Contents

Preface		xi
0.1	Optimization: insights and applications	xiiť
0.2	Lunch, dinner, and dessert	xiv
0.3	For whom is this book meant?	xvi
0.4	What is in this book?	xviii
0.5	Special features	xix
Neces	sary Conditions: What Is the Point?	1
Chapte	er 1. Fermât: One Variable without Constraints	3
1-0	Summary	3
1.1	Introduction	5
1-2	The derivative for one variable	6
1.3	Main result: Fermât theorem for one	
	variable	14
14	Applications to concrete problems	30
1-5	Discussion and comments	43
1-6	Exercises	59
Chapt	er 2. Fermât: Two or More Variables without Constraints	85
2.0	Summary	85
2.1	Introduction	87
2.2	The derivative for two or more variables	87
2.3	Main result: Fermât theorem for two or more variables	96
2.4	Applications to concrete problems	101
2.5	Discussion and comments	127
2.6	Exercises	128
Chapt	er 3. Lagrange: Equality Constraints	135
3.0	Summary	135
3.1	Introduction	138
3.2	Main result: Lagrange multiplier rule	140
3.3	Applications to concrete problems	152
3.4	Proof of the Lagrange multiplier rule	167
3.5	Discussion and comments	181
3.6	Exercises	190

Chapte	r 4. Inequality Constraints and Convexity	199
4.0	Summary	199
4.1	Introduction	202
4.2	Main result: Karush-Kuhn-Tucker theorem	204
4.3	Applications to concrete problems	217
4.4	Proof of the Karush-Kuhn-Tucker theorem	229
4.5	Discussion and comments	235
4.6	Exercises	250 250
•	r 5. Second Order Conditions	261
5.0	Summary	261
5.1	Introduction	262
5.2	Main result: second order conditions	262
5.3	Applications to concrete problems	267
5.4	Discussion and comments	271
5.5	Exercises	272
Chapte	r 6. Basic Algorithms	273
6.0	Summary	273
6.1	Introduction	275
6.2	Nonlinear optimization is difficult	278
6.3	Main methods of linear optimization	283
6.4	Line search	286
6.5	Direction of descent	299
6.6	Quality of approximation	301
6.7	Center of gravity method	304
6.8	Ellipsoid method	307
6.9	Interior point methods	316
Chapte	r 7. Advanced Algorithms	325
7.1	Introduction	325
7.2	Conjugate gradient method	325 325
7.2	Self-concordant barrier methods	335
1.5	Sen concordant burrier methods	000
Chapte	er 8. Economic Applications	363
8.1	Why you should not sell your house to the highest bidder	363
8.2	Optimal speed of ships and the cube law	366
8.3	Optimal discounts on airline tickets with a Saturday stayover	368
8.4	Prediction of flows of cargo	370
8.5	Nash bargaining	373
8.6	Arbitrage-free bounds for prices	378
8.7	Fair price for options: formula of Black and Scholes	380
8.8	Absence of arbitrage and existence of a martingale	381
8.9	How to take a penalty kick, and the minimax theorem	382
8.10	The best lunch and the second welfare theorem	386
Chapte	er 9. Mathematical Applications	391
9.1	Fun and the quest for the essence	391
		001

CONTE	NTS	ix
9-2	Optimization approach to matrices	392
9-3	How to prove results on linear inequalities	395
	The problem of Apollonius	397
9-5	Minimization of a quadratic function: Sylvester's criterion and	100
0.6	Gram's formula	409
	Polynomials of least deviation	411
9.7	Bernstein inequality	414
Chapter	10. Mixed Smooth-Convex Problems	417
10.1	Introduction	417
10.2	Constraints given by inclusion in a cone	419
10.3	Main result: necessary conditions for mixed smooth-convex prob- lems	422
10.4	Proof of the necessary conditions	430
	Discussion and comments	432
Chapter	11. Dynamic Programming in Discrete Time	441
-	Summary	441
	Introduction	441 443
	Main result: Hamilton-Jacobi-Bellman equation	444
	Applications to concrete problems	446
	Exercises	471
Chapte	r 12. Dynamic Optimization in Continuous Time	475
12.1	Introduction	475
	Main results: necessary conditions of Euler, Lagrange, Pont rya- gin, and Bellman	478
123	Applications to concrete problems	478
	Discussion and comments	492 498
12.4	Discussion and comments	490
Append	lix A. On Linear Algebra: Vector and Matrix Calculus	503
A.I	Introduction	503
A.2	Zero-sweeping or Gaussian elimination, and a formula for the di-	
• 2	mension of the solution set	503
_	Cramer's rule	507
	Solution using the inverse matrix Symmetric matrices	508 510
	Matrices of maximal rank	510 512
	Vector notation	512
	Coordinate free approach to vectors and matrices	512
Annenc	lix B. On Real Analysis	519
• •	-	
B-1 ^B -2	Completeness of the real numbers Calculus of differentiation	519 523
	Convexity	525 528
В.3 В.4	Differentiation and integration	535
т	Enterentiation and integration	555

Appendix C. The Weierstrass Theorem on Existence of Global Solutions 537

CONTENTS

C1 On the use of the Weierstrass theoremC.2 Derivation of the Weierstrass theorem	537 544
 Appendix D. Crash Course on Problem Solving D.I One variable without constraints D.2 Several variables without constraints D.3 Several variables under equality constraints D.4 Inequality constraints and convexity 	547 547 548 549 550
 Appendix E. Crash Course on Optimization Theory: Geometrical Style E.I The main points E.2 Unconstrained problems E.3 Convex problems E.4 Equality constraints E.5 Inequality constraints E.6 Transition to infinitely many variables 	553 553 554 554 555 556 556
 Appendix F. Crash Course on Optimization Theory: Analytical Style F.I Problem types F.2 Definitions of differentiability F.3 Main theorems of differential and convex calculus F.4 Conditions that are necessary and /or sufficient F.5 Proofs 	
 Appendix G. Conditions of Extremum from Fermât to Pontryagin G.I Necessary first order conditions from Fermât to Pontryagin G.2 Conditions of extremum of the second order 	583 583 593
Appendix H. Solutions of Exercises of Chapters 1-4	601
Bibliography	
Index	651

Х