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Emotion Assessment From Physiological Signals
for Adaptation of Game Difficulty

Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry Pun, Member, IEEE

Abstract—This paper proposes to maintain player’s engage-
ment by adapting game difficulty according to player’s emotions
assessed from physiological signals. The validity of this approach
was first tested by analyzing the questionnaire responses, electro-
encephalogram (EEG) signals, and peripheral signals of the
players playing a Tetris game at three difficulty levels. This anal-
ysis confirms that the different difficulty levels correspond to
distinguishable emotions, and that, playing several times at the
same difficulty level gives rise to boredom. The next step was to
train several classifiers to automatically detect the three emotional
classes from EEG and peripheral signals in a player-independent
framework. By using either type of signals, the emotional classes
were successfully recovered, with EEG having a better accuracy
than peripheral signals on short periods of time. After the fusion
of the two signal categories, the accuracy raised up to 63%.

Index Terms—Electroencephalography, emotion assessment,
games, pattern classification, signal analysis.

I. INTRODUCTION

DUE TO their capability to present information in an in-
teractive and playful way, computer games have gathered

increasing interest as tools for education and training [1].
Games are also interesting from a human–computer interaction
point of view, because they are an ideal ground for the design of
new ways to communicate with machines. Affective computing
[2] has opened the path to new types of human–computer
interfaces that adapt to affective cues from the user. As one
of the main goals of games, which is to provide emotional
experiences such as fun and excitement, affective computing
is a promising area of research to enhance game experiences.
Affective information can be used to maintain involvement
of a player by adapting game difficulty or content to induce
particular emotional states [3]. For this purpose, automatic
assessment of emotions is mandatory for the game to adapt
in real time to the feelings and involvement of the player,
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without interrupting his/her gaming experience (like it would
be the case by using questionnaires). This paper thus focuses on
emotion assessment from physiological signals in the context of
a computer game application.

Physiological signals can be divided into two categories:
those originating from the peripheral nervous system [e.g.,
heart rate, electromyogram, galvanic skin response (GSR)] and
those coming from the central nervous system [e.g., electroen-
cephalogram (EEG)]. In recent years, interesting results have
been obtained for emotion assessment with the first category
of signals. Very few studies, however, have used the second
category, even though the cognitive theory of emotions states
that the brain is heavily involved in emotions [4].

One of the pioneering work on emotion assessment from
peripheral signals is [5] where the authors detected eight self-
induced emotional states with an accuracy of 81%. In [6], six
emotional states, elicited by film clips, were classified with an
accuracy of 84%. In a gaming context, Rani et al. [7] proposed
to classify three levels of intensity for different emotions. The
emotions were elicited by stimulating participants with a Pong
game and anagram puzzles. The best average accuracy obtained
with this method was of 86%. The classifiers developed in
this paper were used in [3] to adjust game difficulty in real
time based on anxiety measures. In this case, the accuracy
dropped to 78%, but a significant improvement of player expe-
rience was reported compared to difficulty adjustment based on
performance. This demonstrates the interest of using affective
computing for the purpose of game adaptation. In [8], the
authors proposed to continuously assess the emotional state of
a player using an approach based on fuzzy logic. The obtained
results showed that the emotional state evolved according to the
events of the game, but no exact measure of performance was
reported. Nevertheless, this tool could be used to include the
player’s experience in the design of innovative video games.
In [9], three emotional states were detected from peripheral
signals with an accuracy of 53%. The emotions were elicited
by using a Tetris game. This paper is a significant extension
of this work, which, in particular, now takes into account the
analysis of EEG signals.

There is an increasing amount of psychological literature
pointing toward the hypothesis that emotions result from a
series of cognitive processes [10], [11]. There is also evidence
of different patterns of brain activity during the presentation
of emotional stimuli. For instance, depending on the nature of
reactions (approach or withdrawal), Davidson [12] showed
prefrontal lateralization of alpha waves as well as distinct acti-
vations of the amygdala. Aftanas et al. [13] reported differences
in event-related desynchronization/synchronization during the
visualization of more or less arousing images. In the emotional
recall context, Smith et al. [14] showed an augmentation of
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Fig. 1. Flow chart and the suggested automatic adaptation to emotional
reactions.

activity in the connections between the hippocampus and the
amygdala during the recollection of negative events compared
to neutral events. These works emphasize the importance of
using brain signals to improve temporal resolution and classifi-
cation accuracy in emotion assessment. Among the studies that
recognize emotional states from EEG, Takahashi [15] obtained
an accuracy of 42% to recognize five emotional states elicited
by film clips. In [16], three self-induced emotional states were
recognized with an accuracy of 68%. Other works tried to infer
operator engagement, fatigue, and workload by using EEG
signals in order to adapt the complexity of a task [17]–[21].
To our knowledge, however, this paper is the first to report on
the use of EEG signals for emotion assessment in a gaming
paradigm.

Games can elicit several emotional states, but knowing all
of them is not necessary to maintain involvement in the game.
Many representations of the player’s affective state have been
used in previous studies like anxiety, frustration, engagement,
distress scales, and the valence-arousal space [22], [23]. Ac-
cording to emotion and flow theories [10], [24], strong involve-
ment in a task occurs when the skills of an individual meet
the challenge of a task (Fig. 1). Too much challenge would
increase workload which would then be appraised by the player
as anxiety. Similarly, not enough challenge would induce bore-
dom. Both these situations would restrain the player’s ability
to achieve a “flow experience,” leading to less involvement,
engagement, and possibly interruption of the game [25].

