
MITRE’s Qanda at TREC-14
John D. Burger and Sam Bayer

The MITRE Corporation
{john, sam}@mitre.org

Introduction
Qanda is MITRE’s TREC-style question answering
system. In recent years, we have been able to apply
only a small effort to the TREC QA activity,
approximately two person-months this year.
(Accordingly, much of this discussion is strikingly
similar to prior system descriptions.) We have made
some general improvements in Qanda’s processing,
including genuine question parsing, generalizing
answer selection to better handle variant question
types like lists and definition questions, and better
integration with a maximum entropy answer scorer,
both in training and at run time. We have also
attempted to better integrate the results of question
processing and document retrieval.

1. TREC-14 system description
Underlying architecture
Qanda uses a general computational infrastructure for
human language technology called the Annotation
Management System (AMS). AMS is a flexible
library for pairwise interaction between language
processors, based on the Catalyst infrastructure used in
previous versions of Qanda (Burger 2004,
Burger & Mardis 2002, Nyberg et al. 2004). Where
Catalyst was specifically designed for fast processing,
AMS is designed for compatibility and reuse.
Essentially, AMS provides an extensible wrapper
between a consistent internal programming model for
language processors and the wide range of ways the
language processor can be invoked, as well as the wide
range of possible annotation formats and storage types.
Philosophically, it is similar to IBM’s UIMA
infrastructure (Ferrucci & Lally 2004), without the
benefits and drawbacks associated with the strong
programming assumptions that UIMA makes. In
comparison with Catalyst, AMS allowed us to make
rapid changes to our system configuration, and
introduce new language processing components with
relatively little effort.

Major system components
Qanda has a by now shop-worn QA architecture,
which proceeds in several phases. Questions are
analyzed for expected answer types, as well as

keywords to use in forming an IR query. Documents
are retrieved using an IR system and are then
processed by various taggers to find entities of the
expected types in contexts that match the question.
For TREC-14, we enhanced the analysis phases for
both questions and document passages, including
detailed parsing of questions. Below we describe each
of the major components in turn.

• Common question and document processing: This
phase consists of several steps: tokenization,
sentence boundary detection, part of speech
tagging (Ratnaparkhi 1996), morphological
analysis (Minnen et al. 2001), and tagging of
named persons, locations and organizations
(named entities), as well as temporal expressions,
for which Qanda uses Phrag (Burger et al. 2002),
an HMM-based tagger.

• Question analysis: After the common initial phase
of analysis, questions are chunked and parsed, and
salient features of the meaning of the question are
extracted. See Section 2 below for more detail.

• IR wrappers: AMS components have been written
for several IR engines, taking the results of the
question analysis and formulating an IR query.
We continue to use the Java-based Lucene engine
(Apache 2002). Lucene’s query language has a
phrase operator, and also allows query
components to be given explicit weights. Qanda
uses both of these capabilities in constructing
queries from the information extracted from the
question. For TREC-14, the top 50 documents
were retrieved.

• Passage processing: After the retrieved documents
pass through the common analysis phase, Qanda
assigns a preliminary score to each sentence by
summing the log-IDF (inverse document
frequency) of each word that occurs in both the
candidate sentence and the question. Those
sentences with a low score are not processed by
most of the system. This step is performed to
reduce the cost of more expensive downstream
components.

• Fixed repertoire taggers: We have a simple
facility for constructing AMS taggers from fixed

word- and phrase-lists. These were used to re-tag
many named locations more specifically as cities,
states/provinces, and countries. Qanda also
identifies various other (nearly) closed classes
such as precious metals, birthstones, several
animal categories (e.g., state bird), and so on.
Different taggers are applied to the question and to
the retrieved passages.

• Numeric tagging: A fixed repertoire tagger is run
on the retrieved passages to identify words and
phrases denoting units of measure, and then a
simple pattern-based tagger combines these with
numeric expressions to identify full-fledged
measure phrases, as well as currency, percentages
and other numeric phrases.

