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Abstract

Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to col-

lide 7 TeV proton beams, is the world’s largest and most powerful particle accelerator –

the operation of which was originally intended to commence in 2008. Unfortunately, due

to an interconnect discontinuity in one of the main dipole circuit’s 13 kA superconduct-

ing busbars, a catastrophic quench event occurred during initial magnet training, causing

significant physical system damage. Furthermore, investigation into the cause found that

such discontinuities were not only present in the circuit in question, but throughout the en-

tire LHC. This prevented further magnet training and ultimately resulted in the maximum

sustainable beam energy being limited to approximately half that of the design nominal,

3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consoli-

dation campaign being scheduled for the first long shutdown (LS 1, 2012-2014).

Throughout Run 1, a series of studies attempted to predict the amount of post-installation

training quenches still required to qualify each circuit to nominal-energy current levels.

With predictions in excess of 80 quenches (each having a recovery time of 8-12+ hours)

just to achieve 6.5 TeV and close to 1000 quenches for 7 TeV, it was decided that for

Run 2, all systems be at least qualified for 6.5 TeV operation. However, even with all in-

terconnect discontinuities scheduled to be repaired during LS 1, numerous other concerns

regarding circuit stability arose. In particular, observations of an erratic behaviour of mag-

net bypass diodes and the degradation of other potentially weak busbar sections, as well as

observations of seemingly random millisecond spikes in beam losses, known as unidentified

falling object (UFO) events, which, if persist at 6.5 TeV, may eventually deposit sufficient

energy to quench adjacent magnets.

In light of the above, the thesis hypothesis states that, even with the observed issues,

the LHC main dipole circuits can safely support and sustain near-nominal proton beam

energies of at least 6.5 TeV.

Research into minimising the risk of magnet training led to the development and im-

plementation of a new qualification method, capable of providing conclusive evidence that

all aspects of all circuits, other than the magnets and their internal joints, can safely

withstand a quench event at near-nominal current levels, allowing for magnet training to

be carried out both systematically and without risk. This method has become known as

the Copper Stabiliser Continuity Measurement (CSCM). Results were a success, with all
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circuits eventually being subject to a full current decay from 6.5 TeV equivalent current

levels, with no measurable damage occurring.

Research into UFO events led to the development of a numerical model capable of

simulating typical UFO events, reproducing entire Run 1 measured event data sets and

extrapolating to 6.5 TeV, predicting the likelihood of UFO-induced magnet quenches. Re-

sults provided interesting insights into the involved phenomena as well as confirming the

possibility of UFO-induced magnet quenches. The model was also capable of predicting

that such events, if left unaccounted for, are likely to be commonplace or not, resulting in

significant long-term issues for 6.5+ TeV operation.

Addressing the thesis hypothesis, the following written works detail the development

and results of all CSCM qualification tests and subsequent magnet training as well as the

development and simulation results of both 4 TeV and 6.5 TeV UFO event modelling. The

thesis concludes, post-LS 1, with the LHC successfully sustaining 6.5 TeV proton beams,

but with UFO events, as predicted, resulting in otherwise uninitiated magnet quenches and

being at the forefront of system availability issues.
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Preface

This thesis provides an account of the doctoral research carried out by the author during

his time working on-site at the CERN as part of the Technology Department’s Machine

Protection and Electrical Integrity Group (TE-MPE), in particular, the Performance Eval-

uation Section (TE-MPE-PE). Research was carried out as part of the CERN Doctoral

Student Programme under supervision of Hon.-Prof. Rüdiger Schmidt and Dr. Bernhard

Auchmann of CERN as well as Prof. Andrew Knox and Prof. Valentine O’Shea of the

University of Glasgow. The original scientific contributions presented in this thesis are as

follows:

Research surrounding the development and implementation of the copper stabiliser con-

tinuity measurement (Chapter 4) – a new global and conclusive method of superconducting

magnet string continuity qualification. Original research included: the development of an

electro-thermal analytical model of main busbar interconnects; development and optimi-

sation of the qualification procedure; risk assessment and feasibility study by means of a

single circuit type test; LHC-wide full qualification and outcome analysis.

Research surrounding the development of a semi-analytical modelling of so called uniden-

tified falling object (UFO) events (Chapter 5), that is, events in which dust or debris par-

ticles interact with the beam and the resultant beam losses may quench an adjacent dipole

magnet. Original research included: the development of a representative semi-analytical

UFO event model; model predictions of the threat which high-energy UFO events pose on

LHC availability; initial high-energy UFO event statistics and analysis.
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Chapter 1

Introduction

Today, physicists and engineers are pushing technological boundaries in both the scale

and complexity of particle accelerators in an attempt to answer some of particle physics’

most important questions. With the construction of the largest and most powerful particle

accelerator, the Large Hadron Collider (LHC), scientists at the European Organization for

Nuclear Research (CERN) are at the forefront of this endeavour. Unfortunately, signifi-

cant performance limitations were discovered during initial operation and, as a result, the

maximum beam energy was restricted to approximately half that of the design nominal for

the first three years of operation (Run 1). The issue was shown to result from disconti-

nuities in the superconducting interconnects, which can be found either between magnets

or connecting long busbar sections. To rectify this, the LHC was scheduled to be shutdown

for a two year consolidation campaign such that each interconnect, over 10,000 in num-

ber, could be systematically repaired. However, several other limitations were identified

throughout Run 1 which still have the potential to restrict operation at near-nominal en-

ergy levels - such is the topic of this thesis.

To provide perspective to the following thesis works, this chapter will briefly touch on

modern day particle physics investigations as well as introduce the fundamentals of parti-

cle acceleration and superconductivity, the phenomenon which allows for such high-energy

accelerators to exist. The chapter will then continue to give an account of the LHC, briefly

describing the project mission, all encompassed collider experiments and the particle ac-

celerator itself.

1.1 Beyond the Standard Model

To explore the origins and characteristics of elementary particles, physicists the world

over utilise particle accelerators to collide charged particles at near the speed of light. The

resultant energy density levels are of such magnitude that it can lead to the production of

particles normally only present in some of the universe’s most grandiose events [1], such

as those predicted by the Standard Model [2]. Furthermore, detection and analysis of the
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characteristics of these particles can provide crucial empirical backing for yet unproven

particle physics theories.

The Standard Model, developed between 1961 and 1967 [3]–[7], is the most empiri-

cally validated theory for subatomic particles and forces. The model provides a plausible

explanation for three of the four fundamental forces of nature, incorporating the electro-

magnetic force as well as the strong and weak nuclear forces [2]. Furthermore, the model

predicts the existence of 17 elementary particles, see Figure 1.1, which make up all of

known matter [2]. Note that, as of July 2012, with the announcement of the discovery of

the Higgs Boson at CERN [8], [9], high-energy physics has now provided empirical evi-

dence for the existence of all 17 predicted particles.

Figure 1.1: Image listing all 17 known elementary particles, as predicted by the Standard Model.
The Standard Model particles include various forms (flavours) of quarks, leptons and gauge
bosons (force carriers) as well as the recently discovered Higgs Boson. Note that as it is not the
focus of this thesis, the properties and characteristics of each particle will not be discussed.

The Standard Model does not, however, incorporate an explanation for the full theory

of gravitation [10], nor does it explain relatively recent discoveries that the universe is

both more massive than previously thought as a result of Dark Matter [11], and that the

expansion of the universe is in fact accelerating due to Dark Energy [12]. There are some

potentially conclusive theories which give plausible explanations for each of the above

phenomena, such as the existence of supersymmetric particles (more massive equivalents

of all Standard Model particles) [13], however, all such theories require higher-energy

particle collisions than ever before to be validated. It is for this reason that high-energy

physics must continue to push the boundaries of the energy frontier, operating particle

accelerators with the highest beam energies possible.
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1.2 Particle Acceleration

Following Einstein’s relativistic mass-energy equivalence equation,

E = γm0c
2, (1.1)

the particle energy, E, is proportional to the particle rest mass, m0, and the speed of light

in a vacuum, c, given the relativistic Lorentz factor, γ [14]. Following this, in an attempt

to produce the most massive elementary particles predicted by particle physics theories,

particle colliders have been pushing technological boundaries over the course of the last

century to reach ever increasing collision energies by accelerating particles as close to the

speed of light as possible, as the higher energy they obtain, the more likely it is for more

massive or previously unknown particles to be produced [15].

Accelerating beams of charged particles requires an electric field. In practice, this is

implemented by use of radio-frequency (RF) resonant cavities which act as an electromag-

netic waveguide operating in a transverse-magnetic (TM) mode, i.e. no magnetic field in

the direction of propagation [15]. Depending on the type of accelerator, energy is then

transferred to the beam via the on-axis electric field at either a fixed frequency and an

ever increasing distance (linear accelerator) or, as is the case for the LHC, at a fixed dis-

tance and an ever increasing frequency (circular accelerator) [15]. The force applied to

the beams at a given point follows the Lorentz Force equation,

~F = e
[
~E + ~v × ~B

]
, (1.2)

where ~F is resultant force, e is the particle charge, ~v is the velocity, ~E the electric field

and ~B is magnetic flux density. For circular accelerators, the accelerating electric fields

work in conjunction with ramped magnetic fields, produced by dipole electromagnets,

which provide bending forces perpendicular to the beam axis, allowing the particles to

circulate with a fixed orbit – this specific type of accelerator is known as a synchrotron

[15]. Looking solely at the magnetic field component of the above equation one can show

that the sustainable bunch momentum, p, when expressed in electronvolts (eV) divided

by the speed of light, i.e. GeV/c, follows

p = γm0v u 0.3Br, (1.3)

where r is the accelerator radius. It follows that increasing the maximum sustainable beam

energy requires either an increase in the size of the accelerator or, for a defined tunnel size,
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as was the case with the LHC [16], an increase the bending forces via greater magnetic

fields [15]. Note that the expression of particle momentum in eV/c is commonplace in

accelerator sciences, with accelerators commonly having sustainable beam energies in the

order of GeV or TeV.

1.3 Superconductivity & Quench Phenomenon

To achieve the magnetic fields capable of bending such high energy beams around the

LHC, the main magnet circuits are almost entirely superconducting [16]. Superconductiv-

ity is a well-known phenomenon in which, at cryogenic temperatures, some highly resistive

conductors may enter an altered state in which they have zero electrical resistance. Ac-

cording to the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, this is due

to low-energy electron-phonon interactions displacing a conductor’s lattice such that fol-

lowing electrons are attracted to the resultant increase in positive charge density [17].

Furthermore, the resultant highly correlated motion between electrons (known as Cooper

Pairs) cannot be broken by lattice vibrations due to being at such low temperatures, i.e.

the lattice does not have sufficient energy to do so. This results in the electrons never

actually colliding with the surrounding atoms whilst below a material dependent criti-

cal temperature, resulting in zero resistivity. Superconductivity therefore allows for low

voltage-high current systems and when applied to electromagnets allows for the produc-

tion of very high magnetic fields.

To maintain superconductivity, one must operate within the used superconductor’s

critical surface – temperature, current density and magnetic field thresholds [18]. Exceed-

ing any of these thresholds will result in the transition of the superconductor to its normal

resistive state. This process is commonly referred to as a quench. Figure 1.2 shows the

critical surface of Niobium-Titanium, Nb–Ti – the superconducting alloy used throughout

the LHC.

1.3.1 Typical Quench Scenarios

In a cryogenic electromagnetic system, such as the main systems of the LHC, there are

numerous scenarios which may result in a quench. For example, a quench may arise if

the circuit is powered beyond the maximum current or rate of change of current, resulting

in excessive changes in the magnetic fields, inducing eddy current losses and resulting in

excessive localised heating [19]. Another electrical scenario may be that a defect in the coil

or busbar results in an area of non-zero electrical resistance. The resultant voltage drop

and energy deposition across the resistive segment results in the formation of a hot-spot

which can exceed the critical temperature. Insufficient cooling may also be the cause of
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a quench, wherein the cryogenics systems fail to maintain the system below the critical

temperature [20]. Such a failure may even propagate as the warmer coolant diffuses along

the cryostat, quenching adjacent sections or systems. Finally, an example of a rarer quench

scenario is when there are sufficient localised beam losses which deposit enough energy

in the adjacent subsystems to create a hot-spot and initiate a quench [21]. Note that for

higher operating currents, i.e. operating the system closer to the critical values for current

and magnetic flux density, the system is inherently more susceptible to a quench, due to

the reduced temperature margins.

Figure 1.2: Plot of the superconducting critical surface of Nb–Ti. Also shown is the nominal
operating conditions for the main dipole magnets (blue plane) and the corresponding temperature
margins for various current densities (green plane). Note that as the operating energy increases,
temperature margins decrease (indicated in red).

1.4 The Large Hadron Collider

The LHC is the largest circular accelerator in the world, spanning ∼26.66 km in circum-

ference. It is designed to accelerate two proton beams to a nominal energy of 7 TeV,

the velocity equivalent of ∼99.9999991% the speed of light. Beams are accelerated in

opposite directions and are made of up to 2808 particle bunches with ∼1.15×1011 protons

per bunch. There are then four specific regions where the beams are made to cross each

other for collisions – the detector systems that comprise the LHC collider experiments are

5



CHAPTER 1. INTRODUCTION

present at these locations [16].

The LHC is the latest and largest of the accelerators at CERN, however, previous ac-

celerators are still used to gradually increase beam energy prior to injection into the LHC

at an energy of 450 GeV – denoted the injection energy. Figure 1.3 presents a simplified

layout of the complete accelerator complex. Initial acceleration is performed by a linear

accelerator, LINAC2, followed by a series of increasingly larger circular accelerators – the

proton synchrotron booster (PSB), the proton synchrotron (PS) and the super proton

synchrotron (SPS) [16].

Figure 1.3: Illustration of the CERN accelerator complex. Protons are gradually accelerated prior
to injection in the LHC, initially by a LINAC and subsequently by the PSB, PS and SPS to reach
the injection energy of 450 GeV.

Focusing on the LHC, Figure 1.4 illustrates a simplified layout of the ring and main

facilities. For engineering purposes, the LHC is divided into eight powering sectors, with

the ends of each sector denoted as points. Naming conventions follow such that Sector 12

is found between points 1 and 2. In addition to the four collision regions, encompassing

detectors ATLAS, ALICE, CMS and LHCb (discussed in Section 1.5) at points 1, 2, 5 and

8, respectively, the LHC also consists of beam cleaning regions (points 3 and 7) as well as

an acceleration region (point 4) and a beam dump region (point 6) (not discussed in this

thesis, for more information see [16], [22]). Beams are injected into the LHC at points 2

and 8 for beam 1 and 2, respectively, with beam 1 travelling in the clockwise direction

and beam 2 anti-clockwise. Any reference to being left or right of a detector or point is

from the perspective of standing in the centre of the circle.
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Figure 1.4: Illustration of the LHC layout, showing the various facilities at each point (numbered).
ATLAS, ALICE, CMS and LHCb are the main detectors, located where the beams are made to
cross each other for collisions. Beams are accelerated, cleaned and dumped at points 4, 3 and 7,
and 6, respectively.

1.5 The LHC Collider Experiments

The LHC was designed and constructed to push the boundaries of the energy frontier

of physics, reaching collision energies much higher than have ever been achieved. The

justification for such a large scientific endeavour was that numerous fundamental physics

theories, such as the Higgs Theory [5] and the existence of Dark Matter [11], had, to

date, no empirical evidence. Furthermore, due to energy limitations, no evidence could be

produced with existing systems, such as the 1 TeV Tevatron at Fermilab National Labo-

ratory in North America [23]. The following section briefly describes the basic principles

of particle collision analysis and discusses each of the four LHC collider experiments, in

particular, why each would benefit from an increase in maximum sustainable beam energy.

Note that detector specifics, i.e. design and detector technologies, are not the focus of

this thesis and will therefore not be discussed. For technical information on each detector

see [26], [27], [28] and [29] for ATLAS, ALICE, CMS and LHCb, respectively.
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1.5.1 Particle Collision Outcome Analysis

Although each detector utilises different magnet and particle tracking technologies, the

underlying principle of how each detector works remains the same. In a typical proton-

proton collision event, if the resultant energy density is high enough, the quarks and gluons

within the protons will interact to form various low-energy elementary particles [1]. On

occasion, rarer heavier or more energetic particles can be produced along with their anti-

matter equivalents, which can then decay into specific groups of elementary particles. All

particles, having sufficient energy, then scatter in all possible directions and, if charged,

can have their momentum and energy calculated. To determine the momentum of charged

particles, an encompassing magnetic field, produced by a large superconducting magnet

system, bends the trajectory of all charged particles, allowing their relative position to

be tracked and their momenta can be calculated [26]. The energy of a particle is then

calculated from the deposited energy and penetration depth measured by surrounding

calorimeters and spectrometers in accordance with the energy-momentum equation

E2 = (pc)2 + (m0c
2)2. (1.4)

A basic 2-D illustration of a particle tracking and detection system is shown in Fig-

ure 1.5. Ejected particles are detected by an encompassing layered array of particle spe-

cific detector structures (hadron calorimeters for protons and neutrons, electromagnetic

calorimeters for electrons and photons and muon spectrometers for muons) which span

several metres before and after the collision point [26].

Figure 1.5: 2-D Illustration of scattered-particle detection. Shown are example particle trajecto-
ries as well as the various detector structures. Note that this is a cross-section arc transverse to
the beam-axis and that the detector arrays span 360 degrees around the collision centre.
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Particle Identification

With sufficient theoretical knowledge regarding plausible rare particle decays, it is possible

to identify which rare particles were produced in a given collision event. Due to the law

of conservation of energy, it follows that, having established the energy of the expected

resultant elementary particles, it can be assumed that an undetected particle of equivalent

mass or energy must have been present. For example, a Z-boson may decay into a fermion,

such as an electron, and its antimatter equivalent, in this case, a positron (Z0→e+e–) [24].

To establish the mass of the Z-boson, investigations can be limited to events which are

found to have had an electron and a positron originating from the same location. The

mass of the original particle can then be calculated from the sum of the decay particle

masses, derived from their measured energies and momenta, respectively. Errors in the

calculation of a rare particle’s mass, such as unascertained energy losses in the beam pipe,

are mitigated by the accumulation of sufficient event statistics. The accepted statisti-

cal significance for a particle to be formally recognised is 5 σ, i.e. 5 standard deviations

above the background and a one in 3.5 million chance of being a statistical fluctuation [25].

1.5.2 ATLAS & CMS

The ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) experi-

ments are large (25 m long, 45 m in diameter and 15 m long, 28.7 m in diameter, respec-

tively) general-purpose particle detectors capable of investigating a wide range of physics.

Both ATLAS and CMS experiments primarily focus on the detection and understand-

ing of the properties and characteristics of the Higgs Boson [26], [28]. However, more

specific to the requirement of an increase in maximum sustainable beam energy, both

experiments are also involved in the search for super-symmetric particles, which could fur-

ther understanding of the relatively unexplored phenomenon of Dark Matter. Note that

with the LHC being the only accelerator capable of such high-energy collisions, having

two technologically different and independently operated detectors both investigating the

same physics is important as it allows for immediate comparison and validation of col-

lected data. A 3-D graphical reproduction of a 7 TeV collision event (3.5 TeV individual

beam energies), circa 2010, as measured by the ATLAS experiment is shown in Figure 1.6.

1.5.3 ALICE

The LHC is not only designed to accelerate and collide protons, but is also capable of

heavy-ion collisions, lead-lead or lead-proton [27]. ALICE (A Large Ion Collider Experi-

ment), 26 m long and 16 m in diameter, is a heavy-ion detector optimised to study the
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Figure 1.6: 3-D graphical reproduction of a 7 TeV collision event showing the ejected particle
trajectories and relevant detector structures as measured by the ATLAS experiment, circa 2010.
Image courtesy of CERN [30].

outcome of these collisions, in which energy densities and temperatures are high enough

to produce a quark-gluon plasma [31], a state of matter similar to that which is only

theorised to have existed in the first seconds after the Big Bang [32]. In both cases, ei-

ther lead-lead or lead-proton collisions, the energy density levels are key to production

of this state of matter and the experiment can therefore only benefit from an increase in

maximum sustainable beam energy.

1.5.4 LHCb

The LHCb (Large Hadron Collider beauty) particle detector is designed to investigate ob-

served differences between matter and antimatter [29]. In particular, investigations study

so called charge-parity (CP) violations [33], in which the rate of decay of some elementary

particles and their anti-matter equivalents has been shown to contain slight differences.

The LHCb experiment focuses on the precise measurement of the properties and decay

of the bottom (beauty) quark and its anti-matter equivalent, in the hope of furthering

knowledge as to why nature seemingly prefers matter over anti-matter [33]. Furthermore,

with the probability of a collision producing bottom quarks very much relating to the

collision energy, once again, the LHCb experiment can only benefit from an increase in

maximum sustainable beam energy.
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1.6 The LHC Main Ring & Beam

Spanning the majority of the LHC, ∼24 km, are the Arcs. The LHC Arcs house, amongst

others, the main superconducting dipole and quadrupole magnet circuits [16]. Technical

information on the main dipole circuit can be found in Chapter 2. The main quadrupole

circuit is not the focus of this thesis and will not be discussed in detail. For technical

information on this circuit, see [16].

