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Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent net-
worked systems with an emphasis on the role of directed information flow, robustness to changes in network topology
due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information
consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our
analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the
connections between consensus problems in networked dynamic systems and diverse applications including synchro-
nization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes
and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor
networks, and belief propagation. We establish direct connections between spectral and structural properties of com-
plex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on
networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-
type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects
on the speed of consensus algorithms and cooperative control of multi-vehicle formations.

Key words: multi-agent systems, consensus algorithms, information fusion, networked systems, cooperative
control, algebraic connectivity, graph Laplacians, flocking, synchronization of coupled oscillators, small-world
networks

1 Introduction: Consensus and Cooperation

Consensus problems have a long history in computer science and form the foundation of the field of distributed
computing [51]. Formal study of consensus problems in groups of experts originated in management science
and statistics in 1960’s (See DeGroot [19] and references therein). The ideas of statistical consensus theory by
DeGroot reappeared two decades later in aggregation of information with uncertainty obtained from multiple
sensors4[6] and medical experts [93].

Distributed computation over networks has a tradition in systems and control theory starting with the
pioneering work of Borkar and Varaiya [10] and Tsitsiklis and Athens [90] on asynchronous asymptotic agree-
ment problem for distributed decision-making systems. This effort was summarized in [7] with applications
to parallel computing.

In networks of agents (or dynamic systems), “consensus” means to reach an agreement regarding a
certain quantity of interest that depends on the state of all agents. A “consensus algorithm” (or protocol) is

? Submitted to IEEE Proceedings on August 5, 2005. Revised on Feb 2, 2006.
4 This is known as sensor fusion and is an important application of modern consensus algorithms that will be

discussed later.
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an interaction rule that specifies the information exchange between an agent and all of its neighbors on the
network5.

The theoretical framework for posing and solving consensus problems for networked dynamic systems was
introduced by Olfati-Saber and Murray in [76, 70] building on the earlier work of Fax and Murray [27, 28].
The study of the alignment problem involving reaching an agreement—without computing any objective
functions—appeared in the work of Jadbabaie et al. [38]. Further theoretical extensions of this work were
presented in [59, 74] with a look toward treatment of directed information flow in networks as shown in
Fig. 1 (a).

The common motivation behind the work in [10, 90, 70] is the rich history of consensus protocols in
computer science [51], whereas Jadbabaie et al. [38] attempted to provide a formal analysis of emergence of
alignment in the simplified model of flocking by Viscek et al. [91]. The setup in [70] was originally created
with the vision of designing agent-based amorphous computers [1, 62] for collaborative information processing
in networks. Later, [70] was used in development of flocking algorithms with guaranteed convergence and
the capability to deal with obstacles and adversarial agents [66].

Graph Laplacians and their spectral properties [29, 58, 55, 32] are important graph-related matrices that
play a crucial role in convergence analysis of consensus and alignment algorithms. Graph Laplacians are
an important point of focus of this paper. It is worth mentioning that the second smallest eigenvalue of
graph Laplacians called algebraic connectivity quantifies the speed of convergence of consensus algorithms.
The notion of algebraic connectivity of graphs has appeared in a variety of other areas including low-density
parity-check codes (LDPC) in information theory and communications [84], Ramanujan graphs [50] in number
theory and quantum chaos, and combinatorial optimization problems such as the max-cut problem [58].

More recently, there has been a tremendous surge of interest—among researchers from various disciplines
of engineering and science—in problems related to multi-agent networked systems with close ties to consensus
problems. This includes subjects such as consensus [47, 9, 5, 15, 54, 8, 79], collective behavior of flocks
and swarms [66, 80, 60, 95, 30], sensor fusion [64, 71, 33], random networks [34, 73], synchronization of
coupled oscillators [81, 39, 72, 73, 14], algebraic connectivity6of complex networks [65, 12, 43], asynchronous
distributed algorithms [54, 26], formation control for multi-robot systems [21, 68, 69, 24, 89, 88, 48, 96,
20], optimization-based cooperative control [75, 42, 37, 2], dynamic graphs [56, 61, 40, 99], complexity of
coordinated tasks [36, 44, 52, 53], and consensus-based belief propagation in Bayesian networks [78, 67]. A
detailed discussion of selected applications will be presented shortly.

In this paper, we focus on the work described in five key papers—namely, Jadbabaie, Lin, and Morse
[38], Olfati-Saber and Murray [70], Fax and Murray [28], Moreau [59], and Ren and Beard [74]— that have
been instrumental in paving the way for more recent advances in study of self-organizing networked systems,
or swarms. These networked systems are comprised of locally interacting mobile/static agents equipped with
dedicated sensing, computing, and communication devices. As a result, we now have a better understanding
of complex phenomena such as flocking [66], or design of novel information fusion algorithms for sensor
networks that are robust to node and link failures [64, 86, 98, 13, 78, 67].

Gossip-based algorithms such as the push-sum protocol [41] are important alternatives in computer
science to Laplacian-based consensus algorithms in this paper. Markov processes establish an interesting
connection between the information propagation speed in these two categories of algorithms proposed by
computer scientists and control theorists [11].

The contribution of this paper is to present a cohesive overview of the key results on theory and appli-
cations of consensus problems in networked systems in a unified framework. This includes basic notions in
information consensus and control theoretic methods for convergence and performance analysis of consensus
protocols that heavily rely on matrix theory and spectral graph theory. A byproduct of this framework is
to demonstrate that seemingly different consensus algorithms in the literature [38, 28, 70, 59, 74] are closely
related. Applications of consensus problems in areas of interest to researchers in computer science, physics,
biology, mathematics, robotics, and control theory are discussed in this introduction.
5 The term “nearest neighbors” is more commonly used in physics than “neighbors” when applied to particle/spin

interactions over a lattice (e.g. Ising model).
6 To be defined in Section 2.1.
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1.1 Consensus in Networks

The interaction topology of a network of agents is represented using a directed graph G = (V,E) with the
set of nodes V = {1, 2, . . . , n} and edges E ⊆ V × V . The neighbors of agent i are denoted by Ni = {j ∈ V :
(i, j) ∈ E}. According to [70], a simple consensus algorithm to reach an agreement regarding the state of n
integrator agents with dynamics ẋi = ui can be expressed as an nth-order linear system on a graph:

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) + bi(t), xi(0) = zi ∈ R, bi(t) = 0 (1)

The collective dynamics of the group of agents following protocol (1) can be written as

ẋ = −Lx (2)

where L = [lij ] is the graph Laplacian of the network and its elements are defined as follows:

lij =
{
−1 i 6= j,
|Ni| i = j.

(3)

Here, |Ni| denotes the number of neighbors of node i (or out-degree of node i). Fig. 1 shows two equivalent
forms of the consensus algorithm in equations (1) and (2) for agents with a scalar state. The role of the input
bias b in Fig. 1 (b) is defined later.

According to the definition of graph Laplacian in (3), all row-sums of L are zero because of
∑

j lij = 0.
Therefore, L always has a zero eigenvalue λ1 = 0. This zero eigenvalues corresponds to the eigenvector
1 = (1, . . . , 1)T because 1 belongs to the null-space of L (L1 = 0). In other words, an equilibrium of
system (2) is a state in the form x∗ = (α, . . . , α)T = α1 where all nodes agree. Based on analytical tools
from algebraic graph theory [32], we later show that x∗ is a unique equilibrium of (2) (up to a constant
multiplicative factor) for connected graphs.

i j

+b y = x

Collective System 

Consensus Feedback

u

OutputControlInput bias

!

!

