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1 Discussion Topic Search  
The primary goal of Discussion Search is to identify a discussion about a topic. A secondary 
goal is to determine whether a given message expresses pro or con arguments with respect to 
the discussion. We employed a combination of POS-driven query expansion and a text-
classification technique from [6]. The results of those previous experiments indicated that the 
technique best performed in extracting protein-protein interaction pairs from MEDLINE. 
The original email corpus was extremely heterogeneous. We first applied the Tidy HTML 
parser to strip tags and to identify data such as the sender, thread history, and subject of the 
messages. We then linked messages into threads in two ways. The corpus provides thread 
index files for email communications. These thread indexes are composed of hieratically 
structured multiple discussion threads and single thread. For multiple discussion threads, we 
unified them into a thread document. We also combined single documents when they had the 
same subject. 

1.1 Method 
This is a supervised because the system was developed a small set of training data by taking a 
subset of discussion threads and manually tagging them. We developed a discussion thread 
classification module that is based on an SVM. Lemur [3] was used for the backend. Inspired 
by the traditional bag-of-words representation of text documents, we converted the retrieved 
documents into a bag-of-features through the feature extraction and selection process. Our 
approach to conversion of retrieved documents into a bag-of-features is that only important 
phrases and terms are selected by Part-Of-Speech (POS) tagging. With these important 
phrases, we constructed a vector for each example based on its bag-of-features: the 
entries/dimensions of the vectors correspond to all distinct features, and the value of each entry 
is the weight of its corresponding feature. We then used tf*idf weighting and all vectors were 
normalized to unit length. For example, the features are extracted from the following fields of 
discussion threads: main text, subject headings, and mail headers. 
 
Information gain was used as a feature-selection criterion because it has been shown to work 
well for other text categorization tasks [4]. Although there are mixed results about the impact 
of feature selection on SVM performance in text categorization, we have found that aggressive 
feature selection is helpful to SVM. We believe this is because a large number of features 
generated by the above feature extraction method are irrelevant or redundant. 

1.2 Runs 
The Radial Basis function (RBF) is recommended as a good SVM model for text 
categorization [5]. First, the RBF kernel non-linearly maps samples into a higher dimensional 



space, so it can handle the case when the relation between class labels and attributes is 
nonlinear. Second, the RBF has fewer hyper-parameters which influences the complexity of 
model selection. And, third, the RBF kernel has fewer computational difficulties. 

We accepted the default values for all parameters of LIBSVM except C and γ. The parameter C 
determines the trade-off between training error and margin, while the parameter γ specifies the 
cost-factor by which training errors on positive examples outweigh errors on negative 
examples. Another parameter is the feature selection threshold.  Our tactic for parameter 
tuning is similar to [1]. We trained SVM classifiers with different parameter settings and 
estimated their performance by leave-one-out cross-validation. LIBSVM can prune away 
cross-validation folds that do not need to be explicitly executed.  The cross-validation 
procedure minimizes over-fitting. 

We employed a “grid-search” on C and γ using cross-validation.  Basically pairs of (C,γ) are 
tried and the one with the best cross-validation accuracy is picked. We found that trying 
exponentially growing sequences of C and J is a practical for identifying good parameters.  
Our experiments found that heuristically setting (C,γ) at  yielded a cross-validation 
rate of 77.5%. 
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Where G(xi,xi) is the Kernel function to avoid computing inner product in high dimensions. 
Once the SVM models are built with the training data, the new data are classified in the 
following: 

 
When the parameters (  are found by solving the required quadratic optimization on the 
training set of points, the SVM is ready to be used for classifying new points. Given a new 
point x, its class membership is sin[ ], where 
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Our technique requires a set of parameters to generate a model that performs well on unseen 
data. These parameters and decisions are either data related or algorithm related. The decision 
on algorithm-specific variables includes the upper bound for Lagrange, multipliers, and 
tolerance. The decision on data-specific variables includes the number of features to be 
selected, the ratio of positive to negative documents in training data, and the sampling strategy 
for the negative class. The decision variables and the range of values explored are presented in 
Table 1. 

