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Marginal Inference

= PI‘[Xl = 1,X2 = 0] + PI‘[Xl = 1,X2 = 1]

=03 + 04
=0.7

/20



Marginal Inference

X, X |Pr

8 ? ; Pr[X; =1] = Pr[X; =1,X, =0] + Pr[X; =1, X3 = 1]
1 0 :3 =03 + 04

1 1| 4 =07

Goal: Find maximally expressive-efficient models that support marginal inference
in time polynomial in the model size.
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Approaches

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks
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Approaches

Bayesian Networks (of bounded treewidth)
Determinantal Point Processes
Characteristic Circuits
Multi-Linear Representations
Probabilistic Generating Circuits
Sum-Product Networks

Likelihood Network Generating Fourier
polynomial polynomial polynomial polynomial
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Circuits represent polynomials succinctly

Circuits are fully expressive

They can also be expressive-efficient

OO0

3119 + 173 + 6:10% + 2x9x3
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Polynomial Semantics

\ Darwiche [2003] Zhang et al. [2021]

Network «—— Generating
polynomial polynomial

// N\

leeth(.)d Roth and Samdani [2009] Fourler‘
polynomial polynomial

Yu et al. [2023]
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Network
polynomial

SQICIN e

p(l’l,l’z,i‘l,i‘Q) = 1x179 + 27129 + 31179 + 4179

p(1,1,0,1)
A1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)
0+0+ 3+ 4

=.7
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Network

polynomial
Xl XQ Pr
0 0] .1
0 1 1.2
1 0| .3
1 1| 4
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Likelihood

polynomial
X, X, | Pr
0 0| 1
0 1] .2
1 0| .3
1 1 ] 4

p(z1,22) = 221 + 1ag + .1

Marginal inference?
Relation to network polynomial?

Transform network to likelihood:
p(.%', .f') = 1Z1%9 + 2T129 + 32179 + 42122

e Replace x; with 1 — x;

/20
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Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

L1

1+ x21)(x0 + 7 2 +
(71 + Z1) (72 2)( P

Z2

1 —
T2 + X2

+.1>
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Transform likelihood to network:
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Likelihood
polynomial

Transform likelihood to network:

p(z1,x2) = 227 + 1xg + .1

_ _ x1 €2
2 1 1
(1 + 71) (22 + T2) ( P + 2o+ + >

.2x1(x2 I fg) + .13:2(331 + fl) + .1(:61 + i’l)(l’z + 572)

= p(x1, T2, %1, 22)
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Likelihood
polynomial

Transform likelihood to network:

Likelihood
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Likelihood
polynomial

Transform likelihood to network:

Likelihood

I

Tn

S

Likelihood
I l
T Tn
xr1+T1 Tn+Tn

10



Removing Divisions

Theorem (Strassen [1973]).  You can remove divisions in polynomial time!
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Likelihood
polynomial

Transform likelihood to network:

ION

[+

Likelihood Likelihood

w N N N
T s Tn T Tp

T+ Tn + Tn
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Likelihood
polynomial

Transform likelihood to network:

ION

H(:UZ aF fz)

Likelihood Likelihood Network

I [ [ { T 1 1
T Tn o) T X1 X1 -+ TpTn

T+ Tn + Tn
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Monotone, decomposable circuits
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computing network polynomials
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Generating
polynomial

generatingfunctionology
™ Tion

Monotone, decomposable circuits
computing network polynomials

(SPNs, PCs)
Circuits computing generating
polynomials
Spanning tree distribution®
“Martens and Medabalimi [2015], Zhang et al. [2021] 13
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Generating

polynomial
X1 X2 Pr
0 0| .1
0 1] .2
1 0.3
1 1] 4

g(x) = .14 229 + 321 + 4z129

Marginal inference: [Zhang et al., 2021]
Relation to network polynomial?

Transform network to generating;:
p(:El, T2, T1, fz) = 12129 + .2Z120 + 32122 + 4x120

e Replace z; with 1

14



Transform generating to network:
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Progress Update

Network Generating
polynomial polynomial
Likelihood Fourier
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Network Generating
polynomial polynomial
Likelihood Fourier
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Fourier Polynomial

Analysis of

Boolean Functions

RYAN O’'DONNELL
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Fourier Polynomial

" Analysis of . . :
B B D VRl Fourier transform of the probability mass function

RYAN O’'DONNELL
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Fourier Polynomial

]
Boolea:\ :3:,’:;:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits

RYAN O’'DONNELL
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Fourier Polynomial

Boolea:\ :jhﬁ':,:: Fourier transform of the probability mass function
e Graphical model approximate inference

e Characteristic Circuits

RYAN O’'DONNELL

Proposition. Generating polynomials and Fourier polynomials compute the same
function on respective domains {—1,1}" and {0,1}".
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Progress Update

Network <« Generating

polynomial polynomial
Likelihood Fourier
polynomial polynomial
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Progress Update

Network <« Generating
polynomial polynomial

./ N\

Likelihood Fourier
polynomial polynomial




Some New Semantics

/\,//.
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Non-binary variables?
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Non-binary variables?

Literature: just use a binary encoding

X1 Xo | Pr
0 1 1
1 3 3
3 2 2 g(x) = Az + 3zizs + 2z325 +...

Generating
polynomial
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Non-binary variables?

Literature: just use a binary encoding
X7 Xo | Pr
¢ Ll Generating
1 3 .3 polynomial
3 2 2 g(x) = dzg + .390136% + 2$‘;’x§ + ...

Theorem

Approach

. For |K| > 4, computing likelihoods on a circuit for g(z) is #P-hard.

: Reduction from 0, 1-permanent.

19



Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k£ > 4 categories
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Conclusion

What we’ve done:
e Shown several distinct circuit models are equally expressive-efficient
e Unified existing (and one new) inference algorithms

e Inference is #P-hard in generating polynomials circuits for k& > 4 categories

What’s next?
e How can this theoretical progress be leveraged in practice?

e Are there more expressive-efficient tractable representations?

Thank you! Questions?

20