In a game, the change from an emotional state to another can
occur due to two main reasons. First, the difficulty is increased
because of the progression in different levels, but the increase
is too fast compared to the competence increase of the player
(potentially giving rise to anxiety; see Fig. 1). Second, the com-
petence of the player has increased while the game remained at
the same difficulty (potentially giving rise to boredom). In both
cases, the challenge should be corrected to maintain a state of
pleasure and involvement, showing the importance of having
games that adapt their difficulty according to the competence
and emotions of the player. Based on this theory, we defined
three emotional states of interest that correspond to three well-
separated areas of the valence-arousal space: boredom (negative
calm), engagement (positive excited), and anxiety (negative
excited).

This paper attempts to verify the validity and usefulness of
the three defined emotional states by using a Tetris game where
the challenge is modulated by changing the level of difficulty.
Self-reports as well as physiological activity were obtained
from players by using the acquisition protocol described in
Section II. Using those data, three analyses were conducted.
The first aims at validating the applicability of the flow theory
for games (see Section III). In the second analysis, detailed in
Section IV, physiological signals were used for the purpose of
classification of the different states. In this case, since one of
the goals of this paper is to go toward applications, particular
attention was paid to designing classifiers that could be used
for any gamer without having to retrain it.

II. DATA ACQUISITION

A. Acquisition Protocol

A gaming protocol was designed for acquiring physiological
signals and gathering self-reported data. The Tetris game was
chosen in this experiment for the following reasons: It is easy
to control the difficulty of the game (speed of falling blocks); it
is a widely known game so that we could expect to gather data
from players with different skill levels (which occurred); and it
is playable using only one hand, which is mandatory since the
other hand is used for the placement of some data acquisition
sensors.

The difficulty levels implemented in the Tetris game were
adapted to have a wider range of difficulties than in the original
game. The new levels ranged from 1 to 25 with the blocks going
down a line every 0.54 s at level 1 and 0.03 s at level 25. The
speed of the falling blocks at the intermediate levels increased
exponentially with the level. Other modifications to the original
Tetris allowed playing without changing the difficulty level for
a given amount of time. Each time the blocks reach the top of
the Tetris board, a game-over event was reported, the board was
cleared, and the participant could continue to play.

Twenty participants (mean age is 27; 13 males; all right
handed) took part in this study. After signing a consent form,
each participant played Tetris several times to determine the
game level where he/she reported engagement. This was done
by repeating three times the threshold method, starting from
a low level and progressively increasing it until engagement
was reported by the participant or starting from a high level
and decreasing it. The average of the obtained levels was
then considered as the participant’s skill level. Depending on
this skill level, three experimental conditions were determined:
medium condition (game difficulty equal to the player’s skill
level), easy condition (lower difficulty, computed by subtracting
eight levels of difficulty from the player’s skill level), and hard
condition (higher difficulty, computed by adding eight levels).
The participants of the study reported to be engaged at different
levels ranging, for most of them, from 11 to 16, confirming that
they had different Tetris skills.

Participants were then equipped with several sensors to
measure their peripheral physiological activity: a GSR sensor
to measure skin resistance, a plethysmograph to record blood
volume pulse (BVP), a respiration belt to estimate chest cavity
expansion, and a temperature sensor to measure palmar changes
in temperature. Those sensors are known to measure signals
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Fig. 2. Schedule of the protocol.

that are related to particular emotional activations as well as
useful for emotion detection (see Section II-B). In addition, an
EEG system was used to record central signaling from 14 of
the 20 participants. In this paper, 19 electrodes were positioned
on the skull of the participants according to the 10–20 system
[26]. As demonstrated in other studies, EEGs can help in
assessing emotional states and is also useful in providing an
index of task engagement and workload [17]–[20]. Peripheral
and EEG signals were recorded at a 256-Hz sampling rate using
the Biosemi Active 2 acquisition system.1 This sampling rate
allows keeping the frequency bands of interest for this study.

Once equipped with the sensors, the participants took part
in six consecutive sessions (Fig. 2). For each session, the
participants had to follow three steps: stay calm and relax
for at least 1 min and 30 s, play the Tetris game for 5 min
in one of the three experimental conditions (difficulty level),
and finally answer a questionnaire. The first step was useful
to let the physiological signals return to a baseline level, to
record a baseline activity, and to provide a rest period for the
participants. For the second step, each experimental condition
was applied twice and in a random order to account for side
effects of time in questionnaires and physiological data. The
goal of participants was to perform the highest possible score.
To motivate them toward this goal, a prize of 20 Swiss francs
was offered to three of the participants having the highest
score (the participants were divided in three groups according
to their competence). The questionnaire was composed of
30 questions related to both the emotions they felt and
their level of involvement in the game. The answer to each
question was given on a seven-point Likert scale. Additionally,
participants rated their emotions in the valence-arousal space
using the self-assessment manikin [27] scales.