1.6.1 LHC Arc Cryostat

As discussed in Section 1.3, the LHC utilises superconducting magnet technologies. This

requires cooling the magnets to cryogenic temperatures, sufficiently within critical bound-

aries. The LHC main dipole magnets have design-nominal fields of 8.3 T, which with an

nominal operating current of 12.85 kA results in a critical temperature of ∼3-4 K. Su-

perfluid He (He-II), having zero viscosity [34], is used as it can flow through micrometre

gaps in the magnet coils (not the case with liquid He-I), providing additional cooling. As

a result, each of the LHC Arc cryostats, which span the length of an Arc sector, ∼3 km

in length, maintains a superfluid helium (He-II) bath at a temperature of 1.9 K (suffi-

ciently below the maximum temperature for superfluidity (the Lamba point), 2.2 K) with

a pressure of 1.3 bar [16]. A picture of the cryostat is shown in Figure 1.7.

Figure 1.7: Picture of the LHC Arc cryostat which encases, amongst others, the main dipole
circuits. Openings can be seen along the cryostat as this picture was taken during a repair
campaign (discussed in Chapter 3).

11



CHAPTER 1. INTRODUCTION

1.6.2 Beam Pipe & Beam Screen

To maintain a vacuum in which the beam itself can travel, a steel beam pipe, commonly

referred to as the cold bore, encircles the full circumference of the LHC [16]. To protect

the beam pipe from light emissions that occur in the process of bending the beam, known

as synchrotron radiation [15], a Cu-lined stainless steel beam screen is installed on the

inside of the beam pipe, see Figure 1.8 [35].

Figure 1.8: Picture of the cross-section and internals of the LHC beam pipe and beam screen. The
beam itself is guided such that it is always centred with respect to the beam screen. Photograph
courtesy of CERN [36].

The Cu lining provides a low resistance path for image currents, while the stainless

steel frame provides sufficient structural integrity to withstand large electromagnetic forces

in the event of a magnet quench. The beam screen is cooled by two cooling tubes which

contain gaseous He maintained at a temperature between 4.6-20 K, depending on beam

activity. Furthermore, pumping slots are present along the flat surfaces of the beam screen

to allow any gas build-up due to photo-desorption to escape, minimising vacuum pressures.

The orientation of the beam screen also varies, with the smallest aperture being ori-

entated either horizontally or vertically, see Figure 1.9. Orientation of the beam screen in

the Arcs is typically vertical, with the exception of sectors prior to the two main detectors,

ATLAS and CMS, in the direction of the beam, e.g. beam 1 for Sector 81 (left of ATLAS)

and beam 2 pipe for Sector 12 (right of ATLAS) [16]. This is to increase the aperture

size, allowing for a larger beam size and longer beta (discussed in Section 1.6.4) prior to

focusing for collision.
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Figure 1.9: Orientation variants of the beam screen within the beam pipe.

1.6.3 Magnetic Lattice

Fundamental to having particle bunches guided around a circular accelerator is the mag-

netic lattice. An accelerator magnetic lattice is a fixed arrangement of dipoles and

quadrupoles, known as the lattice cell, which, assuming no straight sections or collision

regions, is repeated for the length of the accelerator [16]. The LHC Arc lattice cell is shown

in Figure 1.10. As shown, a typical Arc cell encompasses 6 dipole (MB) and 2 quadrupole

magnets, one focusing (MQF) and one defocusing (MQD), and is ∼110 m in length. Do

note that not shown are higher-order corrector magnets which are installed alongside each

main magnet to account for chromatic aberration, i.e. variations in focusing angles due

to intra-bunch variations in proton energies, as well as to compensate for manufacturing

flaws or alignment issues. Corrector magnet systems will not be discussed in this thesis,

for information see [16].

Figure 1.10: Illustration of a typical LHC magnetic lattice cell. At ∼110 m long, each cell
consists of 6 dipole magnets with a quadrupole magnet following every group of 3 dipoles.
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1.6.4 Beam Profile & Dynamics

This section discusses the main longitudinal and transverse characteristics of the LHC

beam under normal operation, in particular, detailing beam bunching and the how the

magnetic lattice affects the transverse beam profile.

Beam Bunching & Bunch Spacing

The nominal LHC beam comprises of up to 2808 particle bunches with ∼1.15×1011 pro-

tons per bunch and a bunch spacing [37] (the time between each bunch) of 25 ns [16].

Particle bunches are the controllable outcome of using RF acceleration technologies [37].

The use of a continuous oscillating TM mode electromagnetic field allows the system to

both marginally accelerate or decelerate particles that arrive relatively early or late with

respect to a synchronous particle (the particle which is subject to zero field), such that

they oscillate longitudinally in position within the particle bunch. This is a desired out-

come as stable operation requires that all particles within a bunch have the same average

velocity [37].

While ramping up in momentum, higher-energy particles will circulate the ring faster

and are therefore decelerated by being subject to a negative field to compensate, vice-versa

for lower-energy particles [37]. However, as the particle bunches near the speed of light,

i.e. exceed the so called transition energy, the velocity remains fairly consistent between

all particles within a bunch and the bending angle of individual particles dominates, that

is, the trajectories of higher-energy particles are not bent to the same extent by the dipoles

as those with lower-energy, and higher-energy particles therefore have a longer orbit cir-

cumference and a lower revolution frequency [37]. It follows that lower-energy particles

within a bunch, with an inherently higher revolution frequency, will arrive earlier than the

synchronous particle and therefore need to be accelerated to compensate. Similarly, above

transition, higher-energy particles, with a lower revolution frequency, arrive late with re-

spect to the synchronous particle and are therefore decelerated. Figure 1.11 illustrates

this process for a particle bunch with an energy level above the transition energy (v ≈ c).

Note that, throughout Run 1, the bunch spacing was set to 50 ns (1380 bunches) [38]

to minimise the heat load in the beam pipe as a result of electron cloud build-up, which

is significantly greater with 25 ns bunch spacing [38]. The electron cloud is a build-up

of backscattered and secondary electrons, as a result of beam-induced multipactoring [39]

which fills the beam pipe and surrounds the beam as a proton bunch passes by. Note

that, following successful tests towards the end of Run 1, it is expected that the LHC will

operate with 25 ns bunch spacing throughout Run 2 [40].
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Figure 1.11: Illustration of how the oscillating TM mode electromagnetic field affects an indi-
vidual particle bunch with an energy level below (top) and above (bottom) the transition energy,
accelerating or decelerating particles that arrive early or late with respect to the synchronous
particle.

Transverse Shape & Dynamics

The transverse particle spread is controlled predominately by quadrupoles and higher-

order corrector magnets. Each quadrupole, however, can only focus the beam in one

plane, i.e. either horizontally or vertically [37]. Consequently, every second quadrupole

must either be focusing or defocusing (focusing in the other plane), as was shown for the

magnetic lattice (Section 1.6.3). The result is that the transverse beam profile contin-

uously varies from predominately vertical to predominately horizontal, while remaining

centred around the beam axis. Figure 1.12 depicts how the transverse beam profile varies

along a typical Arc cell.
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Figure 1.12: Depiction of how the transverse beam profile varies along a typical Arc cell with
respect to the magnetic lattice. The beam notably varies from predominately vertical to predomi-
nately horizontal and back again every second quadrupole.

The transverse motion of the beam at any given location can be quantified by the

beam emittance, ε, in conjunction with the corresponding Twiss parameters [37]. The

Twiss parameters are beam-related Alpha, α, Beta, β, and Gamma, γ, functions which

relate the emittance to the beam size and its transverse dynamics. The emittance is

the area of the particle distribution in phase space and is a quantity which expresses

the transverse motion of all involved particles. Figure 1.13 depicts how, in horizontal

phase space (x by x′), the emittance relates the horizontal beam size and motion to the

corresponding Twiss parameters.

Figure 1.13: Horizontal phase space plot (x by x′) of how the Twiss parameters, α, β and γ,
relate the horizontal beam size and particle motion to the beam emittance, ε.
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Chapter 2

The Main Dipole Magnet Circuits

The LHC is designed to circulate 7 TeV proton beams around a 27 km tunnel. This

requires a magnetic field of ∼8.3 T. As a result, the main ring of the LHC consists of 1232

14.3-m-long superconducting dipole electromagnets, which produce a continuous magnetic

field of 8.3 T when powered at a peak current of 11.85 kA. Such a magnet system requires

extraordinary infrastructure, circuitry and powering systems. This chapter provides tech-

nical details on the main dipole circuits – the main magnet systems of the LHC and the

subject of this thesis.

2.1 Circuit Overview

There are eight main dipole circuits, one for each sector. Each circuit contains one hundred

and fifty four 100 mH 14.3-m-long twin-aperture superconducting dipole magnets and can

store in excess of 1.3 GJ in magnetic energy [41]. All magnets are electrically connected in

series and powered by a 13 kA/±190 V power converter (PC). Each magnet has individual

bypass diodes to redirect the current in event of a quench event. Furthermore, two active

energy extraction (EE) systems, consisting of high energy 75 mΩ dump resistors, provide

safe means of dissipating the stored circuit energy in the event of a power abort. A

simplified circuit schematic is shown in Figure 2.1.

2.1.1 13 kA/±190 V Power Converters

Each circuit is powered with a 13 kA high precision power converter, capable of stable

operation across a large dynamic range of 750 A/±1 V to 12.80 kA/±190 V [42]. Each PC

is constructed from two 6.5 kA/±190 V sub-converters connected in parallel, see Figure 2.2,

which have water-cooled bypass thyristors capable of handling a full current decay from

peak current levels. The sub-converters are connected via a series of transformers to

CERN’s own 400 kV powering substation [43]. An RLC filter is included to dampen any

large mains voltage transients or spikes [16].
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Figure 2.1: Simplified schematic of a typical main dipole circuit. Red/blue blocks represent the
current leads and the transition from room temperature to cryogenic operating temperatures,
1.9 K.

Figure 2.2: Simplified schematic of a typical LHC 13 kA/±190 V power converter. Each PC
consists of two 6.5 kA/±190 V sub-converters connected in parallel and an RLC filter to suppress
mains voltage spikes.

2.1.2 Main Dipole Magnets

To guide the beam around the circumference of the accelerator, the LHC utilises super-

conducting twin-aperture dipole magnets. A cross section is depicted in Figure 2.3. As

shown, the magnet consists of a twin-aperture quasi-circular coil structure, detailed in

Section 2.1.2, itself encased within a magnet collar which is itself encased within a large

iron yoke structure. The magnet collar is a block of non-magnetic material, designed to

compress and maintain the structure and alignment of the magnet coils [44]. The iron yoke

is the main flux guide for the magnetic field. It is designed to ensure that the flux density

does not saturate and that it fits within the helium cooling vessel whilst incorporating the

magnet collar, heat exchanger pipes and magnet circuit busbars [44].
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Figure 2.3: Picture of the cross section of a twin-aperture dipole magnet. As shown, the magnet
structure consists of a symmetrical pair of magnet coils encased within a magnet collar, itself
encased within an iron yoke. Image courtesy of CERN [46].

The LHC main dipole magnets were produced by three different manufacturers [45].

For this purposes of thesis, each manufacture, if referenced, will be referred to as Firm 1,

2 or 3, respectively.

Magnet Coils

Magnet coils are wound from Nb-Ti Rutherford cables. The cumulative total cable length

of a twin-aperture dipole coil is ∼2.5 km. Coils are wound such they that surround the

beam pipes in a quasi-circular geometry and consist of inner and outer layers (wound

separately). Figure 2.4 depicts the middle cross section of a typical twin-aperture dipole

magnet pair, showing current direction, magnetic field and Lorentz forces. Note that,

with opposite current flow and proton velocities, both magnets produce Lorentz forces in

the same direction, which allows for opposing beams to be bent around the ring simul-

taneously. Also note that coils are wound with a quasi-circular geometry, azimuthally

separated by copper wedges. This is to optimise the area of the homogeneous field (good-

field region) in the aperture [47].

Figure 2.5 gives a 3–D perspective of typical dipole magnet pair (for both beams), showing

current and beam directions (marked in green and red, respectively) as well as the resultant

magnetic field produced during operation. The coil end design can also be seen. Coils

ends are optimised in order to minimise fringe fields as well as reduce quench susceptibility

by ensuring that there are no sharp bends in the coil winding [48].
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Figure 2.4: Illustration of the cross section of the coil structure of a twin-aperture dipole magnet,
showing current direction, ~I, beam direction, ~p, and the directions of resultant magnetic fields,
~B, and Lorentz forces, ~F .

Figure 2.5: 3–D model of a typical twin-aperture magnet, including coil end geometry. Graphic
shows the beam direction (red), current flow (green) and magnetic field lines (yellow). Longitu-
dinal length is not to scale. Image courtesy of CERN [49].
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Superconducting Magnet Cables

Magnet coils are wound from specially designed superconductor cables, known as Ruther-

ford cables [50]. Each cable consists of 36 strands of superconducting wire, housing ∼6000

Nb–Ti filaments encased in high-purity Cu, see Figure 2.6. Strands are wound and shaped

such that the resultant cable forms a two-strand-thick rectangle, which is then wound to

create the magnet coils.

Figure 2.6: Picture set showing the internal structure of a typical 13 kA superconducting Ruther-
ford cable. The cable (top left) of cross section (bottom left) is wound from 36 strands (right)
which consist of an array of superconducting Nb–Ti filaments encased in high-purity Cu. Pho-
tographs courtesy of CERN [51].

2.1.3 13 kA Busbars

Connecting the PCs to the Arc cryostat (maintained at room temperature, 293 K), are

standard water-cooled high-purity Cu cables [16], however, connecting the magnets to-

gether within the cryostat are specially designed superconducting busbars [52]. A typical

busbar segment consists of a hollow Cu profile which houses a Nb–Ti Rutherford cable –

an illustration of the busbar cross section can be seen in Figure 2.7.

Busbar Interconnects

Due to the physical scale of the circuit, busbar-to-busbar interconnects are located either

between magnets or in long busbar sections. All interconnects are welded and machined

post-installation, allowing for a maximum resistance across the interconnect of <0.6 nΩ

[16]. An illustration of a typical busbar interconnect is shown in Figure 2.8.
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Figure 2.7: Illustration of the cross section of an LHC superconducting busbar showing the Nb–Ti
superconductor, i.e. Rutherford Cable, the Cu stabiliser and Sn–Ag solder.

Figure 2.8: Illustration of the longitudinal cross-section of typical busbar interconnect, showing
the overlapping joint style, encasing Cu wedges and where Sn–Ag solder is present.
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Lyres & Pigtails

Lyres and pigtails, named after their shape, are curved segments of busbar, designed to

account for thermal contraction and expansion during system warm-up and cool-down

procedures [52]. These segments differ from the typical busbar in that the Cu surrounding

the superconductor is constructed from layers of Cu sheets, allowing it to be curved and

hence expand and contract without excessive mechanical stress. Lyres are found before

and after each magnet and pigtails are found below the current leads at both ends of the

Arc. Figure 2.9 depicts typical lyre and pigtail busbar segments.

Figure 2.9: Illustration of a typical lyre busbar segment (left) and a typical pigtail busbar segment
(right).

2.1.4 Current Leads & Helium Chamber

13 kA high-temperature superconductor (HTS) current leads are located at points where

the magnet circuit transitions from 293 K to 1.9 K or vice-versa [53]. Each current lead

consist primarily of two stages, see Figure 2.10, firstly gaseous-He-cooled Cu heat-sinks,

which guides the initial transition from room temperature down to 20 K, followed by a

section of HTS coils, which guides the transition from 20 K down to 4.5 K, He-I. The 4.5 K

He-I is used to cool adjacent superconducting systems which do not require superfluid He

cooling for nominal operation. Below the current lead is the liquid He chamber, see Fig-

ure 2.11, which maintains a He bath at 4.5 K as well as guides the final transition from

4.5 K to superfluid He-II at 1.9 K [16]. This transition is separated by an aptly named

Lambda plug. The chamber also contains a feedback loop which provides the current lead

with 20 K gaseous He.
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Figure 2.10: Simplified illustration (left) and picture (right) of the 13 kA HTS current leads
installed in LHC for, among others, the main dipole circuits. Photograph courtesy of CERN
[54].

Figure 2.11: Simplified illustration of the He chamber, showing the feedback loop and position of
the Lambda plug separating 4.5 K He-I and 1.9 K He-II sections.
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2.2 Circuit Protection Systems

With each dipole chain storing up to 1.3 GJ of magnetic energy, it is important that the

energy can be dissipated safely. This is especially the case during a magnet quench or

failure event which initiates a power abort. This section introduces the installed circuit

protection systems for the main dipole circuits.

2.2.1 Magnet Bypass Diodes

In the event of a quench in one of the superconducting dipole magnets, the current must be

redirected to prevent significant hot-spot temperatures arising in the now resistive, normal-

conducting zone. For this reason, a passive bypass is installed alongside each magnet, rated

to withstand up to 13 kA with a 120 s decay constant [16]. Diodes are installed within the

cryostat such that they also operate at an initial temperature of 1.9 K. The conducting

voltage at 1.9 K is ∼6 V. For additional heat dissipation, each diode is connected to two

large Cu heat-sinks, clamped together with a force of 40 kN. Each bypass also encompasses

6 connections, 2x busbar-to-diode-busbar, 2x diode-busbar-to-heatsink and 2x diode-to-

heatsink contacts. Figure 2.12 shows a picture of the diode stack as installed in the LHC

[p2].

Figure 2.12: Picture of a main dipole magnet bypass diode stack, showing the diode wafer,
heatsinks, springs washers to ensure constant pressure in the diode-to-heatsink contacts, and the
main busbar connections. Photograph courtesy of G. Willering [p2].
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2.2.2 Energy Extraction System

To ensure a relatively fast and controlled current decay in the event that a power abort is

initiated, energy extraction (EE) systems are installed at both ends of the Arcs – two per

circuit [55].

Figure 2.13: Picture of a single dump resistor configuration of a main dipole circuit. Each
resistor, consisting of three larger resistors connected in parallel, is built to withstand the full
stored circuit energy of 1.3 GJ. Together with a mechanical switch, these resistors comprise the
energy extraction system. Photograph courtesy of CERN [56].

Each EE system consists of three 225 mΩ/230 MJ high-energy capacity dump re-

sistors connected in parallel such that the total is 75 mΩ/690 MJ for each system and

150 mΩ/1380 MJ for each circuit. Break switches are included in the main bus line which

open when triggered, forcing the current to flow through the dump resistors. At nominal

current, this results is a decay constant of ∼104 s [16]. A typical EE dump resistor stack

is shown in Figure 2.13.

2.2.3 Magnet Protection System

It is widely known that, in the event of a quench, dangerously high hot-spot temperatures

can result in cable damage from melting [57]. It is therefore important that in such
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circumstances, not only is the system energy extracted quickly and safely, but that the

normal-conducting zone volume is deliberately increased via so called quench heaters such

that the stored magnet energy becomes more homogeneously distributed, reducing peak

temperatures. It is also important that this is done as soon after the initiation of a quench

as possible. All magnets are built with quench heaters incorporated into the design as well

as connections for voltage monitoring electronics (external to the cryostat). Collectively

these components make up the magnet quench protection system (QPS) [58].

Quench Detection Electronics

To reliably and rapidly detect the initiation of a quench, high-precision voltage monitors

are connected across all magnets and busbar sections [59]. The voltage across a magnet

will increase as a normal-conducting zone arises and begins to propagate. This system will

initiate a power abort and fire the quench heaters in the event that the voltage detected

across a magnet exceeds that of a defined threshold.

Quench Heaters

Quench heaters for the main dipoles consist of pairs of ∼0.025-mm-thick stainless steel

strips which are insulated and then installed in direct contact with the magnet coils,

running the length of the magnets [16]. These strips are individually powered by a fast

discharge (decay constant ∼75 ms) 900 V capacitor bank such that the strips heat up and

that the heat is transferred to the adjacent magnet coils as quickly as possible. Quench

heater temperatures can reach up to ∼280 K and therefore quickly quench the remaining

superconducting regions of the magnet, distributing the hot-spot energy and minimising

peak temperatures [60].

2.2.4 Beam Loss Monitoring

To prevent excessive beam losses which may result in a beam-induced magnet quench and

or significant system damage, ionisation-chamber-type beam loss monitors (BLMs) are

installed along the Arc [61], [67]. The structure of a BLM ionisation chamber and how it

is installed in the LHC can be seen in Figure 2.14.

BLMs are typically installed on the outside of the cryostat at locations where high

beams losses are expected – typically adjacent to quadrupole magnets. A BLM consists

of a 60-cm-long nitrogen filled ionisation chamber with an array of Aluminium (Al) discs

held at a potential of either + or −500 V, alternating every second disc [16]. The result

is that incoming particles are ionised in the nitrogen and ions flow to one side of the

chamber while electrons flow to other. This results in a current flow which can be read
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Figure 2.14: Pictures showing the structure of an ionisation-chamber type BLM (left) and how
it is installed on the outside of the cryostat (right). Left image courtesy of CERN [63].

as a voltage across an output impedance and a beam dump can be initiated in the event

that the detected voltage crosses a programmed threshold [62].
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Chapter 3

Sustainable Beam Energies

& Thesis Hypothesis

During initial commissioning of the LHC, an unexpected quench event due to the pres-

ence of busbar interconnect discontinuities led to significant system damage. Investigation

into the source of the issue found that such busbar discontinuities were not only present

in the circuit in question, but in all main dipole and quadrupole circuits. The result was

that the LHC would only be capable of operating at approximately half the design energy

throughout Run 1 until each discontinuity could be repaired. This chapter briefly discusses

the damaging quench event as well as investigating possible remaining issues with achiev-

ing and sustaining near-nominal energy levels. The chapter concludes with the defining of

a thesis hypothesis and corresponding prerequisites.

