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Introduction 
Qanda is MITRE’s TREC-style question answering 
system.  In recent years, we have been able to apply 
only a small effort to the TREC QA activity, 
approximately two person-months this year.  
(Accordingly, much of this discussion is strikingly 
similar to prior system descriptions.)  We have made 
some general improvements in Qanda’s processing, 
including genuine question parsing, generalizing 
answer selection to better handle variant question 
types like lists and definition questions, and better 
integration with a maximum entropy answer scorer, 
both in training and at run time.  We have also 
attempted to better integrate the results of question 
processing and document retrieval. 

1. TREC-14 system description 
Underlying architecture 
Qanda uses a general computational infrastructure for 
human language technology called the Annotation 
Management System (AMS).  AMS is a flexible 
library for pairwise interaction between language 
processors, based on the Catalyst infrastructure used in 
previous versions of Qanda (Burger 2004, 
Burger & Mardis 2002, Nyberg et al. 2004).  Where 
Catalyst was specifically designed for fast processing, 
AMS is designed for compatibility and reuse.  
Essentially, AMS provides an extensible wrapper 
between a consistent internal programming model for 
language processors and the wide range of ways the 
language processor can be invoked, as well as the wide 
range of possible annotation formats and storage types. 
Philosophically, it is similar to IBM’s UIMA 
infrastructure (Ferrucci & Lally 2004), without the 
benefits and drawbacks associated with the strong 
programming assumptions that UIMA makes.  In 
comparison with Catalyst, AMS allowed us to make 
rapid changes to our system configuration, and 
introduce new language processing components with 
relatively little effort. 

Major system components 
Qanda has a by now shop-worn QA architecture, 
which proceeds in several phases.  Questions are 
analyzed for expected answer types, as well as 

keywords to use in forming an IR query.  Documents 
are retrieved using an IR system and are then 
processed by various taggers to find entities of the 
expected types in contexts that match the question.  
For TREC-14, we enhanced the analysis phases for 
both questions and document passages, including 
detailed parsing of questions.  Below we describe each 
of the major components in turn. 

• Common question and document processing: This 
phase consists of several steps: tokenization, 
sentence boundary detection, part of speech 
tagging (Ratnaparkhi 1996), morphological 
analysis (Minnen et al. 2001), and tagging of 
named persons, locations and organizations 
(named entities), as well as temporal expressions, 
for which Qanda uses Phrag (Burger et al. 2002), 
an HMM-based tagger. 

• Question analysis: After the common initial phase 
of analysis, questions are chunked and parsed, and 
salient features of the meaning of the question are 
extracted. See Section 2 below for more detail. 

• IR wrappers: AMS components have been written 
for several IR engines, taking the results of the 
question analysis and formulating an IR query.  
We continue to use the Java-based Lucene engine 
(Apache 2002).  Lucene’s query language has a 
phrase operator, and also allows query 
components to be given explicit weights.  Qanda 
uses both of these capabilities in constructing 
queries from the information extracted from the 
question.  For TREC-14, the top 50 documents 
were retrieved. 

• Passage processing: After the retrieved documents 
pass through the common analysis phase, Qanda 
assigns a preliminary score to each sentence by 
summing the log-IDF (inverse document 
frequency) of each word that occurs in both the 
candidate sentence and the question.  Those 
sentences with a low score are not processed by 
most of the system.  This step is performed to 
reduce the cost of more expensive downstream 
components. 

• Fixed repertoire taggers: We have a simple 
facility for constructing AMS taggers from fixed 



word- and phrase-lists.  These were used to re-tag 
many named locations more specifically as cities, 
states/provinces, and countries.  Qanda also 
identifies various other (nearly) closed classes 
such as precious metals, birthstones, several 
animal categories (e.g., state bird), and so on. 
Different taggers are applied to the question and to 
the retrieved passages. 

• Numeric tagging: A fixed repertoire tagger is run 
on the retrieved passages to identify words and 
phrases denoting units of measure, and then a 
simple pattern-based tagger combines these with 
numeric expressions to identify full-fledged 
measure phrases, as well as currency, percentages 
and other numeric phrases. 

• Overlap: The question is compared to each 
sentence, and a number of overlap features are 
computed, some in terms of various WordNet 
relations (see Section 3). 

• Answer collection and ranking: Candidates are 
identified and merged, a number of features are 
collected, and a score is computed (Section 3). 

• Answer selection: A final component down-selects 
the candidates and generates the actual answer 
strings.  For factoid questions, this is simply the 
highest-scoring phrasal candidate, but definition 
and list questions require other processing, as 
detailed in Section 4. 

