theme, while the terms with high 
score Log(pi /qi) are viewed as its characteristic terms. An EM (Expectation Maximization) algorithm is 
used to find the most likely model R for a given example document d and a database DB. For details see 
earlier work [Shatkay and Wilbur 00, Shatkay et al 00].  

2.2.2 Building Clusters and Classifiers 
A schematic overview of the cluster-based approach is depicted in Figure 1. This approach originates from 
the observation that the positive training examples are few and typically focused on one topic, while the 
negative examples are many and may discuss a wide variety of topics. Taking the embryologic gene 
expression category as an example, the number of the negative examples in the training data is 5,756, while 
the number of the positive examples is only 81 (less than 2% of the total data). Looking at the negative 
examples, we observe that different examples discuss different topics. For instance, the negative example 
with PMID 12221087 is about the retinoblastoma tumor, while the document with PMID 12052828 
discusses the role of serine proteases in erythrocyte invasion by merozoites of the malaria parasite. In this 
situation, the distribution of the whole negative examples becomes flat and non-specific. Therefore, trying 
to characterize all the negative examples with one single-model does not provide a clear distinction 
between the positive examples and the negative ones.  

To address this problem, we apply the probabilistic theme generation algorithm to the negative training 
examples, sub-grouping them into disjoint thematic clusters. We expect that the negative examples within 
each thematic cluster are similar to each other, and that the term distribution within a cluster is more 
specific and well-defined than that of the whole negative example set. We therefore expect that it will be 
easier to determine, given a test example, with respect to each cluster separately (as opposed to with respect 



to the whole negative set), whether the example is inside the cluster or outside the cluster. Accordingly, we 
train as many classifiers as there are thematic clusters. 

 
Figure 1. The Cluster-based Classification Process 

As indicated in the Section 2.2.1, a theme is built around a single document. In our experiments, we 
randomly select an abstract from the negative data set as the representative document for a theme. Since we 
know that none of the positive examples should be a member of any cluster generated from the negative 
examples, we initialize the off-theme parameter qi of the model to reflect this bias. Whenever a term ti 
occurs in a positive example(s), qi is initialized by the number of occurrences of term ti in the positive data 
set divided by the total number of occurrences of any term in the positive data set. Moreover, we also 
impose the restriction that no abstract is associated with more than one theme. This guarantees that all 
thematic clusters are disjoint, although the original application [Shatkay and Wilbur 00, Shatkay et al 00] 
allowed overlap among themes.  

To train a classifier for a particular cluster, we use the negative examples in a single cluster as the negative 
training set while all the positive examples are used as the positive training set. Note that each classifier is 
meant to determine whether an unseen example is inside or outside a specific thematic cluster.  An example 
that is outside the cluster is not automatically placed inside the positive category, as it might be a member 
of another cluster.   

Once all the classifiers are built from each thematic cluster, we use them to determine the membership of 
each example from the test data set. The classification results for an abstract d form an N-dimensional 
vector 〉〈 N
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We consider an abstract to be inside the positive category if and only if it is excluded from all thematic 
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Clearly, our approach takes an alternative way to distinguish the positive documents from the negative ones, 
compared with the single-model classifier. Rather than directly test for membership of a document in the 
positive or the whole negative category, we separately test membership in each negative thematic cluster. A 
document is inferred to be a member of the positive category if and only if it is excluded from all the 
negative thematic clusters. Moreover, a document must demonstrate similarity to at least one specific 
negative cluster in order to be considered negative. 

2.3 Cluster-Based Feature Selection 
The Chi-square test for feature selection was applied to the training set or its subsets, depending on the 
chosen classification method. Supervised feature selection is typically performed by considering the whole 
set of negative training samples vs. the whole set of positive ones; analyzing the correlation between the 
features and the categories, features that have significantly different distributions under different categories 
are selected.  The assumption underlying such feature selection schemes is that the training data is a good 
representative of the true data, and specifically of the test data. This assumption, as reported by Cohen et al. 
[Cohen et al. 04], and Zhang and Lee [Zhang and Lee 04], does not necessarily hold in the biomedical 
literature used in TREC, where the training data consist of earlier publications than the test data. Cohen et 
al. refer to the change in feature distribution over time as conceptual drift.  That is, the topics that are 
discussed in the literature, the relative number of documents discussing these topics, and possibly the 
jargon used to discuss them, may all vary over time. Therefore, features that are selected from the whole 
training data may not be as useful for categorizing the “conceptually drifted” test data. 

To try and overcome this drift, we have devised a cluster-based feature selection approach. We cluster the 
negative training set as described in Section 2.2. Then, rather than select features using the Chi-square test 
applied to the whole negative vs. positive training set, we apply the Chi-square test individually to each 
negative cluster (vs. the positive set). We then take the union of these features as the selected features and 
use them to represent the training and test data. The assumption is that the term distribution within each 
theme-cluster will remain consistent over time, while only the number of samples in each particular theme 
may change. 