3.1 Run 1 Beam Energy Restrictions

3.1.1 The 2008 Incident

On September 19th 2008, during a commissioning powering cycle to 11.85 kA, a quench

event occurred at a current of 9.3 kA in the Sector 34 main dipole circuit [64]. As the

quench was not detected quickly enough, an electrical arc developed which subsequently

punctured the helium enclosure, leaking evaporated helium into the vacuum. Both the nor-

mal zone and heated helium propagated along the Arc, inducing numerous other quenches

and significantly increasing system pressure. All pressure release valves successfully main-

tained the pressure below critical levels, 1.9 MPa, with the exception of the subsector

covering cells 19-21, in which pressures reached 2.1 MPa. The excessive resultant forces

physically displaced several dipoles magnets from their external support jacks at cells 23,

27 and 31, example shown in Figure 3.1. In total, ∼2 tons of helium evaporated and

escaped into the tunnel.
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Figure 3.1: Photograph showing the displacement of a dipole magnet following the 2008 quench
event, external view (left), internal view (right). Pictures courtesy of CERN [67].

The 2008 incident resulted in a yearlong repair campaign, following which the max-

imum beam energy was still restricted to just above half that of the design nominal,

3.5-4 TeV instead of 7 TeV [64]. Investigation into the issue led to the discovery that it

was as a result of a discontinuity in one of the superconducting busbar interconnects –

thought to be due to a lack of solder between the superconductor and its adjacent sta-

biliser, see Figure 3.2 [65]. Further investigation found that this was not a localised issue

but rather such discontinuities were widespread in similar interconnects throughout all

main circuits. A new QPS system, the nQPS, was installed to monitor, among other

things, voltages across all busbar segments [66] and a two-year-long interconnect repair

campaign was scheduled, Long Shutdown 1 (LS1).

Figure 3.2: Illustration of the longitudinal cross-section of a busbar interconnect with a typical
discontinuity. Note that without solder an electrical arc would form either across the Cu stabiliser
gaps or even between the Cu stabiliser and external systems.
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3.1.2 Interconnect Consolidation

To ensure each sector was capable of withstanding nominal current levels, every single

interconnect (over 10,000) was scheduled to be opened, re-machined and have additional

Cu shunts applied which bridge the gaps between the main segments of the Cu stabiliser,

see Figure 3.3 [68]. Such shunts ensure that a low resistive path would remain in the event

that discontinuities either remain post-consolidation or form over time.

Figure 3.3: Illustration of the proposed interconnect shunts. Such shunts provide a low resistance
current path in the event that solder discontinuities remain or form over time.

3.2 Achieving Near-Nominal Beam Energies

3.2.1 Magnet Training

In the field of applied superconductivity, it is well known that there is a significant dis-

parity between theoretical (extrapolated from short-sample coil equivalents) and physical

performance, i.e. quench limits, of full length superconducting magnets [20], [69]. Data

collected from LHC magnets would find this disparity to be greatest during initial pow-

ering, i.e. virgin magnet conditions, as well as after significant periods without powering,

e.g. storage prior to installation [70]. Reducing this disparity involves a process of repeat-

edly powering the magnet to the point of quenching. This process gradually increases the

magnet’s quench limits and is commonly known as magnet training. The amount of train-

ing required varies significantly even between magnets of the same design constructed by

the same manufacturer, see Figure 3.4 [71]. There is also a tendency for training progress

to decrease as quench limits approach the design nominal. This is due to the training

mechanism itself, which involves the ‘relaxing’ of coil imperfections caused by the present

Lorentz forces (localised cable or strand bending or misalignment) and a quench event

is initiated as a result of the involved friction. Larger imperfections have a tendency to

quench first and therefore relax first. As such, the largest increases in maximum current

levels occurs during the first few training cycles, eventually saturating [71]. Furthermore,
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note that there is a potential for de-training, i.e. training quenches either worsen existing

imperfections and or result in imperfections being created elsewhere in the magnet coil.

Magnet training to 12.85 kA was carried out on all dipoles prior to installation and was

scheduled to be re-done post-installation [72].

Figure 3.4: Magnet training of five LHC dipoles prior to installation. Note the significant varia-
tion in number of quenches required from one magnet to the next. Graph courtesy of E. Todesco
[71].

Post-Installation Training Predictions

Following initial training, all magnets were stored for up to 2 years prior to installation.

This led to a reduction of the maximum sustainable current levels for some of the magnets

and, following initial system commissioning, global magnet re-training was scheduled to

be carried out via systematic circuit powering. Unfortunately, as a result of the 2008

incident (Section 3.1.1), the training campaign was cancelled having not even re-trained

the first scheduled circuit, Sector 56. However, with initial re-training quenches occurring

at between 6 and 6.5 TeV equivalent current levels, the majority of which were Firm 3

magnets, see Figure 3.5, several studies were carried out in attempt to predict the number

of training quenches required to qualify all 8 circuits, [73] and [74]. Table 3.1 lists the main

prediction results, showing that the number of quenches required increases significantly

with energy, requiring in excess of 80 quenches to achieve 6.5 TeV and close to 1000

quenches for 7 TeV. As a result, the studies concluded that 7 TeV operation was an

unrealistic goal for Run 2.
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Figure 3.5: Plot of all Sector 56 dipole re-training quenches alongside the first initial training
quench pre-installation of each magnet. Most post-installation quenches are from Firm 3 (NOE)
magnets and lie between 6-6.5 TeV equivalent currents, far from the 7 TeV design nominal.
Graph courtesy of A. Verweij [74].

Table 3.1: Post-installation dipole training predictions, circa 2009. Data courtesy of A. Verweij
[74].

No. of Magnets No. of Quenches

Sector Firm 1 Firm 2 Firm 3 6 TeV 6.5 TeV 7 TeV1 7 TeV2

12 49 96 9 0 4 41 40

23 56 60 38 1 8 97 92

34 56 65 33 1 8 87 83

45 46 46 62 2 12 145 136

56 28 42 84 1 15 190 178

67 57 36 61 2 12 142 133

78 54 40 60 2 12 140 132

81 64 24 66 2 13 151 142

Total 410 409 413 11 84 993 936

1 Estimates based on extrapolation of Sector 56 data
2 Estimates assuming 2 quenches per Firm 3 magnet
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3.2.2 Remaining Uncertainties & Project Proposal

Although an interconnect discontinuity was found to be the cause of the 2008 incident,

it may not be the only limitation preventing the successful achievement of nominal en-

ergy levels. With 6.5 TeV training predictions foreseeing in excess of 80 quenches, it is

important that all other potential weak points in the system, such as the connections in

the magnet bypass path (Section 2.2.1) or in the curved busbar sections, the lyres and

pigtails (Section 2.1.3), are identified and also fully qualified. At this point, a new method

of qualification for superconducting magnet systems was proposed, see Chapter 4.

Throughout LS1, further justification for such a procedure arose as the accumulated

resistance of each magnet bypass’ connections were measured. Most notably, even having

been measured following installation, circa 2008, a number of bypass paths far exceeded

the specified maximum resistance of 15.5 µΩ – one even exceeding 200 µΩ, see Figure 3.6.

Furthermore, the original 2008 measurement of the bypass in question was missing from

the original database. This observation was not only an issue in that the LHC had be-

ing operating for 3 years with a potentially catastrophic flaw, but was also an important

reminder that even with systematic measurements, human error is inevitable in systems

with such numerous components. All bypasses exceeding the threshold were re-machined

accordingly.

Figure 3.6: Diode bypass resistance data from 4 of the 8 main dipole circuit. Note that several
bypasses exceed the resistance thresholds with one even being measured at 14 times the limit.
Data courtesy of M. Bednarek [75].

To add to the this, during LS 1, all pigtail busbar segments were checked and a number

of them, in fact, showed significant deterioration and or fraying. The pigtails in question

were re-machined and repaired, however, the more numerous lyre busbar segments (made
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from the same layered design) were neither scheduled for measurement nor repair and

without proper qualification, there would be no means of asserting the individual capability

of such components.

The development, type-test and full qualification results of the devised method are

detailed in Chapter 4.

3.3 Sustaining Near-Nominal Beam Energies

With the end-goal being the collection of valid collision data, it is important that near-

nominal beam energies cannot only be achieved but can be sustained. However, numerous

issues arise in sustaining a stable beam [76], the most troubling of which is the resultant

beam losses that follow particles of dust or debris interacting with the beam. Observed

during Run 1, see [77] and [78], the so called unidentified falling object (UFO) events may

pose significant threat to system availability at 6.5 TeV operation.

3.3.1 Unidentified Falling Objects

Dust and or debris is well documented to have had significant detrimental effects in previ-

ous electron and anti-proton accelerators, see [79]–[82]. In such cases, positively charged

macroparticles would become trapped within the beam, causing beam losses due to in-

elastic collisions over time, reducing beam lifetime and affecting availability. The LHC is,

however, the first proton accelerator where similar events have been observed.

Run 1 measured BLM signals show that UFO events typically produce loss signals of

∼1 ms in duration which follow asymmetric Gaussian profiles with faster fall times than

rise times, an example is shown in Figure 3.7 [83]. An accepted interpretation of an LHC

UFO event is as follows:

• A macroparticle falls from the ceiling of the beam screen or vacuum chamber.

• Inelastic collisions between incident protons and macroparticle nuclei result in sig-

nificant beam losses. These losses result in an initial rise in BLM signal.

• Concurrently, the macroparticle is ionised due to elastic collisions with incident

protons releasing electrons from the macroparticle itself.

• Subsequent to ionisation, the macroparticle is repelled by the beam’s electric field.

This results in a subsequent fall in the recorded BLM signal.

• The overall BLM signal produced is asymmetric due to the repulsion forces and

resultant macroparticle speed exceeding that which is solely due to gravity.
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Figure 3.7: Example of a UFO event BLM signal measured during Run 1 (recorded 04/07/2012).
The loss signal is ∼1 ms in duration and follows an asymmetric Gaussian profile, with a faster
fall time than rise time. Data courtesy of T. Baer [83].

Dust/Debris Size

To investigate the size of a typical macroparticle, in October 2011, dust and debris was

collected from a replaced main injection kicker (MKI) magnet (the magnets most suscep-

tible to UFO events during Run 1) [83]. Figure 3.8 shows a microscopic image of a typical

macroparticle found in this study.

Figure 3.8: Microscopic zoom of a typical dust particle found in an main LHC kicker magnet,
circa 2011. Image courtesy of T. Baer [83].
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The study found that, compared to a level 100 clean room reference value of 10,000

macroparticles for an unused MKI beam pipe, flushing out the used kicker magnet resulted

in a filter count of over 5 million macroparticles [83]. The majority of the macroparticles

were found to have a diameter in the order of ∼1 µm, with some being notably much

larger, surpassing ∼100 µm. However, as the majority of the particles were also Al, and

that the aluminium-oxide (Al2O3) ceramic tubing is unique to the MKI beam screen, the

extent of correlation between the dust collected in this study and that which is present

in the LHC Arc dipoles is unknown. This is especially the case in considering which

macroparticles are most likely to detach from the beam screen surface and fall – another

remaining unknown.

3.3.2 Run 1 MKI UFO Event Statistics

There are two beam injection regions in the LHC, one at point 2 for beam 1 and one at

point 8 for beam 2, respectively. There are 8 MKI magnets, 4 at each region. Of the ∼4000

UFO events recorded in these regions, which comprise only ∼0.06% of the LHC length,

21 UFO events produced sufficient losses to initiate a beam dump [83]. However, is was

discovered that the MKI UFO rate was directly correlated with pulsing the MKIs and the

resultant surface electric fields. Furthermore, pulsing similarly designed quadrupoles with

metalized ceramic tubing, the MKQs, resulted in not a single UFO event being recorded

[83]. It was therefore concluded that the source of the MKI UFOs was the ceramic tubing.

Investigating MKI UFO event mitigation strategies led to very successful improve-

ments. Improvements included: a more rigorous cleaning procedure to reduce the number

of existing dust particles; the ceramic tubes were upgraded to have 24 screen conductors

instead of 15, reducing the maximum surface electric field by ∼40%; a Non-Evaporable-

Getter (NEG) coating on the magnet interconnects and bypass tube to minimise electron

multipacting and electron-cloud build-up; and, for the Hi-Luminosity LHC upgrade, a

chromium-oxide (Cr2O3) coating of the ceramic tubing is being investigated [83]. Pre-

liminary testing of these improvements have concluded that MKI UFOs should not be a

threat to LHC availability throughout Run 2.

3.3.3 Run 1 Arc UFO Event Statistics

Approximately 12,500 Arc UFO events were recorded throughout Run 1. Figure 3.9 shows

the recorded Run 1 Arc UFO event statistics, in UFOs/hour, with beam energies ranging

from 3.5 to 4 TeV [83]. When looking at the shown statistics, it is important to note

that UFO event monitoring only began after the phenomenon was first witnessed in 2011,

while the LHC had already been operating at 3.5 TeV for ∼7 months between April and
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November 2010. Furthermore, UFO events are only recorded if the resultant BLM signal

is high enough to exceed a defined threshold (discussed in Chapter 5).

There are several notable trends. Firstly, at the start of 2011, the UFO rate was

significantly higher, ∼8-12 UFOs/hour, with the average rate reducing over the course of

the first year to ∼2 UFOs/hour – this effect has become known as UFO ‘conditioning’.

It is, however, assumed that a potentially significant amount of conditioning may have

occurred throughout 2010 prior to event logging i.e. initial UFO rates may have been

higher. It is also of note that, following a technical shutdown over the Christmas period of

2011, the UFO rate notably rose again prior to reconditioning. Neither of the phenomena

involved with worsening or conditioning are understood. Lastly, there is a notable spike in

UFO rate towards the end of 2012, where the LHC underwent a test period of operating

with 25 ns bunch spacing. Throughout this period, the UFO rates increased significantly,

even exceeding initial figures. The current hypothesis is that the use of 25 ns bunch

spacing has a direct effect on a UFOs release mechanism, i.e. causes more macroparticles

to detach from the beam screen. This has been thought plausible as, if the dust particles

themselves were attached to the beam-screen as a result of unintended cryo-condensation

or cryo-sorption [84], the increase in heat may reduce the surrounding adhesion forces

allowing the particles to fall. Note, however, that there is no evidence to back up this

theory. 25 ns bunch spacing is expected for 6.5+ TeV operation [85].

3.3.4 UFO-Induced Dipole Quenches & Project Proposal

It is well known that beam losses in high-energy accelerators, either from magnet optics

errors or system failures, can produce sufficient localised heating to initiate the quench of

adjacent superconducting magnets, e.g. HERA [86], Tevatron [87] and, more recently, the

LHC [21]. However, throughout Run 1 of the LHC, with operation energies of 3.5-4 TeV,

UFO events were not regarded as an issue for the main dipole circuits as the deposited

energy from resultant particle showers was far below the quench level of adjacent magnets.

It is thought that with 6.5 TeV beams, especially with magnet quench margins also being

2-3 times lower (Figure 1.2), UFO-induced dipole quenches may be a possibility and, if

left unaccounted for, could have a significant impact on overall system availability. It was

therefore proposed that a numerical model be constructed capable of simulating a typical

LHC UFO event, giving accurate energy deposition estimates from the resultant particle

showers.

The development of the numerical model and simulation results of both 4 TeV and

6.5 TeV UFO events are detailed in Chapter 5.
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CHAPTER 3. SUSTAINABLE BEAM ENERGY & THESIS HYPOTHESES

3.4 Thesis Hypothesis & Prerequisites

3.4.1 Thesis Hypothesis

Following successful circuit qualification and dipole magnet training, the LHC’s main

dipole magnet circuits can safely support and sustain near-nominal proton beam energies

of at least 6.5 TeV.

3.4.2 Prerequisites

1. To ensure magnet training can be carried out both systematically and without risk,

the development and subsequent implementation of a new method of superconduct-

ing magnet bypass qualification is required.

2. Magnet quenches following dust-to-beam interaction scattering are thought to be a

possibility at 6.5 TeV operation. Further understanding of the involved phenomena

and research into potential mitigation strategies is therefore required.

Addressing 1st Prerequisite

• Develop and investigate both the risk and feasibility of a global superconducting

magnet circuit continuity qualification method.

• Carry out the developed qualification method on all main dipole circuits prior to

magnet training.

• Upon successful qualification of all circuits, carry out magnet training as planned

(up to 6.5 TeV equivalent current levels).

Addressing 2nd Prerequisite

• Develop a numerical model capable of simulating dust-to-beam interactions as well

as quantifying the resultant particle shower energy deposition in adjacent magnets.

• Use the model to determine the probability of a 6.5 TeV UFO event resulting in a

magnet quench, quantifying probable losses to system availability.

• Investigate and propose mitigation strategies.

The following chapters will detail the work carried out to address the defined prerequisites.

Chapter 4 details the development and implementation of the copper stabiliser continuity

measurement, a new method of superconducting magnet circuit qualification. Chapter 5

will detail the development of a UFO event model and subsequent predictions of plausible

UFO-induced quenches and Chapter 6 will discuss initial Run 2 observations and statistics.

The thesis will conclude with Chapter 7, recalling the above hypothesis and discussing

project outcomes.
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Chapter 4

Copper Stabiliser Continuity Measurement

To address risk factors involved with resuming magnet training, a new method of qual-

ification was developed to provide conclusive evidence that all the potentially weak com-

ponents of all dipole circuits, i.e. the busbar’s Cu stabiliser and magnet bypass circuitry,

were safe to operate at a given current level. This chapter, based on works presented in

listed publications [p2], [p3] and [p5], details the procedure development, thermal runaway

simulations and type test and LHC-wide qualification results.

4.1 Background & Concept

As discussed in Section 3.1.1, due to the presence of busbar interconnect discontinuities,

an unforeseen quench event occurred during initial commissioning of the main dipole mag-

nets, circa 2008. To address this issue, the LHC was scheduled to have all corresponding

interconnects, over 10,000, be consolidated, i.e. repaired or re-machined, during LS 1.

Moreover, subsequent to consolidation, magnet training to 6.5 TeV would, following pre-

dictions, take at least 80 training quenches. As a result, to compliment the scheduled

consolidation campaign and to eliminate any residual risk posed by magnet bypass cir-

cuitry and lyres, it was proposed that a method of stabiliser continuity qualification be

developed and carried out to provide conclusive evidence that all aspects of a given cir-

cuit, with the exception of the magnets themselves, can safely sustain near-nominal current

levels. Focused on continuity qualification, the method became commonly known as the

Copper Stabiliser Continuity Measurement (CSCM).

CSCM was originally thought of as a means of determining the maximum safe oper-

ating current [88]. In principle, it involves operating the circuit at just above the critical

temperature of Nb–Ti of 9.2 K at ∼20 K – gaseous helium. Operating above the critical

temperature would see the circuit’s magnets and busbars operate in a resistive state, forc-

ing all diodes to conduct upon powering with sufficiently high voltage as well as having the

current flow through the busbar’s Cu stabiliser and magnet bypass circuitry. The reason
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for remaining at ∼20 K was such that the circuit would still have a relatively low circuit re-

sistance whilst leaving sufficient thermal margins to account for potential cryo-instability,

i.e. variations in temperature along the Arc. The resultant current flow is illustrated in

Figure 4.1. Qualification of the circuit follows as if significant defects or discontinuities

remain present in the busbar or magnet bypasses, the excess resistance would induce a

thermal runaway if current densities exceed critical values. As such, a CSCM inherently

tests all busbar sections, including the interconnects, and all magnet bypasses, including

diodes and diode lead connections.

Figure 4.1: Illustration of the current flow during a typical CSCM test on a main dipole circuit
(marked in brown). Note that all current flows through the bypass diodes instead of the magnets.

4.2 Engineering Challenges

Consequential to the non-standard operating conditions required for a CSCM test, a num-

ber of engineering challenges arose. This section summarises the main issues as well as

their respective solutions or resultant test constraints.

4.2.1 Operating at 20 K

CSCM requires an operating temperature of ∼20 K. This posed the problem of stabilising

the, now gaseous, helium bath along the 2.5 km Arc cryostat. The defined specifications

were to maintain 20±4 K at a pressure of 5±0.5 bar, giving sufficient margin for the max-

imum expected energy transfer to the helium, ∼250 kJ. The Arc cryostat pressure limit is

15 bar [16]. Figure 4.2 shows both measured temperature and pressure profiles along the

Arc, during the Sector 23 type test in 2013.
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Figure 4.2: Temperature (top) and pressure (bottom) profiles along the Arc measured during the
Sector 23 CSCM type test in 2013. s is the longitudinal coordinate along the Arc at which a
given monitor is located. Test specifications were 20±4 K and 5±0.5 bar, respectively.

Current-Lead Restrictions

In view of a full qualification CSCM, with the intention of qualifying all aspects of all

circuits, a current-lead specific test was carried out to investigate whether or not a CSCM

test could be carried out with the current lead He chamber (Section 2.1.4) also stabilised

at 20 K – normally 4.5 K. The test, however, concluded that the voltage across the current-

lead HTS coils would exceed the quench protection threshold of 3 mV. Note that, in the

event of a quench in the HTS coils, due to the nature of its layer tape design, rapid

expansion of any trapped helium may result in permanent damage, even if the current is

made to decay quickly [16]. As a result, increasing the protection thresholds was not an

option and the He chambers were to remain at 4.5 K. Due to this, the encompassed busbar

pigtails as well as the first 1-2 meters of busbar after the Lambda plug would remain in a

superconducting state and, as such, would not be qualified by the test. This was deemed

acceptable as all pigtails were individually inspected and repaired throughout LS 1.

