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Abstract—In this paper, we present a new nonlinear filter
for high-dimensional state estimation, which we have named
the cubature Kalman filter (CKF). The heart of the CKF is
a spherical-radial cubature rule, which makes it possible to
numerically compute multivariate moment integrals encountered
in the nonlinear Bayesian filter. Specifically, we derive a third-
degree spherical-radial cubature rule that provides a set of
cubature points scaling linearly with the state-vector dimension.
The CKF may therefore provide a systematic solution for high-
dimensional nonlinear filtering problems. The paper also includes
the derivation of a square-root version of the CKF for improved
numerical stability. The CKF is tested experimentally in two
nonlinear state estimation problems. In the first problem, the
proposed cubature rule is used to compute the second-order
statistics of a nonlinearly transformed Gaussian random variable.
The second problem addresses the use of the CKF for tracking
a maneuvering aircraft. The results of both experiments demon- o
strate the improved performance of the CKF over conventional
nonlinear filters.

Index Terms—Bayesian filters, Cubature rules, Gaussian
quadrature rules, Invariant theory, Kalman filter, Nonlinear
filtering.

I. INTRODUCTION

In this paper, we consider the filtering problem of a non-
linear dynamic system with additive noise, whose stateespa
model is defined by the pair of difference equations in disere
time [1]:

X =

Process equation:
Measurement equatiomy,

f(xp—1,up—1) + Vi1 (1)

2
wherex;, € R"= is the state of the dynamic system at discrete
timek; f: R" x R — R™ andh : R" x R™ — R"= are
some known functionsy, € R™« is the known control input,

which may be derived from a compensator as in Figz;1&
R™= is the measuremenfv;_,} and {wy;} are independent

h(xy,u,) + wy,

process and measurement Gaussian noise sequences with zer

means and covariancég,_; and Ry, respectively.

In the Bayesian filtering paradigm, the posterior density of
the state provides a complete statistical description @kthate
at that time. On the receipt of a new measurement at ime
we update the old posterior density of the state at tilne 1)
in two basic steps:

o Time updatewhich involves computing the predictive
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density
p(xx|Dp-1) = / P(Xk, Xp—1|Dg—1)dxp 1
Rna
= / p(Xg—1|Dg—1)
Rna
Xp(Xg[Xp—1, Up—1)dXp—1,  (3)
where Dy_; = {u;z}*7" denotes the history

of input-measurement pairs up to timé — 1);
p(xx—1|Dr—1) is the old posterior density at time
(k—1) and the state transition densjyx|xx—1, Ug—1)

is obtained from (1).

Measurement updatgyhich involves computing the pos-
terior density of the current state:

p(xx|Dx)

Using the state-space model (1)-(2) and Bayes’ rule we
have

p(xk|Dx)

p(xk|Di—1, Uk, 2i).

1
ap(xk"Dk—lvuk)p(zk"xkauk)v 4)

where the normalizing constanf is given by

Ck p(zx|Di—1, ug)

/ P(xXk|Di—1, up)p(zr Xk, ug ) dxp,.
Rnz

To develop a recursive relationship between predictive
and posterior densities in (4), the inputs have to satisfy
the relationship

p(ug|Dp—1,Xx) p(ug|Dp—1),

which is also called th@atural condition of contro[2].
This condition therefore suggests thiat_; has sufficient
information to generate the inpuix. To be specific,
the inputu can be generated using,;—,. Under this
condition, we may equivalently write

p(xk|Dr—1,u;) = p(xx|Dr—1). %)
Hence, substituting (5) into (4) yields
1
p(xx|Dr) = ap(xk|Dk—1)p(zk|kauk)a (6)

as desired, where

/ (kI Die Dz, wi ), (7)
Rna

C

and the measurement likelihood functip(e|x, ux) is
obtained from (2).

