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Reactive oxygen species (ROS) are highly reactive molecules that arise from a number of cellular sources, including oxidative

metabolism in mitochondria. At low levels they can be advantageous to cells, activating signaling pathways that promote

proliferation or survival. At higher levels, ROS can damage or kill cells by oxidizing proteins, lipids, and nucleic acids. It was

hypothesized that antioxidants might benefit high-risk patients by reducing the rate of ROS-induced mutations and delaying

cancer initiation. However, dietary supplementation with antioxidants has generally proven ineffective or detrimental in

clinical trials. High ROS levels limit cancer cell survival during certain windows of cancer initiation and progression. During

these periods, dietary supplementation with antioxidants may promote cancer cell survival and cancer progression. This raises

the possibility that rather than treating cancer patients with antioxidants, they should be treated with pro-oxidants that

exacerbate oxidative stress or block metabolic adaptations that confer oxidative stress resistance.

Reactive oxygen species (ROS), including superoxide

radicals (O2
.2), hydroxyl radicals (OH†), and hydrogen

peroxide (H2O2), are generated as by-products of aerobic

metabolism as well as from a number of other sources.

These ROS display varying reactivities toward different

targets but share the ability to damage cells by oxidizing

proteins, lipids, and DNA (Martinez-Cayuela 1995). The

ability of ROS to mutate DNA and to damage cells raised

the possibility that cellular aging and cancer initiation

reflect accumulated ROS damage over time (Harman

1956). Although damage from ROS does contribute to

aging and cancer initiation, ROS damage does not seem

to provide a general explanation for the morbidities of

aging, and antioxidant administration has so far failed

to increase longevity outside of certain mutant genetic

backgrounds (Finkel and Holbrook 2000). Nonetheless,

decades of work in this area gave rise to the idea that

antioxidants from the diet or from dietary supplements

might slow aging and reduce cancer incidence by neutral-

izing cellular ROS (Greenwald et al. 1990). Results from

clinical trials generally have not supported this idea.

SOURCES AND EFFECTS OF ROS

ROS are produced in various subcellular compartments

by nonenzymatic and enzymatic reactions (Hernandez-

Garcia et al. 2010). Nonenzymatic mechanisms include

single-electron reduction of O2 to produce superoxide in

the mitochondria. Enzymatic mechanisms are numerous

and include NADPH oxidases, nitric oxide synthases,

xanthine oxidase, cytochrome P450 enzymes, cyclooxy-

genases, and lipoxygenases (Gorrini et al. 2013b). The

endoplasmic reticulum also serves as a source of ROS

during protein folding via protein disulfide isomerase,

endoplasmic reticulum oxidoreductin, NADPH oxidase

(especially NOX4), and other mechanisms (Malhotra

et al. 2008; Bhandary et al. 2012; Higa and Chevet

2012). Peroxisomes produce ROS through b-oxidation

of fatty acids and flavin oxidase activity (Schrader and

Fahimi 2006). Hypoxia, sustained mitochondrial res-

piration, ER stress, and oncogenes all contribute to high

ROS levels in some cancer cells (Szatrowski and Nathan

1991; Gorrini et al. 2013b). Because ROS are so highly

reactive, ROS generally oxidize targets within, or adja-

cent to, the intracellular compartment in which they are

generated.

Cellular ROS levels can also increase as a result of UV

irradiation, ionizing radiation, toxins such as heavy met-

als, chemotherapy, and neighboring inflammatory cells,

although the mechanisms vary widely (Federico et al.

2007; Azzam et al. 2012; Vera-Ramirez et al. 2012).

For example, the chemotherapeutic doxorubicin forms a

complex with topoisomerase and DNA that leads to dou-

ble-strand breaks, increasing ROS levels and potentiating

cellular damage (Lyu et al. 2007; Rowe et al. 2008;

Zhang et al. 2012). Doxorubicin also promotes mitochon-

drial dysfunction through multiple mechanisms including

changes in iron metabolism and releasing electrons from

the electron transport chain (Granados-Principal et al.

