Unbiased S-D Threshold Optimization,
Initial Query Degradation, Decay, and Incrementality,
for Adaptive Document Filtering

Avi Arampatzis

Information Retrieval and Information Systems, University of Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands.

avgerino@cs.kun.nl, http://www.cs.kun.nl/~avgerino

Proceedings of the Tenth Text REtrieval Conference (TREC-10).

Abstract

We develop further the S-D threshold optimization
method. Specifically, we deal with the bias problem
introduced by receiving relevance judgements only
for documents retrieved. The new approach esti-
mates the parameters of the exponential-Gaussian
score density model without using any relevance
judgements. The standard ezpectation mazimiza-
tion (EM) method for resolving mixtures of distri-
butions is used. In order to limit the number of doc-
uments that need to be buffered, we apply nonuni-
form document sampling, emphasizing the right tail
(high scores) of the total score distribution.

For learning filtering profiles, we present a ver-
sion of Rocchio’s method which is suitable and ef-
ficient for adaptive filtering. Its main new features
are the initial query degradation and decay, while it
is fully incremental in query updates and in calcu-
lating document score statistics. Initial query degra-
dation eliminates gradually the contribution of the
initial query as the number of relevant training doc-
uments increases. Decay considers relevant instances
(documents and/or initial query) of the near past
more heavily than those of the early past. This is
achieved by the use of half-life, i.e. the age that a
training instance must be before it is half as influ-
ential as a fresh one in training/updating a profile.
All these new enhancements are consistent with the
initial motivation of Rocchio’s formula.

We, moreover, use a form of term selection for all
tasks (which in adaptive tasks is applied repeatedly),
and query zoning for batch filtering and routing.

1 Introduction

This paper describes the participation in the TREC-
10 Filtering Track by researchers from the Katholieke
Universiteit Nijmegen (KUN). We participated in all
three subtasks: adaptive filtering, batch filtering,
and routing. The description of the tasks and evalu-
ation measures can be found in [10]. We have mainly
used the FILTERIT system for all but one routing run
which was made by the LCS system. Table 1 sum-
marizes the runs we submitted.

Task Optimized for | System | Run-tag
adaptive T10SU FicterIT | KUNaU
adaptive F05 FiLTerIT | KUNaF
batch T10SU FiLTERIT | KUNDBU
batch F05 FiLTERIT | KUNDF
routing — FivrerIT | KUNrl
routing — LCS KUNr2

Table 1: TREC-10 filtering runs submitted by KUN.

FILTERIT was developed for our TREC-9 partici-
pation [2]. It was initially designed as a pure adap-
tive filtering system, based on a variant of Rocchio’s
relevance feedback formula which is more suitable
for adaptive tasks. It has recently been extended to
provide mechanisms for batch training, non-adaptive
filtering, and routing. LCS was developed in the
context of the Esprit project DOcument ROuting
(DORO)! [8]. It is based on the Winnow mistake-

Thttp://wuw.cs.kun.nl/doro

driven learning algorithm [6]. Both systems are de-
scribed in length in [2]; here we will concentrate on
the changes made in FILTERIT.

In the next section, the preprocessing applied to
documents and topics is described. Section 3 ex-
pands on incremental profile training. It is shown
how the initial query degradation and decay are in-
tegrated into Rocchio’s method. Many technical de-
tails are given which may be proved useful for de-
veloping incremental and effective filtering systems.
Section 4 deals with optimizing filtering thresholds.
Finally, results are summarized in Section 5, and con-
clusions are drawn in Section 6.

2 Preprocessing

All tasks were performed using a keyword-based rep-
resentation of documents and queries, with tradi-
tional stemming and stoplisting. There was no spe-
cial treatment of proper names, all numbers were
eliminated, and we made no use of multi-word terms
such as phrases or word clusters. We did not use
any external resources such as online dictionaries
or thesauri. In summary, the pre-processing was
quick-and-dirty. It reduces dramatically the num-
ber of indexing terms, however, it worked out well
with the OHSUMED collection in the TREC-9 Fil-
tering Track where we obtained very good results.
This year, however, a programming bug in the pre-
processor introduced a serious disadvantage in per-
forming the adaptive tasks: all stems of the test
stream which did not occur in the training stream
were discarded. As a result, filtering profiles could
not be expanded with new terms during adaptations.
The impact of this error on the routing and batch fil-
tering effectiveness, however, was negligible.

