
Polynomial semantics of probabilistic circuits

Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck

University of California, Los Angeles

1
/20

Probabilistic Models

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

1
/20

Probabilistic Models

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

Transformers

Diffusion models

VAEs

Expressive-efficient

1
/20

Probabilistic Models

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

Transformers

Diffusion models

VAEs

HMMs

Fully factorized

Mixture models

Expressive-efficient

T
ra
ct
ab

le

1
/20

Probabilistic Models

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

Transformers

Diffusion models

VAEs

HMMs

Fully factorized

Mixture models

???

Expressive-efficient

T
ra
ct
ab

le

2
/20

Marginal Inference

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

Pr[X1 = 1] = Pr[X1 = 1, X2 = 0] + Pr[X1 = 1, X2 = 1]

= 0.3 + 0.4

= 0.7

Goal: Find maximally expressive-efficient models that support marginal inference
in time polynomial in the model size.

2
/20

Marginal Inference

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

Pr[X1 = 1] = Pr[X1 = 1, X2 = 0] + Pr[X1 = 1, X2 = 1]

= 0.3 + 0.4

= 0.7

Goal: Find maximally expressive-efficient models that support marginal inference
in time polynomial in the model size.

3
/20

Approaches

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes

Characteristic Circuits
Multi-Linear Representations

Probabilistic Generating Circuits
Sum-Product Networks

. . .

3
/20

Approaches

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes

Characteristic Circuits
Multi-Linear Representations

Probabilistic Generating Circuits
Sum-Product Networks

. . .

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes

Characteristic Circuits
Multi-Linear Representations

Probabilistic Generating Circuits
Sum-Product Networks

. . .

Polynomials!

3
/20

Approaches

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes

Characteristic Circuits
Multi-Linear Representations

Probabilistic Generating Circuits
Sum-Product Networks

. . .

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

4
/20

Circuits represent polynomials succinctly

×

+ +

x1 x2 x3

1 2 3 1

3x1x2 + x1x3 + 6x2
2 + 2x2x3

Circuits are fully expressive

They can also be expressive-efficient

4
/20

Circuits represent polynomials succinctly

×

+ +

x1 x2 x3

1 2 3 1

3x1x2 + x1x3 + 6x2
2 + 2x2x3

Circuits are fully expressive

They can also be expressive-efficient

4
/20

Circuits represent polynomials succinctly

×

+ +

x1 x2 x3

1 2 3 1

3x1x2 + x1x3 + 6x2
2 + 2x2x3

Circuits are fully expressive

They can also be expressive-efficient

5
/20

Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Fourier
polynomial

Generating
polynomial

Darwiche [2003]

Roth and Samdani [2009] Yu et al. [2023]

Zhang et al. [2021]

5
/20

Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Fourier
polynomial

Generating
polynomial

Darwiche [2003]

Roth and Samdani [2009] Yu et al. [2023]

Zhang et al. [2021]

5
/20

Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Fourier
polynomial

Generating
polynomial

Darwiche [2003]

Roth and Samdani [2009] Yu et al. [2023]

Zhang et al. [2021]

5
/20

Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Fourier
polynomial

Generating
polynomial

Darwiche [2003]

Roth and Samdani [2009] Yu et al. [2023]

Zhang et al. [2021]

5
/20

Polynomial Semantics

Network
polynomial

Likelihood
polynomial

Fourier
polynomial

Generating
polynomial

Darwiche [2003]

Roth and Samdani [2009] Yu et al. [2023]

Zhang et al. [2021]

6
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

= p(1, 1, 0, 1)

= .1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)

= 0 + 0 + .3 + .4

= .7

6
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

= p(1, 1, 0, 1)

= .1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)

= 0 + 0 + .3 + .4

= .7

6
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

Pr[X1 = 1]

= p(1, 1, 0, 1)

= .1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)

= 0 + 0 + .3 + .4

= .7

6
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

Pr[X1 = 1] = p(1, 1, 0, 1)

= .1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)

= 0 + 0 + .3 + .4

= .7

7
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

+

× × ×

x̄2 + x2 x1

x1 x̄1

0.4 0.2 0.4

0.75 0.25

7
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

+

× × ×

x̄2 + x2 x1

x1 x̄1

0.4 0.2 0.4

0.75 0.25

Pr[X1 = 1]?

7
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

+

× × ×

x̄2 + x2 x1

x1 x̄1

0.4 0.2 0.4

0.75 0.25

01

111

Pr[X1 = 1]?