3. Experiments 
We have applied both the single naïve Bayes classification and the cluster-based classification to all the 
four categories included in the track. In both approaches, we trained the naïve Bayes classifiers using the 
cost sensitive scheme. For the cluster-based classification, numerous clusters have been built. Table 1 
shows the number of clusters for each category. In addition to the official runs, we describe some of the 
unofficial runs. 

 
 
 

 

Table 1: The number of clusters generated from the negative examples in each category 

Category Allele Embryologic 
Gene Expression GO Tumor 

# of clusters 16 15 19 18 



3.1 Official Runs 
The results of our official runs are presented in Table 2. In the columns “Classification Method” and 
“Feature Selection”, we use the term Single Model to denote that the classification or the feature selection 
is built on the whole training data, and the term Cluster-Based to denote the application of the cluster-based 
method to the classification or to the feature selection. The best results we achieved in the official runs, in 
terms of the normalized utility score, for each of the categories allele, embryologic gene expression, GO, 
and tumor, are 0.7760, 0.5563, 0.3763 and 0.7439, respectively. The recall is higher than the corresponding 
precision in all of our runs. This is partly because we have introduced a high cost to false negatives to 
reflect the biased penalty applied. We also note that in particular the cluster-based approach is expected to 
favor recall, as it requires examples to fit into specific negative-cluster models in order to be classified as 
negative. The highest recall we got is of 1.0 for tumor categorization in the run tQUT10, in which the 
cluster-based classification is applied. Overfitting is observed in both official and unofficial runs. For 
instance, the single-model run gQUNB12 resulted in a utility score of 0.696 for the training data, but only 
0.346 for the test data. This might be partially caused by the different distributions of the training and test 
set, especially when the cost sensitive approach is applied. 

Table 2: The official runs 

Note that the official runs from different classification methods are not directly comparable to each other 
because of their different feature selection schemes or different parameter settings. We have conducted 
some unofficial runs for a more complete comparison of different classification methods and different 
feature selection schemes. 

3.2 Unofficial Runs 
In our unofficial runs, the best utility scores we got for the allele, embryologic gene expression, GO, and 
tumor categories are 0.7505, 0.6101, 0.4189 and 0.8582, respectively. These results are much better than 
those obtained in our official runs, except the one for allele categorization, which is 0.02 lower than the 
utility of our best official run. These results were obtained by either the cluster-based classification or by 
the single-model classification with the cluster-based feature selection. We will use bold to highlight these 
results in Table 3 and Table 4. 

We performed several runs to directly compare the performance of the single-model classification and the 
cluster-based classification.  Table 3 shows the performance of the two classification methods under the 

Category Run Classification 
Method Terms Feature 

Selection CB Precision Recall F-score Normalized 
Utility 

aQUNB8 Single Model 4487 Cluster-Based 0.54 0.3182 0.8464 0.4626 0.7397 

aQUT11 Cluster-Based 10533 Single Model 1 0.3785 0.7741 0.5084 0.6993 Allele 

aQUT14 Cluster-Based 4487 Cluster-Based 2 0.3582 0.8675 0.5070 0.7760 

eQUNB11 Single Model 2228 Cluster-Based 1 0.1086 0.6381 0.1856 0.5563 

eQUNB19 Single Model 5155 Single Model 1.17 0.1132 0.4571 0.1815 0.4012 

Embryologic 

Gene Expression 

eQUT18 Cluster-Based 5155 Cluster-Based 0.10 0.0967 0.5238 0.1632 0.4473 

gQUNB12 Single Model 13414 Single Model 1 0.1603 0.6602 0.2580 0.3459 

gQUNB15 Single Model 4872 Cluster-Based 0.55 0.2102 0.5676 0.3067 0.3763 GO 

gQUT22 Cluster-Based 11417 Single Model 4 0.1811 0.6158 0.2799 0.3628 

tQUNB3 Single Model 3058 Single Model 1 0.0244 0.9000 0.0474 0.7439 

tQUT10 Cluster-Based 3058 Single Model 0.02 0.0132 1.0000 0.0260 0.6758 Tumor 

tQUT14 Cluster-Based 1500 Cluster-Based 1 0.3095 0.6500 0.4194 0.6437 



same parameter setting. We set the same Chi-square threshold for both methods on the same classification 
task. The thresholds are 7 for allele and GO, and 5 for embryologic gene expression and tumor. For each 
category, both methods – the single-model classification and the cluster-based classification – use the same 
value for CB. 