3 Incremental Profile Training

The query training of FILTERIT is derived from Roc-
chio’s method [11]. Our version of the formula
presents the following features:

1. Tt introduces initial query degradation. The ini-
tial query is considered as carrying a worth of
a certain number of relevant documents. As a
result, the contribution of an initial query in
training a classifier decreases with the number
of relevant training documents.

2. It incorporates the notion of the half life of a
training document, i.e. the age that a document
must be before it is half as influential as a fresh
one in training a classifier.

3. It allows accurate incremental training with-
out using any document buffers, resulting in
low memory and computational power require-
ments.

Table 2 shows all the quantities used for incre-
mental training. They are grouped (from top to
bottom) into user-supplied parameters, document
stream variables, filter variables, and system-wide
parameters.

Qo the initial user query vector
a worth of Qg, in number of relevant docs
h half life of training docs
N total number of docs seen
DFy diagonal K x K matrix of df’s @ N
Q. query vector after n training docs
B,, linear combination of relevant docs
C,, linear combination of irrelevant docs
an worth of Qg at time ¢,
b, accumulated worth of relevant docs
¢n accumulated worth of irrelevant docs
B' relevant to irrelevant feedback ratio
k term selection cutoff

Table 2: Parameters and variables.

The user-supplied parameters are three: the initial
query Qg, its assumed worth a measured in number
of relevant documents, and the half life h of train-
ing documents measured in actual time. This year,
we used a = 2, a low value in comparison to last
year’s tasks where our formula behaved more like
a = 10. The main reason for this was that we did not
find the TREC-10 queries (consisting mainly of one
or two keywords) too informative. Furthermore, we
used a mild decay (despite the fast-changing nature
of a news stream) setting the half life h to 6 months
for the adaptive tasks, and no decay for batch and
routing (due to the limited timespan of the train-
ing data). More about document decay and half life,
and a discussion on convergence or responsiveness of
classifiers can be found in [3] and [1].

Training documents D;, i = 1,2,... (relevant and
non-relevant) are the pre-classified documents given
at the time of bootstrapping, and all retrieved ones
during filtering since their relevance judgment is
given. The index ¢ denotes the position of a train-
ing document in time sequence of all training docu-
ments, e.g. D; is the oldest. Qp and D; are not idf
weighted, but only tf and length-normalized. The
precise weighting scheme we currently use for docu-
ments is the Lu [12].

Stream variables are the total number N of doc-
uments seen by some point in time, and the K x K
diagonal matrix DFy = diag(df;,...,dfx) of the
document frequencies of a total K terms contained
into the N documents. Each new document that ar-
rives increments N by one, and updates DFy (i.e.
incremental df).

The filter variables are initialized as

ag = a.

(1)
Now, let us assume that the system retrieves the nth
document D,, at time ¢,,, and that the user feedback
says that it is relevant. Then the filter variables are
updated as

Bo=Co =[0,0,...,0], bo=co=0,

B, = [,B, 1+D,,
C, = 1,C,_1,

an, = Ilpap-_1,

b, = Ipb,1+1,

¢n = lIpcn_1, (2)

where [,, is the decay factor calculated as
lp = 0.5(tn~tn=0)/R (3)

Similarly, if D,, is non-relevant, then it is added to
C,, instead of B,, and ¢, is incremented instead of
by-

The new filtering query Q,, is then built in 3 steps.

1. The query zone is built, i.e. a trained query us-
ing only the relevant and discarding all the non-
relevant feedback:

Qz,n = (anQo + Bn)> idf(DFN) .

(4)
(We use the same formula in batch filtering and
routing to select which non-relevant documents
are going to be used for training: currently, the
top-500 non-relevant as ranked by Eq. 4.)

1
an + by,

2. All terms in Q,,, are ranked according to their
weight, and only the top-k terms are selected.
All the rest of the terms are removed from vec-
tors Qz,n,Qo, By, and C,. This year, we used
250 terms for routing and batch filtering, and
100 for adaptive filtering.

3. The new filtering query is calculated as
1 .
Q.=08"Qun — c_C" idf(DFy). (5)
n

The function idf(.) returns the diagonal matrix of
the idf components. We should remind that Qg and
D; are not idf weighted. The idf components are
currently calculated with the ¢ formula [12].