 
Decision Variables Explored Values 



C (upper bound for Lagrange multipliers) 4, 12 
Tolerance 0.001 
Class Ratio 1:3, 1:10, use all training data 
Sampling strategy Random 
Number of features f f = 1,000, 10,000, 15,000, All 

Table 1. Decision variables and values explored. 
 

We submitted five runs with these decision variables: dsdrexel1, dsdrexel2, dsdrexel3, 
dsdrexel4, and dsdrexel5. For P@10, the best run is dsdrexel5. Table 2 describes the 
performance comparison of five runs in terms of various measures including average precision 
(Avg. Precision), precision at rank R (R-prec), reciprocal rank (Recip_rank), and P@10. For 
reciprocal rank, rank refers to the rank of the first correct answer returned by a system. Note 
that in our originally submitted files, there was a clerical error that we have corrected in the 
results reported here. 

 
  Run Avg. Precision R-prec Recip_rank P@10 
Dsdrexel1 0.146 0.179 0.427 0.264 
Dsdrexel2 0.132 0.172 0.439 0.266 
Dsdrexel3 0.145 0.176 0.427 0.263 
Dsdrexel4 0.168 0.197 0.479 0.298 
Dsdrexel5 0.181 0.215 0.499 0.324 

    Table 2. Results for discussion topics. 

2 Expert Search 
The Expert Search task of the Enterprise track was designed to match people with W3C 
working groups based, primarily, on email communications. The topics are names of working 
groups and the experts are the members of those groups.  
We represented each name extracted from corpus with a collection of documents (for instance, 
all the emails the person had sent) and then to use different information retrieval models to 
measure the relevance between the collections of documents and the topics. Our experiments 
applied Pat-tree-based n-gram extraction [9-11] and term re-weighting techniques to the Vector 
Space (VS) model [7] and Latent Semantic Indexing (LSI) model [8]. 

2.1 Method 
2.1.1  Retrieval Models 

The Vector Space Model is a way of representing documents through the words that they 
contain. Each document is originally broken down into a word frequency table and the table is 
called a vector. A vocabulary is built from all the words in all documents in the system and 
each document is represented as a vector based against the vocabulary. In our experiment, the 
vocabulary includes not only keywords but also 2-gram and 3-gram phrases obtained from Pat-
tree n-gram extraction algorithms. For LSI, a technique, Singular Value Decomposition (SVD), 
is used to decompose a term-document matrix A into three separate matrices, a term by concept 
matrix B, a concept by concept matrix C and a concept by document matrix D.  



2.1.1.1 Similarity computation for each person 
Given a query q in Vector model, for each people p who is represented with a collection of 
emails d, a cosine similarity is computed as the score between q and d, where both q and d are 
represented as tf*idf weighted term vectors.  
In LSI, a query is transformed as a pseudo-document qd in matrix D and it can be represented 
by: 

           ,  1−= kk
T
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Where q is simply the vector of words in the original user query and k is number of dimensions 
of matrix C [12] (k=300 applied in this study). Then for each person, who is represented with a 
set of emails, a d in D, the cosine similarity is computed between qdCk and dCk.  

2.1.1.2 Query Processing and Term Re-weighting Strategies 
Each query is expanded with 2-gram and 3-gram phrases in topics and these phrases are signed 
higher weight. For instance, a query “XML Schema”, can be expanded as “XML”, “Schema”, 
and “XML Schema”. The phrase “XML Schema” will be given a higher weight automatically. 
The weights for 1-gram keyword, 2-gram phrases and 3-gram phrases are set as 0.1, 1.0, and 
1.5 respectively. 

2.2 Results 
The results of the two official runs submitted, which are listed in Table 3. They show that a 
traditional Vector model provide betters retrieval performance for this task. Further work could 
include text classification or developing more precise term re-weighting strategies. 

 
    Run Avg. Precision R-prec B-pref Recip_rank  P@10 
DREXELEXP1 
(VS) 

 0.1262 0.1743 0.3409   0.4365  0.2500 

DREXELEXP2 
(LSI) 

 0.0280 0.0511 0.1672   0.2541  0.0620 

                          Table 3.  Results for expert search task. 
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