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Abstract  
The scope of application of fractional calculus continues to grow today. The study of 

fractional integrals is included in the plans for the preparation of students in mathematical 

and technical areas, as well as in areas related to computer science and computer technology. 

When solving equations with fractional integrals, as a rule, approximate methods are often 

used. Computer algebra systems make it possible to perform a large number of calculations 

related to the solution of integro-differential problems.  This article discusses the solution of 

a fractional integro-differential equation by the method of moments. Using Wolfram 

Mathematica, an approximate solution to the viscoelastic equation is found and compared 

with the exact solution. There are presented assignments for students that can be used in 

offline and online learning. 
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1. Introduction 

Students enrolled in the field "Information systems and technologies" are offered to study the 

course "Fractional integrals and their applications" within the disciplines of their choice. The program 

of this discipline includes the study of the basic properties of fractional integrals and derivatives, 

various types of fractional integration, applications of fractional integro-differentiation.  

Fractional calculus deals with derivatives and integrals of arbitrary (real or complex) orders and 

has its origins in the theory of differential calculus. Most fractional differential equations, as a rule, do 

not have an exact analytical solution, so it is necessary to use approximate methods [1, 2].  

Fractional calculus is a difficult topic for students to understand. But studying it allows one to 

generalize standard analysis to the case of derivatives and integrals of fractional orders; it is used to 

create mathematical models of the real world, where conventional analysis does not allow building 

adequate mathematical models. We believe that solving problems of finding an approximate solution 

to equations with fractional integrals will lead to an understanding of the basics of fractional calculus 

and the development of students' programming skills in computer mathematics systems. 

Previously, we considered the quadrature formulas for the Weyl and Riemann-Liouville integrals 

[3, 4]. 

Let 𝑋 and 𝑌 be arbitrary normed linear spaces,  𝑋𝑛 and 𝑌𝑛, (𝑛 = 1,2, … ), their arbitrary linear 

subspaces of finite dimension. 

Consider the equations 

𝐾𝑥 = 𝑦 (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌), (1.1) 
𝐾𝑛𝑥𝑛 = 𝑦𝑛 (𝑥𝑛 ∈ 𝑋𝑛 , 𝑦𝑛 ∈ 𝑌𝑛), (1.2) 
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where 𝐾 and 𝐾𝑛 are additive and homogeneous operators acting from 𝑋 to 𝑌  and from 𝑋𝑛 to 𝑌𝑛, 

respectively. 

Equation (1.2) for any fixed 𝑛 is equivalent to a system of linear algebraic equations of order 𝑁 =
𝑁(𝑛) = 𝑑𝑖𝑚𝑋𝑛 

for the expansion coefficients of the element 𝑥𝑛 ∈ 𝑋𝑛 in the basis of the space 𝑋𝑛. 

Therefore, the infinite-dimensional equation (1.1) can be replaced by the finite-dimensional 

equation (1.2). Lemmas giving a sufficient condition for the solvability of equation (1.1) and an 

estimate of the error of approximate solutions are given in [5].  

2. Solution of the integro-differential equation of viscoelasticity 

Consider the fractional integro-differential equation of viscoelasticity: 

(𝐷𝑎+
𝛼 +

1

𝜒1
𝛼)𝜎(𝑡) = 𝐸0 (𝐷𝑎+

𝛼 +
1

𝜒2
𝛼) 𝑒(𝑡), 

(2.1) 

with the initial condition 𝑦(0) = 0, where  0 < 𝛼 < 1, 𝑡 ∈ (𝑎, 𝑏], 𝑒(𝑡) – is known, and 𝜎(𝑡) – is the 

required function on the half-interval [𝑎, 𝑏], 𝜒1, 𝜒2 – are some constants. In this equation, the operator 

𝐷𝛼 is the operator of fractional differentiation and is understood in the sense of Caputo's definition. 

𝐷𝛼𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝑡)

(𝑥 − 𝑡)𝛼+1−𝑛

𝑥

0

𝑑𝑡, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ 
(2.2) 

For the Caputo derivative  

𝐷𝛼𝐶 = 0, (𝐶 − 𝑐𝑜𝑛𝑠𝑡), (2.3) 
 

𝐷𝛼𝑥𝛽 =

{
 

 
0,    𝛽 ∈ ℕ0 и 𝛽 < ⌈𝛼⌉,

Г(𝛽 + 1)

Г(𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼 ,     𝛽 ∈ ℕ0 и 𝛽 ≥ ⌈𝛼⌉

 𝛽 ∉ ℕ и 𝛽 > ⌊𝛼⌋.