Note that for h = 400 (no document decay),
B' =1, and a = 0 (no initial query), the procedure
we have just described calculates the original Roc-
chio formula. A relevance feedback setting with the
traditional parameters a, 3, and v can be simulated
using a, = b, o/ and ' = (a+ B)/~v. In short, our
version of the formula can behave like most variants
seen in the literature. Additionally, it allows accu-
rate incrementality, it can consider the initial query
as being an equivalent of some number of relevant
training documents, and it incorporates the notion
of decaying over time training documents and initial
query. Moreover, it does not invalidate the initial
motivation of Rocchio’s formula. For example,

1 1
—C,=—=—— d;D;, 6
where D; is a non-relevant document, and
n
di= [[t; =050, (7)
j=it+1

is still the (weighted) average vector of non-relevant
documents.

3.1 Incremental Score Statistics

The incremental training we have just described al-
lows us to calculate (weighted) score statistics, e.g.
mean score and variance, incrementally without us-
ing any document buffers. Score statistics are neces-
sary for thresholding as we will see in Section 4.

If the dot-product * is used as a scoring function,
the mean relevant document score firel,n, at &y, is sim-
ply:

1
Hrel,n = b_ (Bn * Qn) . (8)

The variance o2, can be calculated via

rel,n

2
C’Eel,n :uﬁ{el) n p’?‘el,n . (9)

2

The mean of the squared scores) ,

is given by

1
Htn = 5 (QnBayaan) * Qu) , (10)

where

Bayad,n = Y di D} D (11)
i

is 2-dimensional matrix. D} denotes the adjacent of
D;. Bgyad,n can be updated incrementally as
dead,n = li dead,n—l + Dz Dn (12)

The derivations of Formulae & and 10 can be found
in [1].

4 Threshold Optimization

Thresholds in FILTERIT are empirically optimized
for batch filtering, and S-D (score-distributional) op-
timized for adaptive tasks.

4.1 The Empirical Method

The empirical technique for optimizing a threshold
on training documents consists of the following steps:
rank the documents according to their scores, cal-
culate the effectiveness measure of interest at every
position of the rank, find the position where the mea-
sure is optimal, and set the threshold somewhere be-
tween the score of the optimal position and the score
of the next lower position. The technique works out
well given sufficient training data. Our batch filter-
ing runs, KUNbU and KUNDF, use this technique
for optimizing thresholds.

The main drawback of the empirical technique be-
comes apparent when adaptivity is required, namely,
it cannot be applied incrementally. A large docu-
ment buffer should be carried along during filtering,
and the scores of all its documents must be recalcu-
lated after every query update.

4.2 The S-D Method

The S-D method [2, 4] eliminates the need for a doc-
ument, buffer by using the statistical properties of
scores rather than their actual values. Statistical
properties like mean score and variance can be up-
dated incrementally, as we have shown in Section 3.1.

The idea behind the S-D threshold optimization
is the following. If relevant and non-relevant docu-
ment scores are modelled separately using their prob-
ability densities, then the total score density is a
(weighted) mixture of the individual score densities.
Having determined the individual score densities and
the mixing parameter, all measures that satisfy the
probability thresholding principle (PTP) [5] can be
optimized. The optimization of non-PTP measures
requires moreover the knowledge of the number of
documents to be filtered, but this is usually an un-
known quantity. In such cases, the method can be
applied by optimizing the measure only for the near
future, e.g. for a certain assumed number of incoming
documents.

The procedure has as follows. Let M be an ef-
fectiveness measure, a function of the four variables
Ry,Ny,R_, N_ (relevant retrieved, non-relevant re-
trieved, relevant not retrieved, etc.) of the tradi-
tional contingency table. The measure is calculated
at m levels ¢ = 1,...,m, of decreasing score s; as

M; = M(Ry(s:),

Ni(si), R—(si),N_(s:)), (13)

where, e.g., R, (s;) gives the number of relevant doc-
uments that would have been retrieved for a thresh-
old equal to s;. That is

/ Pr(2) da

N Ry(si—1)+7(si—1 —

Ri(s;) = (14)

i) Pre1(si) , (15)

where P, is the probability density function of rel-
evant scores, r is the number of relevant documents,
and sg is the maximum possible score. The other
three variables of the contingency table parameter-
ized by the score can be similarly calculated.