B. Feature Extraction

Once the data are acquired, it is necessary to compute
features from the signals in order to characterize physiological
activity for the different gaming conditions. The features were
generally computed over the complete duration of a given
session, except in Section IV-D where the features were com-
puted on shorter time windows to analyze the effect of time
on emotion-assessment accuracy. Two sets of features were
computed: the first set includes the features computed from the
EEG signals, and the second includes those computed from the
peripheral signals.

In this paper, the collected data are not analyzed for each
participant separately but as a whole. It is, thus, necessary

1Technical details are available at http://www.biosemi.com.

TABLE I
ENERGY FEATURES COMPUTED FOR EACH ELECTRODE

AND THE ASSOCIATED FREQUENCY BANDS

that the patterns of emotional responses remain stable across
participants. Although different patterns of emotional responses
have been found in psychophysiological studies, Stemmler [28]
argues that they are due to context deviation specificity. Since,
in the current study, the emotions are elicited in the same
context (the video game), this should reduce interparticipant
variability. Nevertheless, to further reduce this variability, the
physiological signals acquired during the last minute of the
rest period were used to compute a baseline activity for each
session (six baseline per participant) that was subtracted from
the corresponding physiological features.

1) EEG Features: Prior to extracting features from EEG
data, we need to remove noise by preprocessing the signals.
Environment noise and drifts were removed by applying a
4–45-Hz bandpass filter. The signals were visually checked in
order to ensure that the remaining artifacts did not exceed 5%
of the signal. The second step was to compute a local reference
by applying a local Laplacian filter [29] to render the signals
independent of the reference electrode position and to reduce
artifact contamination. For the Laplacian filter computation, the
neighboring electrodes were considered as lying in a radius of
4 cm from the filtered electrode.

The set of features described in this section was defined
to represent the energy of EEG signals in frequency bands
known to be related to emotional processes [12], [13]. For
each electrode i, the energy in the different frequency bands
displayed in Table I was computed for a session, using the fast
Fourier transform (FFT) algorithm. Moreover, the following
EEG_W feature (1) was computed from the Ne electrodes.
This feature is known to be related to cognitive processes
like workload, engagement, attention, and fatigue [20], which
are cognitive states of interest in our paper. In many studies,
the EEG_W feature is computed from only three to four
electrodes [17], [18], [20]. However, there is high discrepancy
among studies in the electrodes used. Moreover, the playing of
a video game can stimulate several brain areas (for instance, the
occipital lobe for visual processing, the auditory cortex of the
parietal and temporal lobes, and the frontal lobe for emotional
processing). For those reasons, all the electrodes were included
in the computation of the EEG_W feature

EEG_W = log




Ne∑
i=1

βi

Ne∑
i=1

θi + αi


 . (1)

The EEG_FFT feature set thus contains a total of 3× 19 +
1 = 58 features (three frequency bands and 19 electrodes plus
the EEG_W feature).

2) Peripheral Features: Many studies in psychophysiology
have shown correlations between signals of the peripheral
nervous system and emotions; effectiveness of such signals in
emotion assessment is now fully demonstrated as detailed in
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TABLE II
FEATURES EXTRACTED FROM PERIPHERAL SIGNALS

the introduction. All data were first filtered by a mean filtering
to remove noise. For this purpose, we used a rectangular filter
of length 128 for GSR, 128 for temperature, and 64 for chest
cavity expansion.

GSR provides a measure of the resistance of the skin (elec-
trodermal activity) by positioning two electrodes on the distal
phalanges of the index and middle fingers. This resistance
decreases due to an increase of sudation, which usually occurs
when one is experiencing emotions such as stress or surprise.
Moreover, Lang et al. discovered that the mean value of the
GSR is related to the level of arousal [30]. The number of GSR
falls was also computed by identification of the signal local
minima. The features extracted from electrodermal activity are
presented in Table II.

A plethysmograph was placed on the thumb of the participant
to evaluate the BVP. This signal is not only used as a measure
of BVP but also to compute heart rate (HR) by identification of
local minima (i.e., foot of the systolic upstroke) and interbeat
periods. Blood pressure and HR variability are variables that
correlate with defensive reactions [31], pleasantness of a stimuli

[30], and basic emotions [32]. The HR signal energy in low
frequencies (0.05–0.15 Hz) and high frequencies (0.15–1 Hz),
as well as the ratio of these energies, was computed be-
cause they are indicators of parasympathetic and sympathetic
activities [33].

Chest cavity expansion was measured by tying a respiration
belt around the chest of the participant. Slow respiration is
linked to relaxation, while irregular rhythm, quick variations,
and cessation of respiration correspond to more aroused emo-
tions like anger or fear [32], [34]. To characterize this process,
we rely on features from both the frequency and time domain
(Table II).

Skin temperature was measured by placing a sensor on the
distal phalange of the ring finger. Ekman et al. [35] found a
significant increase of skin temperature for anger compared to
his five other basic emotions (sadness, happiness, fear, surprise,
and disgust). McFarland [36] found that stimulating persons
with emotional music led to an increase of temperature for calm
positive music and a decrease for excited negative pieces.

III. ANALYSIS OF QUESTIONNAIRES AND

OF PHYSIOLOGICAL FEATURES

In this section, the data gathered from the questionnaires
and from the computed physiological features are analyzed
to control the applicability of the flow theory for games. For
this purpose, the validity of the following two hypotheses was
tested.