• Overlap: The question is compared to each
sentence, and a number of overlap features are
computed, some in terms of various WordNet
relations (see Section 3).

• Answer collection and ranking: Candidates are
identified and merged, a number of features are
collected, and a score is computed (Section 3).

• Answer selection: A final component down-selects
the candidates and generates the actual answer
strings. For factoid questions, this is simply the
highest-scoring phrasal candidate, but definition
and list questions require other processing, as
detailed in Section 4.

As described above, all of these components
communicate by consuming and producing stand-off
annotations. A separate declarative facility is used to
indicate which components are interested in
consuming which annotations, and AMS arranges for
the components to be connected.

2. Question analysis
In previous TREC evaluations, Qanda performed a
limited analysis of the questions. We tagged for part-
of-speech and named entities, and also applied a
simple fixed-repertoire tagger that maps head words to
answer types in Qanda’s ontology, using a set of
approximately 6000 words and phrases, some
extracted heuristically from WordNet, some identified
by hand. For TREC-14, we added a detailed parsing
phase using MITRE’s Carafe (Wellner, 2005)
conditional random field chunker and the Pro3Gres
dependency parser from the University of Zurich
(Schneider et al. 2004), and performed a heuristic
analysis on the resulting structure to extract various
dimensions of the question.

Because gold-standard data for questions is scarce,
many of our corpus-based tools require a repair phase
to address some of the more egregious
misinterpretations of questions as declarative
statements. For instance, it is not uncommon for a part
of speech tagger that has been trained on declarative
data to attempt to tag questions like Who does John
love? as if John love is a noun-noun compound. We
found characteristic problems in chunking and parsing
as well, which we were able to partially correct using
simple heuristics.

Once these tagging phases are complete, Qanda’s
question analysis component uses a set of structural
heuristics to identify the following aspects of each
question:

• Anchor: the object that the answer refers to. The
answer may be the anchor, or it may be a property
(e.g., length, color) or name of the anchor. The
anchor will have a type and supertype from
Qanda’s (rather simple) ontology, e.g., PERSON
and AGENT. The supertype is used as a backoff
for some statistics.

• Property: the property, if any, of the anchor that is
the actual answer, e.g., the height of a mountain.
Properties also have a type and supertype in
Qanda’s ontology.

• Name: the name, if any, of the anchor that is the
actual answer. This case can arise in questions that
require descriptive answers, as in Who is Henry
Kissinger?

• Answer restriction: an open-domain phrase from
the question that describes the anchor, e.g., first
woman in space.

• Event: the main event in the question, if any;
typically the main verb, unless it is simply be.

• Salient entity: What the question is “about”.
Typically a named entity, this corresponds roughly
to the classical notion of topic, e.g., Matterhorn in
What is the height of the Matterhorn?

• Geographical restriction: Any phrase that seems
to restrict the question’s geophysical domain, e.g.,
in America.

• Temporal restriction: Any phrase that similarly
restricts the relevant time period, e.g., in the
nineteenth century.

• Superlative: Relevant adjectives from the question
restriction, e.g., first, or fastest.

These features are emitted as annotations on the
question, and are then available for down-stream
components to consume.

3. Answer ranking
Qanda only examines sentences that match the
question sufficiently, based on the IDF-weighted
overlap described above. It collects candidate answers
by gathering phrasal annotations from all of the
semantic taggers, and identifies a number of features.
These are combined using a conditional maximum-
entropy model trained from past TREC QA data sets.
Several TREC participants have used this approach,
e.g., Ittycheriah et al (2001).

Answer candidate features
Many of the features used in the log-linear model
reflect particular kinds of overlap between the question
and the context in which the candidate answer is
found:

• Context IDF Overlap: Described above.

• Context Unigram Overlap: Raw count of words1
in common with the question.

• Context Bigram Overlap: Raw count of word
bigrams in common with the question.