As described above, all of these components 
communicate by consuming and producing stand-off 
annotations.  A separate declarative facility is used to 
indicate which components are interested in 
consuming which annotations, and AMS arranges for 
the components to be connected. 

2. Question analysis 
In previous TREC evaluations, Qanda performed a 
limited analysis of the questions.  We tagged for part-
of-speech and named entities, and also applied a 
simple fixed-repertoire tagger that maps head words to 
answer types in Qanda’s ontology, using a set of 
approximately 6000 words and phrases, some 
extracted heuristically from WordNet, some identified 
by hand.  For TREC-14, we added a detailed parsing 
phase using MITRE’s Carafe (Wellner, 2005) 
conditional random field chunker and the Pro3Gres 
dependency parser from the University of Zurich 
(Schneider et al. 2004), and performed a heuristic 
analysis on the resulting structure to extract various 
dimensions of the question. 

Because gold-standard data for questions is scarce, 
many of our corpus-based tools require a repair phase 
to address some of the more egregious 
misinterpretations of questions as declarative 
statements.  For instance, it is not uncommon for a part 
of speech tagger that has been trained on declarative 
data to attempt to tag questions like Who does John 
love? as if John love is a noun-noun compound. We 
found characteristic problems in chunking and parsing 
as well, which we were able to partially correct using 
simple heuristics. 

Once these tagging phases are complete, Qanda’s 
question analysis component uses a set of structural 
heuristics to identify the following aspects of each 
question: 

• Anchor: the object that the answer refers to. The 
answer may be the anchor, or it may be a property 
(e.g., length, color) or name of the anchor. The 
anchor will have a type and supertype from 
Qanda’s (rather simple) ontology, e.g., PERSON 
and AGENT.  The supertype is used as a backoff 
for some statistics. 

• Property: the property, if any, of the anchor that is 
the actual answer, e.g., the height of a mountain. 
Properties also have a type and supertype in 
Qanda’s ontology. 

• Name: the name, if any, of the anchor that is the 
actual answer. This case can arise in questions that 
require descriptive answers, as in Who is Henry 
Kissinger? 

• Answer restriction: an open-domain phrase from 
the question that describes the anchor, e.g., first 
woman in space. 

• Event: the main event in the question, if any; 
typically the main verb, unless it is simply be.  

• Salient entity: What the question is “about”.  
Typically a named entity, this corresponds roughly 
to the classical notion of topic, e.g., Matterhorn in 
What is the height of the Matterhorn? 

• Geographical restriction: Any phrase that seems 
to restrict the question’s geophysical domain, e.g., 
in America. 

• Temporal restriction: Any phrase that similarly 
restricts the relevant time period, e.g., in the 
nineteenth century. 

• Superlative: Relevant adjectives from the question 
restriction, e.g., first, or fastest. 



These features are emitted as annotations on the 
question, and are then available for down-stream 
components to consume. 

3. Answer ranking 
Qanda only examines sentences that match the 
question sufficiently, based on the IDF-weighted 
overlap described above.  It collects candidate answers 
by gathering phrasal annotations from all of the 
semantic taggers, and identifies a number of features. 
These are combined using a conditional maximum-
entropy model trained from past TREC QA data sets.  
Several TREC participants have used this approach, 
e.g., Ittycheriah et al (2001). 

Answer candidate features 
Many of the features used in the log-linear model 
reflect particular kinds of overlap between the question 
and the context in which the candidate answer is 
found: 

• Context IDF Overlap: Described above. 

• Context Unigram Overlap: Raw count of words1 
in common with the question. 

• Context Bigram Overlap: Raw count of word 
bigrams in common with the question. 

• Context Question Restriction Overlap: Raw count 
of words from the restriction phrase of the 
question (see Section 2).  Most of the question 
components described engender analogous overlap 
features. 

• Context Salient Overlap: Raw count of words 
considered especially salient by question analysis 
(see Section 2). 

• Context Synonym Overlap: Raw count of words 
that could be synonymous with questions words. 

The synonym features are computed with respect to 
WordNet (Fellbaum 1998). 

Several features are computed based on the candidate 
itself, or its location in the context sentence: 

• Candidate Overlap: Raw count of words in 
common between the candidate itself and the 
question, to bias against entities from the question 
being chosen as answers. 

                                                        
1All of the “raw count” features described in this section 
omit stop words. 