(a) (b)

Fig. 1. Two equivalent forms of consensus algorithms: (a) a network of integrator agents in which agent i receives
the state xj of its neighbor, agent j, if there is a link (i, j) connecting the two nodes; and (b) the block diagram for a
network of interconnected dynamic systems all with identical transfer functions P (s) = 1/s. The collective networked
system has a diagonal transfer function and is a MIMO (multi-input multi-output) linear system.

One can show that for a connected network, the equilibrium x∗ = (α, . . . , α)T is globally exponentially
stable. Moreover, the consensus value is α = 1/n

∑
i zi that is equal to the average of the initial values.
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This implies that irrespective of the initial value of the state of each agent, all agents reach an asymptotic
consensus regarding the value of the function f(z) = 1/n

∑
i zi.

While the calculation of f(z) is simple for small networks, its implications for very large networks is
more interesting. For example, if a network has n = 106 nodes and each node can only talk to log10(n) = 6
neighbors, finding the average value of the initial conditions of the nodes is more complicated. The role of
protocol (1) is to provide a systematic consensus mechanism in such a large network to compute the average.
There are a variety of functions that can be computed in a similar fashion using synchronous or asynchronous
distributed algorithms (See [70, 67, 5, 13, 54]).

1.2 The f-Consensus Problem and Meaning of Cooperation

To understand the role of cooperation in performing coordinated tasks, we need to distinguish between uncon-
strained and constrained consensus problems. An unconstrained consensus problem is simply the alignment
problem in which it suffices that the state of all agents asymptotically be the same. In contrast, in distributed
computation of a function f(z), the state of all agents has to asymptotically become equal to f(z), meaning
that the consensus problem is constrained. We refer to this constrained consensus problem as the f-consensus
problem.

Solving the f -consensus problem is a cooperative task and requires willing participation of all the agents.
To demonstrate this fact, suppose a single agent decides not to cooperate with the rest of the agents and keep
its state unchanged. Then, the overall task cannot be performed despite the fact that the rest of the agents
reach an agreement. Furthermore, there could be scenarios in which multiple agents that form a coalition do
not cooperate with the rest and removal of this coalition of agents and their links might render the network
disconnected. In a disconnected network, it is impossible for all nodes to reach an agreement (unless all nodes
initially agree which is a trivial case).

From the above discussion, cooperation can be informally interpreted as “giving consent to providing
one’s state and following a common protocol that serves the group objective.”

One might think that solving the alignment problem is not a cooperative task. The justification is that if
a single agent (called a leader) leaves its value unchanged, all others will asymptotically agree with the leader
according to the consensus protocol and an alignment is reached. However, if there are multiple leaders where
two of whom are in disagreement, then no consensus can be asymptotically reached. Therefore, alignment is
in general a cooperative task as well.

Formal analysis of the behavior of systems that involve more than one type of agent is more complicated,
particularly, in presence of adversarial agents in non-cooperative games [31, 82]. The focus of this paper is
on cooperative multi-agent systems.

1.3 Iterative Consensus Algorithms and Markov Chains

In Section 2, we show how an iterative consensus algorithm that corresponds to the discrete-time version of
system (1) is a Markov chain

π(k + 1) = π(k)P (4)

with P = I − εL and a small ε > 0. Here, the ith element of the row vector π(k) denotes the probability of
being in state i at iteration k. It turns out that for any arbitrary graph G with Laplacian L and a sufficiently
small ε, the matrix P satisfies the property

∑
j pij = 1 with pij ≥ 0,∀i, j. Hence, P is a valid transition

probability matrix for the Markov chain in (4). The reason matrix theory [35] is so widely used in analysis of
consensus algorithms [38, 28, 70, 59, 74, 56] is primarily due to the structure of P in equation (4) and its
connection to graphs7.

There are interesting connections between this Markov chain and the speed of information diffusion in
gossip-based averaging algorithms [41, 11].
7 In honor of the pioneering contributions of Oscar Perron (1907) to the theory of nonnegative matrices, were refer

to P as the Perron Matrix of graph G (See Section 2.3 for details).
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One of the early applications of consensus problems was dynamic load balancing [18] for parallel processors
with the same structure as system (4). To this date, load balancing in networks proves to be an active area
of research in computer science.

1.4 Applications

Many seemingly different problems that involve interconnection of dynamic systems in various areas of science
and engineering happen to be closely related to consensus problems for multi-agent systems. In this section,
we provide an account of the existing connections.

Synchronization of Coupled Oscillators

The problem of synchronization of coupled oscillators has attracted numerous scientists from diverse fields
including physics, biology, neuroscience, and mathematics [45, 57, 87, 25]. This is partly due to the emergence
of synchronous oscillations in coupled neural oscillators. Let us consider the generalized Kuramoto model of
coupled oscillators on a graph with dynamics

θ̇i = κ
∑
j∈Ni

sin(θj − θi) + ωi (5)

where θi and ωi are the phase and frequency of the ith oscillator. This model is the natural nonlinear
extension of the consensus algorithm in (1) and its linearization around the aligned state θ1 = . . . = θn is
identical to system (2) plus a nonzero input bias bi = (ωi − ω̄)/κ with ω̄ = 1/n

∑
i ωi after a change of

variables xi = (θi − ω̄t)/κ.
In [81], Sepulchre et al. show that if κ is sufficiently large, then for a network with all-to-all links,

synchronization to the aligned state is globally achieved for all initial states. Recently, synchronization of
networked oscillators under variable time-delays was studied in [72]. We believe that the use of convergence
analysis methods that utilize the spectral properties of graph Laplacians will shed light on performance and
convergence analysis of self-synchrony in oscillator networks [73].

Flocking Theory

Flocks of mobile agents equipped with sensing and communication devices can serve as mobile sensor networks
for massive distributed sensing in an environment [17]. A theoretical framework for design and analysis of
flocking algorithms for mobile agents with obstacle-avoidance capabilities is developed by Olfati-Saber [66].
The role of consensus algorithms in particle-based flocking is for an agent to achieve velocity matching
with respect to its neighbors. In [66], it is demonstrated that flocks are networks of dynamic systems with
a dynamic topology. This topology is a proximity graph that depends on the state of all agents and is
determined locally for each agent, i.e. the topology of flocks is a state-dependent graph. The notion of
state-dependent graphs was introduced by Mesbahi [56] in a context that is independent of flocking.

Fast Consensus in Small-Worlds

In recent years, network design problems for achieving faster consensus algorithms has attracted considerable
attention from a number of researchers. In Xiao and Boyd [97], design of the weights of a network is considered
and solved using semi-definite convex programming. This leads to a slight increase in algebraic connectivity
of a network that is a measure of speed of convergence of consensus algorithms. An alternative approach
is to keep the weights fixed and design the topology of the network to achieve a relatively high algebraic
connectivity. A randomized algorithm for network design is proposed by Olfati-Saber [65] based on random
rewiring idea of Watts and Strogatz [92] that led to creation of their celebrated small-world model. The
random rewiring of existing links of a network gives rise to considerably faster consensus algorithms. This
is due to multiple orders of magnitude increase in algebraic connectivity of the network in comparison to a
lattice-type nearest-neighbort graph.
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Rendezvous in Space

Another common form of consensus problems is rendezvous in space [3, 46]. This is equivalent to reaching
a consensus in position by a number of agents with an interaction topology that is position induced (i.e. a
proximity graph). We refer the reader to [16] and references therein for a detailed discussion. This type of
rendezvous is an unconstrained consensus problem that becomes challenging under variations in the network
topology. Flocking is somewhat more challenging than rendezvous in space because it requires both inter-
agent and agent-to-obstacle collision avoidance.

Distributed Sensor Fusion in Sensor Networks

The most recent application of consensus problems is distributed sensor fusion in sensor networks . This
is done by posing various distributed averaging problems require to implement a Kalman filter [64, 71],
approximate Kalman filter [86], or linear least-squares estimator [98] as average-consensus problems. Novel
low-pass and high-pass consensus filters are also developed that dynamically calculate the average of their
inputs in sensor networks [71, 85].