• Context Question Restriction Overlap: Raw count
of words from the restriction phrase of the
question (see Section 2). Most of the question
components described engender analogous overlap
features.

• Context Salient Overlap: Raw count of words
considered especially salient by question analysis
(see Section 2).

• Context Synonym Overlap: Raw count of words
that could be synonymous with questions words.

The synonym features are computed with respect to
WordNet (Fellbaum 1998).

Several features are computed based on the candidate
itself, or its location in the context sentence:

• Candidate Overlap: Raw count of words in
common between the candidate itself and the
question, to bias against entities from the question
being chosen as answers.

1All of the “raw count” features described in this section
omit stop words.

• Candidate Overlap Distance: Number of
characters between the candidate and the closest
(content) question word in the context.

• Candidate Question Restriction Distance: Number
of characters between the candidate and a word
from the restriction phrase of the question.
Analogous distance features are formed for several
other question component phrases.

The only document-level feature currently used is the
following:

• IR Ranking of the source document by the IR
system (but see below).

Candidates with the same textual realizations are
merged, with the combined candidate retaining the
highest value for each feature. This is the simplest
candidate combination possible, but previous work on
more robust answer combination across QA systems
(Burger & Henderson, 2003) used Tanimoto set
distance to compare answer strings as bags of
characters. This year we used several cross-candidate
features:

• Merge Count: (log of) count of identical
candidates merged together.

• Answer similarity: Average character-level
similarity between this candidate and all others.

The latter feature allows textually similar candidates to
“vote” for each other. This is especially useful for
dates and other types with multiple formats and
representations, thus, January, 1964 and Jan 64 can
support each other without requiring sophisticated
coreference.

A number of boolean features are also computed that
compare the question’s expected answer type with the
semantic type of the candidate:

• Type Same: True if the candidate and expected
answer types are identical.

• Type Consistent: True if the candidate’s type is
“similar” to the expected answer type.

• Type-Pair: This is a series of features
corresponding to selected pairs of consistent types
(see below).

For the most part, candidates are only considered for a
question if their types are consistent. For example,
Where questions lead to an expected answer type of
LOCATION, which is consistent with COUNTRY
candidates; How much questions lead to QUANTITY,
consistent with PERCENTAGE.

Ideally, Qanda would consider all candidates for all
questions, but, if nothing else, performance
considerations justify limiting this. We do not even
represent all consistent pairs as explicit features.
Instead, a small set of approximately 20 combinations
was chosen by hand, as indicated in Figure 1. These
represent particular biases or preferences that we feel
justified in trying to acquire from the training data. In
addition, some of these pairwise features represent
exceptions to the consistency requirement, e.g.,
PERSON is not consistent with COUNTRY, but we
wish to consider such candidates anyway. Similarly,
we wish to consider certain named entity types as
candidates, even when question analysis was
unsuccessful in divining an expected answer type
(unknown).

After all of the (merged) candidates have been
acquired, most of the raw feature values described
above are normalized with respect to the maximum
across all candidates for a particular question, resulting
in values between 0 and 1. We have found that
features normalized in this way are more
commensurate across questions, especially word
overlap and related features (Light et al. 2001).

Maximum entropy models
The normalized features are combined using the
weights assigned by a maximum entropy model during

training. This year, we trained the model using the
question sets from TREC 1999 through 2003,
including the 2001 list questions, as well as the 25
AQUAINT definition evaluation questions. Last
year’s questions (TREC 2004) were used as a
development set. We used Daumé’s (2004) MegaM
package to train the models.

We noted some interesting issues in training set
conditioning. Because we are using a very small data
set, there are arguably too few positive instances to
acquire adequate feature weights, especially if we are
interested in feature combination. In order to offset
this, we experimented with “forcing” Qanda to
consider all correct answers (as defined by NIST’s
judgment sets), even those that it would ordinarily not
examine.