• Candidate Overlap Distance: Number of 
characters between the candidate and the closest 
(content) question word in the context. 

• Candidate Question Restriction Distance: Number 
of characters between the candidate and a word 
from the restriction phrase of the question.  
Analogous distance features are formed for several 
other question component phrases. 

The only document-level feature currently used is the 
following: 

• IR Ranking of the source document by the IR 
system (but see below). 

Candidates with the same textual realizations are 
merged, with the combined candidate retaining the 
highest value for each feature.  This is the simplest 
candidate combination possible, but previous work on 
more robust answer combination across QA systems 
(Burger & Henderson, 2003) used Tanimoto set 
distance to compare answer strings as bags of 
characters.  This year we used several cross-candidate 
features: 

• Merge Count: (log of) count of identical 
candidates merged together. 

• Answer similarity: Average character-level 
similarity between this candidate and all others. 

The latter feature allows textually similar candidates to 
“vote” for each other.  This is especially useful for 
dates and other types with multiple formats and 
representations, thus, January, 1964 and Jan 64 can 
support each other without requiring sophisticated 
coreference. 

A number of boolean features are also computed that 
compare the question’s expected answer type with the 
semantic type of the candidate: 

• Type Same: True if the candidate and expected 
answer types are identical. 

• Type Consistent: True if the candidate’s type is 
“similar” to the expected answer type. 

• Type-Pair: This is a series of features 
corresponding to selected pairs of consistent types 
(see below). 

For the most part, candidates are only considered for a 
question if their types are consistent.  For example, 
Where questions lead to an expected answer type of 
LOCATION, which is consistent with COUNTRY 
candidates; How much questions lead to QUANTITY, 
consistent with PERCENTAGE. 



Ideally, Qanda would consider all candidates for all 
questions, but, if nothing else, performance 
considerations justify limiting this.  We do not even 
represent all consistent pairs as explicit features.  
Instead, a small set of approximately 20 combinations 
was chosen by hand, as indicated in Figure 1.  These 
represent particular biases or preferences that we feel 
justified in trying to acquire from the training data.  In 
addition, some of these pairwise features represent 
exceptions to the consistency requirement, e.g., 
PERSON is not consistent with COUNTRY, but we 
wish to consider such candidates anyway.  Similarly, 
we wish to consider certain named entity types as 
candidates, even when question analysis was 
unsuccessful in divining an expected answer type 
(unknown). 

After all of the (merged) candidates have been 
acquired, most of the raw feature values described 
above are normalized with respect to the maximum 
across all candidates for a particular question, resulting 
in values between 0 and 1.  We have found that 
features normalized in this way are more 
commensurate across questions, especially word 
overlap and related features (Light et al. 2001). 

Maximum entropy models 
The normalized features are combined using the 
weights assigned by a maximum entropy model during 

training.  This year, we trained the model using the 
question sets from TREC 1999 through 2003, 
including the 2001 list questions, as well as the 25 
AQUAINT definition evaluation questions.  Last 
year’s questions (TREC 2004) were used as a 
development set.  We used Daumé’s (2004) MegaM 
package to train the models. 

We noted some interesting issues in training set 
conditioning.  Because we are using a very small data 
set, there are arguably too few positive instances to 
acquire adequate feature weights, especially if we are 
interested in feature combination.  In order to offset 
this, we experimented with “forcing” Qanda to 
consider all correct answers (as defined by NIST’s 
judgment sets), even those that it would ordinarily not 
examine. 

A simple example are those correct answers found 
only in documents that don’t make it past Qanda’s top-
N IR cutoff (typically 50 documents).  When we 
forced these documents into the pipeline (or 
alternatively increased the IR cutoff, and down-
sampled negative candidates), we found that certain 
features were assigned unintuitive weights by the log-
linear model.  In particular, the IR rank feature went 
from a low positive weight to a high negative weight.  
In retrospect, this makes sense, because high-ranking 
documents were being over-represented in the positive 
training instances being presented to the model.  In the 
end, we found it simplest to discard this feature 
entirely, since it never contributed very much. 

4. Definition questions 
Qanda has no real facility for processing definition 
questions as such.  Instead, we attempt to leverage our 
factoid question processing, which for the most part 
only considers named and other entities as candidate 
answers.  Of course, very few definition answers 
correspond directly to named entities, per se, but we 
have noticed that certain kinds of named entities are 
involved with some definition answers, as indicated in 
the example below: 

 Who is Gunter Blobel? 