Distributed Formation Control

Multi-vehicle systems are an important category of networked systems due to their commercial and military
applications. There are two broad approaches to distributed formation control: i) representation of formations
as rigid structures [69, 23] and the use of gradient-based controls obtained from their structural potentials
[68] and ii) representation of formations using the vectors of relative positions of neighboring vehicles and
the use of consensus-based controllers with input bias. We discuss the later approach here.

A theoretical framework for design and analysis of distributed controllers for multi-vehicle formations
of type ii) was developed by Fax and Murray [28]. Moving in formation is a cooperative task and requires
consent and collaboration of every agent in the formation. In [28], graph Laplacians and matrix theory were
extensively used which makes one wonder whether relative-position based formation control is a consensus
problem. The answer is yes. To see this, consider a network of self-interested agents whose individual desire
is to minimize their local cost Ui(x) =

∑
j∈Ni

‖xj − xi− rij‖2 via a distributed algorithm (xi is the position
of vehicle i with dynamics ẋi = ui and rij is a desired inter-vehicle relative-position vector). Instead, if the
agents use gradient-descent algorithm on the collective cost

∑n
i=1 Ui(x) using the following protocol

ẋi =
∑
j∈Ni

(xj − xi − rij) =
∑
j∈Ni

(xj − xi) + bi (6)

with input bias bi =
∑

j∈Ni
rji (See Fig. 1 (b)), the objective of every agent will be achieved. This is the

same as the consensus algorithm in (1) up to the nonzero bias terms bi. This non-zero bias plays no role
in stability analysis of system (6). Thus, distributed formation control for integrator agents is a consensus
problem. The main contribution of the work by Fax and Murray is to extend this scenario to the case where
all agents are multi-input multi-output linear systems ẋi = Axi + Bui. Stability analysis of relative-position
based formation control for multi-vehicle systems is extensively covered in Section 4.

1.5 Outline

The outline of the paper is as follows. Basic concepts and theoretical results in information consensus are
presented in Section 2. Convergence and performance analysis of consensus on networks with switching
topology are given in Section 3. A theoretical framework for cooperative control of formations of networked
multi-vehicle systems is provided in Section 4. Some simulation results related to consensus in complex
networks including small-worlds are presented in Section 5. Finally, some concluding remarks are stated in
Section 6.
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2 Information Consensus in Networked Systems

Consider a network of decision-making agents with dynamics ẋi = ui interested in reaching a consensus
via local communication with their neighbors on a graph G = (V,E). By reaching a consensus, we mean
asymptotically converging to a one-dimensional agreement space characterized by the following equation

x1 = x2 = . . . = xn.

This agreement space can be expressed as x = α1 where 1 = (1, . . . , 1)T and α ∈ R is the collective decision
of the group of agents. Let A = [aij ] be the adjacency matrix of graph G. The set of neighbors of a agent i
is Ni and defined by

Ni = {j ∈ V : aij 6= 0}; V = {1, . . . , n}.

Agent i communicates with agent j if j is a neighbor of i (or aij 6= 0). The set of all nodes and their neighbors
defines the edge set of the graph as E = {(i, j) ∈ V × V : aij 6= 0}.

A dynamic graph G(t) = (V,E(t)) is a graph in which the set of edges E(t) and the adjacency matrix
A(t) are time-varying. Clearly, the set of neighbors Ni(t) of every agent in a dynamic graph is a time-varying
set as well. Dynamic graphs are useful for describing the network topology of mobile sensor networks and
flocks [66].

It is shown in [70] that the linear system

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)) (7)

is a distributed consensus algorithm, i.e. guarantees convergence to a collective decision via local inter-agent
interactions. Assuming that the graph is undirected (aij = aji for all i, j), it follows that the sum of the state
of all nodes is an invariant quantity, or

∑
i ẋi = 0. In particular, applying this condition twice at times t = 0

and t =∞ gives the following result

α =
1
n

∑
i

xi(0).

In other words, if a consensus is asymptotically reached, then necessarily the collective decision is equal to
the average of the initial state of all nodes. A consensus algorithm with this specific invariance property is
called an average-consensus algorithm [76] and has broad applications in distributed computing on networks
(e.g. sensor fusion in sensor networks).

The dynamics of system (7) can be expressed in a compact form as

ẋ = −Lx (8)

where L is known as the graph Laplacian of G. The graph Laplacian is defined as

L = D −A (9)

where D = diag(d1, . . . , dn) is the degree matrix of G with elements di =
∑

j 6=i aij and zero off-diagonal
elements. By definition, L has a right eigenvector of 1 associated with the zero eigenvalue8because of the
identity L1 = 0.

For the case of undirected graphs, graph Laplacian satisfies the following sum-of-squares (SOS) property:

xT Lx =
1
2

∑
(i,j)∈E

aij(xj − xi)2. (10)

By defining a quadratic disagreement function as
8 These properties were discussed earlier in the introduction for graphs with 0-1 weights.
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ϕ(x) =
1
2
xT Lx, (11)

it becomes apparent that algorithm (7) is the same as

ẋ = −∇ϕ(x),

or the gradient-descent algorithm. This algorithm globally asymptotically converges to the agreement space
provided that two conditions hold: 1) L is a positive semidefinite matrix and 2) the only equilibrium of (7)
is α1 for some α. Both of these conditions hold for a connected graph and follow from the SOS property
of graph Laplacian in (10). Therefore, an average-consensus is asymptotically reached for all initial states.
This fact is summarized in the following lemma:

Lemma 1. Let G be a connected undirected graph. Then, the algorithm in (7) asymptotically solves an
average-consensus problem for all initial states.

2.1 Algebraic Connectivity and Spectral Properties of Graphs

Spectral properties of Laplacian matrix are instrumental in analysis of convergence of the class of linear
consensus algorithms in (7). According to Gershgorin theorem [35], all eigenvalues of L in the complex plane
are located in a closed disk centered at ∆ + 0j with a radius of ∆ = maxi di, i.e. the maximum degree
of a graph. For undirected graphs, L is a symmetric matrix with real eigenvalues and therefore the set of
eigenvalues of L can be ordered sequentially in an ascending order as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2∆ (12)

The zero eigenvalue is known as the trivial eigenvalue of L. For a connected graph G, λ2 > 0 (i.e. the zero
eigenvalue is isolated). The second smallest eigenvalue of Laplacian λ2 is called algebraic connectivity of a
graph [29]. Algebraic connectivity of the network topology is a measure of performance/speed of consensus
algorithms [70].

Example 1. Fig. 2 shows two examples of networks of integrator agents with different topologies. Both graphs
are undirected and have 0-1 weights. Every node of the graph in Fig. 2 (a) is connected to its 4 nearest
neighbors on a ring. The other graph is a proximity graph of points that are distributed uniformly at
random in a square. Every node is connected to all of its spatial neighbors within a closed ball of radius
r > 0. Here are the important degree information and Laplacian eigenvalues of these graphs:

a) λ1 = 0, λ2 = 0.48, λn = 6.24,∆ = 4
b) λ1 = 0, λ2 = 0.25, λn = 9.37,∆ = 10 (13)

In both cases, λi < 2∆ for all i.

2.2 Convergence Analysis for Directed Networks

The convergence analysis of the consensus algorithm in (7) is equivalent to proving that the agreement space
characterized by x = α1, α ∈ R is an asymptotically stable equilibrium of system (7). The stability properties
of system (7) is completely determined by the location of the Laplacian eigenvalues of the network. The
eigenvalues of the adjacency matrix are irrelevant to the stability analysis of system (7), unless the network
is k-regular (all of its nodes have the same degree k).