A simple example are those correct answers found
only in documents that don’t make it past Qanda’s top-
N IR cutoff (typically 50 documents). When we
forced these documents into the pipeline (or
alternatively increased the IR cutoff, and down-
sampled negative candidates), we found that certain
features were assigned unintuitive weights by the log-
linear model. In particular, the IR rank feature went
from a low positive weight to a high negative weight.
In retrospect, this makes sense, because high-ranking
documents were being over-represented in the positive
training instances being presented to the model. In the
end, we found it simplest to discard this feature
entirely, since it never contributed very much.

4. Definition questions
Qanda has no real facility for processing definition
questions as such. Instead, we attempt to leverage our
factoid question processing, which for the most part
only considers named and other entities as candidate
answers. Of course, very few definition answers
correspond directly to named entities, per se, but we
have noticed that certain kinds of named entities are
involved with some definition answers, as indicated in
the example below:

 Who is Gunter Blobel?

 Is at Rockefeller University
1999 Nobel prize in Medicine
was born in 1936
was born in Waltersdorf, Silesia, Germany

Qanda’s question analysis component could already
identify the semantic type of the definition target (e.g.,
PERSON, above). Since definition answers did not
need to be exact, we allow Qanda to consider certain
entity types as pseudo-answers to definition questions.

Question expected
answer type

Candidate
type.

PERSON ORGANIZATION
PERSON COUNTRY
NAME PERSON
NAME ORGANIZATION
NAME LOCATION
CITY LOCATION
DATE YEAR
DATE YEAR
ORGANIZATION other
AMBIGLONG DURATION
AMBIGLONG LENGTH
AMBIGBIG LENGTH
AMBIGFAST SPEED
MEASURE MASS
MEASURE MONEY
MEASURE MISCMEASURE
MEASURE other
QUANTITY PERCENT
unknown LOCATION
unknown ORGANIZATION
unknown PERSON

Figure 1: Type-pair features used in evaluating
answer candidates

Previously, Qanda generated the actual definition
answer strings by extracting approximately 90
characters around the putative candidate. However,
we were struck by BBN’s simple, but successful,
baseline system from several years ago. This returns
entire sentences containing the definition target.
Accordingly, in recent years Qanda’s definition
answers are constructed from entire sentences, as
described in the next section.

We used the type-pair features described in Section 3
to license certain combinations of definition target
type and candidate type, as shown in Figure 2.

Additionally, we inject some non-entity candidates
using crude heuristics for identifying short fragments
occurring in appositional contexts. Our hope is that
the type-pair features, as well as the candidate count
feature, would allow the system to find some
definition answers. As training data, we used last
year’s definition questions, as well as 24 questions
from TREC 1999 and 2000 that we determined were
essentially definition questions, and the AQUAINT
definition questions.

We have had some success with this approach. To
illustrate, our best-scoring definition run this year
produced the following sentences as a “definition” for
Bollywood (question 72.7):

SWISS-INDIA-FILMS (Lenk, Switzerland) _ Many of
the 800 to 900 films produced each year by the Indian
movie industry, which is sometimes called Bollywood,
feature spectacularly scenic backgrounds that are
filmed in faraway locations, typically Switzerland.
``Often I go past a cinema in London and look at the
queues for Bollywood films and there are as many
white faces as Indians,'' he said in a recent interview.
Television production houses, such as Sony

Entertainment and Star TV, pay huge sums to buy the
rights of Bollywood favorites.

These sentences were chosen based on the following
definitional pseudo-answers, which occurred with the
indicated counts in sentences containing the definition
term Bollywood:

• Switzerland: 15 occurrences
• Indians: 14 occurrences
• Star TV: 4 occurrences
• Sony Entertainment: 4 occurrences

The three-sentence answer above matched both of the
vital nuggets for Other question 72.7, as indicated by
underlining. This gave a recall of 1.0. However,
because we use entire sentences, the answer is rather
long, and provided none of the optional nuggets, so its
precision was 0.12, leading to an F of 0.52

5. Final answer generation
Except for the pseudo-answers used for definition
questions, most of Qanda’s processing is independent
of the question type. In particular, list questions are
treated entirely as factoid questions until the very last
stage, actual answer string generation. Here, special
processing is required for both definition and list
questions.

