## Contents



1

## 1 Introduction

| <b>2</b> | ]   | Background of the permafrost study                                     | 5  |
|----------|-----|------------------------------------------------------------------------|----|
|          | 2.1 | Evolution of the Qinghai-Tibetan Plateau and permafrost                | 5  |
|          |     | 2.1.1 The uplift of the Qinghai-Tibetan Plateau and associated climate | 5  |
|          |     | 2.1.2 Permafrost                                                       | 6  |
|          | 2.2 | Current climate warming and permafrost degradation                     | 7  |
|          |     | 2.2.1 Climate change                                                   | 7  |
|          |     | 2.2.2 Permafrost degradation and associated environmental challenges   | 8  |
|          | 2.3 | Investigations at the study sites                                      | 9  |
|          |     | 2.3.1 Chumaer and Qumahe                                               | 9  |
|          |     | 2.3.2 Zuimatan                                                         | 13 |
|          |     | 2.3.3 Tianshuihai                                                      | 16 |
|          | 2.4 | Instrumentation and data evaluation                                    | 18 |
|          |     | 2.4.1 Measurements at the soil-weather monitoring stations             | 19 |
|          |     |                                                                        | 19 |
|          |     | 2.4.3 Data quality discussion                                          | 25 |
|          | 2.5 |                                                                        | 29 |
|          |     |                                                                        |    |

## 3 Characteristics of the weather-permafrost interaction at the study sites 31

| 000 |                                                                   | OI |
|-----|-------------------------------------------------------------------|----|
| 3.1 | Introduction                                                      | 31 |
| 3.2 | Chumaer                                                           | 31 |
|     | 3.2.1 Interaction between atmosphere and ground surface           | 31 |
|     | 3.2.2 Seasonal hydraulic and thermal dynamics of the active layer | 36 |
| 3.3 | Qumahe                                                            | 39 |
|     | 3.3.1 Interaction between atmosphere and ground surface           | 39 |
|     | 3.3.2 Seasonal hydraulic and thermal dynamics of the active layer | 43 |
| 3.4 | Zuimatan                                                          | 45 |
|     | 3.4.1 Interaction between atmosphere and ground surface           | 45 |
|     | 3.4.2 Seasonal thermal dynamics of the active layer               | 48 |
| 3.5 | Tianshuihai                                                       | 50 |
|     | 3.5.1 Interaction between atmosphere and ground surface           | 50 |
|     | 3.5.2 Seasonal hydraulic and thermal dynamics of the active layer | 53 |
| 3.6 | Comparison of the observational data at the study sites           | 55 |

|    |     | 3.6.1 Meteorological characteristics                                   | 55  |
|----|-----|------------------------------------------------------------------------|-----|
|    |     | 3.6.2 Variability of the relation between air and surface temperatures | 56  |
|    |     | 3.6.3 Hydraulic-thermal patterns of the active layers                  | 57  |
|    | 3.7 |                                                                        | 59  |
|    |     |                                                                        | 00  |
|    |     |                                                                        |     |
| 4  |     | Characterization of thermal regimes of the active layers at the study  |     |
| si | tes |                                                                        | 61  |
|    | 4.1 |                                                                        | 61  |
|    | 4.2 | Characterization of the ground heat flux                               | 62  |
|    |     | 4.2.1 Introduction                                                     | 62  |
|    |     | 4.2.2 Material and methods                                             | 63  |
|    |     | 4.2.3 Applications and discussions                                     | 66  |
|    | 4.3 | Characterization of the thermal regime of the active layers            | 75  |
|    |     | 4.3.1 Introduction                                                     | 75  |
|    |     | 4.3.2 Methods                                                          | 76  |
|    |     | 4.3.3 Results and discussions                                          | 80  |
|    | 4.4 | Summary                                                                | 85  |
|    |     |                                                                        |     |
| 5  |     | Monitoring field-scale soil water dynamics with multi-channel GPR      | 87  |
| 0  |     | Introduction                                                           | 87  |
|    | 5.2 |                                                                        | 88  |
|    | 0.1 | 5.2.1 Principles of electromagnetic wave propagation                   | 88  |
|    |     | 5.2.2 Relationship between soil water content and permittivity         | 89  |
|    |     | 5.2.3 The multi-channel GPR method                                     | 90  |
|    | 5.3 |                                                                        |     |
|    |     | 5.3.1 The algorithm of multi-channel GPR evaluation                    | 90  |
|    |     | 5.3.2 Monte Carlo uncertainty analysis of multi-channel GPR method     | 91  |
|    |     | 5.3.3 Accuracy assessment of multi-channel GPR: synthetic example      | 92  |
|    | 5.4 | Application to field data                                              | 95  |
|    |     | 5.4.1 Materials and methods                                            | 95  |
|    |     | 5.4.2 Results                                                          | 96  |
|    | 5.5 | Discussion and conclusions                                             | 99  |
|    |     |                                                                        |     |
| 0  |     |                                                                        | 101 |
| 6  |     | 0                                                                      | 101 |
|    | 6.1 | Introduction                                                           |     |
|    | 0.2 | Characterization of heat transfer in various active layers             |     |
|    |     | 6.2.1 Method                                                           |     |
|    |     | 6.2.2 Results                                                          |     |
|    | 0.0 | 6.2.3 Discussion                                                       |     |
|    | 6.3 |                                                                        |     |
|    |     | 6.3.1 Method                                                           |     |
|    |     | 6.3.2 Inverse parameterizations at the study sites                     |     |
|    | 0.4 | 6.3.3 Discussion                                                       |     |
|    | 0.4 | Conclusions                                                            | 124 |

|   | Contents                                                                                | vii |
|---|-----------------------------------------------------------------------------------------|-----|
| 7 | Summary and conclusions                                                                 | 127 |
|   | Bibliography                                                                            | 131 |
| Ι | Appendix                                                                                | 141 |
| A | Installation at the study sites   A.1 Temperature sensors   A.2 TDR & CS616 sensors     |     |
| В | Topography of the study regions   B.1 Chumaer & Qumahe   B.2 Zuimatan   B.3 Tianshuihai | 146 |