 Is at Rockefeller University 
1999 Nobel prize in Medicine 
was born in 1936 
was born in Waltersdorf, Silesia, Germany 

Qanda’s question analysis component could already 
identify the semantic type of the definition target (e.g., 
PERSON, above).  Since definition answers did not 
need to be exact, we allow Qanda to consider certain 
entity types as pseudo-answers to definition questions.  

Question expected 
answer type 

Candidate 
type. 

PERSON ORGANIZATION 
PERSON COUNTRY 
NAME PERSON 
NAME ORGANIZATION 
NAME LOCATION 
CITY LOCATION 
DATE YEAR 
DATE YEAR 
ORGANIZATION other 
AMBIGLONG DURATION 
AMBIGLONG LENGTH 
AMBIGBIG LENGTH 
AMBIGFAST SPEED 
MEASURE MASS 
MEASURE MONEY 
MEASURE MISCMEASURE 
MEASURE other 
QUANTITY PERCENT 
unknown LOCATION 
unknown ORGANIZATION 
unknown PERSON 

Figure 1: Type-pair features used in evaluating 
answer candidates 



Previously, Qanda generated the actual definition 
answer strings by extracting approximately 90 
characters around the putative candidate.  However, 
we were struck by BBN’s simple, but successful, 
baseline system from several years ago.  This returns 
entire sentences containing the definition target.  
Accordingly, in recent years Qanda’s definition 
answers are constructed from entire sentences, as 
described in the next section. 

We used the type-pair features described in Section 3 
to license certain combinations of definition target 
type and candidate type, as shown in Figure 2. 

Additionally, we inject some non-entity candidates 
using crude heuristics for identifying short fragments 
occurring in appositional contexts.  Our hope is that 
the type-pair features, as well as the candidate count 
feature, would allow the system to find some 
definition answers.  As training data, we used last 
year’s definition questions, as well as 24 questions 
from TREC 1999 and 2000 that we determined were 
essentially definition questions, and the AQUAINT 
definition questions. 

We have had some success with this approach.  To 
illustrate, our best-scoring definition run this year 
produced the following sentences as a “definition” for 
Bollywood (question 72.7): 

SWISS-INDIA-FILMS (Lenk, Switzerland) _ Many of 
the 800 to 900 films produced each year by the Indian 
movie industry, which is sometimes called Bollywood, 
feature spectacularly scenic backgrounds that are 
filmed in faraway locations, typically Switzerland. 
``Often I go past a cinema in London and look at the 
queues for Bollywood films and there are as many 
white faces as Indians,'' he said in a recent interview. 
Television production houses, such as Sony 

Entertainment and Star TV, pay huge sums to buy the 
rights of Bollywood favorites. 

These sentences were chosen based on the following 
definitional pseudo-answers, which occurred with the 
indicated counts in sentences containing the definition 
term Bollywood: 

• Switzerland: 15 occurrences 
• Indians: 14 occurrences 
• Star TV: 4 occurrences 
• Sony Entertainment: 4 occurrences 

The three-sentence answer above matched both of the 
vital nuggets for Other question 72.7, as indicated by 
underlining.  This gave a recall of 1.0.  However, 
because we use entire sentences, the answer is rather 
long, and provided none of the optional nuggets, so its 
precision was 0.12, leading to an F of 0.52 

5. Final answer generation 
Except for the pseudo-answers used for definition 
questions, most of Qanda’s processing is independent 
of the question type.  In particular, list questions are 
treated entirely as factoid questions until the very last 
stage, actual answer string generation.  Here, special 
processing is required for both definition and list 
questions. 

In the past, we have simply picked the top N candidate 
answers, with some fixed cutoff, but in recent years we 
have attempted something slightly more sophisticated 
for list and definition questions, picking N 
dynamically so as to maximize our expected score. 

The basic idea takes advantage of Qanda’s candidate 
evaluation mechanism—since this is probabilistic in 
nature, we can use it to choose how many answers to 
generate dynamically, based on the expected value of 
the score we might receive.  Both list and definition 
questions are scored with variants of F-measure, the 
weighted harmonic mean of precision and recall: 

! 

F =
" 2 +1( )PR
" 2P + R

 

P is precision, the fraction of our generated answers 
that are correct, while R is recall, the fraction of all 
possible correct answers that we generated. 

! 

"  is a 
weight used to place more emphasis on either 
precision or recall.  For list questions, P and R were 
weighted evenly, and so the evaluation simply reduces 
to the following: 

! 

F
list

=
2c

n + r
 

Definition 
target type 

Candidate type. 