4.2.2 Power Converter Configuration

As the main dipole circuit is several kilometres long, operating it in a resistive state, es-

pecially with all diodes initially conducting at the same time, requires significantly more

voltage. It was expected that operating at 20 K would require up to ∼350 V. The required
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voltage would be much higher if the diodes were not also also maintained at 20 K, as this

reduces the individual diode conducting voltage from ∼6 V down to ∼2.1 V. Nonetheless,

the PCs standard configuration, 13 kA/±190 V, would be incapable of supplying the re-

quired voltage. The solution was to connect the PC’s two 6.5 kA/±190 V sub-converters

in series, rather than in parallel – illustrated in Figure 4.3. The resultant 6.5 kA/±380 V

configuration was tested by the PC team and could successfully provide the required volt-

age with sufficient precision, ±1 mV. Note that a full qualification test would, however,

require up to 12 kA and further tests were carried out to determine if the PC could safely

operate in an ‘over-current’ state for the required, relatively short, duration of ∼60 s. All

tests proved to be successful [89].

Figure 4.3: PC configurations – parallel (normal operation) (left) and series (CSCM) (right),
providing 13 kA/±190 V and 6.5 kA/±380 V, respectively.

As all magnets are bypassed, the circuit has a significantly reduced inductance, 3 mH

instead of 15 H. With a decay constant of only 3 ms, reduced from 104 s, the PC also

had to be programmed to deliberately perform an exponential decay mimicking that of

normal operation. Furthermore, both EE systems, being unnecessary due to the low circuit

inductance, were shorted to minimise system risk [89].

4.2.3 Circuit Protection

With the possibility of a thermal runaway occurring during a CSCM test, minimising sys-

tem risk was of paramount importance. A CSCM test would therefore only be deemed safe

if a developed protection system could successfully detect and protect against a thermal

runaway by means of initiating a power abort. The CSCM protection was developed by

the QPS team, implementing modifications to the already installed nQPS system. The

utilised electronics allowed for both monitoring and logging of the voltage, U , as well as

the first and second derivatives, dU/dt and d2U/dt2, respectively, across individual bus-
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bar segments (board type (m)BS A), diodes (board type DS A) and diode-leads (board

type (m)BS B and DS B). Note that d2U/dt2 monitoring was included for long busbar

segments, >100 m, such as those present in the main quadrupole circuits and were there-

fore not used for any main dipole circuit tests. The final board configuration and main

specifications are shown in Figure 4.4 and Table 4.1, respectively.

Figure 4.4: Illustration of the PS board locations as implemented for CSCM to monitor and log
the busbar (board type BS A), diode (board type DS A) and diode-lead voltages (BS B and DS B).

Table 4.1: CSCM PS board specifications.

Board Type Detection Frequency Logging Frequency Input Range

[Hz] [Hz] [V]

mBS A 33 33 ±2.56

mBS B 33 33 ±2.56

BS A 33 0.8 ±2.56

BS B 33 0.8 ±2.56

DS A 6410 6410 ±10

DS B 6410 6410 ±10

For the type test, CSCM specific busbar monitoring electronics were used, denoted

‘modified’ mBS boards. However, for the LHC-wide campaign, the BS boards used for

normal operation were altered such that they incorporate a ‘CSCM mode’, preventing the

QPS operatives from having to exchange all boards both before and after testing. This

was, however, at the expense of data logging frequency.
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4.3 CSCM Procedure Development

4.3.1 Risk Assessment

Similar to a quench event, if a thermal runaway was to occur, excessive hot-spot temper-

atures would arise and may result in significant system damage – cable melting, electrical

arcing, etc. As such, a risk assessment was carried out to investigate plausible failure sce-

narios as well as to incorporate any relevant mitigation strategies. Following the principle

that risk is the product of probability and consequence [90], one can determine the severity

of a failure scenario in accordance with the following risk matrix, Figure 4.5.

Figure 4.5: Risk assessment matrix. Risk = Probability × Consequence.

Focusing on a dipole circuit’s main systems and components, a risk assessment was

carried out for the proposed qualification test, both in assuming no mitigation steps would

be taken and in assuming that mitigation proposals would be implemented. Results can

be found in Table 4.2 and Table 4.3, respectively.

It is clear that, due to the likelihood of thermal runaways, with plausible catastrophic

outcomes, CSCM is inherently a high risk test. To minimise risk, it was decided that a

type test should be carried out on one of the circuits prior to consolidation to safe-test

the powering and protection systems. It was also concluded that the test would involve

incremental powering stages and that all systems must be fully (re)commissioned both

before and after a CSCM.
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Table 4.2: CSCM risk assessment without mitigation.

System/Component Scenario Outcome Consequence Probability Risk

Power Converter
System
Failure

Power Abort Moderate Possible Medium

Protection System
Detection

Failure

Irreparable
Damage

Catastrophic Possible High

Busbars (inc. lyres)
Thermal
Runaway

Irreparable
Damage

Catastrophic Probable High

Diodes Breakdown
Irreparable

Damage
Catastrophic Possible High

Diode-leads
Thermal
Runaway

Irreparable
Damage

Catastrophic Probable High

Current-leads
Thermal
Runaway

Irreparable
Damage

Catastrophic Improbable Medium

Table 4.3: CSCM risk assessment with mitigation proposals.

System/Component Scenario Risk Mitigation New Risk

Power Converter
System
Failure

Medium
System

(Re)commissioning
Low

Protection System
Detection

Failure
High

System
(Re)commissioning

Low

Busbars (inc. lyres)
Thermal
Runaway

High
Incremental

Powering
Medium

Diodes Breakdown High
Incremental

Powering
Low

Diode-leads
Thermal
Runaway

High
Incremental

Powering
Medium

Current-leads
Thermal
Runaway

Medium
Incremental

Powering
Low
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4.3.2 Powering Profiles

In developing the powering procedure it was important to distinguish between the aim of

the full qualification test and the aim of the type test. This section details the developed

powering profile for both test types.

Type Test Powering Procedure

The aim of the type test was to qualify the stability of the PC as well as the reliability of

the CSCM protection system. In view of the full qualification test, it was important to de-

termine the PC’s ramp-rate capabilities as well as its ability to perform a full programmed

decay with a time constant equivalent to that of normal operation. The protection sys-

tem’s reliability would be tested by ramping up the current until a thermal runaway was

induced for the purposes of detection. With machine protection being a priority, it was

decided also that long current plateaus be included, particularly for current levels exceed-

ing that of 4 TeV operation, 4.85 kA. This would allow for a gradual increase in circuit

temperature due to Joule heating, only inducing thermal runaways at the lowest possible

current. Furthermore, due to the low inductance, fast ramp-rates were possible, allowing

for a constant ramp-time of 12 s to be set and ramp-rates of up to 900 A/s. An example

powering cycle as well as the full devised test sequence are shown in Figure 4.6 and Ta-

ble 4.4, respectively.

Figure 4.6: Example of a typical CSCM type test powering cycle. Also shown are the corre-
sponding simulated voltages as would be measured by the installed protection system board types
mBS A (busbar) and mBS B (busbar and diode-leads).
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Table 4.4: Planned powering profiles for the CSCM type test.

Peak Current Ramp Rate Plateau Duration Quench Integral

[A] [A/s] [s] [106A2s]

1000 66.66 40 95

2000 150 40 365

4000 316.66 20 1060

4000 316.66 70 1933

6000 483.33 24 2675

6000 483.33 46 3470

6000 483.33 70 4335

6000 483.33 94 5200

8000 650 42 5904

8000 650 54 6672

12000 983.33 2 7507

Full Qualification Powering Procedure

The aim of a full qualification test is to prove that a circuit can be subject to the full

decay from 6.5 TeV equivalent current levels, ultimately mimicking the current decay

and accumulated quench integral as would be present in a quench event during normal

operation. The quench integral,

Γquench ≈ I2
0

∫ tquench

t0

dt+ I2
0

∫ ∞
tquench

e−
2t
τ dt, (4.1)

is the time-integral of the current squared from the onset of a quench [91], where I0 is the

current level at the onset of the quench, t and t0 are time and tquench is the time of initial

quench detection, respectively. τ is the current decay constant – derived from the circuit’s

total inductance, Ltot and resistance, Rtot, following

τ =
Ltot

Rtot

. (4.2)

Related to dissipated power, the quench integral is a quantity commonly used in supercon-
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ducting magnet systems design to calculate adiabatic estimates for hot-spot temperatures.

For a CSCM, the quench integral is used as a reference value with which to design the

final current profile. To qualify the circuit for 6.5 TeV operation, it follows that

ΓCSCM =

∫ ∞
0

I2dt ≡ Γquench(I0 = Inom + Idelta = 11.1 kA). (4.3)

where I0 is the sum of the 6.5 TeV operation current, Inom, 10.98 kA, and an additional

120 A safety margin, Idelta.

For simplicity, the resultant decay constant, current plateau length and ramp-time

were fixed across all tests at 92 s (slightly faster than nominal to account for diode-

opening, ramp-up and plateau phases), 2 s and 8 s, respectively – final numbers were

established taking into account type test performance. An example of a full qualification

powering cycle as well as the full devised test sequence are shown in Figure 4.7 and

Table 4.5, respectively. Note that to monitor any variation in circuit resistances, resistance

measurements were carried out at 400 A before and after each test.

Figure 4.7: Example of a typical full qualification CSCM powering cycle. Also shown are the
corresponding simulated voltages as would be measured by the installed protection system board
types mBS A (busbar) and mBS B (busbar and diode-leads).
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Table 4.5: Planned powering profiles for the full qualification CSCM.

Peak Current Ramp Rate Plateau Duration Quench Tax

[A] [A/s] [s] [106A2s]

2000 225 2 195

5000 600 2 1261

7000 850 2 2478

8600 1050 2 3743

10000 1225 2 5064

11100 1360 2 6240

11100 1360 2 6240

4.3.3 CSCM Simulator

Protection system thresholds had to be set high enough to prevent false trips, yet low

enough to prevent system damage in the event of a thermal runaway. To ensure relative

accuracy, thresholds were calculated via simulation.

For simplicity, it was determined that a 0–dimensional solver of the heat equation,

determining the voltage and temperature in a typical 41-m-long busbar as well as in a

single magnet bypass, would be sufficient.

The numerical solver was constructed in accordance with the following:

U = Ures + Uind, (4.4)

where

Ures = I ·
(
R′Cul +Rcont

)
(4.5)

and

Uind = L · dI

dt
. (4.6)

The total voltage, U , is determined by the sum of the resistive and inductive voltages, Ures

and Uind, respectively. I is the circuit current, L is the circuit inductance with all diodes

in a conducting state, R′Cul is the voltage across a specific length of busbar and Rcont is
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the sum of all encompassed contact resistances.

The accuracy of R′Cu relies heavily on the empirical relationship between the Cu sta-

biliser’s resistivity, ρCu, and its Residual Resistivity Ratio (RRR). Where

R′Cu =
ρCu

ACu

(4.7)

and

ρCu =
c0(

RRR + 1
c1
T5
Cu

+
c2
T3
Cu

+
c3
TCu

) + αB, (4.8)

where

RRR =
ρCu, ∼293K

ρCu, ∼0K

. (4.9)

The RRR is defined as the ratio between a metal’s resistivity at room temperature and just

above absolute zero (or as close as possible) [92]. Note that for RRR values in the expected

range of 200-400 [93], the RRR must be calculated in accordance with Equation 4.8, as

the Cu resistivity-temperature relation becomes non-linear above ∼15 K. Equation 4.8

shows that ρCu can be expressed as a function of empirical constants c0, c1, c2 and c3,

the busbar temperature, TCu, magneto-resistivity, α, and magnetic flux density, B. B is

calculated from the product of the current in the magnet and the corresponding dipole

magnetic transfer function [94], F ,

B = I · F. (4.10)

The busbar and helium temperature, TCu and THe, respectively, are calculated by using

the explicit method of solving the following 0–D heat balance equations (it is assumed that

all Joule heating occurs in the Cu stabiliser), where

CP ·
dT

dt
= PCu − PHe (4.11)

and

CV,He ·
dTHe

dt
= PHe, (4.12)
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where

CP =

(
∂H

∂T

)
p

=
∑

ρcpV (4.13)

and

CV,He =

(
∂HHe

∂T

)
v

= mHecv,He. (4.14)

PCu and PHe are the power dissipated in copper stabiliser and helium bath, respectively. H

is the system enthalpy and ρ, cp, V and m are the density, specific heat capacity, volume

and mass of a given material, respectively. CP is the heat capacity of the entire busbar

(Cu stabiliser, Nb–Ti strand and Sn–Ag solder included) for a constant pressure. CV,He is

the heat capacity of the helium bath for a constant volume. The power dissipated in the

copper is calculated following

PCu = I · Ures (4.15)

and the power dissipated in the helium is

PHe = κ · (TCu − THe). (4.16)

The heat transfer coefficient, κ, is an unspecified parameter representing the thermal con-

ductivity from the copper to the helium. This parameter is tuned following each powering

cycle, improving simulation accuracy for a given current level.

A final note is that, to manage simulation convergence, manually adaptive time-

stepping was utilised, with dt eventually being set to 1.8, 0.03, 0.379 and 0.45 s for the

diode opening, ramp, plateau and decay times, respectively.

4.3.4 Calculation and Setting of Protection Thresholds

To minimise risk, it was decided that unique thresholds be calculated for all individual bus-

bar segments. It was concluded that this would best be done by first calculating the RRR

of individual segments during CSCM system commissioning and subsequently establishing

the maximum U and dU/dt as a function of RRR. Busbar RRR values were calculated in

accordance with Equation 4.8, with segment specific temperatures being determined from

temperature probes installed at various locations along the Arc. Calculated RRR values

averaged 260, lying between 200-320 – in-line with previous measurement attempts [93].

Thresholds were calculated prior to each run, adding operational margins to simulated

maximum values for U and dU/dt as well as taking into account variations in temperature

and cooling.
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Figure 4.8: Plot of maximum individual busbar voltages as measured during a 6 kA CSCM cycle.
Also shown are the corresponding simulated values, both with and without tuning the heat transfer
coefficient, κ.

Using the simulator, U and dU/dt were calculated for each powering cycle with various

RRR values, 180-300, using the mean temperature at the time. Simulated values were then

plotted against measured values from the previous cycle and the heat transfer coefficient,

κ, was tuned accordingly, see Figure 4.8. Fit functions were determined and subsequently

applied to individual busbar segments, taking into account their respective lengths and

RRR, such that

U(RRR, l) = a0 · RRRb0 · l

lmode

, (4.17)

where a0 and b0 are the fit function constants and l and lmode are the specific and mode

busbar lengths, respectively. Note that the calculation of dU/dt (not shown) followed the

same principle.

Following simulation of segment specific voltages, additional margins were added to

reduce the probability of a false trip. Firstly, taking into account the ratio of measured to

tuned values, such that

Usim+err = Usim ·
Umeas,prev

Usim,prev

. (4.18)
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Secondly, to account for excess interconnect resistances as well as simulation errors and

potential unknowns, an additional 10% margin (100 mV minimum) was added. The max-

imum additional margins were set to 500 mV and 50 mV/s for U and dU/dt, respectively.

Protection System Sunglasses

As a CSCM test utilises fast current ramp-rates, large inductive voltages occur. The

dU/dt is therefore significantly higher during the current ramp than throughout the rest

of the powering cycle. As such, setting dU/dt thresholds high enough to prevent a trip

during the current ramp would result in the thresholds being too high to safely detect a

thermal runaway during the current plateau or decay. The solution to this problem was to

implement threshold ‘sunglasses’, similar to a mask or filter. Threshold sunglasses allowed

the dU/dt threshold to initially be elevated by a factor at the onset of the current ramp,

subsequently reducing to the nominal threshold after a defined time. This would, however,

mean that any thermal runaway induced during the ramp-up may only be protected by

the corresponding U threshold. Figure 4.9 illustrates the process as implemented. For the

full qualification tests, the elevation factor was set to 4 and the trigger voltage, Utrigger was

set to 40 mV.

Figure 4.9: Illustration of the implemented PS sunglasses, allowing one to temporarily raise
the dU/dt threshold during the current ramp to prevent false trips as a result of high inductive
voltages.

4.4 Sector 23 CSCM Type Test Results

To determine the safety of the proposed full qualification procedure, a type test was car-

ried out to qualify that all involved systems can successfully operate under the atypical
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operating conditions and that the calculated U and dU/dt thresholds are sufficiently ac-

curate to prevent excessive temperatures during a thermal runaway. The type test was

carried out prior to interconnect consolidation and with discontinuities remaining in the

system, thermal runaways were not only expected, but were deliberately induced. Such

a high risk test was approved as any system damage that may occur could be repaired

during LS 1 in the shadow of the consolidation campaign. This section details the results

and conclusions drawn from the type test.

4.4.1 Powering Cycles

The CSCM type test was carried out on the Sector 23 main dipole circuit. Prior to carrying

out the main powering cycles, all involved systems were commissioned to ensure correct

operation. The Arc cryostat’s temperature and pressure were regulated to specification

one week prior to testing and all mBS boards were installed, each being individually tested

for detection capabilities. Furthermore, the PCs current and voltage stability, ramp-rate

and programmed exponential decay were tested at low current levels. However, during PC

tests, multiple trips occurred at low current levels, <100 A, when attempting to ramp up.

This was found to be an issue with opening all 154 diodes simultaneously as several were

still sufficiently cold that the conducting voltage was 2.5-3 V. The solution was to initially

start with a reduced ramp rate of 10 A/s and to implement a plateau at 200 A. This

allowed all diodes to become conducting over a period of ∼60-80 s and, due to the varying

characteristics of individual diodes, opening times of individual diodes were spread. The

optimal length of the 200 A plateau was found to be ∼120 s and such a plateau was added

to the beginning of each powering cycle. Subsequent to all diodes opening, the desired

powering cycles could be carried out without issue.

Initial commissioning tests were carried out and the first few powering cycles were

performed without problems. Upon reaching 6 kA there were, however, no signs of a run-

away occurring and it was decided to increase the peak current to 7 kA. The results were

positive and the first thermal runaway, see Figure 4.10, was induced in one of the cell 22

busbar interconnects, ∼24 s into the current plateau. The runaway was successfully de-

tected and protected against, initiating a power abort as the voltage exceeded the defined

threshold. Each successive cycle induced runaways at various current levels, with varying

characteristics. All carried out tests are listed in Table 4.6.

The characteristics of the first thermal runaway were of particular interest as it was

immediately apparent that the runaway was not exponential but, in fact, begins to slow-

down. Such a slow-down phenomenon was not taken into account in the calculation of the

thresholds and, as a result, it took significantly longer than expected for the protection
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Figure 4.10: Plot of the 1st thermal runaway induced during the Sector 23 CSCM type test. Peak
current 7 kA. Runaway detected ∼24 s into the plateau.

system thresholds to be exceeded. Furthermore, such a slow-down effect rendered the set

dU/dt thresholds near-obsolete. Following analysis, it was decided to significantly reduce

threshold margins such that the maximum additional margins were 200 mV, down from

500 mV, and 30 mV/s, down from 50 mV/s for U and dU/dt, respectively.

Figure 4.11 shows the 8 kA powering cycle, with an induced thermal runaway being

detected and protected against ∼6.6 s into the current plateau. Reducing the maximum

threshold margins did result in detection prior to the witnessed slow-down phenomenon.

Figure 4.11: 2nd thermal runaway induced during the Sector 23 CSCM type test. Peak current
8 kA. Runaway detected ∼6.6 s into the plateau.

Subsequent to qualifying PC stability and thermal runaway detection, an ad-hoc test to

determine the PC’s maximum feasible ramp-rate and to fully qualify the protection system
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Table 4.6: All tests carried out during the CSCM type test.

Peak Current Ramp Rate Nominal Plateau Runaway Detection Quench Integral

[A] [A/s] [s] [s] [106A2s]

1000 66.66 40 n/a 94

2000 150 40 n/a 360

4000 316.66 70 n/a 1900

6000 483.33 46 n/a 3400

7000 566.66 40 24 1400

8000 650 14 6.6 710

7000 566.66 40 31.5 1770

9000 1466.66 10 4.25 710

6000 483.33 90 76 2900

sunglasses was carried out, ramping at 1466 A/s to 9 kA. The test was successful following

the first attempt, with the dU/dt threshold being successfully elevated throughout the

current ramp and a power abort only being initiated by the detection of a thermal runaway

during the current plateau. The fast ramp rate, however, resulted in significant current

overshoot immediately tripping the PC’s internal thresholds and initiating a power abort.

Further tests concluded that a value no greater than ∼1400 A/s should be used.

4.4.2 Simulator Accuracy

To qualify the accuracy of the CSCM simulator, simulated and measured functions for U

and dU/dt were compared for both BS A and BS B boards. Figures 4.12 shows compar-

ative plots for a typical busbar segment during a 6 kA power cycle. Results show a good

agreement with BS A measurements but a large discrepancy for BS B values (includes

diode-leads contacts). This resulted in the thresholds for all BS B boards being increased.

The discrepancy of ∼22 µΩ is likely due to a previously observed phenomenon in which

diode-lead contact resistances have a tendency to increase at current levels of 5-10 kA

[95]. This phenomenon was discovered during cold-diode specific experiments carried out

in CERN’s SM18 test facility in 2011 where diode to heat-sink contacts resistances were

shown to increase by up to ∼30 µΩ, see Figure 4.13. Excess resistances were, however,

shown to decrease as current levels exceeded 10 kA, i.e. an 11.08 kA full qualification test

may stabilise or even reverse this effect. Neither of these effects are fully understood and

further investigation is underway [96].
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Figure 4.12: Comparative plots of the U simulated and measured values during a successful 6 kA
CSCM cycle for both BS A and BS B protection system board types.

