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Abstract

Matrix partition problems generalize a number of natural graph partition
problems, and have been studied for several standard graph classes. We
prove that each matrix partition problem has only finitely many minimal
obstructions for split graphs. Previously such a result was only known for the
class of cographs. (In particular, there are matrix partition problems which
have infinitely many minimal chordal obstructions.) We provide (close) upper
and lower bounds on the maximum size of a minimal split obstruction. This
shows for the first time that some matrices have exponential-sized minimal
obstructions of any kind (not necessarily split graphs). We also discuss matrix
partitions for bipartite and co-bipartite graphs.

Keywords: generalized graph colouring, matrix partition, split graphs,
minimal obstructions, forbidden subgraphs

1. Introduction

The approach to graph partition problems, proposed in [9, 1, 5], and
used in this paper, is informed by the following distinction between different
partition problems.

There are graph partition problems which may be solved in polynomial
time and for which the set of minimal non-partitionable graphs is finite. The
split graphs recognition problem is a well-known example [8]. On the other
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hand there are partition problems, such as the bipartition problem, which
may be solved in polynomial time [10], but for which the set of minimal
non-partitionable graphs is infinite (in the case of the bipartition problem,
these are the odd cycles). Finally, there are numerous NP -complete graph
partition problems, such as the 3-colouring problem.

To discuss a broad class of partition problems, we use patterns to de-
scribe the requirements of the partition. In particular, the patterns we ex-
amine specify partition problems in which the input graph’s vertices are to
be partitioned into independent sets, or cliques, or some combination of in-
dependent sets and cliques. Further, we might require that two parts of
vertices in the partition be completely adjacent, or completely non-adjacent.
Formally, we use matrices to describe these patterns.

Let M be a symmetric m ×m matrix over 0, 1, ∗. An M-partition of a
graph G is a partition of the vertices of G into parts P1, P2, . . . , Pm such that
two distinct vertices in parts Pi and Pj (possibly with i = j) are adjacent if
M(i, j) = 1, and nonadjacent if M(i, j) = 0. The entry M(i, j) = ∗ signifies
no restriction.

Note that when i = j these restrictions mean that part Pi is either a
clique, or an independent set, or is unrestricted, when M(i, i) is 1, or 0, or
∗, respectively. Since some of the parts may be empty, we may assume that
none of the diagonal entries of M are asterisks (otherwise a trivial partition
always exists). For a fixed matrix M , the M -partition problem asks whether
or not an input graph G admits an M -partition.

If a graph G fails to admit an M -partition, we say that G is an M -
obstruction. Further, if G is an M -obstruction but deleting any vertex of G
results in an M -partitionable graph, then G is a minimal M -obstruction.

Given a graph G and lists L(v) ⊆ {1, . . . ,m}, with v ∈ V (G), the list
M-partition problem asks whether G admits an M -partition respecting the
lists. That is, an M -partition of G such that, for every v ∈ V (G), the vertex
v is placed in a part Pi only if i ∈ L(v). In this paper, we will focus on
the non-list version, and will explicitly refer to the list version when it is
discussed.

For any matrix M in this paper, we assume that there are k zero entries
and ` one entries on M ’s diagonal. By row and column permutations, we
may further assume that M(0, 0) = M(1, 1) = . . . = M(k, k) = 0 and
M(k + 1, k + 1) = . . . = M(k + `, k + `) = 1. Since we suppose that M
has no diagonal asterisks we have k + ` = m. Let A be the submatrix of
M on rows 1, . . . , k and columns 1, . . . , k; let B be the submatrix of M on
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2t+ 1

1 2 3 2t− 1 2t...
...



0 ∗ ∗
∗ 0 1
∗ 1 0


 t ≥ 3

Figure 1.1: A matrix with a family of infinitely many minimal obstructions.

rows k + 1, . . . ,m and columns k + 1, . . . ,m; and let C be the submatrix
of M on rows 1, . . . , k and columns k + 1, . . . ,m. We say such an M is in
(A,B,C)-block form.

