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Abstract—In this paper, we present a new nonlinear filter
for high-dimensional state estimation, which we have named
the cubature Kalman filter (CKF). The heart of the CKF is
a spherical-radial cubature rule, which makes it possible to
numerically compute multivariate moment integrals encountered
in the nonlinear Bayesian filter. Specifically, we derive a third-
degree spherical-radial cubature rule that provides a set of
cubature points scaling linearly with the state-vector dimension.
The CKF may therefore provide a systematic solution for high-
dimensional nonlinear filtering problems. The paper also includes
the derivation of a square-root version of the CKF for improved
numerical stability. The CKF is tested experimentally in two
nonlinear state estimation problems. In the first problem, the
proposed cubature rule is used to compute the second-order
statistics of a nonlinearly transformed Gaussian random variable.
The second problem addresses the use of the CKF for tracking
a maneuvering aircraft. The results of both experiments demon-
strate the improved performance of the CKF over conventional
nonlinear filters.

Index Terms—Bayesian filters, Cubature rules, Gaussian
quadrature rules, Invariant theory, Kalman filter, Nonlinear
filtering.

I. I NTRODUCTION

In this paper, we consider the filtering problem of a non-
linear dynamic system with additive noise, whose state-space
model is defined by the pair of difference equations in discrete-
time [1]:

Process equation: xk = f(xk−1,uk−1) + vk−1 (1)

Measurement equation:zk = h(xk,uk) + wk, (2)

wherexk ∈ R
nx is the state of the dynamic system at discrete

time k; f : R
nx ×R

nu → R
nx andh : R

nx ×R
nu → R

nz are
some known functions;uk ∈ R

nu is the known control input,
which may be derived from a compensator as in Fig. 1;zk ∈
R

nz is the measurement;{vk−1} and {wk} are independent
process and measurement Gaussian noise sequences with zero
means and covariancesQk−1 andRk, respectively.

In the Bayesian filtering paradigm, the posterior density of
the state provides a complete statistical description of the state
at that time. On the receipt of a new measurement at timek,
we update the old posterior density of the state at time(k−1)
in two basic steps:

• Time update,which involves computing the predictive
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density

p(xk|Dk−1) =

∫

Rnx

p(xk,xk−1|Dk−1)dxk−1

=

∫

Rnx

p(xk−1|Dk−1)

×p(xk|xk−1,uk−1)dxk−1, (3)

where Dk−1 = {ui, zi}(k−1)
i=1 denotes the history

of input-measurement pairs up to time(k − 1);
p(xk−1|Dk−1) is the old posterior density at time
(k−1) and the state transition densityp(xk|xk−1,uk−1)
is obtained from (1).

• Measurement update,which involves computing the pos-
terior density of the current state:

p(xk|Dk) = p(xk|Dk−1,uk, zk).

Using the state-space model (1)-(2) and Bayes’ rule we
have

p(xk|Dk) =
1

ck
p(xk|Dk−1,uk)p(zk|xk,uk), (4)

where the normalizing constantck is given by

ck = p(zk|Dk−1,uk)

=

∫

Rnx

p(xk|Dk−1,uk)p(zk|xk,uk)dxk.

To develop a recursive relationship between predictive
and posterior densities in (4), the inputs have to satisfy
the relationship

p(uk|Dk−1,xk) = p(uk|Dk−1),

which is also called thenatural condition of control[2].
This condition therefore suggests thatDk−1 has sufficient
information to generate the inputuk. To be specific,
the inputuk can be generated usinĝxk|k−1. Under this
condition, we may equivalently write

p(xk|Dk−1,uk) = p(xk|Dk−1). (5)

Hence, substituting (5) into (4) yields

p(xk|Dk) =
1

ck
p(xk|Dk−1)p(zk|xk,uk), (6)

as desired, where

ck =

∫

Rnx

p(xk|Dk−1)p(zk|xk,uk)dxk, (7)

and the measurement likelihood functionp(zk|xk,uk) is
obtained from (2).

The Bayesian filter solution given by (3), and (6)-(7)
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Fig. 1. Signal-flow diagram of a dynamic state-space model driven by the feedback control input. The observer may employ a Bayesian filter. The label
Z
−1 denotes the unit delay.

provides a unified recursive approach for nonlinear filtering
problems, at least conceptually. From a practical perspective,
however, we find that the multi-dimensional integrals involved
in (3) and (7) are typically intractable. Notable exceptions arise
in the following restricted cases:

1) A linear-Gaussian dynamic system, the optimal solution
for which is given by the celebrated Kalman filter [3].

2) A discrete-valued state-space with a fixed number of
states, the optimal solution for which is given by the
grid filter (Hidden-Markov model filter) [4].

3) A ‘Benes type’ of nonlinearity, the optimal solution for
which is also tractable [5].

In general, when we are confronted with a nonlinear filtering
problem, we have to abandon the idea of seeking an optimal or
analytical solution and be content with a suboptimal solution
to the Bayesian filter [6]. In computational terms, suboptimal
solutions to the posterior density can be obtained using one
of two approximative approaches:

1) Local approach.Here, we derive nonlinear filters by
fixing the posterior density to takea priori form. For
example, we may assume it to be Gaussian; the nonlinear
filters, namely, the extended Kalman filter (EKF) [7],
the central-difference Kalman filter (CDKF) [8], [9], the
unscented Kalman filter (UKF) [10], and the quadrature
Kalman filter (QKF) [11], [12], fall under this first
category. The emphasis on locality makes the design of
the filter simple and fast to execute.

2) Global approach.Here, we do not make any explicit
assumption about the posterior density form. For exam-
ple, the point-mass filter using adaptive grids [13], the
Gaussian mixture filter [14], and particle filters using
Monte Carlo integrations with the importance sampling
[15], [16] fall under this second category. Typically,
the global methods suffer from enormous computational
demands.

Unfortunately, the presently known nonlinear filters men-
tioned above suffer from thecurse of dimensionality[17]
or divergence or both. The effect of curse of dimensionality
may often become detrimental in high-dimensional state-space

models with state-vectors of size 20 or more. The divergence
may occur for several reasons including (i) inaccurate or
incomplete model of the underlying physical system, (ii) in-
formation loss in capturing the true evolving posterior density
completely, e.g., a nonlinear filter designed under the Gaussian
assumption may fail to capture key features of a multi-
modal posterior density, (iii) high degree of nonlinearities in
the equations that describe the state-space model, and (iv)
numerical errors. Indeed, each of the above-mentioned filters
has its own domain of applicability and it is doubtful that
a single filter exists that would be considered effective fora
complete range of applications. For example, the EKF, which
has been the method of choice for nonlinear filtering problems
in many practical applications for the last four decades, works
well only in a ‘mild’ nonlinear environment owing to the first-
order Taylor series approximation for nonlinear functions.

The motivation for this paper has been to derive a more
accurate nonlinear filter that could be applied to solve a wide
range (from low to high dimensions) of nonlinear filtering
problems. Here, we take the local approach to build a new
filter, which we have named thecubature Kalman filter(CKF).
It is known that the Bayesian filter is rendered tractable when
all conditional densities are assumed to be Gaussian. In this
case, the Bayesian filter solution reduces to computing multi-
dimensional integrals, whose integrands are all of the form
nonlinear function× Gaussian. The CKF exploits the proper-
ties of highly efficient numerical integration methods known
as cubature rules for those multi-dimensional integrals [18].
With the cubature rules at our disposal, we may describe the
underlying philosophy behind the derivation of the new filter
asnonlinear filtering through linear estimation theory, hence
the name ‘cubature Kalman filter’. The CKF is numerically
accurate and easily extendable to high-dimensional problems.