The Bayesian filter solution given by (3), and (6)-(7)



Process Equation

A Measurement Equation
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Fig. 1. Signal-flow diagram of a dynamic state-space modekdriy the feedback control input. The observer may employ a Saydilter. The label
7Z~1 denotes the unit delay.

provides a unified recursive approach for nonlinear filgerirmodels with state-vectors of size 20 or more. The divergence
problems, at least conceptually. From a practical persgect may occur for several reasons including (i) inaccurate or
however, we find that the multi-dimensional integrals imeal incomplete model of the underlying physical system, (iD in
in (3) and (7) are typically intractable. Notable excepsiamise formation loss in capturing the true evolving posterior gign

in the following restricted cases: completely, e.g., a nonlinear filter designed under the €ans

1) A linear-Gaussian dynamic system, the optimal solutigFSumption may fail to capture key features of a multi-
for which is given by the celebrated Kalman filter [3]. modal posterior density, (iii) high degree of nonlinea&stiin

2) A discrete-valued state-space with a fixed number the equations that describe the state-space model, and (iv)
states, the optimal solution for which is given by th@umerical errors. Indeed, each of the above-mentionedsfilte

grid filter (Hidden-Markov model filter) [4]. ha; its own domain of applicability anq it is doubtful that
3) A ‘Benes type’ of nonlinearity, the optimal solution for2 single filter exists that would be considered effective dor
complete range of applications. For example, the EKF, which
has been the method of choice for nonlinear filtering proklem

In general, when we are confronted with a nonlinear filteri 9 many practical applications for the last four decadeskeo
problem, we have to abandon the idea of seeking an optimaw

. X . . AR only in a ‘mild’ nonlinear environment owing to the first
analytical sol_utlor_1 and be content W't.h a suboptimal SOh_m order Taylor series approximation for nonlinear functions
to the Bayesian filter [6]. In computational terms, suboptim Lo : .
solutions to the posterior density can be obtained using oneThe motlva_tlon fo_r this paper has been_ to derive a more
of two approximative approaches: accurate nonlinear flltgr tha_t coulq be applied t_o solvg aeywd
range (from low to high dimensions) of nonlinear filtering
1) Local approach.Here, we derive nonlinear filters byproplems. Here, we take the local approach to build a new
fixing the posterior density to take priori form. For fjiter, which we have named thribature Kalman filte(CKF).
example, we may assume it to be Gaussian; the nonlinggjs known that the Bayesian filter is rendered tractablewhe
filters, namely, the extended Kalman filter (EKF) [7]a|| conditional densities are assumed to be Gaussian. $n thi
the central-difference Kalman filter (CDKF) [8], [9], thecase, the Bayesian filter solution reduces to computingimult
unscented Kalman filter (UKF) [10], and the quadraturgimensional integrals, whose integrands are all of the form
Kalman filter (QKF) [11], [12], fall under this first nonplinear functionx Gaussian The CKF exploits the proper-
category. The emphasis on locality makes the designds of highly efficient numerical integration methods kmow
the filter simple and fast to execute. as cubature rules for those multi-dimensional integragj.[1
2) Global approach.Here, we do not make any explicitwith the cubature rules at our disposal, we may describe the
assumption about the posterior density form. For examnderlying philosophy behind the derivation of the new filte
ple, the point-mass filter using adaptive grids [13], thgs nonlinear filtering through linear estimation thegriience
Gaussian mixture filter [14], and particle filters usinghe name ‘cubature Kalman filter. The CKF is numerically
Monte Carlo integrations with the importance samplingccurate and easily extendable to high-dimensional prele
[15], [16] fall under this second category. Typmglly, The rest of the paper is organized as follows: Section I
the global methods suffer from enormous computationgbrives the Bayesian filter theory in the Gaussian domain.
demands. Section Il describes numerical methods available for mume
Unfortunately, the presently known nonlinear filters menintegrals encountered in the Bayesian filter. The cubature
tioned above suffer from theurse of dimensionalitf17] Kalman filter, using a third-degree spherical-radial cubmt
or divergence or both. The effect of curse of dimensionalityle, is derived in Section IV. Our argument for choosing a
may often become detrimental in high-dimensional statesp third-degree rule is articulated in Section V. We go on tavaer

which is also tractable [5].



