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• Replace x̄i with 1− xi
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Monotone, decomposable circuits
computing network polynomials
(SPNs, PCs)

Circuits computing generating
polynomials

Spanning tree distributiona

aMartens and Medabalimi [2015], Zhang et al. [2021]
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• Graphical model approximate inference

• Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {−1, 1}n and {0, 1}n.
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Literature: just use a binary encoding
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Theorem. For |K| ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.
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Thank you! Questions?
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