The rest of the paper is organized as follows: Section II
derives the Bayesian filter theory in the Gaussian domain.
Section III describes numerical methods available for moment
integrals encountered in the Bayesian filter. The cubature
Kalman filter, using a third-degree spherical-radial cubature
rule, is derived in Section IV. Our argument for choosing a
third-degree rule is articulated in Section V. We go on to derive
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a square-root version of the CKF for improved numerical
stability in Section VI. The existing sigma-point approachis
compared with the cubature method in Section VII. We apply
the CKF in two nonlinear state estimation problems in Section
VIII. Section IX concludes the paper with a possible extension
of the CKF algorithm for a more general setting.

II. BAYESIAN FILTER THEORY IN THE GAUSSIAN DOMAIN

The key approximation taken to develop the Bayesian filter
theory under the Gaussian domain is that the predictive density
p(xk|Dk−1) and the filter likelihood densityp(zk|Dk) are
both Gaussian, which eventually leads to a Gaussian posterior
densityp(xk|Dk). The Gaussian is the most convenient and
widely used density function for the following reasons:

• It has many distinctive mathematical properties.

– The Gaussian family is closed under linear transfor-
mation and conditioning.

– Uncorrelated jointly Gaussian random variables are
independent.

• It approximates many physical random phenomena by
virtue of the central limit theorem of probability theory
(see Sections 5.7 and 6.7 in [19] for more details).

Under the Gaussian approximation, the functional recursion of
the Bayesian filter reduces to an algebraic recursion operating
only on means and covariances of various conditional densities
encountered in the time and the measurement updates.

A. Time Update

In the time update, the Bayesian filter computes the mean
x̂k|k−1 and the associated covariancePk|k−1 of the Gaussian
predictive density as follows:

x̂k|k−1 = E(xk|Dk−1), (8)

whereE is the statistical expectation operator. Substituting (1)
into (8) yields

x̂k|k−1 = E
[

f(xk−1,uk−1) + vk−1|Dk−1

]

. (9)

Becausevk−1 is assumed to be zero-mean and uncorrelated
with the past measurements, we get

x̂k|k−1 = E
[

f(xk−1,uk−1)|Dk−1

]

=

∫

Rnx

f(xk−1,uk−1)p(xk−1|Dk−1)dxk−1

=

∫

Rnx

f(xk−1,uk−1)

×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1, (10)

where N (., .) is the conventional symbol for a Gaussian
density. Similarly, we obtain the error covariance

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |z1:k−1]

=

∫

Rnx

f(xk−1,uk−1)f
T (xk−1,uk−1)

×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

−x̂k|k−1x̂
T
k|k−1 + Qk−1. (11)

B. Measurement Update

It is well known that the errors in the predicted measure-
ments are zero-mean white sequences [2], [20]. Under the
assumption that these errors can be well approximated by the
Gaussian, we write the filter likelihood density

p(zk|Dk−1) = N (zk; ẑk|k−1, Pzz,k|k−1), (12)

where the predicted measurement

ẑk|k−1 =

∫

Rnx

h(xk,uk)N (xk; x̂k|k−1, Pk|k−1)dxk,

(13)

and the associated covariance

Pzz,k|k−1 =

∫

Rnx

h(xk,uk)hT (xk,uk)

N (xk; x̂k|k−1, Pk|k−1)dxk

−ẑk|k−1ẑ
T
k|k−1 + Rk. (14)

Hence, we write the conditional Gaussian density of the joint
state and the measurement

p
(

[xT
k zT

k ]T |Dk−1

)

=

(

N
(

x̂k|k−1

ẑk|k−1

)

,

( Pk|k−1 Pxz,k|k−1

PT
xz,k|k−1 Pzz,k|k−1

)

)

,

(15)

where the cross-covariance

Pxz,k|k−1 =

∫

Rnx

xkh
T (xk,uk)

×N (xk; x̂k|k−1, Pk|k−1)dxk

−x̂k|k−1ẑ
T
k|k−1. (16)

On the receipt of a new measurementzk, the Bayesian filter
computes the posterior densityp(xk|Dk) from (15) yielding

p(xk|Dk) = N (xk; x̂k|k, Pk|k), (17)

where

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (18)

Pk|k = Pk|k−1 − WkPzz,k|k−1W
T
k (19)

Wk = Pxz,k|k−1P
−1
zz,k|k−1. (20)

If f(·) andh(·) are linear functions of the state, the Bayesian
filter under the Gaussian assumption reduces to the Kalman
filter. Table I shows how quantities derived above are called
in the Kalman filtering framework:

TABLE I

Pzz,k|k−1 in (14) Innovation Covariance
(zk − ẑk|k−1) in (18) Innovation
Wk in (20) Kalman gain

The signal-flow diagram in Fig. 2 summarizes the steps
involved in the recursion cycle of the Bayesian filter. The
heart of the Bayesian filter is therefore how to compute
Gaussian weighted integrals whose integrands are all of the
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Fig. 2. Signal-flow diagram of the recursive Bayesian filter under the Gaussian assumption, where ‘G-’ stands for ’Gaussian-’.

form nonlinear function× Gaussian densitythat are present
in (10)-(11), (13)-(14) and (16). The next section describes
numerical integration methods to compute multi-dimensional
weighted integrals.

III. A R EVIEW ON NUMERICAL METHODS FORMOMENT

INTEGRALS

Consider a multi-dimensional weighted integral of the form

I(f) =

∫

D

f(x)w(x)dx, (21)

where f(.) is some arbitrary function,D ⊆ R
n is the

region of integration, and the known weighting function
w(x) ≥ 0 for all x ∈ D . In a Gaussian-weighted integral,
for example,w(x) is a Gaussian density and satisfies the
nonnegativity condition in the entire region. If the solution
to the above integral (21) is difficult to obtain, we may seek
numerical integration methods to compute it. The basic task
of numerically computing the integral (21) is to find a set of
points xi and weightsωi that approximates the integralI(f)
by a weighted sum of function evaluations:

I(f) ≈
m
∑

i=1

ωif(xi). (22)

The methods used to find{xi, ωi} can be divided intoproduct
rules andnon-product rules, as described next.

A. Product Rules

For the simplest one-dimensional case (that is,n = 1),
we may apply the quadrature rule to compute the integral
(21) numerically [21], [22]. In the context of the Bayesian
filter, we mention the Gauss-Hermite quadrature rule; when the

weighting functionw(x) is in the form of a Gaussian density
and the integrandf(x) is well approximated by a polynomial
in x, the Gauss-Hermite quadrature rule is used to compute
the Gaussian-weighted integral efficiently [12].

The quadrature rule may be extended to compute multi-
dimensional integrals by successively applying it in a tensor-
product of one-dimensional integrals. Consider anm-point per
dimension quadrature rule that is exact for polynomials of
degree up tod. We set up a grid ofmn points for functional
evaluations and numerically compute ann-dimensional inte-
gral while retaining the accuracy for polynomials of degreeup
to d only. Hence, the computational complexity of the product
quadrature rule increases exponentially withn, and therefore
suffers from the curse of dimensionality. Typically forn > 5,
the product Gauss-Hermite quadrature rule is not a reasonable
choice to approximate a recursive optimal Bayesian filter.