7
/20

Network
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

+

× × ×

x̄2 + x2 x1

x1 x̄1

0.4 0.2 0.4

0.75 0.25

01

111 .75

10.75

0.7

Pr[X1 = 1]?

8
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

8
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

9
/20

Likelihood
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2) = .2x1 + .1x2 + .1

Marginal inference?
Relation to network polynomial?

Transform network to likelihood:

p(x, x̄) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1− xi

9
/20

Likelihood
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2) = .2x1 + .1x2 + .1

Marginal inference?

Relation to network polynomial?

Transform network to likelihood:

p(x, x̄) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1− xi

9
/20

Likelihood
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2) = .2x1 + .1x2 + .1

Marginal inference?
Relation to network polynomial?

Transform network to likelihood:

p(x, x̄) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1− xi

9
/20

Likelihood
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2) = .2x1 + .1x2 + .1

Marginal inference?
Relation to network polynomial?

Transform network to likelihood:

p(x, x̄) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1− xi

10
/20

Likelihood
polynomial

Transform likelihood to network:

p(x1, x2) = .2x1 + .1x2 + .1

(x1 + x̄1)(x2 + x̄2)

(
.2

x1
x1 + x̄1

+ .1
x2

x2 + x̄2
+ .1

)
= .2x1(x2 + x̄2) + .1x2(x1 + x̄1) + .1(x1 + x̄1)(x2 + x̄2)

= p(x1, x2, x̄1, x̄2)

10
/20

Likelihood
polynomial

Transform likelihood to network:

p(x1, x2) = .2x1 + .1x2 + .1

(x1 + x̄1)(x2 + x̄2)

(
.2

x1
x1 + x̄1

+ .1
x2

x2 + x̄2
+ .1

)

= .2x1(x2 + x̄2) + .1x2(x1 + x̄1) + .1(x1 + x̄1)(x2 + x̄2)

= p(x1, x2, x̄1, x̄2)

10
/20

Likelihood
polynomial

Transform likelihood to network:

p(x1, x2) = .2x1 + .1x2 + .1

(x1 + x̄1)(x2 + x̄2)

(
.2

x1
x1 + x̄1

+ .1
x2

x2 + x̄2
+ .1

)
= .2x1(x2 + x̄2) + .1x2(x1 + x̄1) + .1(x1 + x̄1)(x2 + x̄2)

= p(x1, x2, x̄1, x̄2)

10
/20

Likelihood
polynomial

Transform likelihood to network:

p(x1, x2) = .2x1 + .1x2 + .1

(x1 + x̄1)(x2 + x̄2)

(
.2

x1
x1 + x̄1

+ .1
x2

x2 + x̄2
+ .1

)
= .2x1(x2 + x̄2) + .1x2(x1 + x̄1) + .1(x1 + x̄1)(x2 + x̄2)

= p(x1, x2, x̄1, x̄2)

10
/20

Likelihood
polynomial

Transform likelihood to network:

Likelihood

x1 xn. . .

Likelihood

∏
i(xi + x̄i)

×

x1
x1+x̄1

xn
xn+x̄n

. . .

10
/20

Likelihood
polynomial

Transform likelihood to network:

Likelihood

x1 xn. . .

Likelihood

∏
i(xi + x̄i)

×

x1
x1+x̄1

xn
xn+x̄n

. . .

11
/20

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

+,×,÷ +,× +,×

÷

+,×

11
/20

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

+,×,÷ +,× +,×

÷

+,×

11
/20

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

+,×,÷ +,× +,×

÷

+,×

11
/20

Likelihood
polynomial

Transform likelihood to network:

Likelihood

x1 xn. . .

Likelihood

∏
i

(xi + x̄i)

×

x1
x1 + x̄1

xn
xn + x̄n

. . .

Network

x1 xnx̄1 x̄n. . .

11
/20

Likelihood
polynomial

Transform likelihood to network:

Likelihood

x1 xn. . .

Likelihood

∏
i

(xi + x̄i)

×

x1
x1 + x̄1

xn
xn + x̄n

. . .

Network

x1 xnx̄1 x̄n. . .

12
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

12
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

12
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

13
/20

Generating
polynomial

Monotone, decomposable circuits
computing network polynomials
(SPNs, PCs)

Circuits computing generating
polynomials

Spanning tree distribution

13
/20

Generating
polynomial

Monotone, decomposable circuits
computing network polynomials
(SPNs, PCs)

Circuits computing generating
polynomials

Spanning tree distribution

13
/20

Generating
polynomial

Monotone, decomposable circuits
computing network polynomials
(SPNs, PCs)

Circuits computing generating
polynomials

Spanning tree distribution

13
/20

Generating
polynomial

Monotone, decomposable circuits
computing network polynomials
(SPNs, PCs)

Circuits computing generating
polynomials

Spanning tree distributiona

aMartens and Medabalimi [2015], Zhang et al. [2021]

14
/20

Generating
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

g(x) = .1 + .2x2 + .3x1 + .4x1x2

Marginal inference: [Zhang et al., 2021]
Relation to network polynomial?