In the past, we have simply picked the top N candidate
answers, with some fixed cutoff, but in recent years we
have attempted something slightly more sophisticated
for list and definition questions, picking N
dynamically so as to maximize our expected score.

The basic idea takes advantage of Qanda’s candidate
evaluation mechanism—since this is probabilistic in
nature, we can use it to choose how many answers to
generate dynamically, based on the expected value of
the score we might receive. Both list and definition
questions are scored with variants of F-measure, the
weighted harmonic mean of precision and recall:

!

F =
" 2 +1()PR
" 2P + R

P is precision, the fraction of our generated answers
that are correct, while R is recall, the fraction of all
possible correct answers that we generated.

!

" is a
weight used to place more emphasis on either
precision or recall. For list questions, P and R were
weighted evenly, and so the evaluation simply reduces
to the following:

!

F
list

=
2c

n + r

Definition
target type

Candidate type.

PERSON DATE
PERSON YEAR
PERSON PERSON
PERSON LOCATION
PERSON COUNTRY
PERSON fragment
ORGANIZATION LOCATION
ORGANIZATION COUNTRY
ORGANIZATION PERSON
ORGANIZATION fragment
unknown fragment

Figure 2: Type-pair features used in evaluating
answer candidates

Here, n is the number of answers we choose to
generate, c is the number of correct answers we
generate, and r is the total number of correct answers
possible. The evaluation for definition answers was
more complicated. The basis of the evaluation done
by NIST is not answer strings, but interesting
“nuggets” of information. The evaluators attempt to
enumerate all correct nuggets by pooling all the
system responses—this gives them a value for r.
However, it was decided that n is quite difficult to
determine—how many nuggets of information, correct
or incorrect, are there in a particular text passage?
Instead, precision is approximated with a length
allowance—each correct nugget is given 100
characters to be expressed. An additional
complication with definition answers is that

!

" is set to
three. This results in the following expression for
evaluating a definition answer set:

!

Fdef =
10 ˆ P R

9 ˆ P + R

ˆ P = min(1.0, 100c / l)

R = c /r

Here, c and r are as before, and l is the total length of
the answer set, while the min function caps precision
at 1.0..2 With these formulae in hand, we can attempt
to estimate the score that a particular set of list or
definition answers will receive.

We do not know in advance whether an answer is
correct, but we can use Qanda’s probabilistic score for
the answer candidates as the basis for an expectation
of c. We have no real hope of estimating r, the
number of correct answers possible, although David
Lewis has suggested using the sum of scores over all
answer candidates for a particular question. We have
experimented with this, but found the results to worsen
slightly, so for the official TREC runs we simply fix r
at a magic number of 5.

Thus, our algorithm for generating list and definition
answers is to add each of the candidates to the answer
set in turn, increasing n by one each time. Qanda then
calculates the expected score of this answer set using
the appropriate F-measure variant above, estimating c
as follows:

2 In fact, this evaluation metric was even more complicated,
as the assessors made a distinction between inessential and
essential correct nuggets—only the latter counted for recall.
We declined to attempt to estimate the essentialness of an
answer.

!

c " s
i

i=1

n

Here, si is the probabilistic score assigned to candidate
i. For list questions, we simply add candidate answers
in order of their confidence score. For definition
questions, as noted above, we decided to use entire
sentences as answer set components. Our pseudo-
answer candidates, however, are entities and other
short phrases. So, we add the matrix sentence of the
pseudo-answer to the definition answer set, as
described in Section 4. Borrowing another trick from
BBN’s definition system last year, if any such
sentence has too many words in common with the
answer set so far (70% or more), we skip it. We do,
however, include these skipped answers in calculating
c, because a particular sentence may well contain
multiple correct nuggets, as in the James Dean
examples above.