2010).
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At lower levels, ROS activate signaling that can be

advantageous for cells, promoting proliferation, survival,

or oxidative stress resistance (Ranjan et al. 2006; Rhee

2006; Schieber and Chandel 2014). Redox-sensitive sig-

naling pathways include the PI3-kinase and MAP kinase

signaling pathways in which ROS regulates signaling by

epidermal growth factor (EGF) (Bae et al. 1997), Ras

(Lander et al. 1997), platelet-derived growth factor

(PDGF) (Sundaresan et al. 1995), and phosphatase and

tensin homolog (PTEN) (Lee et al. 2002; Leslie et al.

2003). These pathways can be indirectly regulated by

ROS or directly activated by “redox switches.” For ex-

ample, nitric oxide production results in S-nitrosylation

of p21Ras at Cys118, increasing guanine nucleotide ex-

change and Ras signaling (Lander et al. 1997).

ANTIOXIDANT MECHANISMS

FOR ROS DEFENSE

Cells must maintain homeostasis by limiting ROS pro-

duction and having antioxidant mechanisms to neutralize

ROS or mitigate oxidative stress. Antioxidant enzymes

include superoxide dismutases (SODs), catalase, perox-

iredoxins (PRDXs), thioredoxins, glutathione peroxidase,

and heme oxygenase (Sabharwal and Schumacker 2014).

Some of these enzymes, such as SOD, have different

isoforms in mitochondria and in the cytoplasm. These

enzymes work together to neutralize ROS (Fig. 1). For

example, SOD can convert O2
.2 to O2 or H2O2. Catalase

and glutathione peroxidase subsequently convert the

H2O2 to H2O and O2. Nonenzymatic antioxidants include

proteins and metabolites produced by cells, such as thio-

redoxin, glutathione, and nicotinamide adenine dinucleo-

tide phosphate (NADPH), as well as dietary components,

such as vitamins A, C, and E, selenium, and b-carotene.

Thioredoxin and glutathione are abundant endogenous

redox buffers that serve as electron donors to peroxidases,

which convert H2O2 to H2O (Fig. 1). They can then be

regenerated from their oxidized, disulfide forms, using

NADPH as an electron donor.

Nuclear factor-erythroid 2-related factor 2 (NRF2) is a

transcriptional master regulator of cellular redox status. It

promotes the transcription of genes that encode antioxi-

dant and detoxification enzymes in response to redox

stress (Hayes and McMahon 2009). NRF2 is negatively

regulated by Kelch-like ECH-associated protein 1

(KEAP1), which sequesters NRF2 in the cytoplasm

(Hayes and Dinkova-Kostova 2014). However, ROS can

oxidize and inactivate KEAP1, allowing NRF2 levels to

increase in the nucleus and triggering the transcription of

genes with antioxidant response elements in their pro-

moters (Rushmore et al. 1991; Nioi et al. 2003). These

genes include key components of the endogenous antiox-

idant response systems that import cystine into cells

(Lewerenz et al. 2013) and promote the synthesis of glu-

tathione (Higgins et al. 2009) and thioredoxin (Hayes and

Dinkova-Kostova 2014). NRF2 also promotes the expres-

sion of glutathione peroxidase, glutathione reductase, and

thioredoxin reductase (Fig. 1; Hayes and McMahon 2009;

Abbas et al. 2011; Jeong et al. 2012; Hawkes et al. 2014;

Lu and Holmgren 2014), as well as proteins such as fer-

ritin, which blocks the formation of free radicals, and

NADPH:quinone oxidoreductase 1, which inhibits the
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Figure 1. Endogenous antioxidant mechanisms. Reactive oxygen species (ROS) such as superoxide can be produced either in the
cytoplasm or in mitochondria. Two main arms of the antioxidant response are shown: thioredoxin (TRX) and glutathione (GSH).
Enzymes are highlighted in blue. GR, glutathione reductase; GSH red, reduced glutathione; GSSG ox, oxidized glutathione; GPx,
glutathione peroxidase; SOD, superoxide dismutase; PRxs, peroxiredoxins; red-TRX, reduced thioredoxin; ox-TRX, oxidized thio-
redoxin; NOX, NADPH oxidase; NADPH, nicotinamide adenine dinucleotide phosphate.
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formation of free radicals by quinones (Nioi and Hayes

2004). Finally, NRF2 promotes the expression of

NADPH-generating enzymes to produce the NADPH re-

quired for glutathione and thioredoxin regeneration

(Thimmulappa et al. 2002; Lee et al. 2003; Wu et al.