Having calculated the M; at all levels, the proce-
dure goes on as in the empirical method. Note that
Eg. 15 calculates numerically and incrementally a se-
ries of integrals. The method is simple to implement
and efficient.

4.3 Score Distributions

The S-D optimization requires modelling of the
score distributions of relevant and non-relevant doc-
uments. In [4] we introduced a numerical method for
calculating the probability density of the score distri-
bution of an arbitrary set of documents. The method
needs as input the query and what we call term prob-
ability for each query term. The term probability of
a term is simply the fraction of the documents in the
set that it occurs in. Thus, the method has the desir-
able property of depending only on quantities which
can be updated incrementally, and it does not need
the actual documents. Nevertheless, it is computa-
tionally expensive.

In the aforementioned study, we also investigated
whether the score distributions can be approximated
with known distributions. Assuming that each score
is a linear combination of the query weights (e.g. a
dot-product), and that relevant documents cluster
around some point in the document space with some
hyper-ellipsoidal density (e.g. a hyper-Gaussian cen-
tered on the point), we proved that the relevant score
distribution has a Gaussian Central Limit in a large
number of dimensions (query terms). Moreover, we
showed that the Gaussian limit appears fast. How
fast depends also on the quality of a query; the better
the query, the fewer the terms necessary for a Gaus-
sian approximation. Practically, on the OHSUMED
collection and for the 63 OHSU queries (TREC-9’s
data) trained with Rocchio on the 1st year of data,
the relevant score distributions can be very well fit-
ted with Gaussians at around 250 query terms.

In the case of the distribution of non-relevant doc-
ument scores, we have empirically found in [2, 4] that
the right tail (high scores) of the score density can
be well fitted with an exponential. Further empiri-
cal evidence for the proposed Gaussian—exponential
score modeling can also be found in [7].

4.4 The Bias Problem

Adaptive filtering presents a bias problem that arises
from the fact that relevance judgements become
available only for those documents retrieved. The
implication of this for thresholding? is that calculat-
ing the mean score and variance or term probabilities
only on documents retrieved can be very misleading.

2Note that the bias problem in filtering does not show up
only in thresholding, but also in query training/updating.

An attempt to deal with the bias is seen in [13],
where each document score is considered together
with a sampling constraint, i.e. the current thresh-
old at the time of retrieval of the corresponding
document. Then the parameters of the Gaussian—
exponential model are estimated by maximum likeli-
hood. Although the method calculates unbiased S-D
thresholds, it introduces new complications in updat-
ing the query. When the query is updated all sam-
pling constraints change as well, nevertheless, there
is currently no way of updating the sampling con-
straints. Abandoning query updates in exchange for
a better threshold does not seem like a good solution
for adaptive filtering.

4.5 Unbiased S-D: An EM Approach

We have developed another approach which calcu-
lates unbiased thresholds while allowing query up-
dates. Since the problem arises from the fact that
the relevance judgements are biased, we fit to the
total score distribution a mixture model consisting
of an exponential and a Gaussian, without using any
relevance judgements. A standard approach to deter-
mining the mixing parameters and the parameters of
the component densities is to use Expectation Maxi-
mization (EM) [9]. Recovering the parameters of the
Gaussian—exponential score model with EM without
relevance judgements has recently been described in
[7] in the context of distributed retrieval.

Let P(z|1) and P(z|2) be the exponential and
Gaussian densities respectively. The total score den-
sity can written as

P(z) = Z P(j)P(x5), (16)

where P(j) are the mixing parameters satisfying

Y PG) =1, 0<P@)<1. (17)

The parameters to be estimated are four: the mean
p and variance o2 of the Gaussian, the A of the ex-
ponential P(z|1) = Aexp(—Az), and only the one of
the two mixing parameters since the other can be
determined from Eq. 17.

EM is an iterative procedure. The update equa-
tions for the discussed mixture model are:

_ > Poa(1|z;)

Pew(1 , 18
() = Z 2 (18)
. Poiq (1]
Ao = otz)
> i Poa(1]zi) ziw;
Mnew = Zi POld(2|mi) it) (20)
> Poia(2|:)
2y = i LG tnenwn)
> Powa(2(z;)
where Po14(j|z) is given by Bayes’ theorem
: Poia(z]5) Poia (4)
P, = — =7 22
old (J |.Z') Pold (.’L')) ()

and Pyq(z) is given by Eq. 16.