Feder et al. [7] have shown that if there are asterisks in block A or block B
of a matrix M , then there are infinitely many minimal M -obstructions. Thus,
when discussing general graphs, we must restrict our attention to matrices
in which the only asterisk entries (if any) are in the block C. Such matrices
are called friendly. Of these, for any m×m matrix M containing no asterisk
entries at all (i.e. having only entries in {0, 1}), it has been shown that the
largest minimal M -obstruction is of size (k + 1)(` + 1) [2].

Even when restricted to chordal graphs, there are matrices for which there
are infinitely many chordal minimal obstructions [4, 6]. One of these matrices,
and an infinite family of chordal minimal obstructions to this matrix, appear
frequently in relation to other classes of graphs in this paper, and so are
given in Figure 1.1. The obstruction family in this figure is an interval graph,
so that the matrix in fact has infinitely many interval minimal obstructions.
Nonetheless, for any matrix M , the M -partition problem restricted to interval
graphs can be solved in polynomial time, even with lists [11]. Note that the
family in Figure 1.1 is not a family of split graphs, as each member contains
2K2 as an induced subgraph.

For general matrices M, all known upper bounds on the size of minimal
obstructions to M-partition are exponential [2, 3, 9]; however, in none of
these cases has it been shown that exponential-sized minimal obstructions to
M-partition actually exist.

This paper is organized as follows: In Section 2, we show that for any
m×m matrix M , a split minimal M -obstruction has O(2m ·m2) vertices. This
implies that any M -partition problem (without lists) is solvable in polynomial
time when the input is restricted to split-graphs.

Section 3 exhibits, for a particular class of m×m matrices, a split minimal
obstruction of size Ω(2m/

√
m), demonstrating that the exponential upper

bound derived in Section 2 is not far from being tight. As noted above, this
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means that the class of split graph obstructions is the first class with finite
minimal obstructions known to contain exponentially large obstructions.

In section 4, we discuss graphs that admit other types of partitions, such
as bipartite graphs and co-bipartite graphs. It is shown that for these classes
also there only finitely many minimal obstructions for any matrix M . These
graph classes (including the class of split graphs) have a natural common
generalization, namely graphs that are unions of k independent sets and `
cliques, sometimes called (k, `)-graphs. Split graphs are (1, 1)-graphs, bipar-
tite graphs are (2, 0)-graphs, and co-bipartite graphs are (0, 2)-graphs. By
contrast we show that when k + ` > 3, there is a matrix M with infinitely
many minimal (k, `)-graph obstructions. When k > 2, there are infinitely
many minimal (k, `)-graph obstructions that are chordal.

2. Matrix Partitions of Split Graphs

In this section we prove the following theorem.

Theorem 2.1. If M is a matrix without diagonal asterisks, then there are
only finitely many split minimal M-obstructions.

The size of any split minimal M-obstruction is O(2m ·m2).

A set of vertices H ⊆ V (G) is said to be homogeneous in G if the vertices
of V (G) − H can be partitioned into two sets, S1 and S2 such that every
vertex of S1 is adjacent to every vertex of H, and no vertex of S2 is adjacent
to a vertex of H. The proof of Theorem 2.1 relies on the existence of large
homogenous sets in M -partitionable split graphs.

Proposition 2.2. Let A be a k × k matrix whose diagonal entries are all
zero. Let GA be a split graph that admits an A-partition. Then every part
P of an A-partition of GA contains a homogeneous set in GA of size at least
|P |−1
2k−1 .

Proof. Consider an A-partition of GA into parts P1, ...Pk and a split partition
of GA into a clique C and independent set I. Note that for 1 6 i 6 k, we
have |Pi ∩ C| 6 1, since each Pi is an independent set. Moreover, since I is
also an independent set, each vertex in the set P1 ∩ I is adjacent to at most
k − 1 vertices, one in each Pi ∩ C, for 2 6 i 6 k (see Figure 2.1). If Pi ∩ C
contains a vertex, we will denote it by ui. Note that each ui is either adjacent
to at least half of the vertices of P1∩I, or non-adjacent to at least half of the
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vertices of P1∩I. Thus there exists a set X of at least |P1|−1
2k−1 vertices of P1∩I

that have the same relation (adjacent or non-adjacent) to the each vertex ui.
Since I is an independent set, this implies that X is a homogeneous set in
P1, and of course the same argument applies to any other Pj.