2011; Mitsuishi et al. 2012; Singh et al. 2013). This con-

certed upregulation of approximately 200 genes enables

the adaptation of cells to increased ROS levels (Hayes and

Dinkova-Kostova 2014).

Tumor suppressors also help to control ROS. For ex-

ample, BRCA1 and fumarate hydratase both promote

NRF2 function through different mechanisms (Gorrini

et al. 2013b). p53 decreases ROS levels by inhibiting

glycolysis and promoting the generation of NADPH via

the pentose phosphate pathway (Green and Chipuk 2006).

The increased DNA damage in the absence of p53 can be

partially rescued by treatment with the antioxidant N-

acetylcysteine (NAC), suggesting that the effects of p53

on redox homeostasis are a significant component of its

functions that promote genomic stability (Liu et al. 2004;

Sablina et al. 2005).

CLINICAL TRIALS OF ANTIOXIDANTS

IN CANCER PREVENTION

Based on the hypothesis that cellular damage from ROS

is a major driver of aging and oncogenic mutations, die-

tary supplementation with antioxidants was proposed to

prevent and/or treat cancer (Greenwald et al. 1990). The

Nutritional Prevention of Cancer Study Group tested

whether dietary supplementation with selenium (a com-

ponent of glutathione peroxidase and thioredoxin reduc-

tase) could reduce the incidence of skin cancers in patients

with a history of basal and/or squamous cell carcinomas

(Clark et al. 1996). Although selenium did not protect

participants from the development of additional skin

cancers, selenium supplementation was associated with

a nearly 40% reduction in total cancer incidence, partic-

ularly in prostate cancer. The Linxian General Population

Nutrition Intervention Trial found that a combination

of selenium, vitamin E, and b-carotene reduced overall

mortality as well as cancer rates (Blot et al. 1993; Qiao

et al. 2009).

These promising findings spawned many additional

trials to assess the efficacy of antioxidant use for cancer

prevention (see Table 1 for a summary of randomized,

placebo-controlled trials with more than 10,000 partici-

pants). Subsequent trials not only failed to reproduce

these findings (Hennekens et al. 1996; Lee et al. 1999,

2005; Hercberg et al. 2004, 2007; Gaziano et al. 2009,

2012) but suggested that in some cases, antioxidants may

actually promote cancer initiation and progression. The

Alpha-Tocopherol Beta Carotene (ATBC) Cancer Pre-

vention Study treated male smokers with vitamin E, b-

carotene, both, or neither for 5–8 yr (ATBC 1994). Pa-

tients receiving b-carotene had an 18% increase in lung

cancer incidence. These results were recapitulated in the

CARET trial, which also found an increase in lung cancer

incidence and mortality in participants taking b-carotene

and vitamin A (Omenn et al. 1996a,b).

The SELECT trial was a randomized, double-blind, pla-

cebo-controlled trial of older males given vitamin E, sele-

nium, both, or neither for 7–12 yr (Lippman et al. 2009;

Klein et al. 2011). Men taking vitamin E alone were sig-

nificantly more likely to develop prostate cancer, though

overall cancer incidence did not significantly differ be-

tween groups. Among patients who received selenium,

those with high baseline selenium levels had an increased

risk of high-grade prostate carcinoma whereas those with

low baseline selenium did not (Kristal et al. 2014).

Some trials also tested the ability of antioxidants to

prevent the formation of new primary tumors in patients

who had already been treated for cancer. The EURO-

SCAN trial treated patients with a history of head and

neck cancer or lung cancer for 2 yr with vitamin A (ret-

inyl palmitate), NAC, both, or neither (van Zandwijk

et al. 2000). Patients receiving neither vitamin A nor

NAC had the lowest incidence of new primary tumors,

although this was not statistically significant. A Phase III

randomized, double-blind, placebo-controlled trial tested

the effect of selenium versus placebo for patients with

resected non–small cell lung cancer (Karp et al. 2013).

The trial was stopped early as selenium treatment was

associated with a trend toward increased second primary

tumors.