Figure 4.13: Plot of contact resistances as measured across 30 spare diodes during an SM18 test
campaign. Resistances show a trend of increasing when submitted to current levels of 5-10 kA, but
then decreasing to a plateau as current levels exceed 10 kA. Test data courtesy of G. Willering.
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Figure 4.14 and 4.15 show a direct comparison of all simulated and measured values for

U and the maximum U and dU/dt simulation error, respectively. Overall, simulations are

in good agreement with measured values and tuning for errors allow simulation accuracy

to either remain consistent or improve with each current cycle. Overall, it was concluded

that the CSCM simulator was of sufficient accuracy for at least the BS A voltages and

that it may be used for the calculation of thresholds for full qualification tests.

Figure 4.14: Comparative plot of measured and simulated values for Umax for all busbar segments.
Results are in good agreement with each other.

Figure 4.15: Maximum U and dU/dt simulation errors for each current cycle. Errors remain
consistent and or decrease from one cycle to the next as a result of simulation tuning.

4.4.3 Simulation of Thermal Runaways

To further understanding of the induced thermal runaways, in particular, the observed

slow-down phenomenon (discussed in Section 4.4.1), detailed simulations were carried out
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using CERN’s own QP3 software [97]. QP3 is a 1–D numerical solver specifically designed

to simulate longitudinal quench propagation (heat diffusion along the current flow axis).

QP3 follows the same equations used in the CSCM solver, but has the additional capacity

for longitudinal discretisation. This allows for the simulation of an interconnect disconti-

nuity by means of specifying a localised highly resistive section.

QP3 was configured to simulate a powering cycle across a typical 41-m-long busbar

segment, with an average RRR of 249 (as was calculated for the busbar segment in which

the thermal runaways were occurring), corresponding material properties for Cu, Nb-Ti

and Sn-Ag and a discretisation of 1 mm. Furthermore, a section of variable length and

an arbitrarily reduced value for the RRR of 50, representing a interconnect discontinuity

was included. Using QP3, by variation of the defect size, it was possible to not only

simulate all induced thermal runaways with relative accuracy but also the observed slow-

down phenomenon. Table 4.7 lists the defect parameters used to model each runaway as

well as the corresponding temperature hot-spot. As shown, the defect resistance used to

simulate each thermal runaway was approximately 33 µΩ.

Table 4.7: Defect characteristics used in modelling the B22L3.1 thermal runaway.

Peak Defect Defect Defect Hot-Spot

Current RRR Length Resistance Temperature

[A] [-] [mm] [µΩ@300 K] [K]

7000 50 25.05 32.6 560

8000 50 25.8 33.5 185

7000 50 25.2 32.8 340

9000 50 25.8 33.5 142

6000 50 21.75 28.5 440

Figure 4.16 shows a comparison between the measured data and simulation. In simu-

lating the slow-down phenomenon, it was assumed that a plausible scenario could be that

remnant solder was isolated in the interconnect gaps – depicted in Figure 4.17. As such, to

match measured data, the slow-down effect was modelled by implementing a temperature

dependant parallel resistance of 50 µΩ (at 20 K) across the discontinuity, which begins to

share the current as the defect temperature and resistance increases.

61



CHAPTER 4. COPPER STABILISER CONTINUITY MEASUREMENT

Figure 4.16: Comparative plot of the simulated and measured thermal runaway induced during
the 1st 7 kA cycle. The slow-down phenomena was modelled by means of a parallel resistance
across the discontinuity.

Figure 4.17: Illustration of a typical busbar interconnect, depicting a good and bad connection as
well as a plausible location for remnant solder creating a parallel resistance.

Simulation results suggested a local hot-spot temperature of ∼560 K during the first

thermal runaway – far exceeding the melting point of solder, ∼456 K. If the slow-down

effect was stronger and the voltage threshold was not exceeded until much later, electrical

arcing and subsequent structural damage would almost certainly have been the result.

This is a clear example of the importance of accurate threshold calculation and conserva-

tive detection margins. All subsequent tests were carried out with significantly reduced

thresholds margins, leading to much lower hot-spot temperatures.
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4.4.4 Type Test Summary

The constructed 0–D CSCM simulator allowed for relatively accurate simulation of the

busbar voltages across a range of peak current levels. It was, however, discovered that,

due to erratic diode-lead contact resistances, accurate simulation of magnet bypass volt-

ages was not possible and a constant value for all rather than segment specific margins

were added to all BS B thresholds. Furthermore, in carrying out the type test, an un-

predicted phenomenon was observed, in which a thermal runaway would begin to slow

down. As a result, both U and dU/dt threshold margins were significantly reduced for

subsequent tests to guarantee safe operation. The phenomenon was successfully modelled

using QP3 software by simulating a parallel resistance across an interconnect discontinuity.

In summary, all powering and protection systems were qualified to specification. The

PC was proven capable of supplying sufficient voltage, operating with ramp-rates exceeding

∼1 kA/s and successfully performing the programmed exponential current decay. The

installed protection systems successfully detected and protected against induced thermal

runaways without measurable damage. It was, therefore, concluded that a full qualification

CSCM test, as proposed, would pose minimal system risk and that an LHC-wide campaign

could and should be carried out post-consolidation.

4.5 LHC-Wide Full Qualification Test Results

Following the successes of the CSCM type test, full qualification tests were carried out post-

consolidation on all main dipole circuits. This section details the results and conclusions

of the test campaign.

4.5.1 Powering Cycles

Similar to the type test, each circuit’s pressure and temperature were regulated and in-

dividual systems were commissioned prior to carrying out the CSCM tests. As discussed

in Section 4.2.3, the protection system was now commissioned using normal operation BS

boards in a CSCM mode rather than the CSCM specific mBS boards.

Following the full qualification procedure (Section 4.3.2), each circuit was subject to a

series of powering cycles with a programmed exponential current decay, mimicking that of

an equivalent quench event. Each successive step in the series is an incremental increase

in peak current. In contrast to the type test, all circuits exceeded 7 kA without fault and

were eventually subject to the full programmed current decay from 11.1 kA. Testament to

the effectiveness of LS 1 consolidations, no thermal runaways were detected throughout the
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entire campaign of ∼150 tests. As an example, Figure 4.18 shows all successful powering

cycles carried out on the Sector 23 circuit during the full qualification CSCM – protection

system commissioning tests and all 400 A resistance measurements are included.

Figure 4.18: Plot of all carried out powering cycles used to fully qualify the Sector 23 circuit
to 11.08 kA. Plot shows all main current cycles, protection system commissioning tests and
intermittent 400 A resistance measurements.

RRR Measurements

For accurate calculation of protection system thresholds, individual busbar segment resis-

tances were measured and RRR values were calculated in accordance with Equation 4.8.

Figure 4.19 shows the statistical distribution of RRR values measured per sector. Values

are in-line with manufacturing specifications and previous tests and predictions [93].

4.5.2 Analysis of 400 A Resistance Measurements

Due to the erratic diode characteristics observed during the type test, 400 A resistance

measurements were carried out before and after each powering cycle to monitor busbar

and magnet bypass resistance trends and outliers. This section details the results of these

measurements.

Busbar Resistances

Figure 4.20 shows the global busbar resistance averages as measured by all BS A boards

(busbars only). In contrast to the type test, all resistances remained relatively low and

consistent throughout, averaging 16 µΩ. Results provide conclusive evidence that all in-

terconnects were properly consolidated and all lyres are intact. The busbar’s Cu stabiliser
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Figure 4.19: Boxplot of the per sector statistical distribution of busbar RRR values. Black and
blue boxes represent the upper and lower interquartile ranges, respectively. Lines show the 5th
and 95th percentiles. All sectors are in-line with the manufacturing specifications and previous
tests and predictions.

can therefore be concluded capable of withstanding 6.5 TeV equivalent current levels of

at least 11.1 kA.

Figure 4.20: Global busbar resistance averages for all sectors as measured following CSCM pow-
ering cycles. All resistances remained relatively low and consistent throughout.

Magnet Bypass Resistances

Magnet bypass resistances were derived from the difference in bypass voltages, i.e. DS B -

DS A. Results are shown in Figure 4.21. As predicted, they were notably less consistent

than the busbar measurements. Similar to the type test, measured resistances were ob-
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served to increase following powering. Furthermore, similar to the SM18 diode experiments

(discussed in Section 4.4.2) resistances began to saturate and or decrease as current levels

exceeded ∼8-10 kA.

Figure 4.21: Global bypass resistance averages for all sectors as measured following CSCM pow-
ering cycles. Note the initial rise, saturation and recovery trend arising as current levels increase.

Table 4.8: Largest recorded resistance increases across a magnet bypass. Recall that the largest
witnessed increase in SM18 diode experiments was only 30 µΩ.

Magnet Peak Initial Peak Resistance PS

Bypass Current Resistance Resistance Increase Trip

[-] [A] [µΩ] [µΩ] [µΩ] [-]

B22R3 10000 29.0 384.1 355.1 Yes

B9L5 10000 35.4 155.3 119.9 No

C12L6 11080 14.6 127.5 112.9 No

Table 4.8 details the three largest resistance increases measured from one cycle to the

next. As shown, the greatest increase in resistance from one cycle to next was measured

at 355.1 µΩ – 10 times the largest increase observed in SM18 experiments. In this cir-

cumstance the protection electronics triggered ∼10 s into the programmed decay even

without the notable occurrence of a thermal runway. Looking at the difference in mea-

sured diode-lead resistances from the both DS and BS measurements, i.e. (DS B-DS A)

- (BS B-BS A), it was possible to deduce that the build-up of excess resistance occurred

in at least two contact resistances and as a result pose much less risk. Furthermore, if
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the excess resistance was to be generated in the diode stack contacts which have no ad-

jacent heat sink, the temperature would have been at least an order of magnitude higher

and would have undoubtedly resulted in a trip and or structural damage. Therefore, one

can conclude that most, if not all, abnormally high excess resistances were present in the

diode-to-heat sink contacts and pose minimal risk.

Due to the presence of such high resistances, it was decided not to proceed with the

CSCM as normal, but to attempt to deliberately induce the recovery / resistance-reduction

effect seen as current levels exceed 10 kA. However, rather than powering to 10+ kA, it was

decided to first to perform a stepped powering cycle with 1 kA increments and relatively

long ∼20 s plateau, up to a maximum of 5 kA. This was in attempt to deliberately heat

up the highly resistive contacts to see if the recovery effect was in some way related

to a critical energy density in the contacts, i.e. could be induced via excessive Joule

heating. The results were successful, reducing the critical bypass resistance to just below

55 µΩ, a 329 µΩ reduction. As a result, the stepped cycle was used twice more during

the campaign for circuits in Sectors 45 and 56 to reduce the other contact resistances

that exceeded 100 µΩ. Note that these resistance increases occurred during otherwise

successful powering cycles. Figure 4.22 shows the two largest resistance increases during

otherwise successful powering cycles, i.e. no protection system trip. The linear trend of

the increase throughout the decay does suggest a steady build of an excess resistance layer

– hypothesised to be the production of a resistive nickel-oxide layer between the diode

casing and its heat sink [96]. Figure 4.23 shows an example of the devised stepped cycle

being implemented to deliberately induce the observed recovery phenomenon. As shown,

the bypass resistance significantly reduces from ∼150 µΩ to below 50 µΩ.

4.5.3 LHC-Wide Full Qualification Summary

In carrying out the full test procedure LHC-wide, all circuits were eventually subject

to a full decay from 11.08 kA, fully qualifying all potentially weak components in the

circuit and allowing magnet training to be carried out with the lowest achievable risk.

The campaign also revealed invaluable information regarding the predictability of bypass

contact resistances, including the true extent of potential bypass resistance increases from

one powering cycle to the next. In view of the observations, a devised stepped cycle

was successful in reducing excessive resistance build up in the diode-to-heat-sink contacts

providing a direct and repeatable solution to the issue. Such a powering cycle could even

be used in the event of critical resistance increase occurring during a training quench.

Overall, the full qualification test campaign was deemed a success and magnet training

was allowed to proceed.
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Figure 4.22: Plots of the two largest bypass resistance increases measured throughout otherwise
successful powering cycles. Both shown increases exceed 100 µΩ.

Figure 4.23: Plot of the devised stepped cycle (red) utilised to reduce the relevant bypass resis-
tances by excessive Joule heating. Note that the resistance is decreased from ∼150 µΩ to below
50 µΩ and remains so throughout the following powering cycle. The preceding 10 kA (blue dashed)
and subsequent 11 kA (blue dotted) cycles are also shown.
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4.6 Magnet Training Outcome Statistics

Following the successes of the CSCM campaign, training of all main dipole magnets was

carried out between December 2014 and April 2015. Figures 4.24 shows the training

statistics by sector. Recall that predictions would see ∼84 quenches to achieve 6.5 TeV in

total. Early in the training campaign it was clear that these predictions were unrealistic,

with the first few sectors taking ∼20 quenches to reach 11.08 kA (Idelta was reduced to

100 A to minimise the required training). Sector 45 alone took over 50 quenches to fully

train. In total, there were 179 training quenches, more than double that of predictions

(Section 3.2.1), including a number of detraining quenches occurring intermittently. The

discrepancy in predictions compared to empirical statistics is, however, thought to be re-

lated to how Firm 3 magnets have developed over the course of Run 1 operation. Taking

into account existing quench data, it was expected that Firm 3 magnets would require

more training, however, Figure 4.25 shows that ∼80% of all training quenches were for

Firm 3 magnets – far greater than any prior estimates. There is also a correlation with

the total number of training quenches per sector to the ratio of installed Firm 3 magnets.

In total, 158 different magnets required retraining, with 1064 retaining their memory up

to 6.5 TeV post-installation and Run 1 operation. Table 4.9 shows that the majority of

quenches were on unique magnets with only 9 magnets having to be quenched twice and

only one magnet having to be quenched 3 times. To further understand the statistics and

phenomena involved as well as to make more accurate predictions for any future training

campaigns, e.g. to 7 TeV, a specific working group, the ‘Quench Behaviour Team’, was

formed as of July 2015 [98].

Table 4.9: Number of individual magnets that quenched more than once. 9 magnets required
more than one training quench. Only one magnet required 3 training quenches.

Manufacturer No. Magnets No. Magnets No. Magnets

(No. Magnets) Quenched Once Quenched Twice Quenched 3 times

Firm 1 (400) 5 0 0

Firm 2 (420) 27 0 0

Firm 3 (412) 126 9 1

Total (1232) 158 9 1

69



CHAPTER 4. COPPER STABILISER CONTINUITY MEASUREMENT

Figure 4.24: Training quench statistics across all sectors. Sector 45 is a notable outlier requiring
>50 training quenches. A total of 179 training quenches were required to train all sectors to
11.08 kA.

Figure 4.25: Training quench statistics, arranged by magnet manufacturer. It is clear that Firm
3 magnets required significantly more retraining than both Firm 1 and 2.
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4.7 Chapter Discussion & Conclusions

Subsequent to the re-machining of all busbar interconnect discontinuities, it was proposed

that a new qualification method be developed to ensure no issues remain, especially with

magnet training predictions of >84 quenches. The result was the development of the

copper stabilizer continuity measurement. The CSCM project saw the development and

implementation of a new method of electrical qualification for the stabiliser and passive

magnet bypass components of a superconducting magnet string. The aim was to fully qual-

ify that a given circuit’s stabiliser and magnet bypass circuitry can withstand a current

decay equivalent to that of a quench event at the maximum expected operating current

- in this case 11.08 kA. The test involved operating at 20 K, i.e. just above the critical

temperature of Nb–Ti. This forced current to flow through the busbar’s Cu stabiliser

and each magnet bypass, qualifying the stability and continuity of all encompassed con-

tacts and interconnects. A number of engineering challenges arose with solutions which

involved the reconfiguring of the PCs and modification of the existing protection systems.

Furthermore, with thermal runaways being a possibility, machine protection was of sig-

nificant importance. A preliminary risk assessment concluded that the procedure should

involve a series of powering cycles, with each cycle increasing in peak current until either

a failure occurs or the maximum current profile has been carried out successfully, without

measurable non-conformities or system damage. Furthermore, due to the non-standard

operating conditions, all powering and protection systems were to be fully commissioned

both before powering and after being switched back for normal operation.

To further investigate the risk involved in carrying out a CSCM test, a pre-consolidation

type test was carried out to qualify all powering and protection systems. In addition, a

CSCM simulation program was developed to allow for the calculation of accurate protec-

tion system thresholds for individual busbar segments and magnet bypasses. The type test

concluded with all systems being successfully qualified under the atypical conditions and

all induced thermal runaways being successfully detected and protected against. There

were, however, unpredictable diode-lead characteristics similar to that witnessed in SM18

diode specific experiments as well as unexpected phenomena occurring wherein a thermal

runaway induced in a busbar splice began to slow down, resulting in near-critical hot-spot

temperatures. As a result, all threshold margin were significantly reduced. All subsequent

tests were within specification. It was therefore deemed safe to proceed with an LHC-wide

full qualification campaign. Overall, the type test was deemed a success and an LHC-wide

full qualification campaign was scheduled for all main dipole circuits, post-consolidation.

The LHC-wide full qualification campaign also incorporated 400 A resistance measure-

ments between each powering cycle to give information regarding busbar and bypass-diode
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resistance trends. As expected following interconnect consolidation, all busbar resistances

remained relatively low and consistent throughout. However, numerous diode-to-heat-

sink contact resistances were noted to significantly increase from one powering cycle to

the next, up to 10 times that of previous observations. To minimise the threat posed by

such resistance increases, a stepped powering cycle was developed to deliberately induce

the recovery trend observed in SM18 diode specific tests. The results were successful,

reducing excess resistances by a factor of 7. The campaign continued and eventually

concluded with all circuits being subject to a full programmed exponential decay from

11.1 kA, without measurable damage. As a consequence, magnet training could be car-

ried out systematically with the minimum possible risk.

Magnet training to 6.5 TeV equivalent current levels was carried out on all circuits.

Although exceeding twice that of predictions, further justifying having done CSCM, all

sector’s magnets were eventually qualified to 11.08 kA following 179 magnet quenches,

158 of which were on separate magnets. It was clear that, as predicted, Firm 3 magnets

performed the worse, being the source of over 80% of all magnet quenches. All results

must be taken into account in considering any further training beyond 6.5 TeV.

Overall, the CSCM format provides a systematic and conclusive means of qualifying

the safe operation of a superconducting magnet string to a specific current level. The

procedure is adaptable to any circuit of a similar type and, as such, could be implemented

for other magnet circuits of the LHC for future qualification and or could be utilised in

other or new accelerators as an integral part of hardware commissioning.
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Chapter 5

UFO Event Modelling

Unidentified falling objects (UFOs), hypothesised to be falling dust particles interacting

with the beam, were shown to be producing millisecond spikes in beam losses at various

locations throughout the LHC, the energy deposition of which could potentially quench

adjacent dipole magnets. To investigate, a numerical model was constructed which was

capable of simulating a typical UFO event as well as calculating the resultant energy depo-

sition in adjacent magnets. Following construction of the model, Monte-Carlo simulations

were carried out to reproduce measured data from 2012 and to estimate quench probability

predictions for 6.5 TeV operation. This chapter, based on works presented in the listed

publications [p1] and [p4], details the development and subsequent use of the numerical

model.

5.1 UFO Event Model

In order to determine the true extent of the threat posed by UFOs and to study plausible

mitigation strategies, a UFO event model was constructed. The aim was to develop a

model capable of reproducing measured 4 TeV UFO events, giving insights into the un-

derlying phenomena, as well as allowing for extrapolation to 6.5 TeV equivalent scenarios,

to determine whether or not the resultant particle shower would be capable of quenching

adjacent dipole magnets.

The model determines the likelihood of a UFO event quenching an adjacent magnet by

calculating the resultant beam losses and the corresponding BLM signals. In accordance

with [99], the corresponding integrated loss rate picked up by a BLM at which an adjacent

magnet would quench follows

BLMsignal@quench =
BLMresponse(Tp, tint) · Tquench(tint) ·QLU(tint)

Tdeposited(tint)
, (5.1)
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where tint is the integration time and Tp, Tdeposited and Tquench are the proton energy, the

energy deposited in the magnet and the energy deposition required to quench, respec-

tively. QLU is the quench level uncertainty factor – a remaining unknown (detailed in

Section 5.1.3). The BLM signal itself is calculated following

BLMsignal = Ṅp(t) · BLMresponse, (5.2)

where Ṅp is the total proton loss for a given interaction, i.e. the integrated number of

inelastic collisions, and BLMresponse is the BLM signal per lost proton as calculated nu-

merically by FLUKA simulation. FLUKA is CERN’s own general purpose software tool

for calculating outcomes of particle interactions with matter [100].

5.1.1 BLM Configuration & UFO Event Recording

LHC BLMs have multiple running sums (RS), i.e. integration times, and the ability to set

specific thresholds for each. It follows that, as the duration of a typical UFO event is of

the order of 1 ms, RS4 (tint = 640 µs) is the most appropriate and therefore only the RS4

threshold is altered to protect against UFO events. Furthermore, for a UFO event to be

recorded if the peak BLM signal does not exceed the RS4 threshold, it must exceed a lower

post-processing threshold which is applied by the so called UFO Buster [83]. Algorithm 1

shows the filtering process which is applied by the UFO Buster to raw data in order for a

UFO event to be recorded.