Figure 2.1: Structure of a k-partite split graph

Proposition 2.3. Let B be an ` × ` matrix whose diagonal entries are all
1. Let GB be a split graph that admits a B-partition. Then every part P of
a B-partition of GB contains a homogeneous set in GB of size at least |P |−1

2`−1 .

Proof. The result follows from Proposition 2.2, since GB admits a B-partition
if and only if GB admits a B-partition, and the complement of a split graph
is a split graph.

We also require the following observation.

Fact 2.4. Let M be an (A,B,C)-block matrix and let G be a split graph. If
C has an asterisk entry, then G admits an M-partition.

Proof. If C has an asterisk, then M contains the matrix ( 0 ∗
∗ 1 ) as a principal

submatrix. Thus G admits this partition by definition of split graphs, since
every other part may be empty.

Proof of Theorem 2.1. Let M be an m ×m matrix, with k diagonal 0s and
` diagonal 1s. Assume k > `. We show that the number of vertices in a split
minimal M -obstruction is at most

2k−1(k + `)(2k + 3) + 1 = O(2k · k2).

Suppose for contradiction that G is a minimal M obstruction with at
least 2k−1(k + `)(2k + 3) + 2 vertices. By Fact 2.4, we may assume that the
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submatrix C has no asterisks. Pick an arbitrary vertex v and consider an M -
partition of the graph G−v. Note that G−v has at least 2k−1(k+`)(2k+3)+1
vertices; as there are k + ` parts in the partition, by the pigeonhole principle
there is a part P of size at least 2k−1(2k + 3) + 1. This part P is either
an independent set or a clique, and each of these cases will be considered
separately below. Either way, by Propositions 2.2 and 2.3, P contains a
homogeneous set in A or B (depending on whether P is an independent set

or a clique) of size at least |P |−1
2k−1 > 2k + 3. Since C has no asterisks, this

set is homogeneous in G. Thus G− v has a homogeneous set of size at least
2k + 3, and so G has a homogeneous set H of size at least k + 2, since by
the pigeonhole principle at least k + 2 of the vertices of P agree on v. Recall
that P (and hence the homogeneous set H in it) is an independent set or a
clique. Now let w ∈ H, and consider an M -partition of G− w.

Case 1. If P is an independent set, then so is H; hence, there are at least
k + 1 independent vertices in G − w. As there are ` 6 k clique parts in
the partition of G − w, and no two distinct vertices of H may be placed in
the same clique part, at least one vertex w′ ∈ H − w must be placed in an
independent part P ′. Since w is not adjacent to w′ and both vertices belong
to H, w can be added to P ′, resulting in an M -partition of G, and hence
contradicting the minimality of G.

Case 2. If P is a clique, then H − w is a clique of size at least k + 1, and
so in the partition of G − w, at least one vertex of H − w falls in a clique
part P ′. As in Case 1, w can be added to P ′, contradicting the minimality
assumption.

Since every matrix M has finitely many split minimal obstructions, there
is an obvious polynomial time algorithm for the M -partition problem. How-
ever, a more efficient algorithm can be obtained by using the method of
‘sparse-dense’ partitions [5]. (In our context, k-colourable graphs will be
‘sparse’, and `-co-colourable graphs, i.e., graphs whose complements are `-
colourable, will be ‘dense’.)

Theorem 2.5. The M-partition problem restricted to split graphs can be
solved in time nO(k+`).