The U.S. Preventative Services Task Force (USPSTF)

reviewed many of the above trials and concluded that there

was insufficient data for or against the use of most nutrient

supplements for cancer prevention (Moyer and U.S. Pre-

ventive Services Task Force 2014). Two exceptions in-

cluded vitamin E and b-carotene. Vitamin E consistently

showed no impact on cancer prevention. b-carotene

showed an increased risk for lung cancer in smokers.

The other important question is whether dietary sup-

plementation with antioxidants benefits healthy people.

Many clinical trials have explored whether antioxidant

use affects mortality due to heart disease, aging, or dis-

eases of aging. A meta-analysis examining all-cause mor-

tality in 68 randomized trials of antioxidants for many

different indications included 232,606 participants and

found a significant increase in mortality in patients taking

b-carotene, vitamin A, and vitamin E (Bjelakovic et al.

2007). An additional meta-analysis showed that antioxi-

dant supplements significantly increased the risk of blad-

der cancer (Myung et al. 2010).

CLINICAL TRIALS OF ANTIOXIDANTS

IN CANCER TREATMENT

In addition to cancer prevention, some trials have in-

cluded antioxidants as adjuvant therapy in the treatment

of patients with cancer. A systematic review found no

benefit of supplemental ascorbate (vitamin C) for overall

or progression-free survival in cancer patients, most of

whom had breast or colorectal cancer (Jacobs et al. 2015).

Another systematic review examined treatment efficacy

and patient survival with the use of any adjuvant antiox-

idants during chemotherapy or radiotherapy (Yasueda

et al. 2016). The trials showed contradictory results, but
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one trial showed that use of vitamin E and b-carotene in

head and neck cancer patients receiving radiotherapy in-

creased the risk of recurrence (RR ¼ 2.41, 95% CI:

1.25–4.64) and cancer mortality (RR ¼ 3.38, 95% CI:

1.11–10.34) specifically in smokers (Meyer et al. 2008).

Despite strong designs and very large numbers of par-

ticipants, the above clinical trials (and other smaller tri-

als) failed to yield clear evidence that antioxidants could

reduce cancer development or progression. Contrary to

what was expected, antioxidant use often appeared to

increase cancer incidence, particularly in individuals at

high risk.

ROS IN CANCER INITIATION

AND PROGRESSION

ROS is a mutagen that promotes tumor initiation. ROS

can oxidize guanine in DNA and RNA to form 8-hy-

droxyguanine (8-OHG) (Floyd 1990). 8-OHG can pair

with adenine during DNA replication, resulting in G to

T and C to A substitutions, potentially introducing mis-

sense mutations (Cheng et al. 1992). A large body of

work has found a strong correlation between the forma-

tion of 8-OHG and carcinogenesis (Feig et al. 1994).

Consistent with the idea that ROS is carcinogenic,

antioxidant enzymes are tumor suppressors. SOD is a

family of three enzymes that are major scavengers of

superoxide in the cytoplasm (SOD1), mitochondria

(SOD2), and extracellularly (SOD3). Sod1-deficient

mice develop liver cancer marked by extensive oxidative

and DNA damage (Elchuri et al. 2005). Mice heterozy-

gous for a null allele of Sod2 also form tumors, particu-

larly lymphoma and pituitary adenoma (Van Remmen

et al. 2003). Sod3-deficient mice do not form tumors,

but SOD3 overexpression reduces tumor formation by

50% in a skin carcinogenesis model (Kim et al. 2005).

Peroxiredoxin1 (Prdx1)-deficient mice develop lympho-

mas, sarcomas, and carcinomas (Neumann et al. 2003).

Some other tumor suppressors also act partly by sup-

pressing ROS generation. Loss-of-function mutations in

multiple tumor suppressors that promote genomic integ-

rity, including ataxia telangiectasia mutated (ATM), P53,

and BRCA1, lead to the generation of ROS (Bae et al.

2004; Reliene et al. 2004; Sablina et al. 2005; Reliene and

Schiestl 2006; Esteve et al. 2010; Gorrini et al. 2013a).