Algorithm 1 Run 1 UFO Buster Analysis

for All Arc BLMs do
if 2 BLMs within 40 m detect max (RS(640 µs, t)) /640 µs > 0.1 Gy/s then
Nufo = Nufo + 1 (Accumulative No. of UFOs)

end if
end for

The process defines the requirement for at least two BLMs within 40 m of each other

to have picked up a BLM signal in RS4 which is at least five times greater than the

background noise, i.e. >0.1 Gy/s. This prevents the recording of single BLM signal spikes

and minimises the data to significant events. Note that this is all done in post-processing

and that the UFO Buster algorithm can be altered such that a new and corresponding

UFO database can be acquired at any time.
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5.1.2 Run 2 Repositioning of BLMs

With dust and debris not being observed to have affected previous proton accelerators, it

was not taken into consideration in designing the LHC. As a result, BLMs along the Arcs

were only installed adjacent to the quadrupole magnets because in focusing and defocusing

the beam they incur significant transverse effects as well as the fact the magnet aperture

and transverse beam dimensions are at their largest at these locations [61]. However, with

the discovery of the UFO phenomenon throughout Run 1, it was decided that redundant

BLMs should be relocated in order to detect losses in the dipole magnet sections. Fig-

ure 5.1 depicts the planned BLM relocation within a typical Arc half-cell – carried out

LHC-wide. This relocation significantly increases coverage, but is at the expense of re-

dundancy.

Figure 5.1: Illustration of the LS 1 relocation of BLMs in a typical Arc half-cell. Relocation
reduces blind spots, allowing the monitoring of beam losses in the dipole regions.

Figure 5.2 shows the simulated BLM response for both Run 1 and Run 2 BLM loca-

tions. It is clear that the planned repositioning of the BLMs for Run 2 does significantly

increase coverage. Note that proton losses adjacent to quadrupoles produce signals a fac-

tor of 3 larger than those adjacent to the dipoles and that this must be taken into account

for Run 2 statistical analyses. Simulations were carried out by A. Lechner.

To take into account the fact that the factor of 3 difference in signal response for the

quadrupoles would bias statistics, an adjustment was proposed for the BLM algorithm for

which BLM thresholds in the quadrupoles would be reduced accordingly. However, as this

was not necessary for machine protection and would only affect UFO event statistics, the

algorithm was not altered and the factor of 3 difference in signal response was only taken

into account for data analysis, i.e. post-processing.
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Figure 5.2: FLUKA-modelled 6.5 TeV per proton BLM signal response for a given location of
an inelastic collision along a typical Arc cell. Signal response is shown for both pre-LS 1 (top)
and post-LS 1 (bottom) BLM configurations. Results show the post-LS 1 configuration to have
significantly increased coverage. Simulations data courtesy of A. Lechner.

5.1.3 Quench Level Uncertainty

As discussed in Section 3.3.4, there are numerous scenarios other than UFO events which

may result in sufficient localised beam losses to quench an adjacent magnet. Simulations

of such event have been carried out in the past [101], however, with little empirical data,

significant discrepancies between the quench data and simulations results remain. Fig-

ure 5.3 shows the correlation between simulation and the only three available measured

beam-induced quench data points. Simulations are in good agreement with measured data

for loss events which last several seconds or are as short as a few microseconds. However,

there is a significant discrepancy of up to a factor of 4 in the millisecond time range. Due to

the lack of measured events, the validity of both simulation and measured data remained

questionable and for the purposes of this study, a quench level uncertainty (QLU) factor

was introduced.
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Figure 5.3: Comparative log-log plot of the minimum energy density required to quench as a func-
tion of loss duration. Note the discrepancy of a factor of 4 between measured data and simulation
in the millisecond range. To account for this discrepancy in setting the BLM thresholds, a quench
level uncertainty (QLU) factor is introduced. Data courtesy of B. Auchmann [99].

5.1.4 UFO Event Analytical Model

To calculate the proton loss rate, −dNp/dt, an analytical model was developed in order to

simulate a typical Arc UFO event using plausible input parameters. This section describes

the developed model.

Beam size

It was important that any variation in beam size and or shape along the Arc was taken

into account. Horizontal and vertical beam sizes can be derived from the emittance and

respective beta functions in accordance with [15], such that

σx(s) =
√
βx(s)ε, (5.3)

σy(s) =
√
βy(s)ε, (5.4)

where ε is the emittance and σx, σy, βx and βy are the horizontal and vertical beam sizes

and beta functions, respectively. Furthermore, transverse beam dispersion due to inho-

mogeneous bunch energies in the horizontal plane is also taken into account such that

∆x = Dx(s)
∆p

pnom

(5.5)
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where Dx is the dispersion function, pnom and ∆p are the nominal particle momentum and

the deviation from nominal, respectively, and ∆x is the difference in horizontal position

with respect to nominal energy particles [37]. The dispersion function maxima and minima

is given by

D±x (s) =
Lθ

sin2 ψ
2

(
1± 1

2
sin

ψ

2

)
, (5.6)

where the bending angle

θ =
ldipole

rdipole

(5.7)

is acquired from the length of each dipole, ldipole and the bending radius the dipole infers

on the beam, rdipole. For a magnetic lattice with dipoles of equal bending angles, the per

cell phase advance

ψ ≈ π

2
. (5.8)

The β (in meters) for a given location, accounts for transverse particle motion and is

one of the main Twiss parameters used in the development of an accelerator’s magnetic

lattice (discussed in Section 1.6.4). Following [37], the maximum beta function is defined

by

βmax =
2L

sinψ

(
1 + sin

ψ

2

)
, (5.9)

and L is the length of a typical Arc half-cell, ∼55 m. Taking this into account, a parabolic

fit for the beta functions along an Arc cell can be defined, such that

βx(s) =

{
L
2

+ 2(s+b)2

L
, if s < L,

L
2

+ 2(s−(b+2L))2

L
, if s > L,

βy(s) =

{
L
2

+ 2(s−(b+L))2

L
, if s < L,

L
2

+ 2(s+(b−L))2

L
, if s > L,

(5.10)

(5.11)

where s is the longitudinal distance along the cell and

b =
1

2

√
2Lβmax − L2 − L. (5.12)

The emittance, ε, can be calculated from the normalised emittance, εn (4 µm for Run 1,

2.4 µm for Run 2) in accordance with [37], such that

ε =
εn
γβ
∼ εn

γ
, (5.13)
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where γ is the relativistic Lorentz factor, calculated from the proton mass, mp, and kinetic

energy, Ep, corresponding to

γ = 1 +
Ep

mpc2
, (5.14)

and the relativistic beta

β =
vp

c
, (5.15)

where c is the speed of light in a vacuum and vp the proton velocity, i.e. 99.9999991%

the speed of light.

Figure 5.4 shows the resultant 3–D beam profile for a typical Arc lattice cell as con-

structed from the above equations.

Figure 5.4: 3–D illustration of the transverse beam profile variation along a typical LHC Arc
cell. Note that the profile varies from predominately vertical to predominately horizontal and
back again, following the magnetic lattice. The image shown is longitudinally not to scale.

Beam-Charge Distribution

For simplicity, it is assumed that the transverse beam distribution follows a normal Gaus-

sian distribution. Furthermore, as the time scale of interaction has been observed to be

in the order of 1 ms and the circulation time for each bunch is approximately ∼89 µs,

it is assumed that the beam can be simulated as continuous rather than being bunched

or having significant gaps, for example, the abort gap [102]. Even though continuous,
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following special relativity, the distance between charges, in the rest frame of the protons,

still appears stretched by the Lorentz factor with respect to the laboratory frame, such

that

τ = γτ ′, (5.16)

where τ and τ ′ are the laboratory and rest frame charge densities with respect to the beam.

It follows that τ ′ can be defined as

τ ′(x, y) =
Npe

γC2πσxσy
e
− x2

2σ2x
− y2

2σ2y . (5.17)

where Np is the number of protons in the beam, e is the electron charge, C the LHC

circumference and the exponential component accounts for the Gaussian beam size and

distribution. The function for current density in the laboratory frame can therefore be

acquired in accordance with

J(x, y) =
Npfe

2πσxσy
e
− x2

2σ2x
− y2

2σ2y , (5.18)

where the revolution frequency, f , follows

f = vp/C ≈ c/C. (5.19)

Electric Field

The transverse electrostatic and corresponding magnetic fields in reference to the labo-

ratory frame, ~Eb and ~Bb, are related to the those of the rest frame of the protons, in

that

~Eb = γ ~E ′b (5.20)

~Bb =
γ

c2
~vp × ~E ′b. (5.21)

Note that the Lorentz factor of the charge density is balanced by the same factor in the

fields. This allows one to calculate ~Eb and thus ~E ′b from Equation 5.18. Furthermore,

note that the beam’s magnetic field influence is a second order effect and for simplicity is

not taken into account in this model.

In accordance with the Bassetti-Erskine formula for a 2-D Gaussian charge distribution
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[103], one can find that for σx > σy,

σ0 =
√

2(σ2
x − σ2

y), (5.22)

z1 =
1

σ0

(
x
σy
σx

+ jy
σx
σy

)
, (5.23)

z2 =
1

σ0

(x+ jy), (5.24)

such that

z2
1 − z2

2 = − x2

2σ2
x

− y2

2σ2
y

, (5.25)

giving (similarly for σy > σx),

Ex =
Npe

2ε0C
√
πσ0

Im
(
w(z2)− e(z21−z22)w(z1)

)
,

Ey =
Npe

2ε0C
√
πσ0

Re
(
w(z2)− e(z21−z22)w(z1)

)
,

(5.26)

(5.27)

where ω(z) is the complex generalisation of the error function, sometimes referred to as

the Fadeeva function [104],

w(z) = e−z
2

(
1 +

2j√
π

∫ z

0

eζ
2

dζ

)
. (5.28)

For a circular beam profile, i.e. σy = σx = σ, certain values tends towards zero,

producing numerical instabilities. However, following [105], one can assume that the

complex error function has an asymptotic expansion, such that

w(z) ≈ j√
πz
, (5.29)

resulting in,

Ex = − Npe

2πε0C
Im
( 1

jx− y

)(
1− e−

x2+y2

2σ2

)
,

Ey = − Npe

2πε0C
Re
( 1

jx− y

)(
1− e−

x2+y2

2σ2

)
.

(5.30)

(5.31)

Figure 5.5 depicts the resultant electric field as produced by the beam for various

longitudinal locations and beam profiles.
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Figure 5.5: Resultant electric field map of the proton beam as it varies along the an Arc half-cell.
Three locations shown, s = 0, L2 , L, where L is the half-cell length. Colour depicts the variation
in charge density.

Mirror-Charge Effects

As the beam screen contains highly conductive copper lining (see Chapter 2 Section 1.6.2),

mirror charges must also be considered. Following [79], the forces exerted on a macropar-

ticle due to the mirror charge is given by

~Em =
Qe

16πε0d2
1

~en1 +
Qe

16πε0d2
2

~en2 , (5.32)

where Q is the beam charge, d1 and d2 denote the vertical distance of the particle from

the upper and lower horizontal surfaces of the beam screen, such that

d1 = h− y,

d2 = 2h− d1

(5.33)

(5.34)

with h being half the height of the beam screen and ~en1 and ~en2 the respective normal vec-

tors. The result is that mirror charges are therefore most prevalent when the macroparticle

is close to the beam screen surface.

5.1.5 UFO Dynamics

Progressing on previous theoretical works [79], [106] and [107], the following details the

implemented macroparticle dynamics.
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UFO Equation of Motion

The macroparticle acceleration at any given time is defined as a function of its transverse

location, such that

~̈r(x, y, t) =
Q(t)e

mmp

~E(x, y) + ~g, (5.35)

taking into account the macroparticle charge, Q, gravity, g, and the forces exerted by the

beam’s electric field, ~E, where e is the electron charge and mmp is the macroparticle mass.

UFO Charge Rate & Electron Escape Energy

Elastic collisions during a UFO event may result in the positive ionisation of the macropar-

ticle as electrons are ejected. As a result, the charge rate, Q̇, plays an integral role in the

electric field influence. The charge rate can be derived from the distribution of knock-

on electrons in accordance with [109] (related to the Bethe-Bloch formula for stopping

power [108]), taking into account relativistic influences and proton specific charge and

spin-dependences following [110], such that

∂2Ne

∂T∂smp

≈ 2πr2
emec

2n
1

T 2
, (5.36)

where Ne is the number of knock-on electrons, T is the kinetic energy transferred to the

electron and smp is the incident proton penetration depth. The classic electron radius (all

constants) follows

re = e2/(4πε0mec
2), (5.37)

where me is the electron mass and ε0 the vacuum permeability. Finally, the electron

density

n = (NAZρ)/(AMu), (5.38)

where NA is Avogadro’s constant, Z and A are the atomic number and relative atomic

mass of the macroparticle material, respectively, ρ the macroparticle density, and Mu the

molar mass constant. The resultant charge rate formula is therefore

Q̇(x, y, t) =

∫
a

∫
S

∫ ∞
Tmin

J(x, y)
∂2Ne

∂T∂smp

dT dsmp da, (5.39)

where a is the macroparticle’s cross-sectional area, S the average path-length of the in-

cident proton through the particle, and J is the proton beam current density, see Equa-

tion 5.18, with a total current of Npef , where f is the LHC revolution frequency. Evalu-
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ation of Equation 5.39 gives

Q̇(x, y, t) = − 2NpfR
3πNAr

2
emec

2ρ

3σxσyTmin(Q(t), R)Mu

e
−−x2

2σ2x
−−y2

2σ2y , (5.40)

where Tmin is the minimum transferred energy required to eject a free electron. For sim-

plicity, it is assumed that the maximum energy transfer is infinite as Tp¿¿Tmin.

In previous models, the Coulomb potential, ϕ, was taken as the minimum energy for

an electron to be ejected. However, for the electron to leave the macroparticle completely,

it must traverse several µm through the macroparticle and in doing so has a chance of

being reabsorbed.

Following [111], the practical range of knock-on electrons in a given material is

PR(T ) =
aT

ρ

(
1− b

1 + cT

)
, (5.41)

where T is the energy of the knock-on electron and a, b and c are empirical constants.

To determine the minimum energy required to escape from the macroparticle, the

average path length, l, that an electron ejected from any location has to traverse in order

to reach the macroparticle edge, must be determined.

Figure 5.6: Graphical illustration of plausible knock-on electron scattering trajectories for a given
incident proton of specific transverse location and penetration depth prior to elastic collision.
Arbitrary colouring.
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For simplicity, the macroparticle is assumed spherical and the transverse cross-section

is therefore a circle of radius

R̄(R, smp) =
√
R2 − s2

mp, (5.42)

where R is the macroparticle radius and smp is the longitudinal incident proton penetration

depth. Also stated by [111] is that knock-on electrons following elastic collisions with high-

energy incident particles are predominately ejected normal to the incident particle path.

Assuming this to be the case, for a given transverse collision location, rmp, it follows that

the average integrated electron path for all azimuthal angles θ, see Figure 5.6 (left), is

l′′(R, rmp, smp) =
1

2π

∫ 2π

0

rmp cos θ +
√
r2

mp cos2 θ + R̄2(R, smp)− r2
mp dθ. (5.43)

Furthermore, integrating over the possible penetration depth, 2R̄, gives

l′(R, rmp) =
1

2R̄

∫ 2R̄

0

l′′(R, smp, rmp)dsmp (5.44)

and surface integration over all possible transverse starting locations, see Figure 5.6 (right),

provides a formula for the average knock-on electron escape distance, such that

l(R) =
1

πR2

∫ R

0

∫ 2π

0

l′(R, rmp)rmp drmp. (5.45)

Numerical evaluation of this equation gives l(R)=0.736R. Finally, inverting equation (5.41),

the minimum escape energy required for the average path length, Tesc(R), can therefore

be obtained from the following

Tesc(R) =
a(b− 1) + cl(R)ρ+

√
4acl(R)ρ+ (a(b− 1) + cl(R)ρ)2

2ac
. (5.46)

and consequently,

Tmin(Q,R) = ϕ(Q) + Tesc(R). (5.47)

Figure 5.7 shows the resultant average energy a given knock-on electron requires to traverse

a specific distance.
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Figure 5.7: Plot of the energy transfer required for a knock-on electron to travel a specific distance
within a material – example shown is for silicon material properties. The range of expected
macroparticle radii, 1<R<100 µm, is marked.

Comparison to Previous Models

Figure 5.8 shows a comparison of previous and newly developed analytical formula for

the minimum energy transfer and the charge rate. As expected, the new model requires

significantly higher energy to be transferred before an electron is ejected. The resultant

difference to the charge-rate, which ultimately determines the macroparticle–beam inter-

action time, would see ionisation to the point of repulsion take significantly longer.

Figure 5.8: Minimum energy transfer (left) and integral of charge (right) comparison between
newly developed and previous analytical formula. The difference is, as expected, significant.

To cross-check the proposed modifications, numerical simulations of the charge per

proton ionisation of a spherical silicon (Si) particle by incident high-energy protons were

carried out independently using CERN’s own otherwise validated particle tracking software

Garfield++ [112], by H. Schindler. Figure 5.9 shows the comparison between Garfield++
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and the new analytical results. The average charge per proton was derived from the

analytical model in accordance with (for Q0 = 0)

Qpp =
Q̇∫

a
J da

, (5.48)

such that

Qpp(R) =
4πRNAr

2
emec

2ρ

3Tmin(Q,R)Mu

. (5.49)

Analytical and numerical simulations agree to within 30-40% of each other, which, consid-

ering the orders of magnitude difference in comparison to previous analytical models, was

deemed acceptable. The discrepancy is, however, still under investigation and is possibly

due to the assumption of solely orthogonal electron scattering trajectories.

Figure 5.9: Per incident proton charge comparison between new analytical formulae and numer-
ical simulations carried out using Garfield++ software.

Proton Loss Rate

Finally, the proton loss rate, Ṅp, corresponding to the rate of inelastic collisions produced

by incident protons as they pass through the macroparticle, is calculated in accordance

with [79], such that

Ṅp(x, y) =

∫
a

∫
S

J(x, y)Σiel dsmp da, (5.50)
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where J(x, y) is the laboratory frame beam current density, see Equation 5.18, and the

macroscopic cross-section of the possible inelastic interaction region

Σiel = σielρA (5.51)

is the product of the corresponding microscopic cross-section, σiel, and the atomic density

ρA = (NAρ)/(AMu). (5.52)

The resultant formula can be written as shown,

Ṅp(x, y) =
2NpfσielR

3NAρ

3σxσyAMu

e
−−x2

2σ2x
−−y2

2σ2y . (5.53)

5.2 Simulation Results

The following section details all simulation results, including direct comparison to mea-

sured 4 TeV UFO events, parametric studies and the extrapolation to 6.5 TeV operation.

5.2.1 Macroparticle Flight Path

In constructing the model, it was important to establish that a given falling macroparticle

acts as would be expected, i.e. initially falls straight down and then depending on starting

location and macroparticle size, has a corresponding path of repulsion.

Figure 5.10: Plots of macroparticle flight paths for various longitudinal and transverse starting
locations, s=0, L, 2L and x=±0.5 mm, and macroparticle radii, 10 and 100 µm.

Figure 5.10 plots the flight path for longitudinal and transverse starting location for
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three events at various longitudinal and transverse starting locations and macroparticle

radii. Note that larger macroparticles take longer to ionise to the point of repulsion and

therefore fall further into the beam, increasing the overall interaction time.

5.2.2 Single Event Comparison

Figure 5.11 demonstrates that BLM signals of measured UFO events can be reproduced by

the analytical model with realistic input parameters. Results are in very good agreement,

with the model matching both the asymmetric radiation signal profile and signal magni-

tude of all involved BLMs. The example shown was chosen as it was the only Run 1 event

which resulted in particle showers large enough to exceed the BLM thresholds, both dump-

ing the beam and having the event data recorded. Simulation involved a Cu macroparticle

of R=45 µm with a longitudinal starting location s=35 m. The initial vertical position

of the macroparticle was at y = h− R, i.e. attached to the beam screen ceiling, and the

initial macroparticle charge was zero.

Figure 5.11: Comparison between the developed analytical model and a 4 TeV Arc UFO event
measured in 2012. The event was reproduced using Run 1 BLM locations and simulating a Cu
macroparticle of radius 45 µm falling at s=35 m, with an initial charge Q0=0. BLM locations
and UFO event location (red circle) are marked in lattice insert.

5.2.3 Matching Run 1 UFO Event Data

To allow for extrapolation to 6.5 TeV operation, it was important that a reasonable dis-

tribution for macroparticle radii could be defined. It was therefore determined that an

iterative process of running Monte-Carlo simulations, varying the radii distribution, be
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carried out until a reasonable fit for 4 TeV data was obtained. As a result, a UFO gen-

erator was added to the model allowing for input distributions for longitudinal location,

transverse offset and macroparticle radii. It was assumed that the distribution for both

longitudinal and transverse starting location be uniform along a typical Arc cell. For

computational reasons, the transverse offset from the beam centre was reduced to ±2 mm

to increase the probability of UFO scattering exceeding the UFO algorithm threshold.

Simulations proved successful, with the UFO generator being capable of recreating the

2012 UFO event data set, approximately 1800 recorded events, in a single Monte-Carlo

simulation of 10,000 UFO events. A post-processing algorithm similar to that of the UFO

Buster (discussed in Section 5.1.1) was implemented, i.e. not all UFO events result in

high enough peak losses such that they are recorded. Figure 5.12 shows a cumulative

histogram of 4 TeV peak BLM signals, as recorded in three BLM positions, as well as the

well-matched simulated equivalents.

Figure 5.12: Cumulative histogram of peak BLM signals during UFO events in 2012 (dashed)
and Monte-Carlo simulations (solid). Insert shows the corresponding BLM locations – Run 1.

To achieve the shown level of accuracy, the fit distribution for macroparticle radii,

shown in Figure 5.13, was found to be a truncated distribution ranging from 5<R<100 µm.