The following lemma combines a well-known rank property of graph Laplacians with Gershgorin theorem
to provide spectral characterization of Laplacian of a fixed directed network G. Before stating the lemma,
we need to define the notion of strong connectivity of graphs. A graph is strongly connected (SC) if there is
a directed path connecting any two arbitrary nodes s, t of the graph9.
9 The notion of strong connectivity applies to directed graphs (or digraphs). For undirected graphs SC is the same

as connectivity.
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Fig. 2. Examples of networks with n = 20 nodes: a) a regular network with 80 links and b) a random network with
65 links.

Lemma 2. (spectral localization) Let G be a strongly connected digraph on n nodes. Then rank(L) = n − 1
and all nontrivial eigenvalues of L have positive real parts. Furthermore, suppose G has c ≥ 1 strongly
connected components, then rank(L) = n− c.

Proof. The proof of the rank property for digraphs is given in [70]. The proof for undirected graphs is
available in the algebraic graph theory literature [32]. The positivity of the real parts of the eigenvalues
follow from the fact that all eigenvalues are located in a Gershgorin disk in the closed right-hand plane that
touches the imaginary axis at zero. The second part follows from the first part after relabeling the nodes of
the digraph so that its Laplacian becomes a block diagonal matrix. ut

Remark 1. Lemma 2 holds under a weaker condition of existence of a directed spanning tree for G. G has
a directed spanning tree if there exists a node r (a root) such that all other nodes can be linked to r via a
directed path. This type of condition on existence of directed spanning trees have appeared in [38, 59, 74].
The root node is commonly known as a leader [38].

The essential results regarding convergence and decision value of Laplacian-based consensus algorithms
for directed networks with a fixed topology are summarized in the following theorem. Before stating this
theorem, we need to define an important class of digraphs that appear frequently throughout this section.

Definition 1. (balanced digraphs [70]) A digraph G is called balanced if
∑

j 6=i aij =
∑

j 6=i aji for all i ∈ V .

In a balanced digraph, the total weight of edges entering a node and leaving the same node are equal for
all nodes. The most important property of balanced digraphs is that w = 1 is also a left eigenvector of their
Laplacian (or 1T L = 0).

Theorem 1. Consider a network of n agents with topology G applying the following consensus algorithm

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), x(0) = z (14)

Suppose G is a strongly connected digraph. Let L be the Laplacian of G with a left eigenvector γ = (γ1, . . . , γn)
satisfying γT L = 0. Then

i) A consensus is asymptotically reached for all initial states;



10 Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray

ii) The algorithm solves the f-consensus problem with the linear function f(z) = (γT z)/(γT 1), i.e. the group
decision is α =

∑
i wizi with

∑
i wi = 1;

iii) If the digraph is balanced, an average-consensus is asymptotically reached and α = (
∑

i xi(0))/n.

Proof. The convergence of the consensus algorithm follows from Lemma 2. To show part ii), note that the
collective dynamics of the network is ẋ = −Lx. This means that y = γT x is an invariant quantity due
to ẏ = −γT Lx = 0,∀x. Thus, limt→∞ y(t) = y(0), or γT (α1) = γT x(0) that implies the group decision is
α = (γT z)/

∑
i γi. Setting wi = γi/

∑
i γi, we get α = wT z. Part iii) follows as a special case of the statement

in part ii) because for a balanced digraph γ = 1 and wi = 1/n,∀i. ut

Remark 2. In [70], it is shown that a necessary and sufficient condition for L to have a left eigenvector of
γ = 1 is that G must be a balanced digraph.

A challenging problem is to analyze convergence of a consensus algorithm for a dynamic network with a
switching topology G(t) that is time-varying. Various aspects of this problem has been addressed by several
groups during the recent years [38, 70, 59, 74] and will be discussed in detail.

2.3 Consensus in Discrete-Time and Matrix Theory

An iterative form of the consensus algorithm can be stated as follows in discrete-time:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)). (15)

The discrete-time collective dynamics of the network under this algorithm can be written as

x(k + 1) = Px(k), (16)

with P = I − εL (I is the identity matrix) and ε > 0 is the step-size. In general, P = exp(−εL) and the
algorithm in (15) is a special case that only uses communication with first-order neighbors10. We refer to P
as Perron matrix of a graph G with parameter ε.

Three important types of non-negative matrices are irreducible, stochastic, and primitive (or ergodic)
matrices [35]. A matrix A is irreducible if its associated graph is strongly connected. A non-negative matrix
is called row (or column) stochastic if all of its row-sums (or column-sums) are 1. An irreducible stochastic
matrix P is primitive if it has only one eigenvalue with maximum modulus.

Lemma 3. Let G be a digraph with n nodes and maximum degree ∆ = maxi(
∑

j 6=i aij). Then, the Perron
matrix P with parameter ε ∈ (0, 1/∆] satisfies the following properties:

i) P is a row stochastic non-negative matrix with a trivial eigenvalue of 1;
ii) All eigenvalues of P are in a unit circle;
iii) If G is a balanced graph, then P is a doubly stochastic matrix;
iv) If G is strongly connected and 0 < ε < 1/∆, then P is a primitive matrix.

Proof. Since P = I − εL, we get P1 = 1 − εL1 = 1 which means the row sums of P is 1. Moreover, 1 is
a trivial eigenvalue of P for all graphs. To show that P is non-negative, notice that P = I − εD + εA due
to definition of Laplacian L = D − A. εA is a non-negative matrix. The diagonal elements of I − εD are
1 − εdi ≥ 1 − di/∆ ≥ 0 which implies I − εD is non-negative. Since the sum of two non-negative matrices
is a non-negative matrix, P is a non-negative row stochastic matrix. To prove part ii), one notices that all
eigenvectors of P and L are the same. Let λj be the jth eigenvalue of L. Then, the jth eigenvalue of P is

µj = 1− ελj . (17)

10 The set of mth-order neighbors is the set of neighbors of node i on a graph with adjacency matrix Am.
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Based on Gershgorin theorem, all eigenvalues of L are in the disk |s − ∆| ≤ ∆. Defining z = 1 − s/∆, we
have |z| ≤ 1 which proves part ii). If G is a balanced digraph, then 1 is the left eigenvector of L, or 1T L = 0.
This means that 1T P = 1T − ε1T L = 1T which implies the column sums of P are 1. This combined with
the result in part i) gives part iii). To prove part iv), note that if G is strongly connected, then P is an
irreducible matrix [35]. To prove that P is primitive, we need to establish that it has a single eigenvalue with
maximum modulus of 1. For all 0 < ε < 1/∆, the transformation µ = 1 − εs maps the circle |s − ∆| = ∆
into a circle that is located strictly inside a unit disk passing through the point µ = 1. This means that only
a single eigenvalue at µ1 = 1 can have a modulus of 1. ut

Remark 3. The condition ε < 1/∆ in part iv) is necessary. If an incorrect step-size of ε = 1/∆ is used.
Then, P would no longer be a primitive matrix because it could have multiple eigenvalues of modulus 1.
The counterexample is a directed cycle of length n with a Laplacian that has n roots on the boundary of the
Gershgorin disk |s −∆| ≤ ∆. With the choice of ε = 1/∆ = 1, one gets a Perron matrix that is irreducible
but has n eigenvalues on the boundary of the unit circle. This is a common mistake that is repeated by some
of the researchers in the past.

The convergence analysis of the discrete-time consensus algorithm relies on the following well-known
lemma in matrix theory.

Lemma 4. (Perron-Frobenius, [35]) Let P be a primitive non-negative matrix with left and right eigenvectors
w and v, respectively, satisfying Pv = v, wT P = wT , and vT w = 1. Then limk→∞ P k = vwT .