1) H1: Playing in the three different conditions (difficulty
levels) will give rise to different emotional states.

2) H2: As the skill increases, the player will switch from an
engagement state to a boredom state (see Fig. 1).

A. Elicited Emotions

1) Questionnaires: To test for hypothesis H1, a factor anal-
ysis was performed on the questionnaires to find the axes of
maximum variance. The first two components were obtained
from the factor analysis account for 55.6% of the questionnaire
variance and were found to be associated with higher eigenval-
ues than the other components (the eigenvalues of the first three
components are 10.2, 8.2, and 1.7). The questionnaire answers
given for each session were then projected in the new space
formed by the two components, and an analysis of variance
(ANOVA) test was applied to those new variables to check
for differences in the distribution of judgment for the different
conditions. By looking at the weights of the two components,
the following was found.

1) The first component was positively correlated with the
questions related to pleasure, amusement, interest, and
motivation.

2) The second component was positively correlated with
the question corresponding to levels of excitation and
pressure and negatively correlated with calm and control
levels.

The ANOVA test, applied on the data projected on the first
component (see Fig. 3), showed that participants felt lower
pleasure, amusement, interest, and motivation for the easy and
hard conditions than for the medium one (F = 46, p < 0.01).
Differences in the three distributions obtained from the second
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Fig. 3. Mean and standard deviation of judgment for each axis of the two
(comp.) component space and the different (diff.) difficulties: easy, (med.)
medium, and hard.

component demonstrated that increasing difficulty led to higher
reported excitation and pressure as well as lower control (F =
232, p < 0.01). This demonstrates that an adequate level of
difficulty is necessary to engage players in the game so that
they feel motivated and pleased to play. Moreover, those results
also validate hypothesis H1 since they show that the different
playing difficulties successfully elicited different emotional
states with various levels of pleasure and arousal. According to
the self-evaluations, those states were defined as boredom for
the easy condition, engagement for the medium condition, and
anxiety for the hard condition.

2) Peripheral Features: The physiological features were
subjected to an ANOVA test to search for differences in ac-
tivation for the different conditions and analyze the relevance
of those features for emotion assessment. For this purpose, the
ANOVA test was applied on the three distributions, and the
F -values and p-values are reported in Table III. Moreover,
the ANOVA test was also applied to check for differences
between the easy and medium conditions as well as between
the medium and hard conditions. If a difference is significant
(p-value < 0.1), the trend of the mean from a condition to
another is reported in Table III.

The decrease observed for the µGSR, δGSR, and fDecRate
GSR

features and the increase of the fNbPeaks
GSR between the easy and

medium conditions indicate an increase of electrodermal activ-
ity when progressing from the easy to the medium difficulty
level. Between the easy and medium conditions, a significant
decrease of temperature is also observed. Those results are in
favor of an increase of arousal between the easy and the medium
conditions. More specifically, the increase in the number of
GSR peaks indicates that the changes in arousal are not only
due to workload increase but also to some specific events
that triggered emotional reactions. When analyzing the GSR
feature changes between the medium condition and the hard
conditions, only the fDecTime

GSR feature (percentage of negative
samples in the GSR derivative) is significantly increasing. An
increase of mean HR and a decrease of temperature are also
observed between the same conditions. Those results suggest
that there is also an increase of arousal between the medium
and hard conditions but to a lesser extent than between the easy

TABLE III
F -VALUES AND p-VALUES OF THE ANOVA TESTS APPLIED ON THE

PERIPHERAL FEATURES FOR THE THREE DIFFICULTY LEVELS. ONLY THE

RELEVANT FEATURES ARE PRESENTED (p-VALUE < 0.1). THE “TREND

OF THE MEAN” COLUMN INDICATES THE DIFFERENCES BETWEEN TWO

CONDITIONS. FOR INSTANCE, ↘↘ INDICATES A SIGNIFICANT

DECREASE OF THE VARIABLE FROM THE EASY TO THE MEDIUM

CONDITION (FIRST ↘) AND FROM THE MEDIUM TO THE HARD

CONDITION (SECOND ↘), WHILE →↗ INDICATES NO SIGNIFICANT

DIFFERENCES BETWEEN THE EASY AND MEDIUM CONDITIONS AND A

SIGNIFICANT INCREASE TO THE HARD CONDITION

TABLE IV
LIST OF THE RELEVANT EEG FEATURES (p-VALUE < 0.1)

GIVEN BY FREQUENCY BAND AND ELECTRODE

and medium conditions. In summary, an increased arousal is
observed for increasing game difficulty, supporting the results
obtained from the analysis of the questionnaires.

As can be seen from Table III, a total of ten features were
found to have significantly different distributions among the
three difficulties. This suggests that the conditions correspond
to different emotional states and demonstrates the interest of
those features for later classification of the three conditions.
One feature of particular interest is fLF

HR, which is the HR
energy in low-frequency bands, because it has a lower value for
the medium condition than for the two others, showing that this
condition can elicit particular peripheral activation. This is also
one of the only features that can help distinguish the medium
condition from the two others.