a square-root version of the CKF for improved numericd8. Measurement Update

stability in Section V1. The existing sigma-point appro@sh |t is well known that the errors in the predicted measure-
compared with the cubature method in Section VII. We applyients are zero-mean white sequences [2], [20]. Under the

the CKF in two nonlinear state estimation problems in Sectissumption that these errors can be well approximated by the
VIII. Section IX concludes the paper with a possible extensi Gaussian, we write the filter likelihood density

of the CKF algorithm for a more general setting. R
p(zx|Dr-1) = N(2k;Zijp—1, Pz ppi—1),  (12)

Il. BAYESIAN FILTER THEORY IN THE GAUSSIAN DOMAIN  where the predicted measurement

The key approximation taken to develop the Bayesian filter . _ / h N (xr: R P d
theory under the Gaussian domain is that the predictiveiyens _— (ks 1 )N (303 K1 Pt )l
p(xx|Dr—1) and the filter likelihood density(z;|Dy) are (13)
both Gaussian, which eventually leads to a Gaussian posteri
density p(xx| D). The Gaussian is the most convenient and
widely used density function for the following reasons: Pookpr = / h(xp, w)h? (x4, up)

« It has many distinctive mathematical properties. Al}ﬁ"m A p J

— The Gaussian family is closed under linear transfor- A(X’“’X’f‘q’f’l’ k1)
mation and conditioning. —Zp|k—1Zg 1 T Bk (14)

— Uncorrelated jointly Gaussian random variables afigence, we write the conditional Gaussian density of thetjoin

independent. state and the measurement
« It approximates many physical random phenomena by

nd the associated covariance

virtue of the central limit theorem of probability theoryp( xF 2] )" Dy ) — Xpolh—1 ),

(see Sections 5.7 and 6.7 in [19] for more details). Z|k—1

Under the Gaussian approximation, the functional recarsfo Pe—1 Posgp—1
the Bayesian filter reduces to an algebraic recursion dpgrat ( )

T
. . . . sz,k|k'—1 PZZ7k|k—1
only on means and covariances of various conditional dessit

encountered in the time and the measurement updates. (15)
where the cross-covariance
A. Time Update Pk = / thT(Xk,uk)
In the time update, the Bayesian filter computes the mean R s
%y1x_1 and the associated covarianBg,_, of the Gaussian x{v(x’“’f(;"“l’P’“““*l)dx’“
predictive density as follows: ~Xk|k—1Zk|k—1- (16)
Xpko1 = E(xx|Dyp_1), (8) On the receipt of a new measuremepf the Bayesian filter

computes the posterior densityxy|Dy) from (15) yielding
whereE is the statistical expectation operator. Substituting (1)

into (8) yields p(xk|Dr) = N (ki ik, Prjr), 7)
Xpp—1 = E[f(xp—1,u6-1) + vi—1|Dr—1].  (9) where
Becausev_; is assumed to be zero-mean and uncorrelated Xple = Kplp—1 + Wi(2Zr — Zgj-1) (18)
with the past measurements, we get Py = Pyppo1 — WP g1 Wi (19)
—1
)A(k|k,1 = E[f(xk_l,uk_l)\Dk_ﬂ Wk = PIZ7k|k*1Pzz,k|k—1' (20)
_ / £(3p_1, W1 )p(Xp_1| Di—1)dXp_1 If £(-) andh(-) are linear functions of the state, the Bayesian
Rna ’ ’ filter under the Gaussian assumption reduces to the Kalman
. £(x we_1) filter. Table | shows how quantities derived above are called
 Jree b TRt in the Kalman filtering framework:
XN (Xp—1; Xp—1)k—1, Pr—1jk—1)d%p—1, (10) TABLE |
where N(.,.) is the conventional symbol for a Gaussian 2 14 I fon C .
density. Similarly, we obtain the error covariance zz,klk—1 1N ( X ) nnovation t.ovariance
(2r — Zg|k—1) in (18) | Innovation
Pk|k—1 = E[(Xk — )Ack,‘k_l)(xk — )A(k‘k,_l)T‘lekfl] Wi in (20) Kalman gain
T
= /Rn (%1, up—1)f" (Xp—1,up-1) The signal-flow diagram in Fig. 2 summarizes the steps