PERSON DATE 
PERSON YEAR 
PERSON PERSON 
PERSON LOCATION 
PERSON COUNTRY 
PERSON fragment 
ORGANIZATION LOCATION 
ORGANIZATION COUNTRY 
ORGANIZATION PERSON 
ORGANIZATION fragment 
unknown fragment 

Figure 2: Type-pair features used in evaluating 
answer candidates 

 



Here, n is the number of answers we choose to 
generate, c is the number of correct answers we 
generate, and r is the total number of correct answers 
possible.  The evaluation for definition answers was 
more complicated.  The basis of the evaluation done 
by NIST is not answer strings, but interesting 
“nuggets” of information.  The evaluators attempt to 
enumerate all correct nuggets by pooling all the 
system responses—this gives them a value for r.  
However, it was decided that n is quite difficult to 
determine—how many nuggets of information, correct 
or incorrect, are there in a particular text passage?  
Instead, precision is approximated with a length 
allowance—each correct nugget is given 100 
characters to be expressed.  An additional 
complication with definition answers is that 

! 

"  is set to 
three.  This results in the following expression for 
evaluating a definition answer set: 

! 

Fdef =
10 ˆ P R

9 ˆ P + R

ˆ P = min(1.0, 100c / l)

R = c /r

 

Here, c and r are as before, and l is the total length of 
the answer set, while the min function caps precision 
at 1.0..2  With these formulae in hand, we can attempt 
to estimate the score that a particular set of list or 
definition answers will receive. 

We do not know in advance whether an answer is 
correct, but we can use Qanda’s probabilistic score for 
the answer candidates as the basis for an expectation 
of c.  We have no real hope of estimating r, the 
number of correct answers possible, although David 
Lewis has suggested using the sum of scores over all 
answer candidates for a particular question.  We have 
experimented with this, but found the results to worsen 
slightly, so for the official TREC runs we simply fix r 
at a magic number of 5. 

Thus, our algorithm for generating list and definition 
answers is to add each of the candidates to the answer 
set in turn, increasing n by one each time.  Qanda then 
calculates the expected score of this answer set using 
the appropriate F-measure variant above, estimating c 
as follows: 

                                                        
2 In fact, this evaluation metric was even more complicated, 
as the assessors made a distinction between inessential and 
essential correct nuggets—only the latter counted for recall.  
We declined to attempt to estimate the essentialness of an 
answer. 

! 

c " s
i
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n
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Here, si is the probabilistic score assigned to candidate 
i.  For list questions, we simply add candidate answers 
in order of their confidence score.  For definition 
questions, as noted above, we decided to use entire 
sentences as answer set components.  Our pseudo-
answer candidates, however, are entities and other 
short phrases.  So, we add the matrix sentence of the 
pseudo-answer to the definition answer set, as 
described in Section 4.  Borrowing another trick from 
BBN’s definition system last year, if any such 
sentence has too many words in common with the 
answer set so far (70% or more), we skip it.  We do, 
however, include these skipped answers in calculating 
c, because a particular sentence may well contain 
multiple correct nuggets, as in the James Dean 
examples above. 

We stop adding candidates to the answer set when the 
expectation begins to decrease.  On last year’s list 
questions, this mechanism performed markedly better 
than simply generating a single candidate per list 
question (F = 0.143 vs. 0.060).  We have not yet 
separately evaluated this mechanism on this year’s list 
or definition data. 

6. Runs and results 
This year we submitted three variant runs.  Run A is 
from a basic configuration, with the features largely as 
described in Section 3, but with no feature 
combinations.  Run B is a “bells and whistles” run, 
with substantial feature combination enabled.  Run C 
is the closest to last year’s submission, with fewest 
features.   Results are shown in Figure 3.  All of our 
development this year centered on factoid questions, 
but, surprisingly, run C performed best on those 
questions, while run B performed best on definitions.  
We have yet to explain this adequately. 

Run Factoid List Definition 
A 0.113 0.060 0.167 
B 0.116 0.080 0.217 
C 0.180 0.047 0.032 

Median 0.152 0.053 0.156 

Figure 3: Results for three MITRE runs 
compared to the 2005 medians 

 



7. Conclusion 
As well as the usual description of this year’s system 
architecture, we have discussed Qanda’s question 
analysis and our use of maximum entropy models for 
answer selection.  We also presented our approach to 
generating definition and list answers using essentially 
the same system as for factoid questions, as well as the 
mechanism we use to determine how many of these 
answers to provide. 
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