This may reflect the leakage of damaged DNA into the

cytoplasm in these cells, inducing an interferon-mediated

innate immune response (as would be stimulated by viral

DNA) that promotes the generation of ROS (Santos et al.

2014; Tasdogan et al. 2016; A Tasdogan and H Fehling,

pers. comm.). Atm-deficient cells show genomic instabil-

ity, oxidative stress, hematopoietic stem cell depletion,

and lymphoid neoplasia (Reliene et al. 2004; Reliene

and Schiestl 2006). Treatment of Atm-deficient mice

with NAC largely rescues these phenotypes, reducing

ROS levels, DNA damage, and cancer incidence (Ito

et al. 2004). NAC treatment of p53-deficient mice has

similar effects (Sablina et al. 2005). Although clinical

trials in patients at high risk of cancer tended to show

that antioxidants were often ineffective or deleterious

for cancer risk, these results in mice raise the possibility

that antioxidants might reduce cancer risk in certain sen-

sitized genetic backgrounds.

Numerous studies have also demonstrated a link be-

tween oncogene signaling and oxidative stress, though

the mechanisms by which oncogenes increase ROS levels

are murky. Ras activation increases the generation of

superoxide (Irani et al. 1997). BCR-ABL-transformed

cells show increased intracellular ROS, as well as oxi-

dative DNA damage and chromosomal fragmentation

(Sattler et al. 2000; Nowicki et al. 2004). c-Myc overex-

pression increases ROS levels, DNA damage, and geno-

mic instability (Felsher and Bishop 1999; Vafa et al.

2002). The increase in ROS levels as a result of oncogene

signaling may contribute to ongoing mutagenesis and

genomic instability in cancer cells, promoting cancer

progression. To balance these potentially toxic effects of

ROS, several oncogenes also promote the expression of

NRF2, which reduces ROS levels and promotes tumori-

genesis (DeNicola et al. 2011).

Consistent with the idea that ROS can promote cancer

initiation by promoting mutagenesis but impair cancer

progression by causing oxidative damage, antioxidant

enzymes have bimodal effects on cancer initiation and

progression. Prdx6 overexpression in keratinocytes can

reduce the initiation of skin tumors, but once they arise,

cancer progression is accelerated by Prdx6 overexpres-

sion (Rolfs et al. 2013). Similarly, NRF2 confers resis-

tance to chemical carcinogens but also promotes cancer

progression by protecting cancer cells from oxidative

stress and DNA damage (Ramos-Gomez et al. 2001; Iida

et al. 2004; Hayes and McMahon 2006; Hu et al. 2006; Xu

et al. 2006; Ma 2013; Satoh et al. 2013). Increased NRF2

expression in human cancers correlates with a poor prog-

nosis (Moon and Giaccia 2015). Deletion of NRF2 in

pancreatic cancer cells increases DNA damage and de-

creases tumorigenesis (DeNicola et al. 2011). High levels

of ROS are thus detrimental to cancer cells and cancer

progression depends on endogenous antioxidants that at-

tenuate oxidative stress.

ROS AND METASTASIS

Metastasis is a multistep process involving invasion,

migration, intravasation into the blood, survival in circu-

lation, extravasation into distant organs, and proliferation

(Vanharanta and Massague 2013). Circulating cancer

cells are commonly observed in the blood of patients

and mice with various cancers (Nagrath et al. 2007; Stott

et al. 2010; Yu et al. 2013, 2014; Sullivan et al. 2014).

Nevertheless, metastasis is a very inefficient process

(Vanharanta and Massague 2013) as very few metastasiz-

ing cancer cells survive and even fewer proliferate to form

micrometastases (Luzzi et al. 1998; Cameron et al. 2000;

Kienast et al. 2010). Accumulating evidence suggests that

oxidative stress kills cancer cells at multiple stages of the

metastatic process, contributing to the inefficiency of the

process.
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Metastasis begins with detachment from the local ex-

tracellular matrix. Epithelial cells undergo cell death

when they detach from extracellular matrix in culture as

a result of reduced glucose uptake, ATP depletion, and

oxidative stress (Debnath et al. 2002; Debnath and Brug-

ge 2005). Oncogenic signaling promotes the survival of

detached breast epithelial cells by increasing glucose up-

take and flux through the pentose phosphate pathway,

which generates NADPH and regenerates glutathione

(Schafer et al. 2009). Multiple transcription factors also

cooperate to induce an antioxidant response that pro-

motes survival, including NRF2 and ATF4. NRF2 and

ATF4 promote the expression of serine/glycine biosyn-

thesis enzymes to increase glutathione synthesis (DeNi-

cola et al. 2015) as well as heme oxygenase 1 (Dey et al.

