
TREC 2005 Enterprise Track Results from Drexel
Weizhong Zhu1, Min Song2, and Robert B. Allen1

1 College of Information Science
and Technology

Drexel University
Philadelphia, PA 19104

2 Department of Computer and
Information Sciences
Temple University

Philadelphia, PA, 19122

1 Discussion Topic Search
The primary goal of Discussion Search is to identify a discussion about a topic. A secondary
goal is to determine whether a given message expresses pro or con arguments with respect to
the discussion. We employed a combination of POS-driven query expansion and a text-
classification technique from [6]. The results of those previous experiments indicated that the
technique best performed in extracting protein-protein interaction pairs from MEDLINE.
The original email corpus was extremely heterogeneous. We first applied the Tidy HTML
parser to strip tags and to identify data such as the sender, thread history, and subject of the
messages. We then linked messages into threads in two ways. The corpus provides thread
index files for email communications. These thread indexes are composed of hieratically
structured multiple discussion threads and single thread. For multiple discussion threads, we
unified them into a thread document. We also combined single documents when they had the
same subject.

1.1 Method
This is a supervised because the system was developed a small set of training data by taking a
subset of discussion threads and manually tagging them. We developed a discussion thread
classification module that is based on an SVM. Lemur [3] was used for the backend. Inspired
by the traditional bag-of-words representation of text documents, we converted the retrieved
documents into a bag-of-features through the feature extraction and selection process. Our
approach to conversion of retrieved documents into a bag-of-features is that only important
phrases and terms are selected by Part-Of-Speech (POS) tagging. With these important
phrases, we constructed a vector for each example based on its bag-of-features: the
entries/dimensions of the vectors correspond to all distinct features, and the value of each entry
is the weight of its corresponding feature. We then used tf*idf weighting and all vectors were
normalized to unit length. For example, the features are extracted from the following fields of
discussion threads: main text, subject headings, and mail headers.

Information gain was used as a feature-selection criterion because it has been shown to work
well for other text categorization tasks [4]. Although there are mixed results about the impact
of feature selection on SVM performance in text categorization, we have found that aggressive
feature selection is helpful to SVM. We believe this is because a large number of features
generated by the above feature extraction method are irrelevant or redundant.

1.2 Runs
The Radial Basis function (RBF) is recommended as a good SVM model for text
categorization [5]. First, the RBF kernel non-linearly maps samples into a higher dimensional

space, so it can handle the case when the relation between class labels and attributes is
nonlinear. Second, the RBF has fewer hyper-parameters which influences the complexity of
model selection. And, third, the RBF kernel has fewer computational difficulties.

We accepted the default values for all parameters of LIBSVM except C and γ. The parameter C
determines the trade-off between training error and margin, while the parameter γ specifies the
cost-factor by which training errors on positive examples outweigh errors on negative
examples. Another parameter is the feature selection threshold. Our tactic for parameter
tuning is similar to [1]. We trained SVM classifiers with different parameter settings and
estimated their performance by leave-one-out cross-validation. LIBSVM can prune away
cross-validation folds that do not need to be explicitly executed. The cross-validation
procedure minimizes over-fitting.

We employed a “grid-search” on C and γ using cross-validation. Basically pairs of (C,γ) are
tried and the one with the best cross-validation accuracy is picked. We found that trying
exponentially growing sequences of C and J is a practical for identifying good parameters.
Our experiments found that heuristically setting (C,γ) at yielded a cross-validation
rate of 77.5%.

)2,2(53 −

Where G(xi,xi) is the Kernel function to avoid computing inner product in high dimensions.
Once the SVM models are built with the training data, the new data are classified in the
following:

When the parameters (are found by solving the required quadratic optimization on the
training set of points, the SVM is ready to be used for classifying new points. Given a new
point x, its class membership is sin[], where

), ** bα

),,(** bf αx

*
1

**
1

,

,),,(

byby

bybybbf

SVi iiiSVi
T

iii

N

i iii
N

i
T

iii
T

+><=+=

+><=+=+=

∑∑
∑∑

∈∈

==

xxxx

xxxxxwx

αα

ααα

Our technique requires a set of parameters to generate a model that performs well on unseen
data. These parameters and decisions are either data related or algorithm related. The decision
on algorithm-specific variables includes the upper bound for Lagrange, multipliers, and
tolerance. The decision on data-specific variables includes the number of features to be
selected, the ratio of positive to negative documents in training data, and the sampling strategy
for the negative class. The decision variables and the range of values explored are presented in
Table 1.

Decision Variables Explored Values

C (upper bound for Lagrange multipliers) 4, 12
Tolerance 0.001
Class Ratio 1:3, 1:10, use all training data
Sampling strategy Random
Number of features f f = 1,000, 10,000, 15,000, All

Table 1. Decision variables and values explored.

We submitted five runs with these decision variables: dsdrexel1, dsdrexel2, dsdrexel3,
dsdrexel4, and dsdrexel5. For P@10, the best run is dsdrexel5. Table 2 describes the
performance comparison of five runs in terms of various measures including average precision
(Avg. Precision), precision at rank R (R-prec), reciprocal rank (Recip_rank), and P@10. For
reciprocal rank, rank refers to the rank of the first correct answer returned by a system. Note
that in our originally submitted files, there was a clerical error that we have corrected in the
results reported here.

 Run Avg. Precision R-prec Recip_rank P@10
Dsdrexel1 0.146 0.179 0.427 0.264
Dsdrexel2 0.132 0.172 0.439 0.266
Dsdrexel3 0.145 0.176 0.427 0.263
Dsdrexel4 0.168 0.197 0.479 0.298
Dsdrexel5 0.181 0.215 0.499 0.324

 Table 2. Results for discussion topics.