The convergence and group decision properties of iterative consensus algorithms x ← Px with row
stochastic Perron matrices is stated in the following result. It turns out that this discrete-time convergence
result is almost identical to its continuous-time counterpart.

Theorem 2. Consider a network of agents xi(k+1) = xi(k)+ui(k) with topology G applying the distributed
consensus algorithm

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)) (18)

where 0 < ε < 1/∆ and ∆ is the maximum degree of the network. Let G be a strongly connected digraph.
Then

i) A consensus is asymptotically reached for all initial states;
ii) The group decision value is α =

∑
i wixi(0) with

∑
i wi = 1;

iii) If the digraph is balanced (or P is doubly-stochastic), an average-consensus is asymptotically reached and
α = (

∑
i xi(0))/n.

Proof. Considering that x(k) = P kx(0), a consensus is reached in discrete-time, if the limit limk→∞ P k

exists. According to Lemma 4, this limit exists for primitive matrices. Based on part iv) of Lemma 3, P is
a primitive matrix. Thus, limk→∞ x(k) = v(wT x(0)) with v = 1, or xi → α = wT x(0) for all i as k → ∞.
Hence, the group decision value is α =

∑
i wixi(0) with

∑
i wi = 1 (due to vT w = 1). If the graph is balanced,

based on part iii) of Lemma 3, P is a column stochastic matrix with a left eigenvector of w = (1/n)1. The
group decision becomes equal to α = (1/n)1T xi(0) and average-consensus is asymptotically reached. ut

So far, we have presented a unified framework for analysis of convergence of consensus algorithms for
directed networks with fixed topology in both discrete-time and continuous-time. A comparison between the
two cases of continuous-time and discrete-time consensus are listed in Table 1.

2.4 Performance of Consensus Algorithms

The speed of reaching a consensus is the key in design of the network topology as well as analysis of
performance of a consensus algorithm for a given network. Let us first focus on balanced directed networks
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Table 1. Continuous-Time vs. Discrete-Time Consensus

CT DT

Dynamics ẋ = −Lx x(k + 1) = Px(k)

Key Matrix L (Laplacian) P = I − εL (Perron)

Connected G converges converges

Decision (general)
P

i wixi(0)
P

i wixi(0)

Decision (balanced)
P

i xi(0)/n
P

i xi(0)/n

that include undirected networks as a special case. This is primarily due to the fact that the collective
dynamics of the network of agent applying a continuous- or discrete-time consensus algorithm in this case
has an invariant quantity α = (

∑
i xi)/n. To demonstrate this in discrete-time, note that 1T P = 1T and

α(k + 1) =
1
n
1T x(k + 1) =

1
n

(1T P )x(k) = α(k)

which implies α is invariant in at iteration k. Let us define the disagreement vector [70]

δ = x− α1, (19)

and note that
∑

i δi = 0, or 1T δ = 0. The consensus algorithms result in the following disagreement dynamics

CT: δ̇(t) = −Lδ(t),
DT: δ(k + 1) = Pδ(k).

(20)

Based on the following lemma, one can readily show that Φ(δ) = δT δ is a valid Lyapunov function for the
CT system that quantifies the collective disagreement in the network.

Theorem 3. (algebraic connectivity of digraphs) Let G be a balanced digraph (or undirected graph) with
Laplacian L with a symmetric part Ls = (L + LT )/2 and Perron matrix P with Ps = (P + PT )/2. Then

i) λ2 = min1T δ=0
δT Lδ

δT δ
with λ2 = λ2(Ls), i.e. δT Lδ ≥ λ2‖δ‖2 for all disagreement vectors δ;

ii) µ2 = max1T δ=0
δT Pδ

δT δ
with µ2 = 1− ελ2, i.e. δT Pδ ≤ µ2‖δ‖2 for all disagreement vectors δ.

Proof. Since G is a balanced digraph, 1T L = 0 and L1 = 0. This implies that Ls is a valid Laplacian matrix
because of Ls1 = (L1 + LT 1)/2 = 0. Similarly, Ps is a valid Perron matrix which is a non-negative doubly
stochastic matrix. Part i) follows from a special case of Courant-Fisher theorem [35] for a symmetric matrix
Ls due to

min
1T δ=0

δT Lδ

δT δ
= min

1T δ=0

δT Lsδ

δT δ
= λ2(Ls).

To show part ii), note that for a disagreement vector δ satisfying 1T δ = 0, we have

max
δ

δT Pδ

δT δ
= max

δ

δT Pδ

δT δ
= max

δ

δT δ − εδT Lδ

δT δ
= 1− ε min

δ

δT Lδ

δT δ
= 1− ελ2(Ls) = µ2(Ps) (21)

Corollary 1. A continuous-time consensus is globally exponentially reached with a speed that is faster or
equal to λ2 = λ2(Ls) with Ls = (L + LT )/2 for a strongly connected and balanced directed network.

Proof. For CT consensus, we have

Φ̇ = −2δT Lδ ≤ −2λ2δ
T δ = −2λ2Φ.

Therefore, Φ(δ) = ‖δ‖2 exponentially vanishes with a speed that is at least 2λ2. Since ‖δ‖ = Φ1/2, the norm
of the disagreement vector exponentially vanishes with a speed of at least λ2. ut
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Recently, Olfati-Saber [65] has shown that quasi-random small-world networks have extremely large λ2

values compared to regular networks with nearest neighbor communication such as the one in Fig. 2(a). For
example for a network, with n = 1000 nodes and uniform degree di = 10,∀i, the algebraic connectivity of a
small-world network can become more than 1500 times of the λ2 of a regular network [65].

According to Theorem 3, µ2 is the second largest eigenvalue of Ps—the symmetric part of the Perron
matrix P . The speed of convergence of the iterative consensus algorithm is provided in the following result:

Corollary 2. A discrete-time consensus is globally exponentially reached with a speed that is faster or equal
to µ2 = 1− ελ2(L) for a connected undirected network.

Proof. Let Φ(k) = δ(k)T δ(k) be a candidate Lyapunov function for the discrete-time disagreement dynamics
of δ(k+1) = Pδ(k). For an undirected graph P = PT and all eigenvalues of P are real. Calculating Φ(k+1),
one gets

Φ(k + 1) = δ(k + 1)T δ(k + 1)
= ‖Pδ(k)‖2 ≤ µ2

2‖δ(k)‖2

= µ2
2Φk

with 0 < µ2 < 1 due to the fact that P is primitive. Clearly, ‖δ(k)‖ exponentially vanishes with a speed
faster or equal to µ2. ut

Remark 4. The proof of Corollary 2 for balanced digraphs is rather detailed and beyond the scope of this
paper.

2.5 Alternative Forms of Consensus Algorithms

In the context of formation control for a network of multiple vehicles, Fax and Murray [28] introduced the
following version of a Laplacian-based system on a graph G with 0-1 weights:

ẋi =
1
|Ni|

∑
j∈Ni

(xj − xi) (22)

This is a special case of a consensus algorithm on a graph G∗ with adjacency elements aij = 1/|Ni| = 1/di

for j ∈ Ni and zero for j 6∈ Ni. According to this form, di =
∑

j 6=i aij = 1 for all i that means the degree
matrix of G∗ is D∗ = I and its adjacency matrix is A∗ = D−1A provided that all nodes have nonzero degrees
(e.g. for connected graphs/digraphs). In graph theory literature, A∗ is called normalized adjacency matrix.
Let Q be the key matrix in the dynamics of (22), i.e. ẋ = −Qx. Then, an alternative form of graph Laplacian
is

Q = I −D−1A. (23)

This is identical to the standard Laplacian of the weighted graph G∗ due to L∗ = D∗−A∗ = I−D−1A. The
convergence analysis of this algorithm is identical to the consensus algorithm presented earlier. The Perron
matrix associated with Q is in the form P = I− εL∗ with 0 < ε < 1. In explicit form, this gives the following
iterative consensus algorithm

x(k + 1) = [(1− ε)I + εD−1A]x(k).