2015), each of which reduces oxidative stress, blocks

anoikis, and promotes survival during metastasis.

Cancer cells are more sensitive than normal cells to

elevated ROS levels (Raj et al. 2011). Cancer cells rely

on glutathione and thioredoxin to protect them from

ROS during cancer initiation and cancer progression

(Harris et al. 2015). Combined inhibition of glutathione

and thioredoxin synergistically induces the death of can-

cer cells (Harris et al. 2015). Antioxidant treatment of

mouse models of lung cancer increases tumor progression

and reduces mouse survival by reducing ROS levels,

DNA damage, and p53 expression in the cancer cells

(Sayin et al. 2014). Oxidative stress also impairs cancer

progression by globally suppressing protein translation:

NRF2-deficient cancer cells show an increase in oxidized

cysteine residues in components of the translational ini-

tiation complex, globally reducing translation (Chio et al.

2016). This phenotype can be rescued by antioxidant

treatment. Consistent with the critical role of NRF2 in

redox regulation, some cancers suppress ROS by muta-

tions in KEAP1 or NRF2 that prevent NRF2 from being

sequestered in the cytoplasm, constitutively activating

NRF2 (Singh et al. 2006; Ohta et al. 2008; Shibata

et al. 2008a,b).

Circulating melanoma cells in the blood of xenografted

mice as well as metastatic nodules have higher levels of

ROS relative to primary subcutaneous tumors (Piskou-

nova et al. 2015). Oxidative stress is a barrier to distant

metastasis in these melanomas as treatment with the an-

tioxidant NAC increases the frequency of circulating

melanoma cells in the blood, as well as metastatic disease

burden, without significantly affecting the growth of

primary subcutaneous tumors (Piskounova et al. 2015).

The finding that distant metastasis is limited by oxidative

stress is not an artifact of xenotransplantation into immu-

nocompromised mice as similar results were observed in

immunocompetent mice with autochthanous melanomas:

Treatment with NAC or vitamin E promoted distant

metastasis without affecting the growth of subcutaneous

tumors (Le Gal et al. 2015). Consistent with this, cancer

cells depend on NRF2 (Wang et al. 2016), thioredoxin-

like 2 (Qu et al. 2011), superoxide dismutase (Kamaraju-

gadda et al. 2013; Glasauer et al. 2014), and glutamate

cysteine ligase (the rate-limiting step of glutathione syn-

thesis) (Nguyen et al. 2016) to survive during metastasis.

A number of studies have thus indicated that reducing

oxidative stress is critical for metastasis. Nonetheless,

other studies have reported that ROS can promote metas-

tasis. Antioxidants inhibit the metastasis of some cell

lines (Ferraro et al. 2006; Ishikawa et al. 2008; Porporato

et al. 2014). Mouse melanoma cells in an aged microen-

vironment show decreased APE1 expression as a result of

changes in Wnt signaling, which increases ROS, metas-

tasis, and therapy resistance (Kaur et al. 2016). Mouse

lung carcinoma cells containing mitochondrial DNA with

mutations in NADH dehydrogenase subunit 6 (ND6) dis-

played higher ROS levels and increased metastasis when

compared with wild-type mitochondrial DNA and the

increase in metastasis could be inhibited by NAC treat-

ment (Ishikawa et al. 2008). ROS can also act cell-extrin-

sically in the tumor microenvironment to promote cancer

progression (Jezierska-Drutel et al. 2013), either by in-

fluencing the properties of tumor stromal cells (Cat et al.

2006; Toullec et al. 2010) or by attenuating the activity of

inflammatory cells (Satoh et al. 2010). These studies are a

reminder that ROS can induce signaling that provides a

selective advantage to cells in certain circumstances and

that the net effect of ROS on cancer reflects a complex

combination of adaptive and maladaptive consequences

within the cells and their environment.