B. Non-Product Rules

To mitigate the curse of dimensionality issue in the product
rules, we may seek non-product rules for integrals of arbitrary
dimensions by choosing points directly from the domain of in-
tegration [18], [23]. Some of the well-known non-product rules
include randomized Monte Carlo methods [4], quasi-Monte
Carlo methods [24], [25], lattice rules [26] and sparse grids
[27]–[29]. The randomized Monte Carlo methods evaluate
the integration using a set of equally-weighted sample points
drawn randomly, whereas in quasi-Monte Carlo methods and
lattice rules the points are generated from a unit hyper-
cube region using deterministically defined mechanisms. On
the other hand, the sparse grids based on Smolyak formula
in principle, combine a quadrature (univariate) routine for
high-dimensional integrals more sophisticatedly; they detect



5

important dimensions automatically and place more grid points
there. Although the non-product methods mentioned here
are powerful numerical integration tools to compute a given
integral with a prescribed accuracy, they do suffer from the
curse of dimensionality to certain extent [30].

C. The proposed method

In the recursive Bayesian estimation paradigm, we are
interested in non-product rules that (i) yield reasonable ac-
curacy, (ii) require small number of function evaluations and
(iii) are easily extendable to arbitrarily high dimensions. In
this paper we derive an efficient non-product cubature rule
for Gaussian-weighted integrals. Specifically, we obtain a
third-degree fully-symmetric cubature rule, whose complexity
in terms of function evaluations increases linearly with the
dimensionn. Typically, a set of cubature points and weights
are chosen so that the cubature rule is exact for a set of
monomials ofdegreed or less, as shown by

∫

D

P(x)w(x)dx =

m
∑

i=1

ωiP(xi), (23)

where P(x) = xd1

1 xd2

2 . . . xdn

n ; di are non-negative integers
and

∑n
i=1 di ≤ d. Here, an important quality criterion of

a cubature rule is its degree; the higher the degree of the
cubature rule is, the more accurate solution it yields. To find
the unknowns{xi, ωi} of the cubature rule of degreed, we
solve a set of moment equations. However, solving the system
of moment equations may be more tedious with increasing
polynomial degree and/or dimension of the integration domain.
For example, anm-point cubature rule entailsm(n + 1)
unknown parameters from its points and weights. In general,
we may form a system of(n+d)!

n!d! equations with respect to
unknowns from distinct monomials of degree up tod. For
the nonlinear system to have at least one solution (in this
case, the system is said to be consistent), we use at least as
many unknowns as equations [31]. That is, we choosem to be
m ≥ (n+d)!

(n+1)!d! . Suppose we obtain a cubature rule of degree

three for n = 20. In this case, we solve(20+3)!
20!3! = 1771

nonlinear moment equations; the resulting rule may consistof
more than 85 (> (20+3)!

21!3! ) weighted cubature points.
To reduce the size of the system of algebraically indepen-

dent equations or equivalently the number of cubature points
markedly, Sobolev proposed theinvariant theoryin 1962 [32]
(see also [31] and the references therein for a recent account
of the invariant theory). The invariant theory, in principle,
discusses how to restrict the structure of a cubature rule by
exploiting symmetries of the region of integration and the
weighting function. For example, integration regions suchas
the unit hypercube, the unit hypersphere, and the unit simplex
exhibit symmetry. Hence, it is reasonable to look for cubature
rules sharing the same symmetry. For the case considered
above (n = 20 and d = 3), using the invariant theory, we
may construct a cubature rule consisting of2n(= 40) cubature
points by solving only a pair of moment equations (see Section
IV).

Note that the points and weights of the cubature rule
are independent of the integrandf(x). Hence, they can be

computed off-line and stored in advance to speed up the filter
execution.

IV. T HE CUBATURE KALMAN FILTER

As described in Section II, nonlinear filtering in the Gaus-
sian domain reduces to a problem of how to compute inte-
grals, whose integrands are all of the formnonlinear func-
tion×Gaussian density. Specifically, we consider an integral
of the form

I(f) =

∫

Rn

f(x)exp(−xT x)dx (24)

defined in the Cartesian coordinate system. To compute the
above integral numerically we take the following two steps:
(i) We transform it into a more familiar spherical-radial
integration form (ii) Subsequently, we propose a third-degree
spherical-radial rule.

A. Transformation

In the spherical-radial transformation, the key step is a
change of variable from the Cartesian vectorx ∈ Rn to a
radiusr and direction vectory as follows: Letx = ry with
yT y = 1, so thatxT x = r2 for r ∈ [0,∞). Then the integral
(24) can be rewritten in a spherical-radial coordinate system
as

I(f) =

∫ ∞

0

∫

Un

f(ry)rn−1exp(−r2)dσ(y)dr, (25)

whereUn is the surface of the sphere defined byUn = {y ∈
R

n| yT y = 1} and σ(.) is the spherical surface measure or
the area element onUn. We may thus write theradial integral

I =

∫ ∞

0

S(r)rn−1exp(−r2)dr, (26)

whereS(r) is defined by thespherical integralwith the unit
weighting functionw(y) = 1:

S(r) =

∫

Un

f(ry)dσ(y). (27)

The spherical and the radial integrals are numerically com-
puted by the spherical cubature rule (Subsection B below)
and the Gaussian quadrature rule (Subsection C below), re-
spectively. Before proceeding further, we introduce a number
of notations and definitions when constructing such rules as
follows:

• A cubature rule is said to befully symmetric if the
following two conditions hold:

1) x ∈ D impliesy ∈ D , wherey is any point obtain-
able fromx by permutations and/or sign changes of
the coordinates ofx.

2) w(x) = w(y) on the regionD . That is, all points in
the fully symmetric set yield the same weight value.

For example, in the one-dimensional space, a pointx ∈ R

in the fully symmetric set implies that(−x) ∈ R and
w(x) = w(−x).

• In a fully symmetric region, we call a pointu as a
generator if u = (u1, u2, . . . , ur, 0, . . . 0) ∈ R

n, where
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ui ≥ ui+1 > 0, i = 1, 2, . . . (r − 1). The newu should
not be confused with the control inputu.

• For brevity, we suppress(n − r) zero coordinates and
use the notation[u1, u2, . . . ur] to represent a complete
fully symmetric set of points that can be obtained by
permutating and changing the sign of the generatoru

in all possible ways. Of course, the complete set entails
2rn!

(n−r)! points when{ui} are all distinct. For example,
[1] ∈ R

2 represents the following set of points:
{

(

1
0

)

,

(

0
1

)

,

(

−1
0

)

,

(

0
−1

)

}

.

Here, the generator is

(

1
0

)

.

• We use[u1, u2, . . . ur]i to denote thei-th point from the
set [u1, u2, . . . ur].

B. Spherical Cubature Rule

We first postulate a third-degree spherical cubature rule that
takes the simplest structure due to the invariant theory:

∫

Un

f(y)dσ(y) ≈ ω

2n
∑

i=1

f [u]i. (28)

The point set due to[u] is invariant under permutations
and sign changes. For the above choice of the rule (28),
the monomials{yd1

1 yd2

2 . . . ydn

n } with
∑n

i=1 di being an odd
integer, are integrated exactly. In order that this rule is exact for
all monomials of degree up to three, it remains to require that
the rule be exact for all monomials for which

∑n
i=1 di = 0, 2.

Equivalently, to find the unknown parametersu and ω, it
suffices to consider monomialsf(y) = 1, and f(y) = y2

1

due to the fully symmetric cubature rule:

f(y) = 1 : 2nω =

∫

Un

dσ(y) = An (29)

f(y) = y2
1 : 2ωu2 =

∫

Un

y2
1dσ(y) =

An

n
, (30)

where the surface area of the unit sphereAn = 2
√

πn

Γ(n/2) with
Γ(n) =

∫∞
0

xn−1exp(−x)dx. Solving (29)-(30) yieldsω =
An

2n , andu2 = 1. Hence, the cubature points are located at the
intersection of the unit sphere and its axes.