Transform network to generating:

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1

14
/20

Generating
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

g(x) = .1 + .2x2 + .3x1 + .4x1x2

Marginal inference: [Zhang et al., 2021]

Relation to network polynomial?

Transform network to generating:

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1

14
/20

Generating
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

g(x) = .1 + .2x2 + .3x1 + .4x1x2

Marginal inference: [Zhang et al., 2021]
Relation to network polynomial?

Transform network to generating:

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1

14
/20

Generating
polynomial

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

g(x) = .1 + .2x2 + .3x1 + .4x1x2

Marginal inference: [Zhang et al., 2021]
Relation to network polynomial?

Transform network to generating:

p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

• Replace x̄i with 1

15
/20

Generating
polynomial

Transform generating to network:

Generating

x1 xn. . .

Generating

∏
i

x̄i

×

x1
x̄1

xn
x̄n

. . .

Network

x1 xnx̄1 x̄n. . .

16
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

16
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

16
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

17
/20

Fourier Polynomial

Fourier transform of the probability mass function

• Graphical model approximate inference

• Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {−1, 1}n and {0, 1}n.

17
/20

Fourier Polynomial

Fourier transform of the probability mass function

• Graphical model approximate inference

• Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {−1, 1}n and {0, 1}n.

17
/20

Fourier Polynomial

Fourier transform of the probability mass function

• Graphical model approximate inference

• Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {−1, 1}n and {0, 1}n.

17
/20

Fourier Polynomial

Fourier transform of the probability mass function

• Graphical model approximate inference

• Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {−1, 1}n and {0, 1}n.

18
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

18
/20

Progress Update

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

18
/20

Some New Semantics

Network
polynomial

Likelihood
polynomial

Generating
polynomial

Fourier
polynomial

19
/20

Non-binary variables?

Literature: just use a binary encoding

X1 X2 Pr

0 1 .1
1 3 .3
3 2 .2
...

...
...

g(x) = .1x2 + .3x1x
3
2 + .2x31x

2
2 + . . .

Generating
polynomial

Theorem. For |K| ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

19
/20

Non-binary variables?

Literature: just use a binary encoding

X1 X2 Pr

0 1 .1
1 3 .3
3 2 .2
...

...
...

g(x) = .1x2 + .3x1x
3
2 + .2x31x

2
2 + . . .

Generating
polynomial

Theorem. For |K| ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

19
/20

Non-binary variables?

Literature: just use a binary encoding

X1 X2 Pr

0 1 .1
1 3 .3
3 2 .2
...

...
...

g(x) = .1x2 + .3x1x
3
2 + .2x31x

2
2 + . . .

Generating
polynomial

Theorem. For |K| ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

19
/20

Non-binary variables?

Literature: just use a binary encoding

X1 X2 Pr

0 1 .1
1 3 .3
3 2 .2
...

...
...

g(x) = .1x2 + .3x1x
3
2 + .2x31x

2
2 + . . .

Generating
polynomial

Theorem. For |K| ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Approach: Reduction from 0, 1-permanent.

20
/20

Conclusion

What we’ve done:

• Shown several distinct circuit models are equally expressive-efficient

• Unified existing (and one new) inference algorithms

• Inference is #P-hard in generating polynomials circuits for k ≥ 4 categories

What’s next?

• How can this theoretical progress be leveraged in practice?

• Are there more expressive-efficient tractable representations?

Thank you! Questions?

20
/20

Conclusion

What we’ve done:

• Shown several distinct circuit models are equally expressive-efficient

• Unified existing (and one new) inference algorithms

• Inference is #P-hard in generating polynomials circuits for k ≥ 4 categories

What’s next?

• How can this theoretical progress be leveraged in practice?

• Are there more expressive-efficient tractable representations?

Thank you! Questions?

20
/20

Conclusion

What we’ve done:

• Shown several distinct circuit models are equally expressive-efficient

• Unified existing (and one new) inference algorithms

• Inference is #P-hard in generating polynomials circuits for k ≥ 4 categories

What’s next?

• How can this theoretical progress be leveraged in practice?

• Are there more expressive-efficient tractable representations?

Thank you! Questions?