The aforementioned algorithm for ε = 1 takes a rather simple form x(k +1) = D−1Ax(k) that does not con-
verge for digraphs such as cycles of length n. Therefore, this discretization with ε = 1 is invalid. Interestingly,
the Markov process

π(k + 1) = π(k)P (24)

with transition probability matrix P = D−1A is known as the process of random walks on a graph [49] in
graph theory and computer science literature with close connections to gossip-based consensus algorithms
[11].
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Keep in mind that based on algorithm (22), if graph G is undirected (or balanced), the quantity

α = (
∑

i

dixi)/(
∑

i

di)

is invariant in time and a weighted-average consensus is asymptotically reached. The weighting wi =
di/(

∑
i di) is specified by node degree di = |Ni|. Only for regular networks (i.e. d1 = d2 = · · · = dn),

(22) solves an average-consensus problem. This is a rather restrictive condition because most networks are
not regular.

Another popular algorithm proposed in [38] (also used in [59, 74]) is the following discrete-time consensus
algorithm for undirected networks:

xi(k + 1) =
1

1 + |Ni|
(xi(k) +

∑
j∈Ni

xj(k)) (25)

which can be expressed as
x(k + 1) = (I + D)−1(I + A)x(k).

Note that the stochastic Perron matrix P = (I + D)−1(I + A) is obtained from the following normalized
Laplacian matrix with ε = 1

Ql = I − (I + D)−1(I + A) (26)

This Laplacian is a modification of (23) and has the drawback that it does not solve average-consensus
problem for general undirected networks.

Now, we demonstrate that algorithm (25) is equivalent to (23) (and thus a special case of (7)). Let G be a
graph with adjacency matrix A and no self-loops, i.e. aii = 0,∀i. Then, the new adjacency matrix Al = I +A
corresponds to a graph Gl that is obtained from G by adding n self-loops with unit weights (aii = 1,∀i).
As a result, the corresponding degree matrix of Gl is Dl = I + D. Thus, the normalized Laplacian of Gl

in (26) is Ql = I − D−1
l Al. In other words, the algorithm proposed by Jadbabaie et al. is identical to the

algorithm of Fax and Murray for a graph with n self-loops. In both cases ε = 1 is used to obtain the stochastic
non-negative matrix P .

Remark 5. A undirected cycle is not a counterexample for discretization of ẋ = −Qlx with ε = 1. Since the
Perron matrix Pl = (I + D)−1(I + A) is symmetric and primitive.

Example 2. In this example, we clarify that why P = D−1A can be an unstable matrix for a connected graph
G, whereas Pl = (I + D)−1(I + A) remains stable for the same exact graph. for doing so, let us consider a
bipartite graph G with n = 2m nodes and adjacency matrix

A =
[

0m Jm

Jm 0m

]
(27)

where 0m and Jm denote the m × m matrices of zeros and ones, respectively. Note that D = mIn and
P = D−1A = 1

mA. On the other hand, the Perron matrix of G with n self-loops is

Pl = (In + D)−1(In + A) =
1

m + 1

[
Im Jm

Jm Im

]
Let v = 12m be the vector of ones with 2m elements and w = col(1m,−1m). Both v and w are eigenvectors
of P associated with eigenvalues 1 and −1, respectively, due to Pv = v and Pw = −w. This proves that P
is not a primitive matrix and the limit limk→∞ P k does not exist (since P has two eigenvalues with modulus
1).

In contrast, Pl does not suffer from this problem because of the n nonzero diagonal elements. Again,
v is an eigenvector of Pl associated with the eigenvalue 1, but Plw = −(m − 1)/(m + 1)w and due to
(m− 1)/(m + 1) < 1 for all m ≥ 1, −1 is no longer an eigenvalue of Pl.
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Table 2. Forms of Laplacians

Source Laplacian L Perron P ε

[70, 76] D −A I − εL (0, ∆−1)

[28] I −D−1A D−1A 1

[38, 59, 74] I − (I + D)−1(I + A) (I + D)−1(I + A) 1

Table 2 summarizes three types of graph Laplacians used in systems and control theory. The alternative
forms of Laplacians in the second and third rows of Table 2 are both special cases of L = D − A that is
widely used as the standard definition of Laplacian in algebraic graph theory [32].

The algorithms in all three cases are in two forms:

ẋ = −Lx, (28)
x(k + 1) = Px(k). (29)

Based on Example 2, the choice of the discrete-time consensus algorithm is not arbitrary. Only the first
and the third row of Table 2 guarantee stability of a discrete-time linear system for all possible connected
networks. The second type requires a further analysis to verify whether P is stable, or not.

2.6 Weighted-Average Consensus

The choice of the Laplacian for the continuous-time consensus depends on the specific application of interest.
In cases that reaching an average-consensus is desired, only L = D−A can be used. In case of weighted-average
consensus with a desired weighting vector γ = (γ1, . . . , γn), the following algorithms can be used

Kẋ = −Lx (30)

with K = diag(γ1, . . . , γn) and L = D − A. This is equivalent to a nodes with a variable rate of integration
based on the protocol

γiẋi =
∑
j∈Ni

aij(xj − xi).

In the special case the weighting is proportional to the node degrees, or K = D, one obtains the second type
of Laplacian in Table 2, or ẋ = −D−1Lx = −(I −D−1A)x.

2.7 Consensus under Communication Time-Delays

Suppose that agent i receives a message sent by its neighbor j after a time-delay of τ . This is equivalent to
a network with a uniform one-hop communication time-delay. The following consensus algorithm

ẋi(t) =
∑
j∈Ni

aij(xj(t− τ)− xi(t− τ)) (31)

was proposed in [70] to reach an average-consensus for undirected graphs G.

Remark 6. Keep in mind that the algorithm

ẋi(t) =
∑
j∈Ni

aij(xj(t− τ)− xi(t)) (32)

does not preserve the average x̄(t) = (1/n)
∑

i xi(t) in time for a general graph. The same is true when
the graph in (31) is a general digraph. It turns out that for balanced digraphs with 0-1 weights, x̄(t) is an
invariant quantity along the solutions of (31).
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The collective dynamics of the network can be expressed as

ẋ(t) = −Lx(t− τ).

Rewriting this equation after taking Laplace transform of both sides, we get

X(s) =
H(s)

s
x(0) (33)

with a proper MIMO transfer function H(s) = (In + 1
s exp(−sτ)L)−1. One can use Nyquist criterion to

verify the stability of H(s). A similar criterion for stability of formations was introduced by Fax and Murray
[28]. The following theorem provides an upper bound on the time-delay such that stability of the network
dynamics is maintained in presence of time-delays.

Theorem 4. (Olfati-Saber and Murray, 2004) The algorithm in (31) asymptotically solves the average-
consensus problem with a uniform one-hop time-delay τ for all initial states if and only if 0 ≤ τ < π/2λn.

Proof. See the proof of Theorem 10 in [70]. ut

Since λn < 2∆, a sufficient condition for convergence of the average-consensus algorithm in (31) is that
τ < π/4∆. In other words, there is a trade-off between having a large maximum degree and robustness to
time-delays. Networks with hubs (having very large degrees) that are commonly known as scale-free networks
[4] are fragile to time-delays. In contrast, random graphs [22] and small-world networks [92, 65] are fairly
robust to time-delays since they do not have hubs. In conclusion, construction of engineering networks with
nodes that have high degrees is not a good idea for reaching a consensus.