3) EEG Features: An ANOVA test was also performed
on each EEG feature to test for differences among the three
conditions. Table IV gives a list of the EEG features that
are relevant (p-value < 0.1). No feature corresponding to the
energy in the alpha band was significantly different among the
three conditions. However, several features in the theta and beta
bands were significantly different, which shows their interest
for automatic assessment of the three conditions. To illustrate
the EEG activity, we focused on the EEG_W feature since it
is a combination of the other features and is known to be related
to cognitive processes such as engagement and workload [20].
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Fig. 4. Boxplot of the EEG_W values for the three conditions. The middle
line represents the median of the EEG_W values, the box represents the
quartile, and the whiskers represents the range. NS: nonsignificant.

Significant differences were observed for the EEG_W fea-
ture among the three conditions (F = 5.5, p < 0.01). Fig. 4
shows the median and quartiles of the EEG_W values for
each condition. Since for the medium difficulty the participants
reported higher interest and motivation than for the easy and
hard conditions, it was expected that the mean of the EEG_W
values would be significantly higher for the medium condition.
However, as can be seen from Fig. 4, there is an increase in
the median of the EEG_W values as the difficulty increases.
The differences between the medium and hard conditions as
well as between the easy and hard conditions are significant
according to the ANOVA test. In our view, this reflects the
fact that the EEG_W feature is more related to workload
than to engagement. The participants involved more executive
functions in the hard condition than in the medium one, even if
they were less engaged.

B. Evolution of Emotions in Engaged Trials

Hypothesis H2 was tested by focusing on the data of the
two sessions corresponding to the medium condition where
the participant is expected to be engaged. Both physiological
and questionnaire data were analyzed using a pairwise t-test to
verify that there was a decrease of engagement from the first
session to the second session.

The pairwise t-test used on the variables of the questionnaire
showed a significant decrease from the first medium condi-
tion to the second medium condition for the questions “I had
pleasure to play” (t = −1.8, p = 0.09) and “I had to adapt to
the interface” (t = −3, p = 0.06). From peripheral signals, a
decrease in the number of GSR peaks fNbPeaks

GSR (t = −2.4, p =
0.02), as well as an increase in the average of temperature
µTemp (t = 2.6, p = 0.02), and in the average of temperature
derivative δTemp (t = 2.3, p = 0.03) was found.

Those results are indicative of a decrease of arousal and plea-
sure while playing twice in the same condition, thus supporting
hypothesis H2. The result obtained for the question “I had to
adapt to the interface” gives a cue that this decrease could be
due to an increase of the player’s competence. However, the
competence changes were not measured with other indicators to
confirm this possibility. In any case, those results demonstrate
the importance of having automatic adaptation of the game’s
difficulty when the challenge of the game remains the same.

IV. CLASSIFICATION OF THE GAMING CONDITIONS

USING PHYSIOLOGICAL SIGNALS

A. Classification Methods

In this section, the classification accuracy that can be ex-
pected from emotion assessment is investigated. For this pur-
pose, classification methods were applied on the data gathered
from the gaming protocol. The ground-truth labels were defined
as the three gaming conditions, each one being associated to
one of the three states: boredom (easy condition), engagement
(medium condition), and anxiety (hard condition).

Three classifiers were applied on this data set: a linear
discriminant analysis (LDA), a quadratic discriminant analysis
(QDA), and a support vector machine (SVM) with radial basis
function (RBF) kernel [37], [38]. The diagonalized versions
of the LDA and the QDA were employed because of the low
number of samples, which sometimes gives rise to the problem
of singular covariance matrices. The size of the RBF kernel was
chosen by applying a five-fold cross-validation procedure on
the training set and finding the size yielding the best accuracy.
The tested size values belonged to the 5.10−3–5.10−1 range
with a step of 5.10−3.

The following cross-validation method was employed to
compute the test accuracy of the classifiers. For each partici-
pant, a classifier was trained using the features of other par-
ticipants; accuracy was then computed by applying the trained
model on the physiological data of the tested participant. Since
the classifier is tested on the data of participants that are not
present in the training set, this method allows evaluating the
performance of the classifier in the worst case where the model
is not user specific, i.e., no information about the specificity
of the user’s physiology is required for emotion assessment,
except for a baseline recording of 1 min. Due to the interpar-
ticipant variability that remains in physiological activity after
baseline subtraction, player-independent classifiers will cer-
tainly yield a lower accuracy than player-dependant classifiers.
However, this approach allows designing applications where
it is not necessary to train a classifier for each user which is
drastically time consuming [3].

Three feature-selection algorithms were applied on this prob-
lem to find the features that provide good generalization across
participants. All those algorithms were applied on the training
set to select features of interest, and only the selected features
were used for the classification of the test set. An ANOVA
feature selection was applied to keep only the features that
are relevant to the class concept (p-value < 0.1). The fast
correlation-based filter (FCBF) [39] was applied to select rele-
vant features and remove redundant ones. The δFCBF threshold
was set to 0.2 because of the following: 1) It was shown in
[40] that this value is relevant for FCBF EEG feature selection;
and 2) the number of features that has a correlation with the
classes higher than 0.2 (7 for peripheral features and 23 for
EEG features) is similar to the number of relevant features
found using the ANOVA test (10 for peripheral features and
20 for EEG features). Finally, the sequential forward floating
selection (SFFS) algorithm [41] was also used to select features
of interest, including potentially interacting features. To search
for features that have good generalization across participants,
the accuracy of a feature subset was estimated by comput-
ing the participant cross-validation accuracy on the training
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Fig. 5. Accuracies of the different classifiers and feature-selection methods
on the peripheral features.

set. The maximum size of a feature subset for the SFFS
algorithm was set to 18 for peripheral features and 20 for
EEG features.