Table 3: The performance of the single-model and of the cluster-based classification 

Our results show that, all else being equal, the cluster-based classification outperforms the single-model 
classification on all categorization tasks in terms of normalized utility and recall. Using the cluster-based 
classification, there is about 56% improvement in normalized utility. However, the precision resulting from 
the cluster-based approach is significantly lower than that of the single-model classification on all runs. 
This is because the cluster-based classification combines multiple cluster-based classifiers, each built on a 
separate cluster, where all these individual classifiers are biased towards avoiding false negatives. Recall 
that each individual cluster-based classifier is trained with respect to a single cluster of negative examples. 
Therefore, each such classifier has a narrow negative category associated with it, and all the documents 
falling outside this category are initially viewed as positive with respect to this specific classifier. This 
means that each cluster-based classifier initially produces a large number of false positives and relatively 
few false negatives. Taking our experimental result on the allele classification as an example, using sixteen 
clusters, the average number of the false negatives is 4, while the average number of the false positives is 
4,875 (note that this is before the classification results are combined – this phase is not shown in the tables). 
As discussed in Section 2.2.2, the results from the individual classifiers are combined such that a document 
is labeled as positive if and only if it is labeled as positive by all of the individual cluster-based classifiers. 
At this stage, we are left with 288 true positives and 516 false positives. While the number of the false 
positives has been significantly reduced when the results from the individual classifiers are combined, this 
number is still larger than the one resulting from the single-model classification, which is 172. Thus, many 
false positives still remain even after the strict positive selection induced by the combination of the 
individual classifiers. Trying to improve the precision under the cluster-based framework is our immediate 
next step.  

Table 4: The effect of the cluster-based feature selection. 

Category 
Classification 

Method 
CB TP FP FN Precision Recall F-score 

Normalized 

Utility 

Single Model 160 100 172 0.6154 0.4819 0.5405 0.4642 
Allele 

Cluster-Based 
2 

288 516 44 0.3582 0.8675 0.5070 0.7760 

Single Model 35 71 70 0.3302 0.3333 0.3318 0.3228 Embryologic Gene 

Expression Cluster-Based 
2 

84 1276 21 0.0618 0.8000 0.1147 0.6101 

Single Model 188 340 330 0.3561 0.3629 0.3595 0.3033 
GO 

Cluster-Based 
4 

379 1782 139 0.1754 0.7317 0.2829 0.4189 

Single Model 6 4 14 0.6000 0.3000 0.4000 0.2991 
Tumor 

Cluster-Based 
1 

13 29 7 0.3095 0.6500 0.4194 0.6437 

Normalized Utility 
Category Feature Selection 

Feature 

Number Training Data Test Data Difference 

Single Model 0.8446 0.6588 0.1858 
Allele 

Cluster-based 
4487 

0.8422 0.7505 0.0917 

Single Model 0.8937 0.0467 0.8470 Embryologic Gene 

Expression Cluster-based 
2228 

0.8490 0.5563 0.2927 

Single Model 0.6848 0.1909 0.4939 
GO 

Cluster-based 
4872 

0.5085 0.3508 0.1577 

Single Model 0.9768 0.1496 0.8272 
Tumor 

Cluster-based 
1500 

0.9030 0.8582 0.0448 



 

As discussed in Section 2.3, a side-effect of the cluster-based classification is an alternative method for 
feature selection. We have run some preliminary experiments to evaluate the performance of this method. 
We first collected the selected features from all the clusters that were constructed as part of the cluster-
based classification. The union of the feature sets was used as features for both the training and test data. 
For comparison, we applied the Chi-square test using the training data set, with no clustering, to select the 
same number of features. Keeping all parameters identical, single-models were constructed separately 
based on these two feature sets. The experimental results are presented in Table 4. All experiments listed in 
Table 4 have CB value of 1. The Training Data column and the Test Data column show the normalized 
utility on the training set and the test set, respectively. The Difference column shows the difference in 
normalized utility between the training and test data. The Difference is used to evaluate the variability in 
the model performance between the training and the test sets. The smaller the difference is, the more 
consistent performance a model provides. We can clearly see that all models have better performance on 
the training set than on the test set. However, the models that are constructed based on the cluster-based 
feature selection perform more consistently than the models that are constructed based on the single-model 
feature selection. Our results suggest that there is less drift between test and training data when the cluster-
based feature selection is used. 

4. Conclusion 
We approached the categorization task in the TREC 2005 Genomics Track as a set of separate binary 
classification tasks. A common characteristic of both training and test data is their relative abundance of 
negative examples, which typically leads to low recall. We have investigated a cluster-based classification 
approach, which aims to distinguish among subsets within the large set of negative examples. A 
comparison was made between this approach and the single-model approach. Using a basic text processing 
method, when all else is equal, the cluster-based classification approach outperforms the single-model 
approach in our experiments. We have also explored the effect of the cluster-based feature selection. Our 
primary finding is that the utility gap between the training data and the test data decreases when the cluster-
based feature selection is applied, which suggests that the cluster-based feature selection may address the 
issue of “conceptual drift”. We recognize the need for further improvement on the classification 
performance, and plan to experiment with more advanced baseline methods and feature selection in the 
future.  
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