Proof. We may assume that C has no asterisks, according to Fact 2.4. Fur-
ther, we may also assume k+` > 3, otherwise we may use existing algorithms.
It is shown in [5] that one can generate all partitions of G into a k-colourable
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graph GA, and an `-co-colourable graph GB, in time n2c, where c is the max-
imum size of a subgraph of G that is both k-colourable and `-co-colourable.
Since G is a split graph, it is easy to see that c is at most k + `. We shall
argue that for each such partition GA, GB one can efficiently test (in time
dominated by nO(k+`)) whether an M -partition is possible. Thus in time
nO(k+`) we can test all (nO(k+`)) possible partitions GA, GB, and either find
an M -partition of G, or conclude that none exists. Thus consider a fixed
GA, GB partitioning G, and consider also a split partition of G into an in-
dependent set I and a clique K. Clearly, GA has at most k vertices in K,
and GB has at most ` vertices in I. For these k + ` vertices we will consider
all possible assignments into the k + ` parts of M . Since k + ` is fixed, we
can just look at each one of such assignments separately. So we may assume
that these k + ` vertices have been assigned, and focus on the remaining
vertices. This means that now GA is an independent set and GB a clique.
Thus, in any M -partition of G, the parts used by the vertices of GA form to
a principal submatrix A′ of A without 1’s, and the parts used by the vertices
of GB form to a principal submatrix B′ of B without 0’s. Since M is fixed,
we can examine each pair of such submatrices A′, B′ separately. For a con-
crete A′, B′ we can actually replace A′ by the all-zero matrix, and replace B′

by the all-one matrix, since GA is independent and GB is a clique. By our
assumption, the submatrix C ′ of C corresponding to A′, B′ has no asterisks,
and so the resulting matrix M ′ is asterisks-free. According to [5], such an
M ′-partition problem can be solved in time dominated by nO(k+`).

By contrast, we note that there are matrices M such that the list M -
partition problem for split graphs is NP -complete. Indeed, in [4] it is proved
that there are matrices M for which the list M -partition problem for chordal
graphs is NP -complete, and the graphs produced in that reduction happen
to be split graphs.

3. A Special Class of Matrices

As seen in Section 2, for any m ×m matrix M , there is an exponential
upper bound on the size of a largest split minimal M -obstruction. In this
section we show a family of matrices for which this bound is nearly tight.

For k, t ∈ N, with 1 6 t 6 k − 1, let Mk,t be a k × k matrix with
diagonal entries all zero, t ones in row k, symmetrically, t ones in column k
and asterisks everywhere else. By permuting the rows and columns of Mk,t

7






0 ∗ ∗
∗ 0 1
∗ 1 0




M3,1

P1 P2 P3




0 ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ 0 1
∗ ∗ 1 0




M4,1

P1 P2 P3 P4




0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ 1
∗ ∗ 0 ∗ 1
∗ ∗ ∗ 0 1
∗ 1 1 1 0




M5,3

P1 P2 P3 P4 P5

Figure 3.1: Matrices Mk,t for k ∈ {3, 4, 5} and t ∈ {1, 3}

we assume without loss of generality that the one entries of row k are in
columns k − t, ..., k − 1 and symmetrically, that the one entries of column k
are in rows k − t, ..., k − 1. See Figure 3.1 for some examples.

Theorem 3.1. Let M = Mk,t where k = 2t + 1, t ∈ N. Then the size of the

largest split minimal M-obstruction is Ω(2k/
√
k).

Proof. Let n ∈ nats, t = n, k = 2n+1. An M -partition has k = 2n+1 parts.
Let P denote the part in row and column 2n + 1, and designate the n parts
that have a one to P as restricted parts, R1, ..., Rn and the remaining n parts
as unrestricted parts, U1, ..., Un. See Figure 3.2.
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a

B

2n

B′

2n

...
n

S

(
2n
n

)

deg(a) = 4n
deg(b′) = 2n
b′ ∈ B′

b′bn

n

P

U1 U2 Un

...

...