The fusion of the EEG and peripheral information was
performed to improve classification accuracy. This fusion was
performed at the decision level [42], by combining the outputs
of the classifiers using the Bayes’ belief integration [43]. For
Bayes’ belief integration, the errors produced by the classifiers
are expressed by the probabilities P (y|ŷq) that a classifier q
estimates a class as being ŷq , while the true class was y. These
probabilities can be computed from the confusion matrices
obtained from the training set. The fusion is then performed
by assuming classifier independency and choosing the class y
that maximizes the following probability:

P (y | ŷ1 . . . ŷ|Q|) =

∏
q∈Q

P (y | ŷq)

P (y)|Q|−1
(2)

where Q is the ensemble of classifiers used for the fusion.
Since the EEG signals were recorded only for 14 out of

the 20 participants, the available number of samples for EEG-
based classification is not the same as for peripheral-based
classification. For this reason, the results obtained from EEG
and peripheral features are separated in two sections with
classification algorithm applied on 14 participants for EEG
and 20 participants for peripheral features. In Section IV-D,
the classification accuracies obtained with EEG and periph-
eral features on different time scales are compared, while the
fusion of peripheral and EEG modalities is investigated in
Section IV-E. In both cases, the classification accuracy was
computed only on the 14 participants having EEG recorded.

B. Peripheral Signals

Fig. 5 presents the accuracies obtained by applying the clas-
sification methods on the features extracted from the peripheral
signals. Without feature selection, the LDA obtained the best
accuracies of 54% showing its ability to find a boundary that
generalizes well across participants. In any case, the accuracies
are higher than the random level of 33%. Except for the
ANOVA, the feature-selection methods always improved the
classification accuracies. The best accuracy of 59% is obtained

with the QDA combined with the SFFS feature selection.
However, the FCBF results (58%) are not significantly different
from those obtained with the SFFS algorithm because of the
high variance of the accuracies. Moreover, the variance of the
accuracies obtained with SFFS tends to be higher than those
obtained with the FCBF which shows that the FCBF is more
stable than the SFFS algorithm in selecting the proper features.
According to the results and considering that the FCBF is much
faster than the SFFS, the FCBF can be considered as the best
feature-selection algorithm for this classification scheme.

Since the participant cross-validation method was used, the
feature-selection algorithms were applied 20 times on different
training sets. For this reason, the features selected at each
iteration of the cross-validation procedure can be different. The
histograms of Fig. 6 show, for each feature, the number of
times it was selected by a given feature-selection algorithm.
The average number of selected features is 3.5 for the FCBF,
9.35 for the ANOVA feature selection, and 4.8 for the SFFS.
The ANOVA nearly always selected the features that were
found to be relevant in Section III-A but with poor resulting
accuracy (Fig. 5). Owing to the removal of redundant features,
the FCBF strongly reduces the original size of the feature space
with a good resulting accuracy. Moreover, this algorithm nearly
always selected the same features independently of the training
set showing its stability. The SFFS also obtained good perfor-
mance, but as can be seen from Fig. 6, some of the features
were selected only on some of the training sets, showing that
this algorithm is less stable than the FCBF.

By inspecting the SFFS, FCBF, and ANOVA selected fea-
tures, the fDecTime

GSR and fNbPeaks
GSR features were always selected

which shows their importance for the classification of the
three conditions from physiological signals. To our knowledge,
similar features have been used only in [44] for emotion assess-
ment despite of their apparent relevance. The µHR feature was
frequently selected by the FCBF but never by the SFFS and vice
versa for the σResp feature. The σResp feature was removed by
the FCBF because it was correlated with µHR. However, the
SFFS kept the σResp feature based on its predictive accuracy
which suggests that this feature may be better than µHR for
classification. Finally, the temperature features were also found
to be frequently relevant.

Because of its good accuracy and low computational time,
the FCBF algorithm coupled with QDA classification was used
for further analyses involving the peripheral modality. Table V
presents the confusion matrix for the three classes: It can be
seen that the boredom condition was well classified, followed
by the anxiety condition. Samples from the engagement con-
dition tend to be classified mostly as bored samples and also
as anxious samples. This is not surprising since this condition
lies in between the others. Notice that 21% of the samples
belonging to the anxiety class are classified as bored samples;
this can be due to the fact that some participants completely
disengaged from the task because of its difficulty, reaching an
emotional state close to boredom. In this case, the adaptive
game we propose would increase the level of difficulty since the
detected emotion would be boredom, which is not the proper
decision to take. A solution to correct this problem could be to
use contextual information such as the current level of difficulty
and the direction of the last change in difficulty (i.e., increase
or decrease) to correctly determine the action to take.
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Fig. 6. Histograms of the number of cross-validation iterations (over a total of 20) in which the features have been selected by the FCBF, ANOVA, and SFFS
feature-selection algorithms. The SFFS feature selection is displayed for the QDA classification.

TABLE V
CONFUSION MATRIX FOR THE QDA CLASSIFIER

WITH FCBF FEATURE SELECTION

Fig. 7. Accuracies of the different classifiers and feature-selection methods
on the EEG features.