 

(2.4) 

 

The Caputo fractional differentiation operator is a linear operation: 

𝐷𝛼(𝜆𝑓(𝑥) + 𝜇𝑔(𝑥)) = 𝜆𝐷𝛼𝑓(𝑥) + 𝜇𝐷𝛼𝑔(𝑥) (2.5) 
Consider the approximation of the fractional derivative using the Legendre polynomials. Legendre 

polynomials are defined on the interval [−1,1] and can be calculated using the following recurrence 

formulas [6]: 

𝐿𝑖+1(𝑧) =
2𝑖 + 1

𝑖 + 1
𝑧𝐿𝑖(𝑧) −

𝑖

𝑖 + 1
𝐿𝑖−1(𝑧), 𝑖 = 1,2, …, 

(2.6) 

where 𝐿0(𝑧) = 1 and 𝐿1(𝑧) = 𝑧. In order to use these polynomials on the interval 𝑥 ∈ [0, 1], we 

define the so-called shifted Legendre polynomials by introducing a change in the quantity 𝑧 =  2х −
1. 

We denote the shifted Legendre  polynomials 𝐿𝑖(2𝑥 − 1) by 𝑃𝑖(𝑥). 
Then 𝑃𝑖(𝑥) can be obtained as follows: 

𝑃𝑖+1(𝑥) =
(2𝑖 + 1)(2𝑥 − 1)

(𝑖 + 1)
𝑃𝑖(𝑥) −

𝑖

𝑖 + 1
𝑃𝑖−1(𝑥), 𝑖 = 1,2,…, 

(2.7) 

 

where 𝑃0(𝑥) = 1 и 𝑃1(𝑥) = 2𝑥 − 1. Analytical form of shifted Legendre polynomials 

𝑃𝑖(𝑥) = ∑(−1)𝑖+𝑘
(𝑖 + 𝑘)! 𝑥𝑘

(𝑖 − 𝑘)! (𝑘!)2

𝑖

𝑘=0

. 
(2.8) 

Notice, that 𝑃𝑖(0) = (−1)
𝑖 и 𝑃𝑖(1) = 1. Orthogonality condition: 

 

∫𝑃𝑖(𝑥)𝑃𝑗(𝑥)𝑑𝑥 = {

1

2𝑖 + 1
   𝑖 = 𝑗,

0       𝑖 ≠ 𝑗.

1

0

 

(2.9) 

The functions 𝑦(𝑥) square-integrable on [0, 1] can be expressed in terms of shifted Legendre 

polynomials as 
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𝑦(𝑥) =∑𝑐𝑗𝑃𝑗(𝑥),

∞

𝑗=0

 
 

 where the coefficients 𝑐𝑗 are given by  

𝑐𝑗 = (2𝑗 + 1)∫𝑦(𝑥)𝑃𝑗(𝑥)𝑑𝑥,   𝑗 = 1,2, …

1

0

 

 

In practice, only the first (𝑚 + 1) items are considered as shifted Legendre polynomials. 

Then we have 

𝑦𝑚(𝑥) =∑𝑐𝑗𝑃𝑗(𝑥).

𝑚

𝑗=0

 
 

The following theorem proves the possibility of approximating the fractional derivative 𝑦(𝑥) [6]. 

Theorem:  

Let 𝑦(𝑥) be approximated by shifted Legendre polynomials of the form 

𝑦𝑚(𝑥) =∑𝑐𝑗𝑃𝑗(𝑥)

𝑚

𝑗=0

 
 

 and suppose that 𝛼 > 0, then 

𝐷𝛼(𝑦𝑚(𝑥)) = ∑ ∑ 𝑐𝑖𝑏𝑖,𝑘
(𝛼)
𝑥𝑘−𝛼

𝑖

𝑘=⌈𝛼⌉

,

𝑚

𝑖=⌈𝛼⌉

 
(2.10) 

where 𝑏𝑖,𝑘
(𝛼)

 is found from 

𝑏𝑖,𝑘
(𝛼)

=
(−1)(𝑖+𝑘)(𝑖 + 𝑘)!

(𝑖 − 𝑘)! (𝑘)! Г(𝑘 + 1 − 𝛼)
 

(2.11) 

Evidence: since Caputo fractional differentiation is linear operation, we have 

𝐷𝛼(𝑦𝑚(𝑥)) =∑𝑐𝑖𝐷
𝛼(𝑃𝑖(𝑥)).