R1 R2 Rn

( 0 ∗
∗ 0 )

Stable set

( 0 1
1 0 )

Stable set
Clique

edge
non-edge

Figure 3.2: A partition corresponding to M2n+1,n (left), and an obstruction G (right)

The minimal obstruction G, depicted in Figure 3.2, has a special vertex a,
and 2n vertices forming a clique B, and are all adjacent to a (so that B∪{a}
is a clique of size 2n + 1). Further, G has another 2n vertices forming an
independent set B′ such that for each b ∈ B there is a b′ ∈ B′ that is not
adjacent to b but adjacent to every other vertex of B ∪ {a}. Call b and b′

mates. Finally, G has an independent set S of size
(
2n
n

)
such that for every

subset B̃ of B of size n, there is exactly one vertex s ∈ S adjacent to exactly
the vertices of B̃. Note that G is a split graph since B ∪ {a} is a clique and
B′ ∪ S is an independent set.

To see that G is indeed an obstruction, suppose otherwise, and note that
B ∪ {a} is a clique of size 2n + 1, so each of its vertices must be placed in a
different part. Since each vertex of B has a mate in B′ that is adjacent to
a and all of the other vertices in B, all parts other than the part containing
a have size at least two in any Mk,t-partition of G. Thus only the part
containing a may be a singleton. Further, the 2n + 1-st part P must be the
only singleton part, otherwise all of the restricted parts must be singletons
(since G, being a split graph, contains no induxed C4). Therefore a ∈ P .
Now whichever n vertices of B are placed in the unrestricted parts, there
is a vertex s ∈ S adjacent to exactly these vertices, and so must be placed
into one of the restricted parts. But as s is not adjacent to a, it cannot
be placed in a restricted part, and s can’t be added to P ; hence, G is not
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Mk,t-partitionable.
To argue that G is a minimal obstruction, we show that removing a vertex

from one of S,B,B′, or {a} allows us to M -partition the resulting graph:

(i) For s ∈ S partition G − s as follows: map a to P , place each b ∈
B, together with its mate b′ ∈ B′, in some part, making sure that
neighbours of the missing s are placed in unrestricted parts. Now each
remaining vertex of S has an unrestricted part to go to.

(ii) We consider b ∈ B together with its mate b′ ∈ B′. For G− b, place a in
P , place b’s mate b′ in an unrestricted part Pb′ , and place all of S and
all of B′ in Pb′ . This is possible since B′ ∪ S form an independent set.
Place the remaining 2n− 1 vertices of B to the remaining 2n− 1 parts
arbitrarily. To partition G− b′, place b in P , and place a together with
all of the vertices of S in an unrestricted part Pa, and place each other
pair of mates v, v′ from B and B′ into a distinct part, different from P
and Pa.

(iii) Finally, G− a can be partitioned using the restricted and unrestricted
parts only, not placing anything in P . Place each b and its mate b′ into
a part. Each s ∈ S is only forbidden from n out of the 2n parts and so
it can always be placed somewhere.

Now G has
(
2n
n

)
+ 4n + 1 vertices, and using the fact that

(
2n
n

)
= Ω( 4n√

n
) we

conclude that G has Ω( 2k√
k
) vertices. In particular, G is of size exponential

in k.

4. Generalized Split Graphs

Split graphs can be viewed as a special case of (k, `)-graphs - those graphs
whose vertices can be partitioned into k independent sets and ` cliques. (Thus
split graphs are the (1, 1)-graphs.)

In this section, we focus on (k, `)-graphs other than the (1, 1)-graphs.
We begin with (2, 0)- and (0, 2)-graphs, and then discuss other (k, `)-graphs.
Recall that the (2, 0)-graphs are the bipartite graphs, while the (0, 2)-graphs
are the co-bipartite graphs. As it turns out, there are only finitely many
bipartite and finitely many co-bipartite minimal obstructions, for any matrix
M .

Theorem 4.1. For any m ×m matrix M , there are only finitely many bi-
partite minimal obstructions and only finitely many co-bipartite minimal ob-
structions.
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To prove Theorem 4.1 we use an approach similar in nature to that used
Section 2. Starting with bipartite graphs, note that we may assume that
the matrix ( 0 ∗

∗ 0 ) is not a principal submatrix of the matrix M , otherwise the
problem would be trivial.