In general, when all scores z; have been obtained
unconditionally, w; = 1, Vi. For thresholding pur-
poses, however, we are interested in the right tail
(high scores) of the total density. Moreover, in adap-
tive tasks, more and more scores are accumulated
over time. Consequently, in order to reduce the to-
tal number of documents the system has to retain
and to focus on the tail of the distribution, we ap-
ply nonuniform sampling of the documents accord-
ing to their score. If = the score of a document, the
document is sampled with probability Ps(z). Ps(x)
should be an increasing function, so that more high
than low scoring documents are collected. The sam-
pling function we currently use is

log 1000

Tmax

P,(z) = exp ((z — xmax)) , (23)

where Zmax is the maximum score. This sampling
function retains most documents with scores near to
ZTmax, and only 1 out of a 1,000 documents with zero
score.

The 20,000 (approximately) documents of the
training set are first sampled like that for every topic.
If after the sampling more than 1,000 documents re-
main, the buffer is further thinned down to 1,000
documents by uniformly (this time) discarding doc-
uments. The initial threshold is calculated on the
scores of the remaining documents using EM, but
now the scores x; must be weighted as

(24)

As new documents accumulate, every time the buffer
reaches the 2,000 documents, it is thinned down
to 1,000 documents by random (uniform) removal.
Note that if a profile update has taken place, all doc-
ument scores should be recalculated for a threshold
update. This can be computationally heavy for large
documents buffers.

EM converges locally, this means that finding a
global fit depends largely on the initial settings of
the parameters. Initial values for the parameters of
the Gaussian and exponential are selected randomly
as

Hinit € [Nrel,n/2; ,u/rel,n] > (25)
Ui2nit € [a-l?el,n/47 U?el,n] ’ (26)
/\init S [l/ﬂhalf lowest scores»]-/Nall scores]) (27)

where firel,, and o2, ,, are the biased parameters cal-

culated using the formulae in Section 3.1. The initial
mixing parameter is selected as

Pnit(1) € [0.5,1 — b, /N]. (28)
To find a global fit, EM is run 10 times with initial
parameters selected randomly from the ranges above.
Then, the fit that has the least squared error with
the empirical data is selected.

5 Results

Table 3 summarizes the official results we achieved
in TREC-10. The rightmost column shows the final
rank of the runs, and the number in parentheses is
the total number of runs in the corresponding cate-
gory submitted by all groups.

Run T10SU | F05 | Av.Prec. Rank
KUNaU 0.203 | 0.437 — 12 (30)
KUNaF || 0.141 | 0.356 — 12 (30)
KUNDLU || 0.307 | 0.507 — 4 (18)
KUNDBF 0.264 | 0.489 — 8 (18)
KUNr1 — — 0.136 4 (18)
KUNr2 — — 0.137 3 (18)

Table 3: TREC-10 results of KUN.

In the routing task, the LCS system has performed
very well this year (KUNr2), confirming that its bad
performance in TREC-9 was due to the large number
of Winnow-iterations that led to over-training. It
has achieved a slightly larger average precision than

the FILTERIT system (KUNrl). According to those
results our systems were ranked as the 2nd best.

The batch filtering runs (KUNbU and KUNDF)
were performed by FILTERIT. We used exactly
the same parameter settings as for the routing run
KUNTr1, except that we thresholded the final docu-
ment rankings using empirical thresholds estimated
on the training set. Ironically, KUNbU optimized
for T10SU resulted in larger FO5 than KUNDBF op-
timized for F05. The adaptive runs (KUNaU and
KUNaF) were performed by FILTERIT.

6 Concluding Remarks

Summarizing, we are satisfied with the profile train-
ing part of the FILTERIT system. It is efficient since
it allows incremental training, and it has proved ef-
fective as well. LcS and FILTERIT are radically dif-
ferent systems, with different learning methods (Roc-
chio vs. Winnow), and different term selection and
weighting schemes. Moreover, LCS did not use the
initial queries at all. The fact that two so different
systems have achieved similar results implies that
we have either reached the “ceiling” of effectiveness
for the current pre-processing and representation of
the document collection, or the top-1000 documents
used in the evaluation were not enough to distinguish
between the two systems.

Concerning the threshold optimization for adap-
tive filtering, we have made a considerable step to-
wards removing the bias introduced by the partial
relevance judgements. However, numerous other pa-
rameters have been introduced that seem to require
extensive tuning in order to achieve good end-results.