C. EEG Signals

All the classification methods obtained accuracy higher than
the random level of 33% (Fig. 7). Without feature selection,
the LDA had the best accuracy of 49%, followed by the RBF
SVM with 47%. As with the peripheral features, these results
demonstrate the ability of linear and support vector classifiers
to well generalize across the participants. The best result of
56% was obtained by the LDA coupled with ANOVA feature
selection. The ANOVA feature-selection method always had a

better performance than the other methods. To our knowledge,
these are the first results concerning the identification of gaming
conditions from EEG signals, particularly considering that the
classifiers were trained using a cross-participant framework.

As can be seen from Fig. 8, the FCBF selected less features
than the two other feature-selection methods. It selected 3.1 fea-
tures in average compared to 20.3 for the ANOVA and 13.0 for
the SFFS coupled with the LDA. This explains the low accuracy
obtained with the FCBF and shows that good accuracies on this
problem can be obtained only by concatenating several features.
The ANOVA algorithm often selected the features described in
Section III-A. The SFFS coupled with the LDA had accuracies
close to those of the ANOVA with LDA but by selecting less
features in average. For this reason, the features selected by
this method are of particular importance for accurate classifi-
cation of the three gaming conditions. The more often selected
features (selected more than eight times) were the theta band
energies of the T7, O1, Cz, P4, and P3 electrodes and the beta
band energies of the P7, Pz, and O2 electrodes. This result
shows that the occipital and parietal lobes were particularly
useful for the differentiation of the three gaming conditions.

The confusion matrix displayed in Table VI for the LDA and
FCBF methods shows that the different classes were detected
with similar accuracies. The medium condition still has the
lowest accuracy but is better detected than when using the
peripheral features. On the other hand, the easy condition is
detected with less accuracy than with peripheral features. This
indicates that the fusion of the two modalities should increase
the overall accuracy.

D. EEG and Peripheral Signals

In order to compare the accuracies obtained using either EEG
or peripheral signals, the best combinations of classifiers and
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Fig. 8. Histograms of the number of cross-validation iterations (over a total of 14) in which features have been selected by the FCBF, ANOVA, and SFFS
feature-selection algorithms. The SFFS feature selection is displayed for the LDA classification.

TABLE VI
CONFUSION MATRIX FOR THE LDA CLASSIFIER

WITH ANOVA FEATURE SELECTION

feature-selection methods were applied on the physiological
database with the same number of participants for both modal-
ities (the 14 participants for whom EEG was recorded). More-
over, the comparison was conducted for different time scales
to analyze the performance of each modality as a function of
the signal duration used for the feature computation. For this
purpose, each session (see Fig. 2) was divided into one to ten
nonoverlapping windows of 300/W s, where W is the number
of windows and 300 s is the duration of a session. EEG and
peripheral features were then computed from each window, and
the label of the session was attributed to these features. By
using this method, a database of physiological features was
constructed for each window size ranging from 30 to 300 s.

For a database in which the features were computed from W
windows, the number of samples for each class is 20× 2×W
(20 participants, 2 sessions per class, and W windows per ses-
sion). Thus, the number of samples per class increases with W .

Since the number of samples can influence classification accu-
racy and the goal of this study is to analyze the performance
of EEG and peripheral features at different time scales, it is
important that this comparison be conducted with the same
number of samples for each window’s length. To satisfy this
constraint, one sample was chosen randomly from each session
using a uniform distribution to have 20× 2 = 40 samples per
class. The classification algorithms were then applied on this
reduced database. This was repeated 1000 times for each value
of W to account for the different possible combinations of the
windows (except for W = 1). Notice that it is not possible to
perform classification for all window combinations since there
are W 40 of such combinations.

By using this method, the average accuracies over the
1000 iterations are displayed in Fig. 9. The small accuracy
oscillations that can be observed for small time windows (less
than 100 s) are likely due to the increase of the number
of possible combinations of windows. As can be seen from
Fig. 9, the accuracy obtained for the peripheral signals with
the original duration of the sessions (300 s) is not significantly
different from the one obtained with all of the 20 participants
(see Section IV-B). Thus, having 13 or 19 participants for
classifier training (because of participant cross validation) does
not significantly change the classification performance. This
suggests that adding more participants to the current database
would not increase classification accuracies, and that, recording
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Fig. 9. Classification accuracy as a function of the duration of a trial for EEG
and peripheral features.

TABLE VII
CONFUSION MATRIX FOR THE “BAYES’ BELIEF INTEGRATION” FUSION

14 to 20 participants is enough to obtain reliable accuracy
estimations.

For both modalities, decreasing the duration of the window
on which the features are computed leads to a decrease of
accuracy. However, this decrease is stronger for peripheral
features than for EEG features. For the EEG features, the
accuracy drops from 56% for windows of 300 s to around
51% for windows of 30–50 s. For the peripheral features, the
accuracy is 57% for windows of 300 s and around 45% for
windows of 30–50 s. Moreover, the EEG accuracy remains
approximately the same for windows having duration inferior
to 100 s, while the peripheral accuracy continues to decrease.
All those results demonstrate that the EEG features are more
robust on short-term assessment than the peripheral features.
For our application, adapting the difficulty of the Tetris game
based on the physiological signals gathered during precedent
5 min may be undesirable since there is a high probability that
the difficulty of the game has changed during this laps of time
due to usual game progress. Having modalities, like EEG, that
are able to estimate the state of the user on shorter time periods
is thus of great interest.