Proposition 4.2. Let M be an (A,B,C)-block matrix, with A of size k × k
and B of size `× `. Suppose the block A has no asterisk entries. If G is an
M-partitionable bipartite graph, then any part P of A in an M-partition of
G contains a homogeneous set of size at least |P |

22`

Proof. Fix a bipartition of G and let P be a part of A in an M -partition
of G. As A has no asterisks, the vertices of P all have the same adjacency
relation to vertices in other parts of A. Now let P ′ be some part of B. Since
G is bipartite, P ′ can have at most two vertices, one from each part of the
bipartition of G. Let these vertices be x and y. By the pigeonhole principle,
x is either adjacent to, or non-adjacent to, at least half of the vertices of
P . Suppose with out loss of generality, that x is adjacent to at least half of
the vertices of P . Call these vertices Px. Applying the pigeonhole principle
again, this time to the vertex y, we have that y is either adjacent to, or non-
adjacent to, at least half of the vertices of Px. Let the larger of these two
sets be Pxy, and note that Pxy >

|P |
22

. Now there are `− 1 clique parts other
than P ′, each of size at most two. Inductively, we obtain a homogeneous set
in P of size at least |P |

22`

Theorem 4.1 now follows for bipartite graphs. The proof for co-bipartite
graphs follows by complementation.

Proof of Theorem 4.1. As discussed above, we assume that A contains no
asterisk entries. We show that any bipartite minimal obstruction is of size
at most

22`(k + `)(2` + 3)

Suppose otherwise, and let G be a minimal obstruction with at least
22`(k + `)(2` + 3) + 1 vertices. For an arbitrary vertex v, the graph G − v
is M -partitionable, and so some part P in an M -partition of G− v contains
at least 22`(2` + 3) vertices. Since 22`(2` + 3) > 3 for l > 0, and no clique
part of M may contain more than two vertices, P must be an independent
set. Thus by Proposition 4.2, P contains a homogeneous set of G− v of size
at least |P |

22`
> 2` + 3. By the pigeonhole principle, G has an homogeneous

set H of size at least ` + 2. Note that H is an independent set. Let h ∈ H,
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and consider a partition of G− h. As there are only ` clique parts and ` + 1
vertices in H − h, there must be a part P ′ of A that contains a vertex h′ of
H−h. But since H is an independent set, and h has the same neighbourhood
as h′, we may add h to P ′ to obtain an M -partition of G, a contradiction.

This completes a discussion of (k, `) graphs with values of k and ` that
satisfy k + ` 6 2. We now consider (k, `)-graphs with k + ` > 3. For
convenience, let (k, `) denote the set of (k, `)-graphs. The family of graphs
depicted in Figure 1.1 is an infinite family of minimal obstructions to the
matrix M3,1[6]. We define the family more precisely as follows.

For t > 3, let G(t) be the graph consisting of an even path on 2t vertices,
and an additional vertex u, which is adjacent to all vertices of the path,
except the endpoints.

Theorem 4.3. If k, ` ∈ N such that k + ` > 3, then there exists a matrix M
that has infinitely many (k, `)-minimal obstructions.

Proof. Note that for any t > 3, G(t) is 3-colourable, and G(t) is partitionable
into a bipartite graph and a clique. That is, G(t) ∈ (3, 0)∩ (2, 1). Therefore,
for the matrix M3,1, there are infinitely many minimal (2, 1)∩ (3, 0) obstruc-

tions. By complementation, for any t > 3, the graph G(t) is in (1, 2)∩ (0, 3),
providing infinitely many (1, 2) ∩ (0, 3) obstructions for the matrix M3,1.

Now if k 6 1, then since k+` > 3, it must be that ` > 2, and so the family
{G(t)|t > 3} is a family of (k, `)-minimal obstructions for M3,1. On the other
hand, if k > 2, then the family {G(t)|t > 3} is a family of (k, `)-minimal
obstructions for the matrix M3,1.

We are thankful to the two referees for a careful reading of an earlier
version of this paper, and for their helpful suggestions.
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