involved in the recursion cycle of the Bayesian filter. The
heart of the Bayesian filter is therefore how to compute
Gaussian weighted integrals whose integrands are all of the

XN (Xk—15Xp—1jk—15 Pr—1jk—1)dXp—1

R fk—1%h 51+ Qr1- (11)
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Fig. 2. Signal-flow diagram of the recursive Bayesian filtader the Gaussian assumption, where ‘G-’ stands for 'Gaussia

form nonlinear functionx Gaussian densityhat are present weighting functionw(x) is in the form of a Gaussian density
in (10)-(11), (13)-(14) and (16). The next section desaiband the integrand(x) is well approximated by a polynomial
numerical integration methods to compute multi-dimenaionin x, the Gauss-Hermite quadrature rule is used to compute
weighted integrals. the Gaussian-weighted integral efficiently [12].
The quadrature rule may be extended to compute multi-
I1l. A REVIEW ON NUMERICAL METHODS FORMOMENT  dimensional integrals by successively applying it in a ¢ens
INTEGRALS product of one-dimensional integrals. Considemaipoint per
Consider a multi-dimensional weighted integral of the forffimension quadrature rule that is exact for polynomials of
degree up tal. We set up a grid ofn™ points for functional
I(f) = / f(x)w(x)dx, (21) evaluations and numerically compute ardimensional inte-

2 gral while retaining the accuracy for polynomials of degupe
where f(.) is some arbitrary functionZ C R" is the tod only. Hence, the computational complexity of the product
region of integration, and the known weighting functiojuadrature rule increases exponentially withand therefore
w(x) > 0forallx € 2. In a Gaussian-weighted integral suffers from the curse of dimensionality. Typically for> 5,
for example,w(x) is a Gaussian density and satisfies théde product Gauss-Hermite quadrature rule is not a reaonab
nonnegativity condition in the entire region. If the satuti choice to approximate a recursive optimal Bayesian filter.
to the above integral (21) is difficult to obtain, we may seek
numerical integration methods to compute it. The basic ta,
of numerically computing the integral (21) is to find a set o
points x; and weightsw; that approximates the integrél(f) To mitigate the curse of dimensionality issue in the product

. Non-Product Rules

by a weighted sum of function evaluations: rules, we may seek non-product rules for integrals of atyitr
m dimensions by choosing points directly from the domain ef in
I(f) ~ Z wif(X;). (22) tegration [18], [23]. Some of the well-known non-produdes.
— include randomized Monte Carlo methods [4], quasi-Monte

Carlo methods [24], [25], lattice rules [26] and sparse grid
[27]-[29]. The randomized Monte Carlo methods evaluate
the integration using a set of equally-weighted sampletpoin
drawn randomly, whereas in quasi-Monte Carlo methods and
A. Product Rules lattice rules the points are generated from a unit hyper-
For the simplest one-dimensional case (thatris= 1), cube region using deterministically defined mechanisms. On
we may apply the quadrature rule to compute the integithle other hand, the sparse grids based on Smolyak formula
(21) numerically [21], [22]. In the context of the Bayesiann principle, combine a quadrature (univariate) routine fo
filter, we mention the Gauss-Hermite quadrature rule; when thigh-dimensional integrals more sophisticatedly; theyecie