𝑚

𝑖=0

 
(2.12) 

Taking into account (2.3), (2.4) and (2.5) in equation (2.8), we obtain    

𝐷𝛼𝑃𝑖(𝑥) = 0, 𝑖 = 0,1,… , ⌈𝛼⌉ − 1, 𝛼 > 0. (2.13) 
Also, for 𝑖 = ⌈𝛼⌉, … ,𝑚 using (2.3), (2.4), and (2.8), we obtain 

𝐷𝛼𝑃𝑖(𝑥) = ∑
(−1)𝑖+𝑘(𝑖 + 𝑘)!

(𝑖 − 𝑘)! (𝑘!)2
𝐷𝛼(𝑥𝑘) = ∑

(−1)𝑖+𝑘(𝑖 + 𝑘)!

(𝑖 − 𝑘)! (𝑘!)Г(𝑘 − 𝛼 + 1)
𝑥𝑘−𝛼

𝑖

𝑘=⌈𝛼⌉

𝑖

𝑘=0

. 
(2.14) 

 

The set of equations (2.12), (2.13), and (2.14) implies the required result.   

3. Calculations in Wolfram Mathematica 

In the article [7] we presented the application of the collocation method for solving equations with 

fractional integrals. 

The equation 
𝑦(𝑡)

𝜒1
𝛼 + 𝐷𝛼𝑦(𝑡) = 𝐸0𝑓(𝑡) 

 

 

will be solved by the method of moments.  

Substituting the values into this equation  

𝑦(𝑡) = 𝑡2, 𝜒1
𝛼 =

1

200
, 𝛼 =

1

2
 , 𝐸0 = 200 ℎ𝑃𝑎 

 

 

(the value of the elastic modulus for iron) into this equation and simplifying it, we obtain the 
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following: 

𝑡2 +
𝐷
1
2𝑡2

200
= 𝑓(𝑡). 

 

Let us find the exact value for this equation 𝑓(𝑡).  
Carrying out the necessary calculations, we obtain 𝑓(𝑡): 

8𝑡3 2⁄

3√𝜋
∙
1

200
+ 𝑡2.  

Next, we solve the original equation by the method of moments. We will look for an approximate 

value in the form of a polynomial  

𝑦𝑛(𝑡) = ∑ 𝑐𝑘𝜑𝑘(𝑡).

𝑛

𝑘=1

 
 

The functions 𝜑𝑘(𝑡) are of the form 

𝜑𝑘(𝑡) =
𝑘!(𝑘+1−𝛼)𝑡𝑘−𝛼

Γ(𝑘+2−𝛼)
.   

 Here 𝜑𝑘(𝑡) are selected from the condition 

 𝐷𝛼𝜑𝑘(𝑡) = 𝑡
𝑘−1.   

A proof of the form 𝜑𝑘(𝑡) is given in [8]. Substitute the approximate value of 𝑦𝑛(𝑡) into the 

original equation: 
𝑦𝑛(𝑡)

𝜒1
𝛼 + 𝐷𝛼𝑦𝑛(𝑡) = 𝐸0𝑓(𝑡), 

 

1

𝜒1
𝛼 (∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) + 𝐷𝛼 (∑𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) = 𝐸0𝑓(𝑡), 
 

(∑𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) +
𝐷
1
2

200
(∑𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) = 𝑓(𝑡) ⇒ ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

+
1

200
∑ 𝑐𝑘

𝑛

𝑘=1

𝐷
1
2𝜑𝑘(𝑡) = 𝑓(𝑡). 

 
We determine the unknown coefficients 𝑐𝑘 from the conditions  

∑ 𝑐𝑘𝜑𝑘(𝑡) ∙ 𝑃𝑖
𝑛
𝑘=1 +

1

200
∑ 𝑐𝑘
𝑛
𝑘=1 𝐷

1

2𝜑𝑘(𝑡) ∙ 𝑃𝑖 = 𝑓(𝑡) ∙ 𝑃𝑖, 
 

where 𝑃𝑖 − are the shifted orthogonal Legendre polynomials 

𝑃𝑖(𝑥) = ∑ (−1)𝑖+𝑘
(𝑖+𝑘)!𝑥𝑘

(𝑖−𝑘)!(𝑘!)2
𝑖
𝑘=0 ,   

defined on the segment [0; 1]. 
We obtain a system of linear algebraic equations of order 𝑛 (with respect) related to 𝑐𝑘: 

∑𝑐𝑘∫[𝜑𝑘(𝑡) −
1

200
𝐷
1
2𝜑𝑘(𝑡)]

1

0

𝑃𝑖𝑑𝑡 = ∫𝑓(𝑡)𝑃𝑖𝑑𝑡

1

0

, 𝑖 = 1, 𝑛̅̅ ̅̅̅.