2 Expert Search
The Expert Search task of the Enterprise track was designed to match people with W3C
working groups based, primarily, on email communications. The topics are names of working
groups and the experts are the members of those groups.
We represented each name extracted from corpus with a collection of documents (for instance,
all the emails the person had sent) and then to use different information retrieval models to
measure the relevance between the collections of documents and the topics. Our experiments
applied Pat-tree-based n-gram extraction [9-11] and term re-weighting techniques to the Vector
Space (VS) model [7] and Latent Semantic Indexing (LSI) model [8].

2.1 Method
2.1.1 Retrieval Models

The Vector Space Model is a way of representing documents through the words that they
contain. Each document is originally broken down into a word frequency table and the table is
called a vector. A vocabulary is built from all the words in all documents in the system and
each document is represented as a vector based against the vocabulary. In our experiment, the
vocabulary includes not only keywords but also 2-gram and 3-gram phrases obtained from Pat-
tree n-gram extraction algorithms. For LSI, a technique, Singular Value Decomposition (SVD),
is used to decompose a term-document matrix A into three separate matrices, a term by concept
matrix B, a concept by concept matrix C and a concept by document matrix D.

2.1.1.1 Similarity computation for each person
Given a query q in Vector model, for each people p who is represented with a collection of
emails d, a cosine similarity is computed as the score between q and d, where both q and d are
represented as tf*idf weighted term vectors.
In LSI, a query is transformed as a pseudo-document qd in matrix D and it can be represented
by:

 , 1−= kk
T

d CBqq

Where q is simply the vector of words in the original user query and k is number of dimensions
of matrix C [12] (k=300 applied in this study). Then for each person, who is represented with a
set of emails, a d in D, the cosine similarity is computed between qdCk and dCk.

2.1.1.2 Query Processing and Term Re-weighting Strategies
Each query is expanded with 2-gram and 3-gram phrases in topics and these phrases are signed
higher weight. For instance, a query “XML Schema”, can be expanded as “XML”, “Schema”,
and “XML Schema”. The phrase “XML Schema” will be given a higher weight automatically.
The weights for 1-gram keyword, 2-gram phrases and 3-gram phrases are set as 0.1, 1.0, and
1.5 respectively.

2.2 Results
The results of the two official runs submitted, which are listed in Table 3. They show that a
traditional Vector model provide betters retrieval performance for this task. Further work could
include text classification or developing more precise term re-weighting strategies.

 Run Avg. Precision R-prec B-pref Recip_rank P@10
DREXELEXP1
(VS)

 0.1262 0.1743 0.3409 0.4365 0.2500

DREXELEXP2
(LSI)

 0.0280 0.0511 0.1672 0.2541 0.0620

 Table 3. Results for expert search task.

3 Acknowledgement
We thank Jason Proctor for assistance on these tasks and we thank Dr. Rosina Weber for
providing support to Jason Proctor.

4 References
1. Lewis, D.D., Applying Support Vector Machines to the TREC-2001 Batch Filtering and

Routing Tasks, Proceedings of the 10th Text Retrieval Conference (TREC), NIST,
Gaithersburg, MD 2001, 286-292.

2. Fan, R. E., Chen, P.H., and Lin, C.J., Working set selection using the second order
information for training SVM. Technical Report, Department of Computer Science, National
Taiwan University, 2005.

3. Lemur Project, The Lemur Toolkit for Language Modeling and Information Retrieval,
http://www.lemurproject.org/

4. Joachims, T., Text Categorization with Support Vector Machines: Learning with Many

Relevant Features. European Conference on Machine Learning (ECML) 1998.
5. Shin, M. and Goel A., Empirical Data Modeling in Software Engineering Using Radial Basis

Functions, IEEE Transactions on Software Engineering, 26(6): 567-576, 2000.
6. Song, M., Robust Knowledge Extraction over Large Unstructured Text Collections.

Dissertation, College of Information Science and Technology, Drexel University, 2005.
7. Raghavan, V. V. and Wong, S. K. M, A critical analysis of vector space model for

information retrieval, Journal of the American Society for Information Science, 1986, 37 (5),
279-287.

8. Deerwester, S., Dumais, S.T., Landauer, T.K, Furnas, G., and Harshman, R., Indexing by
latent semantic indexing, Journal of the American Society for Information Science, 1990,
41(6), 391-407.

9. Lee-Feng C., Huang, T.I., and Chien, M.C., Pat-tree-based Keyword Extraction for Chinese
Information Retrieval, Proceedings of SIGIR ,1997, 50-58.

10. Chien, L-F., Chen, C-L, Incremental Extraction of Domain-Specific Terms from Online Text
Collections, Recent Advances in Computational Terminology, M.C. L'Homme, C. Jacquemin,
Didier, and Bourigault, ed., John Benjamins Publishing Company, 2001, 89-109.

11. Wang, J-H., Teng, J-W., Cheng, P-J., Lu, W.H., and Chien, L-F., Translating Unknown
Cross-Lingual Queries in Digital Libraries Using a Web-based Approach, ACM/IEEE Joint
Conference on Digital Libraries (JCDL), 2004, pp. 108-116.

12. Berry, M.W., Dumais, S.T., and O'Brien, G.W., Using linear algebra for intelligent
information retrieval. SIAM Review, 1995, 37(4): 573-595.

	1 Discussion Topic Search
	1.1 Method
	1.2 Runs
	2 Expert Search
	2.1 Method
	2.1.1 Retrieval Models
	2.1.1.1 Similarity computation for each person
	2.1.1.2 Query Processing and Term Re-weighting Strategies

	2.2 Results

	3 Acknowledgement
	4 References