This was acquired via simulations carried out with a Cu macroparticle with an initial

charge of Q0 = 0e. Considering the initial ballpark figure of 1-100 µm observed in

the aforementioned dust study (Section 3.3.1) as well as assuming that largest of these

macroparticles would be less likely to remain following cleaning procedures, the fit was

deemed reasonable. Furthermore, even if the chosen material was different, the resultant

distribution would simply be offset by a certain factor and, as such, uncertainties of this

nature should have minimal effect on extrapolation results.
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Figure 5.13: Resultant distribution for macroparticle radii used to match the full 2012 UFO
data set of ∼1800 events. Note that there are significantly more macroparticles than events as
smaller macroparticles, depending on location, may not produce enough losses to exceed the UFO
algorithm threshold.

5.2.4 Extrapolation to 6.5 TeV & Quench Probability

Subsequent to acquiring a sufficiently accurate distribution for macroparticle radii, it was

possible to extrapolate to 6.5 TeV. Beam parameters and BLM locations were configured

as would be for Run 2.

Figure 5.14 shows the simulation results as well as the Run 2 BLMSignal@Quench thresh-

olds for both simulated and measured values of the QLU factor. Table 5.1 shows the

resultant predictions in terms of percentage of UFOs that would result in a quench.

Table 5.1: Model predictions of UFO-induced dipole quenches for a given QLU factor.

QLU factor Quench Probability

- [%]

1 1.24

4 0.11

It is clear that the QLU factor has a significant impact on the quench probability,
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Figure 5.14: 6.5 TeV Monte-Carlo simulation results including quench limits for conservative
and progressive QLU factors. Insert shows the corresponding BLM locations – Run 2.

varying predictions by up to a factor of 10. To obtain absolute numbers, an assumption

must be made on the UFO rate. For example, consider the possibility that the UFO

rate following LS 1 resumes the levels as was initially recorded during Run 1, i.e. ∼10

UFOs/hour. Furthermore, recent LHC availability predictions [114] can be taken into

account, i.e. stable beam ∼7 hours/day, 7 days/week. The resultant worst case scenario

(QLU=1) would, without appropriate BLM thresholds, see ∼6 quenches/week and the

availability predictions would not hold. With an average quench recovery time being 8-

12+ hours, mostly cryo-recovery time, this would have a near catastrophic impact on LHC

availability. Also recall that such a UFO rate may even be optimistic as conditioning may

have already occurred in 2010 prior to UFO events initially being monitored. Results give

a clear statement that UFO-induced dipole quenches are not only a possibility at 6.5 TeV,

but even with moderate estimates, are likely to be at the forefront of availability issues

for Run 2.

5.2.5 Parametric Studies

To further understand how specific beam parameters influence the outcome of a UFO

event, i.e. affects the integrated loss rate, a series of parametric studies were carried out.

Table 5.2 lists the default beam and macroparticle parameters used for each study.
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Table 5.2: Default beam and UFO parameters for parametric studies

Parameters -

Beam Energy (Tb) 6.5 TeV

No. Bunches (Nb) 2808

Bunch Intensity (Ib) 1.3x1011

Normalised Emittance (εn) 2.4 µm

Macroparticle Material Cu

Macroparticle Radius (R) 10 µm

Initial Charge (Q0) 0 e

Longitudinal Location (s) 53.46 m

Transverse Offset (x) 0.25 mm

Energy & Number of Bunches

Figure 5.15 shows how the loss rates scale with beam energy, Tb, and the number of

bunches, Nb, i.e. beam intensity. Losses generally scale linearly with Tb, however, for

Nb, there is a notable trend of an initial peak at ∼200 bunches and a subsequent gradual

reduction as Nb increases. The gradual reduction in loss rates for higher Nb can be

explained by the increased probability of elastic collisions, resulting in earlier ionisation

and macroparticle repulsion, out-weighing the increase in probability of inelastic collisions,

i.e. losses. Overall, the variation in losses for Tb and Nb, between injection and near-

nominal conditions is approximately one order of magnitude and is therefore considered

to have significant influence on the event outcome.

Macroparticle Material & Radius

Figure 5.16 shows how the loss rates scale with macroparticle material and radius. Of

the most likely macroparticle materials [83], Cu, produces the highest losses, with losses

linearly scaling with nuclei cross-section and atomic density. Nonetheless, with loss rates

scaling one order of magnitude depending on the macroparticle material, the material

is also considered to have significant influence. However, in varying the macroparticle

radius, even within the most common range of 1-30 µm, results differ by up to 5 orders of

magnitude. This is due to it taking longer to ionise to the point of repulsion, inherently

increasing the interaction time. It is clear that size and therefore interaction time are two

of the most influential parameters.

93



CHAPTER 5. UFO EVENT MODELLING

Figure 5.15: Log plot of the proton loss rate as a function of Tb and Nb. It shows that the losses
saturate as Nb exceeds ∼200 bunches. Overall variations in loss rates are not only significant,
but would suggest that the UFO rate should decrease are the number of bunches is increased.

Figure 5.16: Log plot of the proton loss rate as a function of macroparticle radius and material.
A relatively significantly increase is noted with change in material, however, loss rates are shown
to scale considerably with macroparticle radius, with losses varying 5 orders of magnitude within
the established range.
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Longitudinal Location & Transverse Offset

Figure 5.17 shows how variations in the beam profile affects the loss rate. Similar to the

influence of macroparticle radius, with a predominantly vertical beam, at s=0 m, peak loss

rates vary by up to 6 orders of magnitude from being directly above the beam, x=0 mm,

to being transversely offset by as little as 1 mm. This is due to the fact that, as the

transverse offset increases, the falling macroparticle interacts less with the beam. For the

same reason, when the beam is predominantly horizontal, s∼55 m, transverse offsets of

∼1 mm are still close enough to the beam to result in a significant number of interactions

and therefore produce peak losses similar to being directly above the beam centre. Note

that, though not shown, for a predominately horizontal beam profile, offsets of up to

∼2 mm still produce significant losses, > 108 s-1. From the results one can conclude that,

assuming a uniform transverse distribution of dust and or debris, regions with a horizontal

beam would produce the highest losses for a given macroparticle radius.

Figure 5.17: Log plot of the proton loss rate as function of longitudinal and transverse starting
locations. Loss rates are notably dependant on both parameters. The most likely region to produce
quenches is where the beam is predominantly horizontal, i.e. s ∼ 55 m.

Normalised Emittance

Figure 5.18 shows the impact that the emittance has on the loss rate. It is shown that

larger emittances can slightly reduce the peak loss rates. This is due to the process of

ionisation beginning earlier and the reduced proton density reducing the probability of

inelastic collisions. The variation in loss rates is approximately 50% and, as such, the

emittance is considered to have a moderate influence of the outcome. It is also of note

that the emittance has a notable influence on the rise and fall times and, even with the

shown loss rate reduction, integrated event losses remain fairly consistent.
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Figure 5.18: Plot showing the proton loss rate as function of beam emittance. The emittance is
shown to have a moderate influence on the peak loss rates.

Initial Charge & Electron Cloud

As a significant increase in UFO rate was observed when transitioning to 25 ns bunch

spacing (Figure 3.9), it is thought that the electron cloud (discussed in Section 1.6.4) may

impact the UFO outcome [113] . Investigation resulted in the proposal that the presence

of the electron cloud may negatively offset the initial charge of a macroparticle, either at

rest or whilst falling. As such, it was important to investigate how this would affect the

outcome by offsetting the initial charge, Q0.

Figure 5.19 shows that, as the initial charge drops below −105e, the integrated losses

significantly increase. This is due to an initial increase in momentum as a result of the

attractive forces as well as an increase in time required for the macroparticle to ionise to

the point of repulsion. The result is that the macroparticle falls closer to the beam centre,

greatly increasing interaction time. If correct, whilst operating with 25 ns bunch spacing,

smaller macroparticles would be capable of producing the same integrated losses as larger

neutral equivalents and would increase the probability of magnet quenches without a

physical change in the release of macroparticles and or radii distribution. Furthermore,

the attractive forces due to being negatively charged may contribute to the UFO release

mechanism. Note, however, that this increase in loss rate peaks as the initial charge drops

below −108, sharply reducing thereafter. This is due to the attractive forces sufficiently

accelerating the particle such that it passes through the beam in the order of microseconds,

i.e. not enough time for ionisation to occur. Follow-up studies throughout Run 2 are to

be carried out in attempt to confirm these hypotheses [115].
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Figure 5.19: Log-Log plot showing that if the initial charge, Q0, of the macroparticle is less than
−105e the resultant peak loss rates rise significantly, peaking as the charge drops below −108e
and sharply reducing thereafter.

5.3 Mitigation and Conditioning Strategies

Simulations predict that UFO-induced dipole quenches are likely to cause significant dis-

ruption to initial Run 2 operation. As such, plausible mitigation and conditioning strate-

gies were investigated. This section details several options.

5.3.1 Iterative BLM Threshold Optimisation

The current strategy to maximise availability is to set BLM thresholds to dump the beam

and initiate a slow power abort (2-3 hours recovery time) prior to losses resulting in a

magnet quench (8-12+ hours recovery time). However, with the QLU factor having such a

large influence on any calculations for BLM thresholds, it is proposed that the thresholds

be set initially just below the quench level (QLU=4), such that the majority of UFOs

would not trigger a beam dump, but rare events producing relatively large integrated

losses could still, according to the model, quench adjacent magnets. This would give

important empirical data allowing for accurate values for Tquench to be acquired, reducing

uncertainty and allowing for optimised threshold calculations, i.e. continual revision of

BLM thresholds based on Tquench input.

5.3.2 Defender Bunches

The interaction duration of a UFO event was found to be strongly dependant on the

ionisation process of the macroparticles. As such, the concept of ‘defender bunches’ was

proposed, in which multiple defender bunches, N∗b , would have a larger emittance, ε∗n,
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relative to the rest of the beam and would essentially ‘take the hit’, so to speak, such that

the macroparticle would be ionised to the point of repulsion prior to falling far enough as

to interact with the rest of the beam. Figure 5.20 plots the simulation results carried out

to determine the feasibility of defender bunches.

Figure 5.20: Feasibility study of the proposed defender bunches mitigation strategy. Unfortu-
nately, similar to normalised emittance, the variation in losses is minimal.

In line with observations that the emittance has only a moderate influence on peak

losses, the defender bunches were only able to reduce peak losses by a factor of 2-3 with

reasonable parameters. Furthermore, this process would also reduce the quality and pro-

duction rate of collision data as well as requiring significant changes to beam cleaning

systems. As a result, it was concluded that such a method of UFO mitigation is not likely

to be a viable option.

5.3.3 Conditioning Strategies

Run 1 statistics found that the UFO rate generally decreases with time, discussed in

Chapter 3 Section 3.3.3 Figure 3.9. However, with the effect that LS 1 will have on UFO

rate being unknown, it is uncertain if the dust consistency will remain ‘conditioned’ or

will remain close to or exceed that of initially observed Run 1 rates. As such, any method

of accelerating the condition process may be invaluable.

Beam Pipe Scrubbing & Secondary Electron Yield

Following the hypothesis that the electron cloud has an influence on both the initial

charge of a macroparticle, leading to higher loss rates, as well as on the UFO release

mechanism, leading to higher UFO rates, LHC scrubbing may assist in UFO conditioning.
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LHC scrubbing is a process of low intensity beam bombardment of the LHC beam pipe

to deliberately induce secondary electron emissions and over time reduce the secondary

electron yield (SEY). Such a process reduces the rise time of the electron cloud density to

reduce heating effects and inherent unwanted pressure gradients – irrespective of UFOs.

However, in theory, if either the electron cloud and or the beam pipe heat-load plays a role

in macroparticle dynamics, any reduction in SEY should have a quantifiable effect on the

UFO rate. As such, it was proposed that during initial Run 2 beam commissioning, several

LHC fills be carried out before and after a scrubbing period with the same parameters to

allow for direct comparison.

5.4 Chapter Discussion & Conclusion

Following the observation of UFO events during Run 1, it was proposed that, due to

relatively low quench margins at higher energies, UFO-induced dipole quenches may be

a possibility at 6.5 TeV operation. Investigation led to the construction of a numerical

model, advancing on previous theoretical works, incorporating more accurate formulae for

macroparticle ionisation as well as the implementation of 3–D beam field influences and

BLM signal responses for both Run 1 and Run 2 beam parameters and BLM locations.

Furthermore, the model allowed for parametric studies and Monte-Carlo simulations.

Advancements to previous analytical formulae were found to be within 30% of indepen-

dent numerical simulations carried out using previously validated software, Garfield++.

With previous models being several orders of magnitude different, this relative accuracy

was deemed sufficient. Furthermore, with reasonable input parameters, the model was an-

alytically capable of reproducing all involved BLM signals of individual Run 1 UFO events.

Parametric studies found that the longitudinal and transverse starting locations as well

as the initial charge of the macroparticle were the most influential parameters in terms

of integrated loss rates. Furthermore, taking into account that the UFO rate has been

observed to increase significantly whilst operating with 25 ns bunch spacing, it is hypoth-

esised that the electron cloud, produced by the beam, may offset a macroparticle’s initial

charge, either at rest or whilst falling. This may result in an increase in time required

for positive ionisation to the point of repulsion, ultimately reducing integrated losses and

the probability of a magnet quench. The attractive forces as a result of this phenomenon

may also explain and or contribute to the UFO release mechanism - a remaining unknown.

In an attempt to estimate the UFO-induced dipole quench probability for Run 2,

Monte-Carlo simulations were first carried out to determine feasible distributions for

macroparticle radii and starting locations by matching 4 TeV measured data. Following
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successful reproduction of 4 TeV data, input parameters were adjusted to that of 6.5 TeV

operation and, taking into account the QLU factor, the quench probability was calculated.

Unfortunately, predictions vary from a manageable 0.11% to a possibly catastrophic 1.24%

within plausible values the QLU factor. In light of this, as well as the unknown effect LS 1

may have had on the UFO rate, the true extent of the threat cannot yet be quantified. As

a result, it was decided that Run 2 BLM thresholds for the millisecond integration time

be initially set such that a number of UFO-induced dipole quenches may occur to acquire

more accurate quench level data, ultimately reducing uncertainty. Subsequent simulations

would then provide more accurate predictions and allow for the calculation of optimal

BLM thresholds.

Investigating mitigation and conditioning strategies, it was concluded that the best

course of action would be to monitor and continually optimise BLM thresholds to max-

imise availability, i.e. dump the beam (2-3 hours recovery time) rather than risk a magnet

quench (8-12+ hours recovery time). The numerical model also allowed investigation into

proposals such as the ‘defender’ bunches, in which a number of proton bunches would have

a larger emittance than the rest, ionising and repelling incoming UFOs prior to interaction

with the remainder of the beam. Simulations suggest that this strategy would have small,

but still potential useful impact on beam losses and the feasibility of implementing such

a strategy is currently being discussed. Regarding conditioning effects, with observations

of an increase in UFO rate at 25 ns bunch spacing, it is proposed that the electron cloud

may play an integral role in the UFO event outcome. If true, LHC scrubbing to reduce

the beam pipe SEY, would have a quantifiable effect on the UFO rate and may be a viable

mitigation solution. Note that, even with this proposal, it was concluded that to develop

a full-proof means of accelerating the conditioning effect, more information is required

regarding the UFO release mechanism, that is, what makes the dust or debris fall in the

first place. As a result, a follow-up study, investigating the electron cloud influence and

comparing initial Run 2 UFO statistics to model predictions was subsequently carried

out. Furthermore, an experimental physics doctoral thesis, investigating the UFO release

mechanism was proposed [115].

To conclude, simulations suggest that UFO-induced dipole quenches are not only a

possibility, but are likely to be at the forefront of availability issues for initial 6.5 TeV op-

eration. As a result, detailed statistical tracking and continual analysis as well as continued

optimisation of BLM thresholds is advised. Furthermore, the UFO event phenomenon as a

whole should be taken into account when considering any further increases to sustainable

beam energy or intensity and hardware upgrades and or the design of future accelerators,

particularly with regard to quench margins and a clean manufacturing processes.
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6.5 TeV Operation: Initial Observations

Following the successes of the interconnect consolidation and magnet training of the

main dipole circuits, the LHC was, for the first time, ramped-up to sustain 6.5 TeV beam

energies. This chapter will present the most recent observations relating to the operation of

the LHC at 6.5 TeV, in particular, the following will discuss initial Run 2 UFO statistics

as is presented in the listed publication [p1].

6.1 Energy Ramp-Up

As a direct consequence of the successes of the interconnect consolidation, system qual-

ification and the main dipole magnet training campaigns, on April 10th 2015, following

hardware and beam commissioning, the LHC successfully ramped-up all circuits to support

and sustain a stable, low-intensity beam at 6.5 TeV. A capture of the live LHC operations

window recording this event is shown in Figure 6.1 [116].

As is the case for case for any electrical system, the LHC is only as strong as its weak-

est component, and in achieving this feat, it is therefore self-evident that not only are the

main dipole circuits now capable of operating with 6.5 TeV beam energies, but such is the

case for all involved systems.

Following the repeated success of energy ramp-up tests, the main dipole orbit correc-

tors prior to the interaction points were activated and first of many 13 TeV collision events

were recorded [117]. A 13 TeV collision example as measured by the ATLAS experiment

is shown in Figure 6.2. Overall, it was clear that the system changes and upgrades carried

out throughout LS 1 were a success, and that operating with 6.5 TeV beam energies was

likely to be a viable option for Run 2. Note that, at this point, the long-term sustainability

of operating at 6.5 TeV, i.e. the impact of UFO events, was still an unknown.
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Figure 6.1: Live LHC operations plot, showing the intensity of both beams (red and blue) and
the corresponding beam energy (black). Note the successful ramp up in energy to 6.5 TeV. Image
courtesy of CERN [116].

Figure 6.2: 3-D graphical reproduction of a 13 TeV collision event showing the ejected particle
trajectories and relevant detector structures as measured by the ATLAS experiment, circa 2015.
Image courtesy of CERN [117].
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6.2 Initial Run 2 UFO Statistics

Author’s note: The thesis author was no longer at CERN during the time in which the

follow statistics were collected. Statistics were originally presented at Evian 2015 [118]

and Chamonix 2016 [119] by B. Auchmann, Chamonix 2016 [120] by G. Iadarola and

IPAC 2016 [121] by G. Papotti. The following written works are, however, the author’s

interpretation of the results, in particular, with regard to model predictions.

6.3 UFO Rate & Conditioning

Figure 6.3 shows the recorded UFO events for the first 6 months of 6.5 TeV operation.

Data presented includes all recorded Run 2 UFO statistics from June up to and including

November 2015. To discuss all relevant observations methodically, the analysis will be

presented individually for 50 ns bunch spacing, 25 ns bunch spacing and the intensity

ramp-up. Note that all following references to Run 1 observations is in relation to that

which was presented in Chapter 3 Figure 3.9.

50 ns Bunch Spacing

Prior to the main intensity ramp-up which followed TS 2, two week periods of low-intensity

operation with 50 ns bunch spacing were carried out, each followed by a 3-week-long scrub-

bing period to minimise the SEY and inherent electron cloud heat-load.

In looking at the absolute UFO rate for this period, it is clear that the post-LS 1 UFO

rate was, as predicted, subject to ‘de-conditioning’, with UFO rates being notably worse

than previous recordings. Recall, however, that the UFO event logging and monitoring

systems were not implemented until ∼6 months after the start of Run 1 and that initial

recorded UFO rates may have already underwent significantly conditioning. Nonetheless,

the threat posed by UFO events is much higher than was originally considered, with UFO

rates being consistently between 40 to 50 UFOs/hour. Absolute UFO rates do, however,

appear to saturation even with a relatively low beam intensity. At first appearance, this

would coincide with the model predictions that losses begin to saturate and subsequently

decrease after ∼100-200 bunches. However, looking at the relative UFO rates (normalised

to neglect the influence of beam intensity) for the same period, it is clear that relative

conditioning had already begun to occur and that losses do not scale with intensity as

predicted. Note that this does not necessarily contradict the model as losses do not auto-

matically translate to recorded UFO events. Rather, the lack of correlation gives insight

into what may be missing, i.e. external influences. The relative conditioning is likely due

to the unaccounted for and remaining unknown release mechanism, i.e. it is therefore
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Figure 6.3: Plot showing the beam intensity ramp-up (corresponds to the number of bunches)
(top) as well as both the absolute (middle) and relative (normalised with intensity) (bottom)
UFO rates. Beam bunch spacing as well as Technical Shutdown (TS), Scrubbing and Machine
Development (MD) periods are marked were appropriate. Plot courtesy of B. Auchmann [118].

likely that the increase in beam intensity does not only influence the macroparticles initial

charge, ionisation and or interaction time, but also the probability that a macroparticle

would fall in the first place. It is also of note that there was no clear evidence of relative

conditioning prior to the first scrubbing period which may suggest scrubbing to be benefi-

cial as a surface treatment if not directly responsible for the onset of relative conditioning.

At such low intensities, however, no concrete conclusions can be drawn.

25 ns Bunch Spacing

Subsequent to the second scrubbing period it was concluded that the electron cloud heat

load would now be low enough to operate with 25 ns bunch spacing. For reference, recall

that towards the end of Run 1, a significant spike in the UFO rate whilst operating with

25 ns bunch spacing was recorded and as a result it was predicted that UFO events, while
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operating with 25 ns bunch spacing, would pose a significant threat to availability.