C. Radial Rule

We next propose a Gaussian quadrature for the radial
integration. The Gaussian quadrature is known to be the
most efficient numerical method to compute a one-dimensional
integration [21], [22]. Anm-point Gaussian quadrature is exact
up to polynomials of degree(2m − 1) and constructed as
follows:

∫ b

a

f(x)w(x)dx ≈
m
∑

i=1

ωif(xi), (31)

wherew(x) is a known weighting function and non-negative
on the interval [a, b]; the points {xi} and the associated
weights {ωi} are unknowns to be determined uniquely. In

our case, a comparison of (26) and (31) yields the weighting
function and the interval to bew(x) = xn−1exp(−x2) and
[0,∞), respectively. To transform this integral into an integral
for which the solution is familiar, we make another change of
variable viat = x2 yielding

∫ ∞

0

f(x)xn−1exp(−x2)dx =
1

2

∫ ∞

0

f̃(t)t(
n

2
−1)

× exp(−t)dt, (32)

where f̃(t) = f(
√

t). The integral on the right-hand side of
(32) is now in the form of the well-known generalized Gauss-
Laguerre formula. The points and weights for the generalized
Gauss-Laguerre quadrature are readily obtained as discussed
elsewhere [21]. A first-degree Gauss-Laguerre rule is exactfor
f̃(t) = 1, t. Equivalently, the rule is exact forf(x) = 1, x2;
it is not exact for odd degree polynomials such asf(x) =
x, x3. Fortunately, when the radial-rule is combined with the
spherical rule to compute the integral (24), the (combined)
spherical-radial rule vanishes for all odd-degree polynomials;
the reason is that the spherical rule vanishes by symmetry for
any odd-degree polynomial (see (25)). Hence, the spherical-
radial rule for (24) is exact for all odd degrees. Following this
argument, for a spherical-radial rule to be exact for all third-
degree polynomials inx ∈ R

n, it suffices to consider the
first-degree generalized Gauss-Laguerre rule entailing a single
point and weight. We may thus write

∫ ∞

0

f(x)xn−1exp(−x2)dx ≈ ω1f(x1), (33)

where the pointx1 is chosen to be the square-root of the root
of the first-order generalized Laguerre polynomial, which is
orthogonal with respect to the modified weighting function
x( n

2
−1)exp(−x); subsequently, we findω1 by solving the

zeroth-order moment equation appropriately. In this case,we
have ω1 = Γ(n/2)

2 , and x1 =
√

n
2 . A detailed account of

computing the points and weights of a Gaussian quadrature
with the classical and nonclassical weighting function is
presented in [33].

D. Spherical-Radial Rule

In this subsection, we describe two useful results that are
used to (i) combine the spherical and radial rule obtained
separately, and (ii) extend the spherical-radial rule for
a Gaussian weighted integral. The respective results are
presented as two theorems:

Theorem 4.1:Let the radial integral be computed numeri-
cally by themr-point Gaussian quadrature rule

∫ ∞

0

f(r)rn−1exp(−r2)dr =

mr
∑

i=1

aif(ri).

Let the spherical integral be computed numerically by thems-
point spherical rule

∫

Un

f(rs)dσ(s) =

ms
∑

j=1

bjf(rsj).
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Then, an(ms × mr)-point spherical-radial cubature rule is
given by

∫

Rn

f(x)exp(−xT x)dx ≈
ms
∑

j=1

mr
∑

i=1

aibjf(risj). (34)

Proof: Because cubature rules are devised to be exact for
a subspace of monomials of some degree, we consider an
integrand of the form

f(x) = xd1

1 xd2

2 . . . xdn

n ,

where{di} are some positive integers. Hence, we write the
integral of interest

I(f) =

∫

Rn

xd1

1 xd2

2 . . . xdn

n exp(−xT x)dx.

For the moment, we assume the above integrand to be a
monomial of degreed exactly; that is,

∑n
i=1 di = d. Making

the change of variable as described in Subsection A, we get

I(f) =

∫ ∞

0

∫

Un

(ry1)
d1(ry2)

d2 . . . (ryn)dnrn−1

× exp(−r2)dσ(y)dr.

Decomposing the above integration into the radial and spher-
ical integrals yields

I(f) =

∫ ∞

0

rn+d−1exp(−r2)dr

∫

Un

yd1

1 yd2

2 . . . ydn

n dσ(y).

Applying the numerical rules appropriately, we have

I(f) ≈
(

mr
∑

i=1

air
d
i

)(

ms
∑

j=1

bjs
d1

j1sd2

j2 . . . sdn

jn

)

=

mr
∑

i=1

ms
∑

j=1

aibj(risj1)
d1(risj2)

d2 . . . (risjn)dn ,

as desired. As we may extend the above results for monomials
of degree less thand, the theorem holds for any arbitrary
integrand that can be written as a linear combination of
monomials of degree up tod (see also Section 2.8 in
[18]). �

Theorem 4.2:Let the weighting functionsw1(x) andw2(x)
be w1(x) = exp(−xT x) and w2(x) = N (x;µ,Σ). Then for

every square matrix
√

Σ such that
√

Σ
√

Σ
T

= Σ, we have
∫

R
n

f(x)w2(x)dx =
1√
πn

∫

R
n

f(
√

2Σx + µ)

× w1(x)dx. (35)

Proof: Consider the left-hand side of (35). BecauseΣ is a
positive definite matrix, we factorizeΣ to beΣ =

√
Σ
√

Σ
T

.

Making a change of variable viax =
√

2Σy + µ, we get
∫

R
n

f(x)N (x;µ,Σ)dx =

∫

R
n

f(
√

2Σy + µ)
1

√

|2πΣ|
×exp(−yT y)|

√
2Σ|dy

=
1√
πn

∫

R
n

f(
√

2Σy + µ)w1(y)dy

=
1√
πn

∫

R
n

f(
√

2Σx + µ)w1(x)dx

which proves the theorem. �

For the third-degree spherical-radial rule,mr = 1 and
ms = 2n. Hence, it entails a total of2n cubature points. Using
the above theorems, we extend this third-degree spherical-
radial rule to compute a standard Gaussian weighted integral
as follows:

IN (f) =

∫

Rn

f(x)N (x;0, I)dx ≈
m
∑

i=1

ωif(ξi),

where

ξi =

√

m

2
[1]i

ωi =
1

m
, i = 1, 2, . . . m = 2n.

We use the cubature-point set{ξi, ωi} to numerically compute
integrals (10)-(11), and (13)-(16) and obtain the CKF algo-
rithm, details of which are presented in Appendix A. Note that
the above cubature-point set is now defined in the Cartesian
coordinate system.

V. I S THERE A NEED FOR HIGHER-DEGREE CUBATURE

RULES ?

In this section, we emphasize the importance of third-degree
cubature rules over higher-degree rules (degree more than
three), when they are embedded into the cubature Kalman
filtering framework for the following reasons:

• Sufficient approximation.The CKF recursively propagates
the first two-order moments, namely, the mean and co-
variance of the state variable. A third-degree cubature rule
is also constructed using up to the second-order moment.