The methods used to fingk;,w; } can be divided intgroduct
rules and non-product rulesas described next.



important dimensions automatically and place more gridtsoi computed off-line and stored in advance to speed up the filter
there. Although the non-product methods mentioned hesgecution.

are powerful numerical integration tools to compute a given

integral with a prescribed accuracy, they do suffer from the IV. THE CUBATURE KALMAN FILTER

curse of dimensionality to certain extent [30]. . . . . S
y [30] As described in Section II, nonlinear filtering in the Gaus-

C. The proposed method sian domain reduces to a problem of how to compute inte-

in th ve B . L i al?rals, whose integrands are all of the fomonlinear func-
_n the recursive bayesian estlmat!on_para Igm, W€ afisn Gaussian densitySpecifically, we consider an integral
interested in non-product rules that (i) yield reasonalde

curacy, (ii) require small number of function evaluationsl aaOf the form

(iii) are easily extendable to arbitrarily high dimensiomhs I(f) = / f(x)exp(_xTx)dX (24)

this paper we derive an efficient non-product cubature rule "

for Gaussian-weighted integrals. Specifically, we obtain defined in the Cartesian coordinate system. To compute the
third-degree fully-symmetric cubature rule, whose comipye above integral numerically we take the following two steps:
in terms of function evaluations increases linearly witle th(i) We transform it into a more familiar spherical-radial
dimensionn. Typically, a set of cubature points and weightitegration form (ii) Subsequently, we propose a thirdrdeg
are chosen so that the cubature rule is exact for a setspherical-radial rule.

monomials ofdegreed or less, as shown by

A. Transformation

/Qﬂ(x)w(x)dx = iwi@(xi), (23)

In the spherical-radial transformation, the key step is a
change of variable from the Cartesian vectore R" to a
where 2(x) = {'x5* ... 2i; d; are non-negative integersradius, and direction vectoy as follows: Letx = ry with
and 337", d; < d. Here, an important quality criterion of yTy — 1 so thatx”x = r2 for r € [0, 00). Then the integral
a cubature rule is its degree; the higher the degree of {38)) can be rewritten in a spherical-radial coordinate esyst
cubature rule is, the more accurate solution it yields. Td firgg
the unknowns{x;,w;} of the cubature rule of degre¢ we oo
solve a set of moment equations. However, solving the system I(f) = / / f(ry)r"texp(—r?)do(y)dr, (25)
of moment equations may be more tedious with increasing 0 JUn
polynomial degree and/or dimension of the integration damawhereU,, is the surface of the sphere defined By = {y €
For example, anm-point cubature rule entailsn(n + 1) R"| yly = 1} ando(.) is the spherical surface measure or
unknown parameters from its points and weights. In genertlie area element ofi,,. We may thus write theadial integral
we may form a system offj—j,)! equations with respect to "00
unknowns from distinct monomials of degree up do For I = / S(ryr"texp(—r?)dr, (26)
the nonlinear system to have at least one solution (in this 0
case, the system is said to be consistent), we use at leaswBgre S(r) is defined by thespherical integralwith the unit
many unknowns as equations [31]. That is, we chonge be Weighting functionw(y) = 1:

m > % Suppose we obtain a cubature rule of degree 5 ¢ p 07

three forn = 20. In this case, we solvé2 2! — 1771 (r) _/ (ry)do(y). 27

nonlmehar m8%mer(1§oei%1!atlon's;hthz reskL)JItmg rulg may COI%'StThe spherical and the radial integrals are numerically com-

m(_)rret g\n tﬁ 21131 )fvtvhelg tet cu ?tulre Eow_lts.” nd Euted by the spherical cubature rule (Subsection B below)
0 reduce the size of the system ot algebraically INAePEl;y 1he” Gayssian quadrature rule (Subsection C below), re-

r%tpectively. Before proceeding further, we introduce a neimb
of notations and definitions when constructing such rules as
%tows:

markedly, Sobolev proposed tiresariant theoryin 1962 [32]
(see also [31] and the references therein for a recent atc
of the invariant theory). The invariant theory, in prin@pl ) ) .
discusses how to restrict the structure of a cubature rule by’ ?”cut_)ature rule (Ijs sa|dht<|) d-béully symmetricif the
exploiting symmetries of the region of integration and the ollowing two conditions hold:

weighting function. For example, integration regions sash 1) x € Z impliesy € 2, wherey is any point obtain-
the unit hypercube, the unit hypersphere, and the unit sixnpl able fromx by permutations and/or sign changes of
exhibit symmetry. Hence, it is reasonable to look for cubmtu the coordinates ok.

rules sharing the same symmetry. For the case considered 2) w(x)= w(y) on the regionZ. That s, all points in
above . = 20 andd = 3), using the invariant theory, we the fully symmetric set yield the same weight value.
may construct a cubature rule consistingef= 40) cubature For example, in the one-dimensional space, a poiatR
points by solving only a pair of moment equations (see Sectio  in the fully symmetric set implies that—z) € R and
V). w(z) = w(—2x).

Note that the points and weights of the cubature rule« In a fully symmetric region, we call a poinh as a
are independent of the integraf@x). Hence, they can be generatorif u = (uq,us,...,u.,0,...0) € R?, where



u; > uip1 >0, ¢ =1,2,...(r—1). The newu should our case, a comparison of (26) and (31) yields the weighting
not be confused with the control input function and the interval to be(z) = 2" 'exp(—2?) and
« For brevity, we suppresén — r) zero coordinates and [0, o), respectively. To transform this integral into an integral
use the notationuy,us, ... u,] to represent a completefor which the solution is familiar, we make another change of
fully symmetric set of points that can be obtained byariable viat = 22 yielding
permutating and changing the sign of the generator ) 1 /% -
in aI'I possible ways. Of course, the complete set entails / f(x)z" texp(—2?)dr = 5/ foeE—1
2" n! H icti 0 0
=05 points when{u;} are all distinct. For example,
[(1] E)R2 represents the following set of points: X exp(—t)dt, (32)
1 0 1 0 where f(t) = f(\/t). The integral on the right-hand side of
{ ( 0 > , ( 1 ) , ( 0 > , ( 1 > } (32) is now in the form of j[he weII-knqwn generalized Gau.ss—
Laguerre formula. The points and weights for the generdlize
Gauss-Laguerre quadrature are readily obtained as destuss

Here, the generator i

0 ) elsewhere [21]. A first-degree Gauss-Laguerre rule is ewact
o We use[uy,us, ... u,]; to denote the-th point from the f(¢) = 1,¢. Equivalently, the rule is exact fof(x) = 1,22;
setfug, ug, ... u.l. it is not exact for odd degree polynomials such jgs) =

x, 3. Fortunately, when the radial-rule is combined with the
spherical rule to compute the integral (24), the (combined)
spherical-radial rule vanishes for all odd-degree polyiatsn
We first postulate a third-degree spherical cubature rale thhe reason is that the spherical rule vanishes by symmetry fo
takes the simplest structure due to the invariant theory:  any odd-degree polynomial (see (25)). Hence, the spherical
2n radial rule for (24) is exact for all odd degrees. Followihist
/ f(y)do(y) = wa[u]i. (28) argument, for a spherical-radial rule to be exact for altdthi
Un i=1 degree polynomials ik € R", it suffices to consider the
The point set due tdu] is invariant under permutationsfirSt'degree g_eneralized Gauss—Laguerre rule entailinggles
and sign chang%s. For the above choice of the rule (28pint and weight. We may thus write
the monomials{y{*yy* ...y} with Y7, d; being an odd o0 -
integer, are intz{grlateQd exactly}j In ordgr: thiat this rulexaoefor f(@)a"lexp(—a?)de ~ wif(21), (33)