In an attempt to quantify the specific influence that either scrubbing or a reduction

in bunch spacing would have had independently, a special fill was carried out following

the second scrubbing period with 50 ns and at the same intensity as a previous run. The

recorded UFO rate for this special fill was ∼16 UFOs/hour compared to ∼35 UFOs/hour

before scrubbing. Furthermore, in then resuming 25 ns the UFO rate then was recorded to

be ∼41 UFOs/hour. This was, however, at a higher intensity. The results would suggest

that scrubbing is indeed beneficial as a surface treatment, however, due to the schedule for

intensity ramp-up, the request for more fills with 50 ns bunch spacing and or with 25 ns

bunch spacing and a comparable intensity was rejected. As a result, there is not currently

enough statistics to draw any verifiable conclusions. Nonetheless, with relative UFO rates

being similar, i.e. within previously observed fluctuation limits, for both 50 ns and 25 ns

bunch spacing, it is likely that scrubbing has had at least some impact on the outcome.

Intensity Ramp-Up

Following TS 2, the main beam intensity ramp-up began. This period is of particular

interest because both relative and absolute conditioning was observed. It is also clear

that the relative conditioning effect had begun to saturate. However, it is not clear to

what extent the absolute conditioning effect is as a result of an increase in intensity or if

the SEY and electron cloud bore any influence. Note that absolute condition would also

appear to be asymptotically tending towards a UFO rate of ∼10 UFOs/hour. However,

as was the case during Run 1, long-term conditioning may occur over the course of the

following year.

Figure 6.4: Plot of the LHC beam-pipe average heat-load throughout the intensity ramp-up period,
normalised to beam intensity. It is clear that there is a continued linear reduction irrespective of
intensity. A high-β test with 100 ns bunch spacing is highlighted in orange (there is little to no
electron cloud build-up for this period). Plot courtesy of G. Iadarola [120].
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Figure 6.4 shows the beam pipe heat-load normalised with respect to beam intensity

over the main intensity ramp-up period. There is a clear gradual linear reduction in

heat-load with no other changes to system operation. This gradual reduction in heat-load

through periods of operation is known to be due to gradual surface treatment similar to

that of a dedicated scrubbing period, reducing the SEY over time. It would normally

therefore also be assumed that the electron cloud density has gradually reduced over this

period, however, the electron cloud density was known to be consistently at maximum

operating levels throughout this period and, as a result, any recorded reduction and or

corresponding conditioning is therefore irrespective of the electron cloud density. More-

over, a specific high-β test period with 100 ns bunch spacing and little to no electron

cloud was carried out – highlighted in orange. During this period, several fills were carried

out with comparable intensity levels and the recorded UFO rates did not change. It can

therefore be concluded that the density of the electron cloud has little to no effect on the

measurable UFO rate or conditioning. As a result, the correlation between normalised

heat-load and conditioning is more likely to be due to other proposed theories such as

that which relates cryo-condensation and cryo-sorption. Further research is required.

6.3.1 Beam Dumps & Magnet Quenches

On September 20th 2015, near the start of the intensity ramp up, the first ever UFO-

induced magnet quench was recorded, see Figure 6.5.

Figure 6.5: Plot of the energy deposition required to quench as a function of loss duration,
comparing simulation to measured data. The recent UFO-induced quench data is included. Data
courtesy of B. Auchmann [119].

The UFO event resulted in a BLM signal corresponding to 91% of the BLM thresh-

old (QLU=4). Furthermore, subsequent confirmed UFO events were recorded to have a
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corresponding signal of 70% of the implemented BLM threshold (QLU=4) and did not

result in a magnet quench. It was therefore evident that initial quench level estimates

from simulations were too conservative and that the implementation of a QLU factor for

the BLM thresholds was not only justified, but necessary. This would also suggest that, in

light of fast conditioning, the long-term impact of UFO events is likely to be more in-line

with progressive estimates, i.e. manageable.

Figure 6.6: Log-log plot of BLM signal as a percentage of the dump threshold as a function of
beam intensity as a percentage of nominal, showing the peak BLM signal during all recorded UFO
events with a fill duration >1 hour. Events recorded after September 23rd, the onset of absolute
conditioning, are marked in green. Events which resulted in a beam dump or magnet quench are
marked in red. Linear fit shown is related solely to recorded event prior to September 23rd. Plot
courtesy of B. Auchmann [118].

Figure 6.6 plots the peak BLM signal across all recorded UFOs from each fill that

exceeded 1 hour in duration. It is clear that, prior to absolute conditioning (end of

September), linear extrapolation of recorded UFOs would see the system being limited in

operation to ∼50% of the nominal number of bunches if it were to remain at 6.5 TeV.

Fortunately, just as numerous UFO events were resulting in beam dumps and magnet

quenches, 8 dumps between September 20th and October 5th alone, absolute conditioning

began and the average peak BLM signals also reduced. As a result, it can now be con-

cluded that 6.5 TeV operation remains a viable option. However, assuming conditioning

is indeed asymptotic UFOs are still likely to be of constant threat to availability for the
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duration of 6.5 TeV operation and may, in fact, be a physical limitation if the LHC is ever

commissioned to the design nominal of 7 TeV.

6.3.2 UFO Distribution

Another unknown was the longitudinal UFO distribution along a typical Arc cell – as-

sumed homogeneous throughout in the model. Figure 6.7 compares the distribution of

UFO events as would be predicted by the model and that which have been recorded.

Recorded data has been processed such that factor of 3 difference in the BLM response of

the BLMs surrounding the quadrupoles has been taken into account.

Figure 6.7: Comparison between model predictions and recorded events relating to the UFO
distribution as would recorded by the BLMs along a typical Arc cell. Recorded data shows a peak
in UFO events surrounding defocusing quadrupoles which is not present in model predictions.
Data courtesy of B. Auchmann [119].

Although similarly distributed around the defocusing quadrupole BLMs, recorded UFO

events do not follow the same beam-shape-dominated relation as the model predicts, with

the biggest difference being a notably higher percentage of UFO events being recorded

following the focusing quadrupoles, i.e. where the beam is predominately vertical. It is

also unlikely that the physical distribution of dust in the LHC is more likely to accumulate

around such magnets as the environment within the beam pipe does not change. It is

therefore assumed that the model has not taken an external influence into account. With

the transverse beam profile at these locations being predominately vertical, i.e. the beam

is closest to the beam screen ceiling as it can get, the unaccounted for external influence

is most likely to be the release mechanism. If this is the case, a predominately vertical

beam is therefore more likely to interact with a macroparticle such that it falls, either

by means of offsetting the initial charge or heat transfer (further backing the theory that
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cryo-condensation and or cryo-sorption could be influencing factors). More research is

required.

6.4 Chapter Summary & Outlook

As a direct consequence of the successes of the interconnect consolidation, qualification

and magnet training campaigns, the LHC was found to be repeatedly capable of success-

fully ramping up in beam energy to support and sustain 6.5 TeV proton beams, exceeding

previous records. Not long after, the first 13 TeV collisions were being carried out with

sufficient stability and Run 2 of LHC operation commenced with an official beam energy

of 6.5 TeV.

In monitoring initial Run 2 UFO statistics a number of notable trends arose. Firstly,

the initial absolute UFO rate was much higher (∼40-50 UFOs/hour) than was previously

recorded during Run 1 (∼10-12 UFOs/hour), even when considering the increase in BLM

coverage (would only account for the rate increasing by a factor of 2). This likely confirms

the hypothesis that, as UFO event logging was not implemented until the start of 2011,

after ∼7 months initial operation, significant conditioning may already have occurred in

2010. Nonetheless, looking at relative UFO rates, i.e. irrespective of beam intensity, for

the first 3 weeks, it was soon apparent that a relative conditioning effect had already begun.

Throughout initial operation with 50 ns bunch spacing, two 3-week-long scrubbing

periods were carried out. Relative UFO rates subsequently showed that this is likely to

have been beneficial as a surface treatment as relative conditioning was shown to occur

immediately following these periods, with no evidence to suggest this would have hap-

pened otherwise (no relative condition in the period prior to scrubbing).

Operation with 25 ns bunch spacing commenced following the second scrubbing pe-

riod. Most notably, the absolute UFO rate was not subject to a significant increase as was

observed in Run 1 and, in fact, relative conditioning proceeded to continue. Again, this

is likely to be as a result of the long scrubbing periods. At this point it was deemed safe

to proceed with the intensity ramp-up.

Throughout the intensity ramp-up, absolute UFO rates also began to reduce even with

relative conditioning beginning to saturate. The underlying cause of absolute conditioning

remains an unknown, however, in looking at the relative heat-load (irrespective of inten-

sity), which correlates to the SEY as well as the electron cloud density, there is also a

notable reduction across the same time period. This is almost certainly as a result of a
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reduction in SEY, however, a specific high-β test proved that UFO rates remain consis-

tent even without the presence of an electron cloud, all but ruling out the electron cloud

density a potential contributor to the recorded UFO rate.

At this point it is noted that, prior to the onset of absolute conditioning, peak BLM sig-

nals were high enough and several UFO-induced magnet quenches were recorded, confirm-

ing predictions. Furthermore, the quench level was at 91% of the set threshold (QLU=4)

which would suggest that previous simulations were too conservative and that both the

real quench level and therefore impact predictions are more in-line with that of the existing

quench test data.

Looking specifically at the peak BLM signals, it is clear that if it were not for absolute

conditioning, 6.5 TeV operation would likely have been limited to only 50% nominal

intensity. Fortunately, absolute conditioning did commence and was also relatively fast,

leading to the majority of UFOs being far below the threshold throughout the following

month. As a result, it was concluded that 6.5 TeV operation would continue to be a viable

option and that operation of the LHC throughout 2016 would continue at this energy level.
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Chapter 7

Thesis Summary &

Recommendations for Further Work

This thesis investigated remaining issues which may have prevented operation of the

main dipole circuits at near-nominal energy levels. Research led to the hypothesis that, even

with observed issues, operation with at least 6.5 TeV beam energies was still a viable option.

This final chapter will recall the hypothesis and established prerequisites, discussing the

outcome of related projects. The chapter, and thesis, will then conclude with the author’s

recommendations for further work.

7.1 Thesis Summary

Recall the following hypothesis and established prerequisites:

Thesis Hypothesis

Following successful circuit qualification and dipole magnet training, the LHC’s main

dipole magnet circuits can safely support and sustain near-nominal proton beam energies

of at least 6.5 TeV.

Prerequisites

1 To ensure magnet training can be carried out both systematically and without risk,

the development and subsequent implementation of a new method of superconduct-

ing magnet bypass qualification is required.

2 Magnet quenches following dust-to-beam interaction scattering are thought to be

a possibility at 6.5 TeV operation. Further understanding of the phenomena and

research into potential mitigation strategies is therefore required.

In order to address each of the above statements, a series of goals were set out. The

following discusses the work involved for each of the set goals individually.
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Addressing 1st Prerequisite

• Develop and investigate both the risk and feasibility of a global superconducting

magnet circuit continuity qualification method.

Advancing on the work of a previously proposed test method, research led to the de-

velopment of the Copper Stabiliser Continuity Measurement. The procedure would be

capable of providing conclusive evidence that all interconnections, contacts and poten-

tial weak sections of the superconducting busbars or magnet bypasses could withstand a

full current decay similar to that which would occur following a near-nominal quench event.

To establish the potential risk and feasibility of the developed method, a CSCM sim-

ulation program was constructed and a type test was carried out in Sector 23, pre-LS 1.

Due to the known presence of interconnect discontinuities at the time, this allowed for

thermal runaways to be induced in a controlled manner for the purposes of qualifying

detection and protection systems. Results were a success, with multiple thermal runaways

being induced as well as successfully detected and protected against.

• Carry out the developed qualification method on all main dipole circuits prior to

magnet training.

Following the successes of the type test, a full qualification campaign was scheduled for all

main dipole circuits. All circuits were eventually qualified for 6.5 TeV operation, with each

circuit eventually being subject to a full current decay from 11.08 kA, without measurable

damage.

Alongside the devised full qualification test program, 400 A resistance measurements

were carried out to monitor resistance trends in the interconnects and magnet bypasses. As

a testament to the successes of the interconnect consolidation campaign, the interconnect

resistances remained relatively low and consistent throughout. However, magnet bypass

resistances were notably more unpredictable, with diode-to-heat-sink contacts increasing

in resistance by up to a factor of 10 on several occasions. Fortunately, a stepped powering

cycle was devised which was capable of reversing this effect in a controlled manner.

Overall, the full qualification campaign was considered a success and magnet training

was subsequently carried out to 6.5 TeV equivalent current levels.
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• Upon successful qualification of all circuits, carry out magnet training as planned

(up to 6.5 TeV equivalent current levels).

Subsequent to all main circuits being qualified to ensure safe operation in the event of

a quench at full current, magnet training was carried out for the first time since the

2008 incident. Training was successful, eventually resulting in all circuits’ magnets being

qualified to support 6.5 TeV beam energies, i.e. trained to 11.08 kA. Most notably, the

number of required training quenches was almost double that of earlier predictions, in

particular, this was as a result of Firm 3 magnets requiring significantly more training

than expected.

Conclusion

Overall, the CSCM was proven to be both capable and repeatable in providing conclusive

evidence for the qualification and safe operation of each main dipole circuit to 11.08 kA.

Subsequently, each circuit underwent magnet training to the same current level without

issues and as a direct consequence the LHC was now capable of supporting 6.5 TeV beam

energies.

Addressing 2nd Prerequisite

• Develop a numerical model capable of simulating dust-to-beam interactions as well

as quantifying the resultant particle shower energy deposition in adjacent magnets.

Progressing on previous theoretical works, a numerical model was constructed capable of

simulating dust-to-beam interactions as well as calculating the corresponding signals as

would be read by adjacent BLMs. The model was proven capable of accurately repro-

ducing both single 4 TeV UFO events as well as, via Monte-Carlo simulation, the entire

4 TeV data set. All simulations were run with feasible input parameters.

• Use the model to determine the probability of a 6.5 TeV UFO event resulting in a

magnet quench, quantifying probable losses to system availability.

Following Monte-Carlo simulation of 4 TeV UFO events, it was possible, using the same

input distributions, to extrapolate to 6.5 TeV. Simulations at 6.5 TeV resulted in the

discovery that UFO-induced magnet quenches were, in fact, a possibility. However, de-

termining the true extent of the threat to availability was restricted due to the lack of

available data relating to magnet quench limits. This quench level uncertainty varied pre-

dictions on the likelihood of magnet quenches by a factor of 11, varying from a manageable

0.11% of recorded UFOs resulting a magnet quench to a near-catastrophic 1.24% – at this

stage an exact number could not be given as there was little to no information regarding
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the physical quench level or Run 2 UFO rates.

• Investigate and propose mitigation strategies.

With simulations predicting UFO events to have a significant impact on system availabil-

ity, it was important to investigate plausible mitigation strategies. An interesting idea

regarding potential defender bunches was proposed, however, simulations suggest that

such bunches would have minimal impact on the outcome. As such, for initial Run 2 oper-

ation it was concluded that the best course of action would be to bias the BLM thresholds,

allowing for UFO-induced quenches to occur, after which, having obtained more accurate

values for magnet quench limits and the UFO rate, thresholds can be optimised to balance

the trade-off in availability between magnet quenches and beam-dumps. Note that a more

permanent solution is still desired and an experimental thesis was proposed to further

understanding of the UFO release mechanism.

Initial Run 2 Observations

Towards the end of commissioning, the LHC was shown to be repeatedly capable of success-

fully ramping up in beam energy to support and sustain 6.5 TeV proton beams, including

being stable with 13 TeV collisions. However, not long after the onset of 6.5 TeV oper-

ation, the first UFO-induced magnet quench was recorded. Furthermore, initial absolute

UFO rates were recorded to be 4 times greater than in 2011, increasing the threat to

availability. In fact, as of the start of October it was looking like the system may even be

limited to half the nominal beam intensity for 6.5 TeV operation. Fortunately, however,

just as the intensity ramp-up was resulting in UFO losses frequently resulting in beam

dumps, absolute conditioning began to occur. The result was that the majority of UFO

events in the following month, even with the intensity continuing to increase, produced

signals that were far below the BLM threshold and 6.5 TeV operation was allowed to

continue. There are, however, to date not enough statistics to draw conclusions on the

long-term availability of 6.5 TeV operation.

Conclusion

To conclude, the devised model was capable of simulating 4 TeV UFO events and allowed

for outcome predictions of 6.5 TeV equivalent scenarios. Research led to numerous inter-

esting insights into the involved phenomena, in particular, with regard to UFO dynamics

and the probability of UFO-induced magnet quenches. Initial Run 2 observations not only

confirmed the possibility of UFO-induced magnet quenches but also confirmed thoughts

that UFO events will be at the forefront of availability issues for 6.5 TeV operation and

beyond. Nonetheless, as was also predicted, absolute conditioning was eventually observed
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and the frequency of beam dumps and magnet quenches reduced to within manageable

numbers. Overall, operating the LHC with 6.5 TeV beam energies therefore remains a

viable option and the thesis hypothesis is considered confirmed (albeit with an element of

luck involved).

[This space has been intentionally left blank]
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7.2 Recommendations for Further Work

The research which has been undertaken for this thesis has highlighted a number of topics

for which further research could be beneficial. The following lists the author’s recommen-

dations for further work.

6.5 TeV UFO Impact on Availability

• UFO events were both predicted and shown to have a significant impact on LHC

availability. It is suggested that research in the immediate future not only involves,

but focuses on the following.

– Continued collection and subsequent analysis of 6.5 TeV UFO event statistics,

focusing on the optimisation of BLM thresholds and the trade-off in availability

been magnet quenches and beam dumps.

– Investigate the most influential factors relating to the UFO release mechanism,

either by experiment or modelling.

– Research and develop mitigation strategies and methods for accelerating con-

ditioning (such research is also likely be a deciding factor in whether or not

the LHC will further increase operation to the design-nominal beam energy of

7 TeV).

– Update the existing modelling to incorporate external influences such as the

release mechanism, heat-load, etc. Use the model to make long-term availability

predictions.

Standardisation of CSCM

• The CSCM was proven to be capable in providing conclusive evidence for the quali-

fication and safe operation of a superconducting magnet string to a specific current

level. The method should be standardised and all possible applications should be

investigated.

– Standardise the method to be repeatable by non-experts.

– Consider the development a full ‘CSCM mode’ for the magnet protection sys-

tem, which is easily switched too for testing.

– Consider CSCM for the qualification of other major circuits, both existing and

in development (for example, High-Luminosity LHC upgrades).
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7 TeV (Design-Nominal) Operation

• With the overall success of supporting and sustaining 6.5 TeV beam energies, there

is no reason not to investigate the feasibility of further increasing the maximum

sustainable beam energy to the design-nominal value of 7 TeV.

– Using new training data, provide more accurate predictions for magnet training

quench numbers and estimate the required time.

– Consider circuit qualification to 7 TeV via CSCM.

– Model and investigate the 7 TeV UFO impact, taking into account yet higher

beam energies and yet further reduced magnet quench margins. Also take into

account accelerated conditioning, if methods for doing so are developed.

117



References

[1] D. W. Kerst et al., “Attainment of Very High Energy by Means of Intersecting Beams of

Particles,” Phys. Rev., vol. 102, pp. 590–591, Apr. 1956. doi: 10.1103/PhysRev.102.590.

[2] R. Oerter, The Theory of Almost Everything: The Standard Model, the Unsung Triumph

of Modern Physics. Plume, 2006, isbn: 978-0-452-28786-0. doi: 10.1063/1.2337829.

[3] S. L. Glashow, “Partial-symmetries of weak interactions,” Nuclear Physics, vol. 22, pp. 579–

588, 1961. doi: 10.1016/0029-5582(61)90469-2.

[4] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,”

Phys. Rev. Lett., vol. 13, pp. 321–323, 1964. doi: 10.1103/PhysRevLett.13.321.

[5] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett.,

vol. 13, pp. 508–509, 1964. doi: 10.1103/PhysRevLett.13.508.

[6] G. S. Guralnik et al., “Global Conservation Laws and Massless Particles,” Phys. Rev.

Lett., vol. 13, pp. 585–587, 1964. doi: 10.1103/PhysRevLett.13.585.

[7] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett., vol. 19, pp. 1264–1266, 1967. doi:

10.1103/PhysRevLett.19.1264.

[8] ATLAS Collaboration, “Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B, vol. 716,

pp. 1–29, 2012. doi: 10.1016/j.physletb.2012.08.020.

[9] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC,” Physics Letters B, vol. 716, pp. 30–61, 2012. doi: 10.1016/j.

physletb.2012.08.021.

[10] P. Langacker, “The Standard Model and Beyond,” AIP Conference Proceedings, vol. 150,

pp. 142–164, 1986. doi: 10.1063/1.36182.

[11] V. Trimble, “Existence and Nature of Dark Matter in the Universe,” Annual Review of

Astronomy and Astrophysics, vol. 25, pp. 425–472, 1987. doi: 10.1146/annurev.aa.25.

090187.002233.

[12] P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod.

Phys., vol. 75, pp. 559–606, 2003. doi: 10.1103/RevModPhys.75.559.

[13] H. Baer and X. Tata, Weak Scale Supersymmetry. Cambridge, 2006, isbn: 978-0-521-

85786-4. doi: 10.2277/0521857864.

I

http://dx.doi.org/10.1103/PhysRev.102.590
http://dx.doi.org/10.1063/1.2337829
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1063/1.36182
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.2277/0521857864


REFERENCES

[14] E. Eriksen and K. Vøyenli, The Classical and Relativistic Concepts of Mass, 1. 1976,

vol. 6, pp. 115–124. doi: 10.1007/BF00708670.

[15] E. Wilson, An Introduction to Particle Accelerators. 2001, isbn: 978-0-198-50829-8. doi:

10.1093/acprof:oso/9780198508298.001.0001.
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