Moreover, a natural assumption for a nonlinearly
transformed variable to be closed in the Gaussian domain
is that the nonlinear function involved is reasonably
smooth. In this case, it may be reasonable to assume that
the given nonlinear function can be well-approximated
by a quadratic function near the prior mean. Because the
third-degree rule is exact up to third-degree polynomials,
it computes the posterior mean accurately in this case.
However, it computes the error covariance approximately;
for the covariance estimate to be more accurate, a cuba-
ture rule is required to be exact at least up to a fourth
degree polynomial. Nevertheless, a higher-degree rule
will translate to higher accuracy only if the integrand is
well-behaved in the sense of being approximated by a
higher-degree polynomial, and the weighting function is
known to be a Gaussian density exactly. In practice, these
two requirements are hardly met.However, considering in
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the cubature Kalman filtering framework, our experience
with higher-degree rules has indicated that they yield no
improvement or make the performance worse.

• Efficient and robust computation.The theoretical lower
bound for the number of cubature points of a third-degree
centrally symmetric cubature rule is given by twice the
dimension of an integration region [34]. Hence, the pro-
posed spherical-radial cubature rule is considered to be
the most efficient third-degree cubature rule. Because the
number of points or function evaluations in the proposed
cubature rules scales linearly with the dimension, it may
be considered as a practical step for easing the curse of
dimensionality.

According to [35] and Section 1.5 in [18], a ‘good’
cubature rule has the following two properties: (i) all the
cubature points lie inside the region of integration, and (ii)
all the cubature weights are positive. The proposed rule
entails2n equal, positive weights for ann-dimensional
unbounded region and hence belongs to a good cubature
family. Of course, we hardly find higher-degree cubature
rules belonging to a good cubature family especially for
high-dimensional integrations.

In the final analysis, the use of higher-degree cubature rules
in the design of the CKF may often sabotage its performance.

VI. T HE SQUARE-ROOT CUBATURE KALMAN FILTER

This section addresses (i) the rationale for why we need
a square-root extension of the standard CKF and (ii) how
the square-root solution can be developed systematically.The
two basic properties of an error covariance matrix are (i)
symmetry and (ii) positive definiteness. It is important that
we preserve these two properties in each update cycle. The
reason is that the use of a forced symmetry on the solution of
the matrix Ricatti equation improves the numerical stability
of the Kalman filter [36], whereas the underlying meaning
of the covariance is embedded in the positive definiteness.
In practice, due to errors introduced by arithmetic operations
performed on finite word-length digital computers, these two
properties are often lost. Specifically, the loss of the positive
definiteness may probably be more hazardous as it stops the
CKF to run continuously. In each update cycle of the CKF,
we mention the following numerically sensitive operationsthat
may catalyze to destroy the properties of the covariance:

• Matrix square-rooting (see (38) and (43)).
• Matrix inversion (see (49)).
• Matrix squared-form amplifying roundoff errors (see

(42), (47) and (48)).
• Substraction of the two positive definite matrices present

in the covariant update (see (51)).

Moreover, some nonlinear filtering problems may be numeri-
cally ill. For example, the covariance is likely to turn out to be
non-positive definite when (i) very accurate measurements are
processed, or (ii) a linear combination of state vector compo-
nents is known with greater accuracy while other combinations
are essentially unobservable [37].

As a systematic solution to mitigate ill effects that may
eventually lead to an unstable or even divergent behavior, the

logical procedure is to go for a square-root version of the CKF,
hereafter calledsquare-root cubature Kalman filter(SCKF).
The SCKF essentially propagates square-root factors of the
predictive and posterior error covariances. Hence, we avoid
matrix square-rooting operations. In addition, the SCKF offers
the following benefits [38]:

• Preservation of symmetry and positive (semi)definiteness
of the covariance.

• Improved numerical accuracy owing to the fact that
κ(S) =

√

κ(ST S), where the symbolκ denotes the
condition number.

• Doubled-order precision.

To develop the SCKF, we use (i) the least-squares method
for the Kalman gain and (ii) matrix triangular factorizations or
triangularizations (e.g., the QR decomposition) for covariance
updates. The least-squares method avoids to compute a matrix
inversion explicitly, whereas the triangularization essentially
computes a triangular square-root factor of the covariance
without square-rooting a squared-matrix form of the covari-
ance. Appendix B presents the SCKF algorithm, where all of
the steps can be deduced directly from the CKF except for the
update of the posterior error covariance; hence we derive itin
a squared-equivalent form of the covariance in the appendix.

The computational complexity of the SCKF in terms of
flops, grows as the cube of the state dimension, hence it
is comparable to that of the CKF or the EKF.We may
reduce the complexity significantly by (i) manipulating spar-
sity of the square-root covariance carefully and (ii) coding
triangularization algorithms for distributed processor-memory
architectures.

VII. A C OMPARISON OFUKF WITH CKF

Similarly to the CKF, the unscented Kalman filter (UKF)
is another approximate Bayesian filter built in the Gaussian
domain, but uses a completely different set of deterministic
weighted points [10], [39]. To elaborate the approach takenin
the UKF, consider ann-dimensional random variablex having
a symmetric prior densityΠ(x) with meanµ and covariance
Σ, within which the Gaussian is a special case. Then a set of
(2n + 1) sample points and weights,{Xi, ωi}2n

i=0 are chosen
to satisfy the following moment-matching conditions:

2n
∑

i=0

ωiXi = µ

2n
∑

i=0

ωi

(

Xi − µx

)(

Xi − µx

)T
= Σ.

Among many candidate sets, one symmetrically distributed
sample point set, hereafter called thesigma-point set, is picked
up as follows:

X0 = µ, ω0 =
κ

n + κ

Xi = µ + (
√

(n + κ)Σ)i, ωi =
1

2(n + κ)

Xn+i = µ − (
√

(n + κ)Σ)i, ωn+i =
1

2(n + κ)
,
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where i = 1, 2, . . . n and thei-th column of a matrixA is
denoted by(A)i; the parameterκ is used to scale the spread of
sigma points from the prior meanµ, hence the name “scaling
parameter”. Due to its symmetry, the sigma-point set matches
the skewness. Moreover, to capture the kurtosis of the prior
density closely, it is suggested that we chooseκ to beκ = (3−
n) (Appendix I of [10], [39]). This choice preserves moments
up to the fifth order exactly in the simple one-dimensional
Gaussian case.

In summary, the sigma-point set is chosen to capture a
number of low-order moments of the prior densityp(x) as
correctly as possible.

Then the unscented transformationis introduced as a
method of computing posterior statistics ofy ∈ Rm that
are related tox by a nonlinear transformationy = f(x). It
approximates the mean and the covariance ofy by a weighted
sum of projected sigma points in theRm space, as shown by

E[y] =

∫

Rn

f(x)Π(x)dx

≈
2n
∑

i=0

ωiYi (36)

cov[y] =

∫

Rn

(f(x) − E[y])(f(x) − E[y])T Π(x)dx

≈
2n
∑

i=0

ωi(Yi − E[y])(Yi − E[y])T , (37)

whereYi = f(Xi), i = 0, 1, . . . 2n. The unscented transforma-
tion approximating the mean and the covariance, in particular,
is correct up to ap-th order nonlinearity when the sigma-point
set correctly captures the firstp order prior moments. This can
be proved by comparing the Taylor expansion of the nonlinear
function f(x) up to p-order terms and the statistics computed
by the unscented transformation; here,f(x) is expanded about
the true (prior) meanµ, which is related tox via x = µ + e

with the perturbation errore ∼ N (0,Σ) [10].
The UKF and the CKF share a common property- they use

a weighted set of symmetric points. Fig. 3, shows the spread
of the weighted sigma-point set and the proposed cubature-
point set, respectively in the two-dimensional space; the points
and their weights are denoted by the location and the height
of the stems, respectively. However, as shown in Fig. 3, they
are fundamentally different. To elaborate further, we derive the
cubature-point set built into the new CKF with totally different
philosophy in mind:

• We assume the prior statistics ofx to be Gaussian instead
of a more general symmetric density.