𝑛

𝑘=1

 

 

Using the special form of the functions 𝜑𝑘(𝑡), we obtain the property of the fractional derivative 

𝐷𝛼𝜑𝑘(𝑡) = 𝑡
𝑘−1. Thus, we have the system 

∑𝑐𝑘∫[𝜑𝑘(𝑡) −
1

200
𝑡𝑘−1] 𝑃𝑖(𝑡)

1

0

𝑑𝑡 = ∫𝑓(𝑡)𝑃𝑖𝑑𝑡

1

0

, 𝑖 = 1, 𝑛̅̅ ̅̅̅.

𝑛

𝑘=1

 

 

Let's write the system 𝑛 = 4: 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑐1∫[𝜑1(𝑡) −

1

200
𝑡1−1] 𝑃1𝑑𝑡

1

0

+ 𝑐2∫[𝜑2(𝑡) −
1

200
𝑡2−1] 𝑃1𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[𝜑3(𝑡) −

−
1

200
𝑡3−1] 𝑃1 + 𝑐4∫[𝜑4(𝑡) −

1

200
𝑡4−1] 𝑃1𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃1𝑑𝑡

1

0

,

𝑐1∫[𝜑1(𝑡) −
1

200
𝑡1−1] 𝑃2𝑑𝑡

1

0

+ 𝑐2∫[𝜑2(𝑡) −
1

200
𝑡2−1] 𝑃2𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[𝜑3(𝑡) −

−
1

200
𝑡3−1] 𝑃2 + 𝑐4∫[𝜑4(𝑡) −

1

200
𝑡4−1] 𝑃2𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃2𝑑𝑡

1

0

,

𝑐1∫[𝜑1(𝑡) −
1

200
𝑡1−1] 𝑃3𝑑𝑡

1

0

+ 𝑐2∫[𝜑2(𝑡) −
1

200
𝑡2−1] 𝑃3𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[𝜑3(𝑡) −

−
1

200
𝑡3−1] 𝑃3 + 𝑐4∫[𝜑4(𝑡) −

1

200
𝑡4−1] 𝑃3𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃3𝑑𝑡

1

0

,

𝑐1∫[𝜑1(𝑡) −
1

200
𝑡1−1] 𝑃4𝑑𝑡

1

0

+ 𝑐2∫[𝜑2(𝑡) −
1

200
𝑡2−1] 𝑃4𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[𝜑3(𝑡) −

−
1

200
𝑡3−1] 𝑃4 + 𝑐4∫[𝜑4(𝑡) −

1

200
𝑡4−1] 𝑃4𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃4𝑑𝑡

1

0

.

 

 

 

Let's substitute the previously found values into the system: 

𝑓(𝑡) =
8𝑡3 2⁄

3√𝜋
∙
1

200
+ 𝑡2 

 

𝜑1(𝑡) =
2𝑡1 2⁄

√𝜋
, 𝜑2(𝑡) =

8𝑡3 2⁄

3√𝜋
, 𝜑3(𝑡) =

16𝑡5 2⁄

5√𝜋
, 𝜑4(𝑡) =

128𝑡7 2⁄

35√𝜋
.  

To find the shifted Legendre polynomials in Wolfram Mathematica, we use the 

𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑃(𝑛, 2𝑡 − 1) library function, where n is the degree of the polynomial. The required 

polynomials are: 

𝑃1 = 2𝑡 − 1,  
𝑃2 = 6𝑡

2 − 6𝑡 + 1,  
𝑃3 = 20𝑡

3 − 30𝑡2 + 12𝑡 − 1,  
𝑃4 = 70𝑡

4 − 140𝑡3 + 90𝑡2 − 20𝑡 + 1.  
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Received the system: 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑐1∫[