We have found EM especially “messy” and difficult
to tune. It seems sensitive to the choice of the initial
parameter values in converging to a global optimum
rather than a local one. The update equations for
EM which we have used, do not take into account the
relevance judgements available. The available judge-
ments have been used merely for determining usable
ranges for initializing the parameters. Note that it
may be possible to derive other update equations
that will take into account the partial judgements.
This may improve the quality of the fit.

Another source of inaccuracies lies onto the doc-
ument sampling. The current sampling function is
certainly not the best that can be used, considering
the underlying total score distribution. The num-
ber of samples (1,000 to 2,000 max.) used did not

seem enough for some topics. However, increasing
the size of the document buffer introduces a serious
computational overhead in threshold updates since
all document scores must be recalculated after pro-
file updates. A reasonable trade-off between thresh-
old accuracy and efficiency has yet to be established.
Despite the “roughness” of these new methods we
integrated into thresholding, and the fact that the
“bug” in document preprocessing introduced a seri-
ous disadvantage into profile updates, our adaptive
results ranked FILTERIT above the median system.

Acknowledgments

I would like to thank Marc Seutter (KUN) for run-
ning KUNr2 with the Lcs system, Panos Giannopou-
los (University of Utrecht) and Kees Koster (KUN).

References

[1]

[2]

[3]

[4]

A. Arampatzis. Adaptive and Temporally-
dependent Document Filtering. PhD thesis, Uni-
versity of Nijmegen, Nijmegen, The Nether-
lands, 2001.

Available from www.cs.kun.nl/~avgerino.

A. Arampatzis, J. Beney, C. Koster, and
T. van der Weide. Incrementality, Half-Life,
and Threshold Optimization, for Adaptive Doc-
ument Filtering. In The Nineth Text RE-
trieval Conference (TREC-9), Gaithersburg,
MD, November 13-16 2000. NIST.

A. Arampatzis and T. van der Weide. Docu-
ment Filtering as an Adaptive and Temporally-
dependent Process. In Proceedings of the BCS-
IRSG FEuropean Colloquium on IR Research,
Darmstadt, Germany, April 46 2001.

A. Arampatzis and A. van Hameren. The
Score-Distributional Threshold Optimization
for Adaptive Binary Classification Tasks. In
Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, New Or-
leans, September 9-13 2001. ACM Press.

D. Lewis. Evaluating and optimizing au-
tonomous text classification systems. In Pro-
ceedings of the 18th Annual International ACM
SIGIR Conference on Research and Develop-
ment in Information Retrieval, July 1995.

N. Littlestone. Learning Quickly when Ir-
relevant Attributes Abound: a NewLinear-
threshold Algorithm. Machine Learning, 2:285—
318, 1988.

R. Manmatha, T. Rath, and F. Feng. Modeling
Score Distributions for Combining the Outputs
of Search Engines. In Proceedings of the 24th
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, New Orleans, 2001. ACM Press.

H. Ragas and C. H. A. Koster. Four Text Classi-
fication Algorithms Compared on a Dutch Cor-
pus. In W. B. Croft, A. Moffat, C. J. van Ri-
jsbergen, R. Wilkinson, and J. Zobel, editors,
Proceedings of the 21st Annual International

[12]

ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 369—
370, Melbourne, Australia, August 1998. ACM
Press, New York.

B. D. Ripley. Pattern Recognition and Neural
Networks. Cambridge University Press, 1996.

S. Robertson and I. Soboroff. The TREC-10
Filtering Track Final Report. In The Tenth Text
REtrieval Conference (TREC-10), 2001.

J. J. Rocchio. Relevance Feedback in Informa-
tion Retrieval. In The SMART Retrieval System
— Experiments in Automatic Document Pro-
cessing, pages 313-323, Englewood Cliffs, NJ,
1971. Prentice Hall, Inc.

A. Singhal. AT&T at TREC-6. In The
Sixth Text REtrieval Conference (TREC-6),

Gaithersburg, MD, November 19-21 1997.
NIST.
Y. Zhang and J. Callan. Maximum Likelihood

Estimation for Filtering Thresholds. In Proceed-
ings of the 24th Annual International ACM SI-
GIR Conference on Research and Development
in Information Retrieval, New Orleans, 2001.
ACM Press.