• Subsequently, we focus on how to compute the posterior
statistics ofy accurately. To be more specific, we need to
compute the first two-order moments ofy exactly because
we embed them in a linear update rule.

In this line of thinking, the solution to the problem at hand
boils down to the efficient third-order cubature rule. As in
the sigma-point approach, we do not treat the derivation of a
point set for the prior density and the computation of posterior
statistics as two disjoint problems.

Moreover, suppose a given functionf(.) is a linear combi-
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(b) Third-degree spherical-radial cubature point set for the CKF

Fig. 3. Two kinds of distributions of point sets in two-dimensional space.

nation of a monomial of degree at most three and some other
higher odd-degree monomials. Then we may readily guarantee
that the error, incurred in computing the integral off(.) with
respect to a Gaussian weight function, vanishes. As in the
sigma-point approach, the functionf(.) does not need to be
well approximated by the Taylor polynomial about a prior
mean.

Finally, we mention the following limitations of the sigma-
point set built into the UKF, which are not present in the
cubature-point set built into the CKF:

• Numerical inaccuracy.Traditionally, there has been more
emphasis on cubature rules having desirable numerical
quality criterion than on the efficiency. It is proven
that the cubature rule implemented in a finite-precision
arithmetic machine introduces a large amount of roundoff
errors when the stability factor defined by

∑

i
|ωi|

∑

i
ωi

, is
larger than unity [18], [28]. We look at formulas (36)-
(37) in the unscented transformation from the numerical
integration perspective. In this case, whenn goes beyond
three,

∑2n
i=0 |ωi| = (2n

3 − 1) and
∑2n

i=0 ωi = 1. Hence,
the stability factor scales linearly withn, thereby induc-
ing significant perturbations in numerical estimates for
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)p.

moment integrals.
• Unavailability of a square-root solution.We perform the

square-rooting operation (or the Cholesky factorization)
on the error covariance matrix as the first step of both
the time and measurement updates in each cycle of both
the UKF and the CKF. From the implementation point
of view, the square-rooting is one of the most numeri-
cally sensitive operations. To avoid this operation in a
systematic manner, we may seek to develop a square-root
version of the UKF. Unfortunately, it may be impossible
for us to formulate the square-root UKF that enjoys
numerical advantages similar to the SCKF. The reason
is that when a negatively weighted sigma point is used
to update any matrix, the resulting down-dated matrix
may possibly be non-positive definite. Hence, errors may
occur when executing a ‘pseudo’ square-root version of
the UKF in a limited word-length system (see the pseudo
square-root version of the UKF in [40]).

• Filter instability. Given no computational errors due to
an arithmetic imprecision, the presence of the negative
weight may still prohibit us from writing a covariance
matrix P in a squared form such thatP = SST . To
state it in another way, the UKF-computed covariance
matrix is not always guaranteed to be positive definite.
Hence, the unavailability of the square-root covariance
causes the UKF to halt its operation. This could be dis-
astrous in practical terms. To improve stability, heuristic
solutions such as fudging the covariance matrix artifi-
cially (Appendix III of [10]) and the scaled unscented
transformation [41] are proposed.

Note that the parameterκ of the sigma-point set may be
forced to be zero to match the cubature-point set. Unfortu-
nately, in the past there has been no mathematical justification
or motivation for choosingκ = 0 for its associated inter-
pretabilities. Instead, more secondary scaling parameters (apart
from κ) were introduced in an attempt to incorporate knowl-
edge about the prior statistics in the unscented transformation
[41].

To sum up, we claim that the cubature approach is more
accurate and more principled in mathematical terms than the
sigma-point approach.

VIII. S IMULATIONS

In this section, we report the experimental results obtained
by applying the CKF when applied to two nonlinear state-
estimation problems: In the first high-dimensional illustrative
experiment, we use the proposed cubature rules to estimate
the mean and variance of a nonlinearly transformed Gaussian
random variable. In the second application-oriented experi-
ment, we use the CKF to track a maneuvering aircraft in two
different setups- in the first setup, we assume the measurement
noise to be Gaussian, whereas in the second setup, it takes a
Gaussian mixture model.

A. Illustrative high-dimensional example

As described in Section II, the CKF uses the spherical-radial
cubature rule to numerically compute the moment integrals of
the form nonlinear function× Gaussian. The more accurate
the estimate is, the quicker the filter converges to the correct
state. We consider a general form of the multi-quadric function

y =
(

√

1 + xT x
)p

wherex is assumed to be ann-dimensional Gaussian random
variable with meanµ, and covarianceΣ. In this experiment,p
takes valuesp = 1,−1,−3, and -5 (Fig. 4). Our objective
is to use four different methods, namely (i) the first-order
Taylor series-based approximation built into the EKF, (ii)the
unscented transformation (withκ = 3−n) built into the UKF,
(iii) the cental difference method with a step-size of

√
3 built

into the CDKF and (iv) the spherical-radial rule built into the
CKF, to compute the first two order (uncentralized) moments

E(y) =

∫

Rn

(
√

1 + xT x)pN (x;µ,Σ)dx

andE(y2) =

∫

Rn

(1 + xT x)pN (x;µ,Σ)dx

for different dimensions and prior information. We setµ to be
zero because the function has a significant nonlinearity near
the origin. Covariance matrices are randomly generated with
diagonal entries being all equal toσ2

0 for 50 independent runs.
The Monte Carlo (MC) method with 10,000 samples is used
to obtain the optimal estimate. To compare the filter estimated
statistics against the optimal statistics, we use the Kullback-
Leibler (KL) divergence assuming the statistics are Gaussian.
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Fig. 5. Ensemble-averaged KL divergence plots whenσ
2

0
= 1.

Of course, the smaller the KL divergence is, the better the
filter estimate is.

Figs. 5(a) and 5(b) show how the KL divergence of the
CDKF and CKF estimates varies, respectively when the di-
mensionn increases forσ2

0 = 1. The EKF computes a zero
variance due to zero gradient at the prior mean; the unscented
transformation often fails to yield meaningful results dueto
the numerical ills identified in Section VII; hence, we do not
present the results of the EKF and UKF. As shown in Figs. 5(a)
and 5(b), the CDKF and the CKF estimates degrade when the
dimensionn increases. The reason is that then-dimensional
state vector is estimated from a scalar measurement, irrespec-
tive of n. Moreover, when the nonlinearity of the multi-quadric
function becomes more ‘severe’ (whenp changes from 1 to
-5), we also see the degradation as expected. However, for all
cases ofp considered herein, the CDKF estimate is inferior to
the CKF and the reason is as follows: Consider the integrand
obtained from the product of a multi-quadric function and
the standard Gaussian density over the radial variable. It has
a peak occurring at distance from the origin proportional to√

n. The central-difference method approximates the nonlinear
function by a set of grid-points located at a fixed distance
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Fig. 6. Ensemble-averaged KL divergence plots whenn = 50.

irrespective ofn, thereby failing to capture global properties
of the function. On the other hand, the cubature points are
located at a radius that scales with

√
n. Note also that the

third-degree spherical-radial rule is exact for polynomials of
all odd degrees even beyond three (due to the symmetry of the
spherical rule) and this may be another reason for the increased
accuracy obtained using the CKF.