2𝑡1 2⁄

√𝜋
−

1

200
𝑡1−1] 𝑃1𝑑𝑡

1

0

+ 𝑐2∫[
8𝑡3 2⁄

3√𝜋
−

1

200
𝑡2−1] 𝑃1𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[
16𝑡5 2⁄

5√𝜋
−

−
1

200
𝑡3−1] 𝑃1 + 𝑐4∫[

128𝑡7 2⁄

35√𝜋
−

1

200
𝑡4−1] 𝑃1𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃1𝑑𝑡

1

0

,

𝑐1∫[
2𝑡1 2⁄

√𝜋
−

1

200
𝑡1−1] 𝑃2𝑑𝑡

1

0

+ 𝑐2∫[
8𝑡3 2⁄

3√𝜋
−

1

200
𝑡2−1] 𝑃2𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[
16𝑡5 2⁄

5√𝜋
−

−
1

200
𝑡3−1] 𝑃2 + 𝑐4∫[

128𝑡7 2⁄

35√𝜋
−

1

200
𝑡4−1] 𝑃2𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃2𝑑𝑡

1

0

,

𝑐1∫[
2𝑡1 2⁄

√𝜋
−

1

200
𝑡1−1] 𝑃3𝑑𝑡

1

0

+ 𝑐2∫[
8𝑡3 2⁄

3√𝜋
−

1

200
𝑡2−1] 𝑃3𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[
16𝑡5 2⁄

5√𝜋
−

−
1

200
𝑡3−1] 𝑃3 + 𝑐4∫[

128𝑡7 2⁄

35√𝜋
−

1

200
𝑡4−1] 𝑃3𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃3𝑑𝑡

1

0

,

𝑐1∫[
2𝑡1 2⁄

√𝜋
−

1

200
𝑡1−1]𝑃4𝑑𝑡

1

0

+ 𝑐2∫[
8𝑡3 2⁄

3√𝜋
−

1

200
𝑡2−1] 𝑃4𝑑𝑡

1

0

+ 𝑐3∫𝑑𝑡

1

0

[
16𝑡5 2⁄

5√𝜋
−

−
1

200
𝑡3−1] 𝑃4 + 𝑐4∫[

128𝑡7 2⁄

35√𝜋
−

1

200
𝑡4−1] 𝑃4𝑑𝑡

1

0

= ∫𝑓(𝑡)𝑃4𝑑𝑡

1

0

.

 

 

 

Solving the system in Wolfram Mathematica, we get 𝑐1 = 0.028269, 𝑐2 = 0.285231, 

𝑐3 = 0.417846, 𝑐4 = −0.070485. 

The approximate solution has the following form, the coefficients are rounded for convenience: 

𝑦4(𝑡) = −0.031898𝑡
1 2⁄ + 0.429131𝑡3 2⁄ + 0.754382𝑡5 2⁄ +−0.145433𝑡7 2⁄ .  

The closeness of the approximate solution to the exact one by the method of moments can be 

estimated from Figures 1, 2 and from Table 1. The table shows the first 5 digits in the fractional part. 

 
Figure 1. The graphs of the functions y (t) and y4(t) on [0; 0.2] 

 

Table 1 
Values of the functions y (t) and y4(t) 

 0,2 0,4 0,6 0,8 1 

𝑦(𝑡) 0,04 0,16 0,36 0,64 1 

𝑦4(𝑡) 0,03709 0,15884 0,36076 0,64376 1,00618 
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Figure 2. The graphs of the functions y (t) and y4(t) on [0; 1] 

 

We repeated the calculations for n = 5. 

An approximate solution in this case is: 

𝑦5(𝑡) = −0,01616 𝑡
1 2⁄ + 0,33758𝑡3 2⁄ + 1,002305𝑡5 2⁄ − 0.432133𝑡7 2⁄ + 0.117484𝑡9 2⁄ . 

 

 

 
Figure 3: Graphs of functions 𝑦(𝑡) and 𝑦5(𝑡) on [0; 1] 

 

 
Figure 4: Graphs of functions 𝑦(𝑡) and 𝑦5(𝑡) on [0; 0.2] 
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Table 2 
Values of the functions y (t) and y5(t) 

 0,2 0,4 0,6 0,8 1 

𝑦(𝑡) 0,04 0,16 0,36 0,64 1 

𝑦4(𝑡) 0,03943 0,16101 0,36336 0,64600 1,00907 

 
Student assignments can be formulated as follows: 

1. Write the code to find an approximate solution to the equation of viscoelasticity by the 

method of moments. Use Wolfram Language functions such as NIntegrate, Solve, LinearSolve. 

2. Assess the accuracy of the calculations. 

3. Show on the graph of the solution by means of Plot, ListPlot. 

By changing n and considering the value of the elastic modulus for different substances 

(materials), you can get a sufficient number of tasks for a group of students. Note that students can 

work both in Wolfram Mathematica application and use the capabilities of the Wolfram Language 

Sandbox through the website https://www.wolfram.com. Such tasks can be used in traditional 

classroom learning and when using distance technologies. 

4. Conclusions 

Using Wolfram Mathematica, a numerical solution of the original integro-differential problem was 

made and the accuracy of calculations was estimated, and the proof of the method was provided. 

Solving such tasks by students will allow them to understand the basics of fractional 

integrodifferentiation, develop programming skills in the Wolfram Language. 
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