E. Fusion

As can be seen from the confusion matrices obtained from
the classification based on the peripheral and EEG features
(Tables V and VI), the errors made with these two feature
sets are quite different. The Bayes’ belief integration is well
suited for this type of problem and, thus, was employed for the
fusion of the best classifiers found for each feature set (the LDA
couples with ANOVA for EEG features and the QDA couples
with FCBF for peripheral features). Another advantage of the
Bayes’ belief integration is that the probabilities P (y|ŷq) as in
(2) can be estimated independently for the two classifiers. It
was thus possible to use the training data of 19 participants

to compute probabilities for the peripheral features, while only
13 participants were used for the EEG features. The resulting
accuracy and confusion matrices were obtained by using the
participant cross validation applied on the 14 participants for
whom both EEG and peripheral activity were recorded.

The accuracy obtained after fusion was 63% which corre-
sponds to an increase of 5% compared to the best accuracy
obtained with the peripheral features. Table VII presents the
confusion matrix obtained after fusion. By comparing this table
to Tables V and VI, it can be observed that the detection
accuracy of the easy and the hard classes was increased by 2%
and 7%, respectively, compared to the accuracy obtained with
the best feature set (peripheral features for the easy class and
EEG features for the hard class). The accuracy obtained on the
medium class with fusion (39%) is lower than the one obtained
with EEG features (50%) but higher than with peripheral fea-
tures (33%). When performing classification based either on
EEG or peripheral features, many of the hard samples were
classified as easy, while this problem was solved after fusion.
All these results demonstrate the interest of peripheral and EEG
fusion at the decision level for a more accurate detection of the
three conditions.

The accuracy obtained in the present study is 15% lower than
the one obtained in [3]. However, according to the confusion
matrix presented in Table VII, the adjusted level of difficulty
using the current method should oscillate around the true dif-
ficulty level where the participant experiences engagement. It
is thus expected that our method will also improve a player’s
experience. Moreover, as stressed before, the current method
only requires a baseline recording of 1 min for each new player,
compared to the recording of six 1-h training game sessions for
each participant in [3].

V. CONCLUSION

This paper has investigated the possible use of emotion
assessment from physiological signals to adapt the difficulty of
a game. A protocol has been designed to record physiological
activity and gather self-reports of 20 participants playing a
Tetris game at three different levels of difficulty. The difficulty
levels were determined according to the competence of the
players on the task. Two types of analysis have been conducted
on the data: First, a statistical analysis of self-reports and
physiological data has been performed to control that different
cognitive and emotional states were elicited by the protocol;
second, classification has been conducted to determine whether
it is possible to detect those states from physiological signals.

The results obtained from the analysis of self-reports and
physiological data have showed that playing the Tetris game
at different levels of difficulty gave rise to different emotional
states. The easy difficulty was related to a state of low pleasure,
low pressure, low arousal, and low motivation which was
determined as boredom. The medium difficulty elicited higher
arousal than the easy difficulty, as well as higher pleasure,
higher motivation, and higher amusement. It was thus defined
as engagement. Finally, the hard condition was associated to
anxiety since it elicited high arousal, high pressure, and low
pleasure. Moreover, the analysis of consecutive engaged trials
has showed that the engagement of a player can decrease
if the game difficulty does not change. These results have
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demonstrated the importance of adapting the game difficulty
according to the emotions of the player in order to maintain
his/her engagement.

The classification accuracy of EEG and peripheral signals
to recover the three states elicited by the gaming conditions
has been analyzed for different classifiers, feature-selection
methods, and durations on which the features have been com-
puted. Without feature selection, the best classifiers obtained
an accuracy around 55% for peripheral features and 48% for
EEG features. The FCBF increased the best accuracy on the
peripheral feature to 59%, while the ANOVA selection in-
creased the accuracy to 56% for EEG features. The analysis
of the classification accuracy for EEG and peripheral features
computed on different duration demonstrated that the EEG
features are more robust to a decrease in duration than the
peripheral features, which confirms the importance of EEG
features for short-term emotion assessment.

Future work will focus on the improvement of the detec-
tion accuracy. Fusion of physiological information with other
modalities such as facial expressions, speech, and vocal signals
would certainly improve the accuracy. Including game infor-
mation such as the evolution of the score can also help to better
detect the three states. Another question of interest is to deter-
mine the number of classes to be detected. Since boredom and
anxiety are detected with higher confidence than engagement,
it might be enough to use those two classes for adaptation to the
game difficulty. Moreover, from the observation of Fig. 1, one
can conclude that it is more interesting to adapt the difficulty of
the game solely based on the increase of competence because
it leads to a stronger change of state in the flow chart and stim-
ulates learning. In this case, only the detection of boredom is
of importance to modulate difficulty. This also implies to more
clearly define the relations between emotions and competence
changes. A future study would be to implement an adaptive
Tetris game and verify that it is more fun and enjoyable than
the standard one. Finally, analysis of physiological signals for
different types of games is also required to see if the results of
this study can be extended to other games.
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