We stop adding candidates to the answer set when the
expectation begins to decrease. On last year’s list
questions, this mechanism performed markedly better
than simply generating a single candidate per list
question (F = 0.143 vs. 0.060). We have not yet
separately evaluated this mechanism on this year’s list
or definition data.

6. Runs and results
This year we submitted three variant runs. Run A is
from a basic configuration, with the features largely as
described in Section 3, but with no feature
combinations. Run B is a “bells and whistles” run,
with substantial feature combination enabled. Run C
is the closest to last year’s submission, with fewest
features. Results are shown in Figure 3. All of our
development this year centered on factoid questions,
but, surprisingly, run C performed best on those
questions, while run B performed best on definitions.
We have yet to explain this adequately.

Run Factoid List Definition
A 0.113 0.060 0.167
B 0.116 0.080 0.217
C 0.180 0.047 0.032

Median 0.152 0.053 0.156

Figure 3: Results for three MITRE runs
compared to the 2005 medians

7. Conclusion
As well as the usual description of this year’s system
architecture, we have discussed Qanda’s question
analysis and our use of maximum entropy models for
answer selection. We also presented our approach to
generating definition and list answers using essentially
the same system as for factoid questions, as well as the
mechanism we use to determine how many of these
answers to provide.

References
Apache Software Foundation, 2002. “Jakarta
Lucene—Overview”. http://jakarta.apache.org/lucene/.

John D. Burger, John C. Henderson, William T.
Morgan, 2002. “Statistical named entity recognizer
adaptation”, in Proceedings of the Conference on
Natural Language Learning. Taipei.

John Burger, John Henderson, 2003. “Exploiting
diversity for answering questions”, in Proceedings of
the Human Language Technology Conference of the
North American Chapter of the Association for
Computational Linguistics.

John D. Burger, Scott Mardis, 2002. “Qanda and the
Catalyst architecture”, in AAAI Spring Symposium on
Mining Answers from Texts and Knowledge Bases.

Hal Daumé III, 2004. “Notes on CG and LM-BFGS
optimization of logistic regression”. Unpublished.
http://www.isi.edu/~hdaume/megam/

Christiane Fellbaum, ed., 1998. WordNet: An
Electronic Lexical Database. MIT Press.

D. Ferrucci and A. Lally, 2004. “Building an example
application with the Unstructured Information
Management Architecture.” IBM Systems Journal
43:3.

Abraham Ittycheriah, Martin Franz, Salim Roukos,
2001. “IBM's statistical question answering system”,
in Proceedings of the Tenth Text REtrieval Conference
(TREC-10). NIST Special Publication 500-250.

Marc Light, Gideon S. Mann, Ellen Riloff, Eric Breck,
2001. “Analyses for elucidating current question
answering technology”, in Natural Language
Engineering 7(4).

Guido Minnen, John Carroll and Darren Pearce, 2001.
“Applied morphological processing of English”.
Natural Language Engineering, 7(3).

Eric Nyberg, John D. Burger, Scott Mardis, David
Ferrucci, 2004. “Software architectures for advanced
question answering”, in New Directions in Question
Answering, ed. Mark Maybury. AAAI Press.

Adwait Ratnaparkhi, 1996. “A maximum entropy
part-of-speech tagger,” in Proceedings of the
Empirical Methods in Natural Language Processing
Conference.

Gerold Schneider, Fabio Rinaldi, James Dowdall,
2004. “Fast, deep-linguistic statistical dependency
parsing”. Workshop on Recent Advances in
Dependency Grammar, COLING 2004, Geneva.

Ben Wellner, 2005. “Carafe”. Unpublished.
http://sourceforge.net/projects/carafe/.