Figs. 6(a) and 6(b) show how the KL divergence of the
CDKF and CKF estimates varies, respectively when the prior
varianceσ2

0 increases for a dimensionn = 50. As expected,
an increase in the prior varianceσ2

0 causes the posterior
variance to increase. Hence, all filter estimates degrade orthe
KL divergence increases when we increaseσ2

0 , as shown in
Fig. 6. However, for all values ofp, again we find that the
CKF estimate is superior to the CDKF and the reason can
be attributed to the facts just mentioned. The CDKF estimate
is seen to be more degraded and deviate significantly from
the CKF estimate when the prior variance is larger and the
dimension is higher.

B. Target tracking

Scenario 1.We consider a typical air-traffic control scenario,
where an aircraft executes maneuvering turn in a horizontal
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plane at a constant, but unknown turn rateΩ. Fig. 7 shows
a representative trajectory of the aircraft. The kinematics of
the turning motion can be modeled by the following nonlinear
process equation [42]:

xk =













1 sinΩT
Ω 0 −

(

1−cosΩT
Ω

)

0
0 cosΩT 0 −sinΩT 0

0 1−cosΩT
Ω 1 sinΩT

Ω 0
0 sinΩT 0 cosΩT 0
0 0 0 0 1













xk−1

+ vk,

where the state of the aircraftx = [ξ ξ̇ η η̇ Ω]T ; ξ andη
denote positions, anḋξ and η̇ denote velocities in thex and
y directions, respectively;T is the time-interval between two
consecutive measurements; the process noisevk ∼ N (0, Q)
with a nonsingular covarianceQ = diag[q1M q1M q2T ],
where

M =

(

T 3

3
T 2

2
T 2

2 T

)

;

The scalar parametersq1 and q2 are related to process noise
intensities. A radar is fixed at the origin of the plane and
equipped to measure the range,r, and bearing,θ. Hence, we
write the measurement equation

(

rk

θk

)

=

(
√

ξ2
k + η2

k

tan−1(ηk

ξk

)

)

+ wk,

where the measurement noisewk ∼ N (0, R) with R =
diag[σ2

r σ2
θ ].

Data:

T = 1s

Ω = −3os−1

q1 = 0.1m2s−3

q2 = 1.75 × 10−4s−3

σr = 10m

σθ =
√

10mrad

True initial state

x0 = [1000m 300ms−1 1000m 0ms−1 − 3os−1]T ,
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Fig. 8. True RMSE (solid thin- CDKF, solid thick- CKF) Vs. filter-estimated
RMSE (dashed thin- CDKF, dashed thick- CKF) for the first scenario.

and the associated covariance

P0/0 = diag[100m2 10m2s−2 100m2 10m2s−2

100mrad2s−2].

The initial state estimatêx0/0 is chosen randomly from
N (x0, P0/0) in each run; the total number of scans per run
is 100.

To track the maneuvering aircraft we use the new square-
root version of the CKF for its numerical stability and compare
its performance against the EKF, the UKF, and the CDKF. For
a fair comparison, we make 250 independent Monte Carlo
runs. All the filters are initialized with the same conditionin
each run.

Performance metrics.To compare various nonlinear filter
performances, we use the root-mean square error (RMSE)
of the position, velocity and turn rate. The RMSE yields a
combined measure of the bias and variance of a filter estimate.
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Fig. 9. Measurement noise: Gaussian mixture model and its contour plot.

We define the RMSE in position at timek, as

RMSEpos(k) =

√

√

√

√

1

N

N
∑

n=1

(

(ξn
k − ξ̂n

k )2 + (ηn
k − η̂n

k )2
)

,

where(ξn
k , ηn

k ) and (ξ̂n
k , η̂n

k ) are the true and estimated posi-
tions at then-th Monte Carlo run. Similarly to the RMSE
in position, we may also write formulas of the RMSE in
velocity and turn rate. As a self-assessment of its estimation
errors, a filter provides an error covariance. Hence, we consider
the filter-estimated RMSE as the square-root of the averaged
(over Monte Carlo runs) appropriate diagonal entries of the
covariance. The filter estimate is refereed to be consistentif
the (true) RMSE is equal to its estimated RMSE.We may
expect the CKF to be inconsistent or divergent when its design
assumption that the conditional densities are all Gaussianis
violated.

Figs. 8(a), 8(b) and 8(c) show the true and estimated RMSEs
in position, velocity and turn rate, respectively for the CDKF
and the CKF in an interval of 50-100s. Owing to the fact that
the EKF is sensitive to information available in the previous
time step, it diverges abruptly after 70-80s. The UKF using
κ = (−2) was found often halt its operation for the reasons
outlined in Section VII. For these reasons, we do not present
the results of the EKF and the UKF here. As can be seen from
Figs. 8(a), 8(b) and 8(c), the CKF marginally outperforms
the CDKF. Moreover, the true RMSEs closely follow the
RMSEs estimated by both filters; hence they are consistent.
The overall results obtained for the CDKF and the CKF
conform to our expectation because the considered scenario
is a low-dimensional nonlinear-Gaussian filtering problem.

Scenario 2.We go on to extend the above problem to see
how the estimation errors affect the CKF when the Gaussian
nature of the problem is explicitly violated. To accomplishthis,
we deliberately make the measurement noisewk to follow a
Gaussian mixture of the form:

wk ∼ 0.5N (0, R1) + 0.5N (0, R2),

where

R1 =

(

100m2 15m mrad
15m mrad 10mrad2

)

R2 =

(

5m2 10m mrad
10m mrad 100mrad2

)

.

As shown in Fig. 9, the measurement noise density is now

50 60 70 80 90 100

50

100

150

200

250

300

350

R
M

S
E

po
s
 (

m
)

Time, k

(a) RMSE in position.

50 60 70 80 90 100
10

20

30

35

R
M

S
E

ve
l (

m
s

−1
)

Time, k

(b) RMSE in velocity.

50 60 70 80 90 100
1.2

1.3

1.4

1.5

1.6

R
M

S
E

om
e
 (

D
eg

/s
)

Time, k

(c) RMSE in turn rate.

Fig. 10. True RMSE (solid thin- CDKF, solid thick- CKF) Vs. filter-estimated
RMSE (dashed thin- CDKF, dashed thick- CKF) for the second scenario.

highly asymmetric. The filters use an equivalent measurement
noise covariance of the above Gaussian mixture model. Other
data remain the same as before.

Not surprisingly, as can be seen from Figs. 10(a), 10(b)
and 10(c), both filters exhibit divergence due to a mismatch
between the filter-design assumption and the non-Gaussian
nature of the problem. During the divergence period, the true
RMSEs of both filters exceed their corresponding estimated
RMSEs. Although there is little significant difference between
covariance estimates produced by the two filters, it is en-
couraging to see that unlike the CDKF, the CKF improves
the performance after a short period of divergence. To put it
in another way, the CKF does not permit estimation errors
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to accumulate continuously, thereby avoiding an immediate
‘blow-up’ in this scenario.

IX. CONCLUSION

For a linear Gaussian dynamic system, the Kalman filter
provides the optimal solution for the unknown state in the
minimum mean squared-error sense. In general, however, real-
world systems are plagued by nonlinearity, non-Gaussianity
or both. In this context, it is difficult to obtain a closed-
form solution for the state estimate, and therefore some
approximations have to be made. Consequently, finding a more
accurate nonlinear filtering solution has been the subject of
intensive research since the celebrated work on the Kalman
filter. Unfortunately, the presently known nonlinear filters,
which are exemplified by the extended Kalman filter, the
unscented Kalman filter, and the quadrature Kalman filter,
experience divergence or the curse of dimensionality or both.