0
all monomials of degree up to three, it remains to requiré tha . :
the rule be exact for all monomials for which™ | d; — 0, 2. where the point:; is chosen to be the square-root of the root

Equivalently, to find the unknown parameteisand w, it of the flrst-orQer generalized Laguer.r.e polyqom!al, wh|sh :
: . . o orthogonal with respect to the modified weighting function
suffices to consider monomialy) = 1, and f(y) = v

due to the fully symmetric cubature rule: x4 ~Vexp(—x); subsequently, we find., by solving the
' zeroth-order moment equation appropriately. In this case,

B. Spherical Cubature Rule

_ I'(n/2) _ ' .
fly)=1: I — / do(y) = A, (29) have wi = %,_ andz; = \/g A detailed account of
. computing the points and weights of a Gaussian quadrature
A with the classical and nonclassical weighting function is
2. 2 _ 2 _ n
fly)=wi: wu” = /U yido(y) = n (30) presented in [33].
where the surface area of the unit sphelre = IE(T‘/T/F_;) with

L(n) = [," 2" 'exp(—z)dx. Solving (29)-(30) yieldsv = D. Spherical-Radial Rule
%, andu? = 1. Hence, the cubature points are located at the

intersection of the unit sphere and its axes. In this subsection, we describe two useful results that are

used to (i) combine the spherical and radial rule obtained
separately, and (ii) extend the spherical-radial rule for
C. Radial Rule a Gaussian weighted integral. The respective results are
We next propose a Gaussian quadrature for the radRifsented as two theorems:
integration. The Gaussian quadrature is known to be the
most efficient numerical method to compute a one-dimensiona Theorem 4.1:Let the radial integral be computed numeri-
integration [21], [22]. Anm-point Gaussian quadrature is exaceally by them,.-point Gaussian quadrature rule
up to polynomials of degreé2m — 1) and constructed as

follows: / Foyplexp(—r?)dr = Y aif(ri).
b m 0 i=1
/ f@yw@)de ~ Y wif(w:), (31)  Let the spherical integral be computed numerically bysthe
¢ =1 point spherical rule
wherew(z) is a known weighting function and non-negative me

on the intervalla,b]; the points {z;} and the associated / f(rs)do(s) = ijf(rsj)_
weights {w;} are unknowns to be determined uniquely. In Un =



Then, an(ms x m,)-point spherical-radial cubature rule is Making a change of variable via = v2Xy + u, we get
given by 1
f(X)N(x; 1, X)dx = / f(V22y +
[ 10N p. ) [ T2y )
xexp(—y"y)|V2X|dy
1

= — f(v22y + d

W/]R” (V23y + pjwi(y)dy

ms My

/ nf(x)exp(—xTx)dx ~ ) aibif(ris;). (34)

j=11i=1

Proof. Because cubature rules are devised to be exact for

1
= — f(v2Xx + d
o : re 1y ¢ a = /R" (V2Ex + p)w (x)dx
a subspace of monomials of some degree, we consider an . proves the theorem. O
integrand of the form

For the third-degree spherical-radial ruley, = 1 and
f(x) = afgd. g m, = 2n. Hence, it entails a total &f» cubature points. Using

n
the above theorems, we extend this third-degree spherical-

where {d;} are some positive integers. Hence, we write the o ryle to compute a standard Gaussian weighted iritegra
integral of interest as follows:

_ dy .d m
I(f) = /n £E111722,,. IN(f) = / f(x)N(x;O,I)dx ~ szf(gl%
For the moment, we assume the above integrand to be a =t
monomial of degreel exactly; that is,Y>"" | d; = d. Making where
the change of variable as described in Subsection A, we get & — /mm
I A B S R L |
0 U, w; = —,

m
We use the cubature-point si;, w; } to numerically compute
Decomposing the above integration into the radial and sphgftegrals (10)-(11), and (13)-(16) and obtain the CKF algo-
ical integrals yields rithm, details of which are presented in Appendix A. Notet tha
o a1 ) i d J the above cubature-point set is now defined in the Cartesian
/0 r exp(—r )dT/U Y1'ya® - yp"do(y).  coordinate system.

zdexp(—x x)dx.