CANCER CELLS UNDERGO METABOLIC

CHANGES TO MANAGE ROS

Because oxidative stress limits cancer progression, the

rare cancer cells that successfully metastasize may under-

go metabolic changes that allow them to cope with

oxidative stress. Consistent with this, melanoma cells un-

dergo reversible metabolic changes during metastasis that

increase their fitness to form tumors after metastasis (Pis-

kounova et al. 2015).

NADPH is central to oxidative stress resistance. In cells

in which glutathione and thioredoxin have been depleted

by oxidative stress, NADPH must be diverted to regener-

ate the reduced forms of these redox buffers (Fig. 2).

Cancer cells use multiple metabolic pathways to generate

NADPH, including the pentose phosphate (Patra and Hay

2014), folate (Fan et al. 2014), and malic enzyme path-

ways (Fig. 2). The pentose phosphate pathway is the first

line of defense against oxidative stress in many human

cells and can promote the survival of cells during neoplas-

tic transformation and during detachment from extracel-

lular matrix (Boada et al. 2000; Debnath et al. 2002;

Debnath and Brugge 2005; Bensaad et al. 2006; Sukhatme

and Chan 2012; Hu et al. 2013; Kuehne et al. 2015).

De novo serine synthesis and the folate pathway are

another major source of NADPH for cancer cells (Fan

et al. 2014; Lewis et al. 2014; Ye et al. 2014). De novo

serine synthesis can be limiting for flux through the folate

pathway, and reduced serine hydroxymethyltransferase

expression reduces the cellular NADPH/NADPþ ratio

while increasing ROS levels and cell death (Ye et al.

2014). Phosphoglycerate dehydrogenase (PHGDH) cata-

lyzes the first step in serine biosynthesis. This enzyme is
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Figure 2. NADPH regenerating pathways. Cancer cells depend on different metabolic pathways to produce NADPH to regenerate
endogenous antioxidants, such as GSH and TXN. (A) The pentose phosphate pathway. In the pentose phosphate pathway, NADPH is
generated in two reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (PGD),
shown in red. G6PD catalyzes the rate-limiting step in the oxidative branch of the pentose phosphate pathway. Its activity is regulated
by the NADPþ/NADPH ratio, where NADPH is the negative regulator and NADPþ is required for proper enzymatic function. (B)
Malic enzymes. Three malic enzymes have been identified in mammalian cells. They differ with respect to their localization in the
cytosol (ME1) versus mitochondria (ME2, ME3) and with respect to their use of NADP (ME1, ME3) versus NAD or NADP (ME2�) as
electron acceptors. Malic enzymes mediate the conversion of malate to pyruvate, accompanied by the production of NADPH. (C ) The
folate pathway. The folate pathway uses one-carbon groups that come from serine to generate either nucleotides or NADPH. Serine can
either be synthesized de novo by cells or imported. Several enzymes within the folate pathway, aldehyde dehydrogenase L1
(ALDH1L1) and 2 (ALDH1L2), and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and 2 (MTHFD2) are able to regenerate
NADPH.
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increased in expression in many breast cancers and mel-

anomas, and is necessary for the proliferation of those

cells (Locasale et al. 2011; Mullarky et al. 2011; Posse-

mato et al. 2011). The folate pathway uses one-carbon

groups from serine to generate either nucleotides or

NADPH. Several enzymes within the folate pathway gen-

erate NADPH including methyltetrahydrofolate dehydro-

genases 1 and 2 (MTHFD1 and MTHFD2) and aldehyde

dehydrogenase-like 1 and 2 (ALDH1L1 and ALDH1L2)

(Fig. 2; Fan et al. 2014). ALDH1L2 expression reversibly

increases in melanoma cells during metastasis and knock-

down of ALDH1L2 or MTHFD1 reduces the metastasis

of patient-derived melanoma xenografts in vivo without

affecting the growth of primary tumors in the same mice

(Piskounova et al. 2015).

Finally, malic enzymes mediate the conversion of ma-

late to pyruvate, accompanied by NADPH production

(Fig. 2). Malic enzymes promote the growth of several

cancers (Son et al. 2013; Ren et al. 2014). ME2 expres-

sion is associated with reduced ROS levels in melanoma

cells and promotes cutaneous melanoma proliferation and

invasion in culture (Jiang et al. 2013).