In this paper, we derived a more accurate nonlinear filter
that could be applied to solve high-dimensional nonlinear
filtering problems with minimal computational effort. The
Bayesian filter solution in the Gaussian domain reduces to
the problem of how to compute multi-dimensional integrals,
whose integrands are all of the formnonlinear function×
Gaussian density. Hence, we are emboldened to say that
the cubature rule is the method of choice to solve this
problem efficiently. Unfortunately, the cubature rule has been
overlooked in the literature on nonlinear filters since the birth
of the celebrated Kalman filter in 1960. We have derived a
third-degree spherical-radial cubature rule to compute integrals
numerically. We embedded the proposed cubature rule into the
Bayesian filter to build a new filter, which we have named the
cubature Kalman filter (CKF).

The cubature rule has the following desirable properties:

• The cubature rule is derivative-free. This useful property
helps broaden the applicability of the CKF to situations
where it is difficult or undesirable to compute Jacobians
and Hessians. For example, consider a model configured
by various model units having complicated nonlinearities;
it may be inconvenient if we are required to calculate
Jacobians and Hesssians for the resulting model. Addi-
tionally, a derivative-free computation allows us to write
prepackaged, or ‘canned’ computer programs.

• The cubature rule entails2n cubature points, wheren
is the state-vector dimension; hence, we are required
to compute2n functional evaluations at each update
cycle. This suggests that the computational complexity
scales linearly with the dimensionn in terms of the
functional evaluations whereas it grows cubically in terms
of flops. Hence, the CKF eases the burden on the curse of
dimensionality, but, by itself, it is not a complete remedy
for the dimensionality issue.

• A third-degree cubature rule has a theoretical lower
bound of2n cubature points. We proved that a cubature
rule of degree three is optimal when embedded in the
Bayesian filter. Consequently, the CKF using the pro-
posed spherical-radial cubature rule may be considered as
an optimal approximation to the Bayesian filter that could

be designed in a nonlinear setting, under the Gaussian
assumption.

In a nutshell, the CKF is a new and improved algorithmic
addition to the kit of tools for nonlinear filtering.

APPENDIX A
CKF ALGORITHM

Time Update

1) Assume at timek that the posterior density function
p(xk−1|Dk−1) = N (x̂k−1|k−1, Pk−1|k−1) is known.
Factorize

Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1. (38)

2) Evaluate the cubature points (i=1,2,. . . ,m)

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, (39)

wherem = 2nx.
3) Evaluate the propagated cubature points (i=1,2,. . . ,m)

X∗
i,k|k−1 = f(Xi,k−1|k−1,uk−1). (40)

4) Estimate the predicted state

x̂k|k−1 =
1

m

m
∑

i=1

X∗
i,k|k−1. (41)

5) Estimate the predicted error covariance

Pk|k−1 =
1

m

m
∑

i=1

X∗
i,k|k−1X∗T

i,k|k−1 − x̂k|k−1x̂
T
k|k−1

+Qk−1. (42)

Measurement Update

1) Factorize

Pk|k−1 = Sk|k−1S
T
k|k−1. (43)

2) Evaluate the cubature points (i=1,2,. . . ,m)

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1. (44)

3) Evaluate the propagated cubature points (i=1,2,. . . ,m)

Zi,k|k−1 = h(Xi,k|k−1,uk). (45)

4) Estimate the predicted measurement

ẑk|k−1 =
1

m

m
∑

i=1

Zi,k|k−1. (46)

5) Estimate the innovation covariance matrix

Pzz,k|k−1 =
1

m

m
∑

i=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑ

T
k|k−1

+Rk. (47)

6) Estimate the cross-covariance matrix

Pxz,k|k−1 =
m
∑

i=1

ωiXi,k|k−1ZT
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1.

(48)
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7) Estimate the Kalman gain

Wk = Pxz,k|k−1P
−1
zz,k|k−1. (49)

8) Estimate the updated state

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1). (50)

9) Estimate the corresponding error covariance

Pk|k = Pk|k−1 − WkPzz,k|k−1W
T
k . (51)

APPENDIX B
SCKF ALGORITHM

Below, we summarize the square-root cubature Kalman
filter (SCKF) algorithm writing the steps explicitly when
they differ from the CKF algorithm. We denote a general
triangularization algorithm ( e.g., the QR decomposition)as
S = Tria (A), where S is a lower triangular matrix. The
matricesA and S are related as follows: LetR be an upper
triangular matrix obtained from the QR decomposition on
AT ; then S = RT . We use the symbol / to represent the
matrix right divide operator. When we perform the operation
A/B, it applies the back substitution algorithm for an upper
triangular matrixB and the forward substitution algorithm
for a lower triangular matrixB:

Time Update

1) Skip the factorization (38) because the square-root of the
error covariance,Sk−1|k−1, is available. Compute from
(39)-(41).

2) Estimate the square-root factor of the predicted error
covariance

Sk|k−1 = Tria ([X ∗
k|k−1 SQ,k−1]). (52)

whereSQ,k−1 denotes a square-root factor ofQk−1 such
that Qk−1 = SQ,k−1S

T
Q,k−1 and the weighted, centered

(prior mean is subtracted off) matrix

X
∗

k|k−1 =
1√
m

[X∗
1,k|k−1 − x̂k|k−1 X∗

2,k|k−1

−x̂k|k−1 . . . X∗
m,k|k−1 − x̂k|k−1]. (53)

Measurement Update

1) Skip the factorization (43) because the square-root of
the error covariance,Sk|k−1, is available. Compute from
(44)-(46).

2) Estimate the square-root of the innovation covariance
matrix

Szz,k|k−1 = Tria ([Zk|k−1 SR,k]) (54)

whereSR,k denotes a square-root factor ofRk such that
Rk = SR,kST

R,k and the weighted, centered matrix

Zk|k−1 =
1√
m

[Z1,k|k−1 − ẑk|k−1 Z2,k|k−1

−ẑk|k−1 . . . Zm,k|k−1 − ẑk|k−1]. (55)

3) Estimate the cross-covariance matrix

Pxz,k|k−1 = Xk|k−1Z
T

k|k−1 (56)

where the weighted, centered matrix

Xk|k−1 =
1√
m

[X1,k|k−1 − x̂k|k−1 X2,k|k−1

−x̂k|k−1 . . . Xm,k|k−1 − x̂k|k−1]. (57)

4) Estimate the Kalman gain

Wk = (Pxz,k|k−1/ST
zz,k|k−1)/Szz,k|k−1. (58)

5) Estimate the updated statex̂k|k as in (50).
6) Estimate the square-root factor of the corresponding

error covariance

Sk|k = Tria ([Xk|k−1 − WkZk|k−1 WkSR,k]).

(59)

Here we derive the square-root error covariance as follows:
Substituting (49) into (51) yields

Pk|k = Pk|k−1 − Pxz,k|k−1K
T . (60)

Some matrix manipulations in (49) lead to

KPT
xz,k|k−1 = KPzz,k|k−1K

T . (61)

Adding (60) and (61) together yields

Pk|k = Pk|k−1 − Pxz,k|k−1K
T + KPzz,k|k−1K

T

−KPT
xz,k|k−1. (62)

Using the fact thatPk|k−1 = Xk|k−1X
T

k|k−1 and substituting
(54), and (56) into (62) appropriately, we have

Pk|k = Xk|k−1X
T

k|k−1 − Xk|k−1Z
T

k|k−1K
T

+K(Zk|k−1Z
T

k|k−1 + SR,kST
R,k)KT

−KZk|k−1X
T

k|k−1

= [Xk|k−1 − KZk|k−1 KSR,k]

×[Xk|k−1 − KZk|k−1 KSR,k]T . (63)

Pk|k in (63) is the Joseph covariance in disguise. Hence, the
matrix triangularization of (63) leads to (59).
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