3 Consensus in Dynamic Networks

In many scenarios, networked systems can possess a dynamic topology that is time-varying due to node and
link failures/creations, packet-loss [83, 33] , asynchronous consensus [34], state-dependence [56], formation
reconfiguration [69], evolution [4], and flocking [77, 66].

Networked systems with a dynamic topology are commonly known as switching networks. A switching
network can be modeled using a dynamic graph Gs(t) parameterized with a switching signal s(t) : R → J
that takes its values in an index set J = {1, . . . ,m}. The consensus mechanism on a network with a variable
topology becomes a linear switching system

ẋ = −L(Gk)x, (34)

with the topology index k = s(t) ∈ J and a Laplacian of the type D−A. The set of topologies of the network
is Γ = {G1, G2, . . . , Gm}. First, we assume at any time instance, the network topology is a balanced digraph
(or undirected graph) that is strongly connected. Let us denote λ2((L + LT )/2) by λ2(Gk) for a topology
dependent Laplacian L = L(Gk). The following result provides the analysis of average-consensus for dynamic
networks with a performance guarantee.

Theorem 5. (Olfati-Saber and Murray, 2004) Consider a network of agents applying the consensus algo-
rithm in (34) with topologies Gk ∈ Γ . Suppose every graph in Γ is a balanced digraph that is strongly
connected and let λ∗2 = mink∈J λ2(Gk). Then, for any arbitrary switching signal, the agents asymptotically
reach an average-consensus for all initial states with a speed faster or equal to λ∗2. Moreover, Φ(δ) = δT δ is
a common Lyapunov function for the collective dynamics of the network.

Proof. See the proof of Theorem 9 in [70]. ut
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Note that Γ is a finite set with at most n(n− 1) elements and this allows the definition of λ∗2. Moreover,
the use of normal Laplacians does not render the average x̄ = (1/n)

∑
i xi invariant in time, unless all graphs

in Γ are d-regular (all of their nodes have degree d). This is hardly the case for various applications.
The following result on consensus for switching networks does not require the necessity for connectivity

in all time instances and is due to Jadbabaie et al. [38]. This weaker form of network connectivity is crucial
in analysis of asynchronous consensus with performance guarantees (which is currently an open problem).
We need to rephrase the next result for the purpose of compatibility with the notation used in this paper.

Consider the following discrete-time consensus algorithm

xk+1 = Psk
xk; t = 0, 1, 2, . . . (35)

with sk ∈ J . Let P = {P1, . . . , Pm} denote the set of Perron matrices associated with a finite set of undirected
graphs Γ with n self-loops. We say a switching network with the set of topologies Γ is periodically connected
with a period N > 1 if the unions of all graphs over a sequence of intervals [j, jN) for j = 0, 1, 2, . . . are
connected graphs, i.e. Gj = ∪jN−1

k=j Gsk
is connected for j = 0, 1, 2, . . ..

Theorem 6. (Jadbabaie, Lin, and Morse, 2003) Consider the system in (35) with Psk
∈ P for k = 0, 1, 2, . . ..

Assume the switching network is periodically connected. Then, limk→∞ xk = α1, or an alignment is asymp-
totically reached.

Proof. See the proof of Theorem 2 in [38]. ut

The solution of (35) can be explicitly expressed as

xt = (
t∏

k=0

Psk
)x0 = Λtx0

with Λt = Pst · · ·Ps2Ps1 . the convergence of the consensus algorithm in (35) depends on whether the infinite
product of non-negative stochastic matrices Pst

· · ·Ps2Ps1 has a limit. The problem of convergence of infinite
product of stochastic matrices has a long history and has been studied by several mathematicians including
Wolfowitz [94]. The proof in [38] relies on Wolfowitz’s lemma:

Lemma 5. (Wolfowitz, 1963) Let P = {P1, P2, . . . , Pm} be a finite set of primitive stochastic matrices such
that for any sequence of matrices Ps1 , Ps2 , . . . , Psk

∈ P with k ≥ 1, the product Psk
· · ·Ps2Ps1 is a primitive

matrix. Then, there exists a row vector w such that

lim
k→∞

Psk
· · ·Ps2Ps1 = 1w. (36)

According to Wolfowitz’s lemma, we get limk→∞ xk = 1(wx0) = α1 with α = wx0. The vector w depends
on the switching sequence and cannot be determined a priori. Thus, an alignment is asymptotically reached
and the group decision is an undetermined quantity in the convex hull of all initial states.

Remark 7. Since normal Perron matrices in the form (I + D)−1(I + A) are employed in [38], the agents (in
general) do not reach an average-consensus. The use of Perron matrices in the form I − εL with 0 < ε <
1/(1 + maxk∈J ∆(Gk)) resolves this problem.

Recently, an extension of Theorem 6 with connectivity of the union of graphs over an infinite interval has
been introduced by Moreau [59] (also, an extension is presented in [74] for weighted graphs). Here, we rephrase
a theorem due to Moreau and present it based our notation. First, let us define a less restrictive notion of
connectivity of switching networks compared to periodic connectivity. Let Γ be a finite set of undirected
graphs with n self-loops. We say a switching networks with topologies in Γ is ultimately connected if there
exists an initial time k0 such that over the infinite interval [k0,∞) the graph G = ∪∞k=k0

Gsk
with sk ∈ J is

connected.
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Theorem 7. (Moreau, 2005) Consider an ultimately connected switching network with undirected topologies
in Γ and dynamics (35). Assume Psk

∈ P where P is the set of normal Perron matrices associated with Γ .
Then, a consensus is globally asymptotically reached.

Proof. See the proof of Proposition 2 in [59]. ut

Similarly, the algorithm analyzed in Proposition 2 of [59] does not solve the f -consensus problem. This
can be resolved by using the first form of Perron matrices in Table 2. The proof in [59] uses a non-quadratic
Lyapunov function and no performance measures for reaching a consensus is presented.

4 Cooperation in Networked Control Systems

This section provides a system-theoretic framework for addressing the problem of cooperative control of
networked multi-vehicle systems using distributed controllers. On one hand, a multi-vehicle system represents
a collection of decision-making agents that each have limited knowledge of both the environment and the
state of the other agents. On the other hand, the vehicles can influence their own state and interact with
their environment according to their dynamics which determines their behavior.

The design goal is to execute tasks cooperatively exercising both the decision-making and control ca-
pabilities of the vehicles. In real-life networked multi-vehicle systems, there are a number of limitations
including limited sensing capabilities of the vehicles, network bandwidth limitations, as well as interruptions
in communications due to packet-loss [83, 33] and physical disruptions to the communication devices of the
vehicle.

+

Multi-Vehicle System 

Consensus Feedback

!

!

Distributed Controller

Fig. 3. The block diagram of cooperative and distributed formation control of networked multi-vehicle systems. The
Kronecker product ⊗ is defined in equation (37).

The system framework we analyze is presented in a schematic form in Fig. 3. The Kronecker product ⊗
between two matrices P = [pij ] and Q = [qij ] is defined as

P ⊗Q = [pijQ]. (37)

This is a block matrix with the ijth block of pijQ.
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The dynamics of each vehicle, represented by P (s), is decoupled from the dynamics of other vehicles in the
network—thus, the system transfer function In ⊗ P (s). The output of P (s) represents observable elements
of the state of each vehicle. Similarly, the controller of each vehicle, represented by K(s), is decoupled
from the controller of others—thus, the controller transfer function In ⊗K(s). The coupling occurs through
cooperation via the consensus feedback. Since all vehicles apply the same controller, they form a cooperative
team of vehicles with consensus feedback gain matrix L⊗Im. This cooperation requires sharing of information
among vehicles, either through inter-agent sensing, or explicit communication of information.