Cancer cells sometimes benefit from metabolic chang-

es that preserve NADPH for the regeneration of gluta-

thione and thioredoxin. AMP-activated protein kinase

(AMPK) is activated in response to ROS as well as during

energy stress and can promote the survival of cells partly

through redox regulation (Schafer et al. 2009). AMPK

inhibits acetyl-CoA carboxylases, inhibiting the con-

sumption of NADPH by fatty acid synthesis and promot-

ing the generation of NADPH by fatty acid oxidation

(Jeon et al. 2012). High ROS levels in cancer cells also

decrease oxidative phosphorylation by promoting glycol-

ysis by stabilizing hypoxia-inducible factor-1 (HIF-1)

(Chandel et al. 2000; Semenza 2011) or by oxidizing

and inhibiting pyruvate kinase M2, diverting glucose

into the pentose phosphate pathway (Anastasiou et al.

2011). These changes may reflect a broader need to shut

down anabolic pathways that generate ROS or consume

NADPH in cancer cells experiencing oxidative stress.

Consistent with these observations, some cancer cells

undergo metabolic changes during invasion in vitro and

metastasis in vivo that would be expected to reduce the

generation of ROS (Chen et al. 2007; Lu et al. 2010; Qu

et al. 2011; Kamarajugadda et al. 2012, 2013; Dong et al.

2013; Shi et al. 2014). For example, HIF-1 activity is

transiently increased during metastasis due to high ROS

levels (Montagner et al. 2012; Vanharanta et al. 2013;

Zhao et al. 2014). HIF-1 activation metabolically repro-

grams metastasizing cells away from oxidative phosphor-

ylation to glycolysis and lactic acid production, through

increased expression of lactate dehydrogenase and pyru-

vate dehydrogenase. These metabolic changes reduce

ROS levels and promote survival during metastasis.

The metabolic plasticity of cancer cells allows them to

undergo dynamic changes in mitochondrial mass and mi-

tochondrial function that facilitate their ability to cope

with energy stress and oxidative stress (Senft and Ronai

2016; Vyas et al. 2016). Both glycolysis and oxidative

phosphorylation can be used in cancer cells in comple-

mentary strategies to enhance metabolic plasticity to

overcome changes in the tumor environment or in energy

demands (Jose et al. 2011). PGC-1a, which promotes

mitochondrial biogenesis, is dynamically expressed by

cancer cells. Although metastasizing cells can increase

mitochondrial biogenesis and respiration by increasing

PGC-1a expression (LeBleu et al. 2014), PGC-1a inhib-

its metastasis in other contexts (Luo et al. 2016). Because

PGC-1a would be expected to increase mitochondrial

mass and the generation of ROS, the observation that

PGC-1alow cells have more metastatic potential in some

cancers (Luo et al. 2016) is consistent with the observa-

tion that oxidative stress limits distant metastasis (Piskou-

nova et al. 2015). Cancer cells also dynamically control

mitochondrial fusion and fission to regulate oxidative

phosphorylation and ROS levels (Hagenbuchner et al.

2013) and to promote invasion (Zhao et al. 2013). The

question of whether metastasizing cancer cells benefit

from increased or decreased mitochondrial function

may depend on the tissue of origin as mitochondrial

DNA (mtDNA) copy numbers vary widely across tumor

types (Reznik et al. 2016).

CONCLUSION

ROS promote cancer initiation by promoting mutagen-

esis and perhaps by activating signaling pathways that

promote proliferation, survival, and stress resistance.

However, ROS also limits cancer initiation and progres-

sion by causing oxidative stress that kills many cancer

cells. For this reason, cancer cells depend on a variety

of mechanisms to suppress ROS and to cope with oxida-

tive stress. Antioxidants promote cancer initiation and

progression in experimental mouse models as well as in

clinical trials. Cancer may be more effectively treated

with pro-oxidants that exacerbate the oxidative stress ex-

perienced by cancer cells or that prevent metabolic adap-

tations that confer oxidative stress resistance.
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