4.1 Collective Dynamics of Multi-Vehicle Formations

Let us consider a group of n vehicles, whose (identical) linear dynamics are denoted by

ẋi = Axi + Bui, (38)

where xi ∈ Rm, ui ∈ Rp are the vehicle states and controls, and i ∈ V = {1, . . . , n} is the index for the
vehicles in the group. Each vehicle receives the following measurements:

yi = C1xi (39)
zij = C2(xi − xj), j ∈ Ni, (40)

Thus, yi ∈ Rk represents internal state measurements, and zij ∈ Rl represents external state measurements
relative to other vehicles. We assume that Ni 6= ∅, meaning that each vehicle can sense at least one other
vehicle. Note that a single vehicle cannot drive all the zij terms to zero simultaneously; the errors must be
fused into a single signal error measurement:

zi =
1
|Ni|

∑
j∈Ni

zij , (41)

where |Ni| is the cardinality of the set Ni. We also define a distributed controller K which maps yi, zi to ui

and has internal states vi ∈ Rs, represented in state-space form by

v̇i = Fvi + G1yi + G2zi

ui = Hvi + D1yi + D2zi.
(42)

Now, we consider the collective system of all n vehicles. For dimensional compatibility, we use the Kronecker
product to assemble the matrices governing the formation behavior. The collective dynamics of n vehicles
can be represented as follows: (

ẋ
v̇

)
=

(
M11 M12

M21 M22

) (
x
v

)
. (43)

where the Mij ’s are block matrices defined as a function of the normalized graph Laplacian L (i.e. the second
type in Table 2) and other matrices as follows:

M11 = In ⊗ (A + BD1C1) + (In ⊗BD2C2)(L⊗ Im),
M12 = In ⊗BH,

M21 = In ⊗G1C1 + (In ⊗G2C2)(L⊗ Im),
M22 = In ⊗ F.
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4.2 Stability of Relative Dynamics of Formations

The main stability result on relative-position based formations of networked vehicles is due to Fax and
Murray [28] and can be stated as follows:

Theorem 8. (Fax and Murray, 2004) A local controller K stabilizes the formation dynamics in (43) if and
only if it stabilizes all the n systems

ẋi = Axi + Bui

yi = C1xi

zi = λiC2xi

(44)

where {λi}ni=1 is the set of eigenvalues of the normalized graph Laplacian L.

Theorem 8 reveals that the stability of a formation of n identical vehicles can be verified by stability
analysis of a single vehicle with the same dynamics and an output that is scaled by the eigenvalues of the
(normalized) Laplacian of the network. Note that λi may be complex, leading to a complex-valued LTI
system in the above formulation. This formalism lends itself to applications of tools from robust control
theory [100].

The zero eigenvalue of L can be interpreted as the unobservability of absolute motion of the formation
in the measurements zi. A prudent design strategy is to close an inner loop around yi such that the internal
vehicle dynamics are stable, and then to close an outer loop around zi which achieves desired formation
performance. For the remainder of this section, we concern ourselves solely with the outer loop. Hence, we
assume from now on that C1 is empty and that A has no eigenvalues in the open right half plane. We do not
wish to exclude eigenvalues along the jω axis because they are characteristic of vehicle systems, representing
the directions in which motion is possible. The controller K is also presumed to be stable. If K stabilizes
the system in (44) for all λi other than the zero eigenvalue, we say that it stabilizes the relative dynamics of
a formation.

Let us refer to the system from ui to yi as P , its transfer function as P (s), and that of the controller from
yi to ui as K(s). For single-input single-output (SISO) systems, we can state a second version of Theorem
8 which is useful for stability and robustness analysis:

Theorem 9. (Fax and Murray, 2004) Suppose P is a SISO system. Then K stabilizes the relative dynamics
of a formation if and only if the net encirclement of −1/λi by the Nyquist plot of −K(s)P (s) is zero for all
nonzero λi.

The application of the above theorem is demonstrated in Section 5.2.

5 Simulations

In this section, we present the simulation results for three applications of consensus problems in networked
systems.

5.1 Consensus in Complex Networks

In this experiment, we demonstrate the speed of convergence of consensus algorithm (7) for three different
networks with n = 100 nodes in Fig. 4. The initial state is set to xi(0) = i for i = 1, . . . , 100. In Figs. 4(a) and
(c), the network has 300 links and on average each node communicates with d̄ = 6 neighbors. Apparently,
the group with a small-world network topology reaches an average-consensus more than λ2(Ga)/λ2(Gc) ≈ 22
times faster. To create a regular lattice with comparable algebraic connectivity, every node has to communi-
cate with 20 other nodes on average to gain an algebraic connectivity λ2(Ge)/λ2(Ga) ≈ 1.2 that is close to
that of the small-world network. Of course, the regular network in Fig. 4 (e) has 3.33 times as many links as
the small-world network. For further information on small-world networks, we refer the reader to [92, 63, 65].
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Fig. 4. (a) a small-world with 300 links, (b) a regular lattice with interconnections to k = 2 nearest neighbors and
300 links, (c) a regular lattice with interconnections to k = 10 nearest neighbors and 1000 links; (d),(e),(f) the state
evolution corresponding to networks in (a), (b), and (c), respectively.

5.2 Multi-vehicle Formation Control

Consider a system of the form P (s) = e−sT

s2 , modeling a second-order system with time-delay and suppose
this system has been stabilized with a proportional-derivative (PD) controller. Fig. 5 shows a formation graph
and the Nyquist plot of K(s)P (s) with the location of Laplacian eigenvalues. The ”o” locations correspond
to the eigenvalues of the graph defined by the solid arcs in Fig. 5, and the ‘×’ locations are for eigenvalues of
the graph when the dashed arc is included as well. This example clearly shows the effect the formation has
on stability margins. The standard Nyquist plot reveals a system with reasonable stability margins — about
8 dB and 45 degrees. When one accounts for the effects of the formation, however, one sees that for the ‘o’
formation, the stability margins are substantially degraded, and for the ‘×’ formation, the system is in fact
unstable. Interestingly, the formation is rendered unstable when additional information (its position relative
to vehicle 6) is used by vehicle 1. This is primarily due to the fact that changing the topology of a network
directly effects the location of eigenvalues of the Laplacian matrix. This example clarifies that the stability
analysis of formations of networked vehicles with directed switching topology in presence of time-delays is
by no means trivial.

6 Conclusions

A theoretical framework was provided for analysis of consensus algorithms for networked multi-agent systems
with fixed or dynamic topology and directed information flow. The connections between consensus problems
and several applications were discussed that include synchronization of coupled oscillators, flocking, forma-
tion control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load
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Fig. 5. (a) Interconnection graph of a multi-vehicle formation and (b) the Nyquist plot.

balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propaga-
tion. The role of “cooperation” in distributed coordination of networked autonomous systems was clarified
and the effects of lack of cooperation was demonstrated by an example. It was demonstrated that notions
such as graph Laplacians, non-negative stochastic matrices, and algebraic connectivity of graphs and di-
graphs play an instrumental role in analysis of consensus algorithms. We proved that algorithms introduced
by Jadbabaie et al. and Fax and Murray are identical for graphs with n self-loops and are both special cases
of the consensus algorithm of Olfati-Saber and Murray. The notion of Perron matrices was introduced as
the discrete-time counterpart of graph Laplacians in consensus protocols. A number of fundamental spectral
properties of Perron matrices were proved. This led to a unified framework for expression and analysis of con-
sensus algorithms in both continuous-time and discrete-time. Simulation results for reaching a consensus in
small-worlds versus lattice-type nearest-neighbor graphs and cooperative control of multi-vehicle formations
were presented.
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