1 =1,2,...m = 2n.
x exp(—r?)do(y)dr.

If) =

Applying the numerical rules appropriately, we have

my M
.d Cd1  d2 dn
( E alri)< E bjsjlsﬂ...sjn)
i=1 j=1

V. IS THERE A NEED FOR HIGHERDEGREE CUBATURE
RULES?

In this section, we emphasize the importance of third-degre
cubature rules over higher-degree rules (degree more than

1(f)

Q

= Zzaibj(nsﬂ)dl (risja)® ... (rism)™, three), when they are embedded into the cubature Kalman
=11 filtering framework for the following reasons:

as desired. As we may extend the above results for monomials Sufficient approximatiorthe CKF recursively propagates

of degree less thad, the theorem holds for any arbitrary the_ first two-order mom_ents, ”a”.‘e'y’ the mean and co-
integrand that can be written as a linear combination of variance of the state variable. A third-degree cubature rul

monomials of degree up tal (see also Section 2.8 in is also constructed using up to the second-order moment.
[18]) 0 ' Moreover, a natural assumption for a nonlinearly

transformed variable to be closed in the Gaussian domain
is that the nonlinear function involved is reasonably
smooth. In this case, it may be reasonable to assume that
the given nonlinear function can be well-approximated

Theorem 4.2:Let the weighting functions; (x) andws (x)
be wy(x) = exp(—xTx) and wz(x) = N(x;u,X). Then for
every square matrix/Y such thaty'vY =%, we have

1
f dx = f(v2¥x +
[ fouaix = — [ 62
X w1 (x)dx. (35)

Proof: Consider the left-hand side of (35). BecaLEésTa
positive definite matrix, we factorizE to be ¥ = vVIVY .

by a quadratic function near the prior mean. Because the
third-degree rule is exact up to third-degree polynomials,
it computes the posterior mean accurately in this case.
However, it computes the error covariance approximately;
for the covariance estimate to be more accurate, a cuba-
ture rule is required to be exact at least up to a fourth
degree polynomial. Nevertheless, a higher-degree rule
will translate to higher accuracy only if the integrand is
well-behaved in the sense of being approximated by a
higher-degree polynomial, and the weighting function is
known to be a Gaussian density exactly. In practice, these
two requirements are hardly métowever, considering in



the cubature Kalman filtering framework, our experienckgical procedure is to go for a square-root version of thé-CK

with higher-degree rules has indicated that they yield nloereafter calledsquare-root cubature Kalman filtegfSCKF).

improvement or make the performance worse. The SCKF essentially propagates square-root factors of the
« Efficient and robust computatio.he theoretical lower predictive and posterior error covariances. Hence, wedavoi

bound for the number of cubature points of a third-degrematrix square-rooting operations. In addition, the SCKifersf

centrally symmetric cubature rule is given by twice théhe following benefits [38]:

dimension of an integration region [34]. Hence, the pro- , preservation of symmetry and positive (semi)definiteness

posed spherical-radial cubature rule is considered to be of the covariance.

the most efficient third-degree cubature rule. Because the, |mproved numerical accuracy owing to the fact that

number of points or function evaluations in the proposed  ,(5) = /x(STS), where the symbok denotes the

cubature rules scales linearly with the dimension, it may  condition number.

be considered as a practical step for easing the curse of poupled-order precision.

dimensionality.

According to [35] and Section 1.5 in [18], a ‘good’
cubature rule has the following two properties: (i) all th

To develop the SCKF, we use (i) the least-squares method
for the Kalman gain and (ii) matrix triangular factorizatgor

: N ; ) . .. | triangularizations (e.g., the QR decomposition) for cam@ce
cubature points lie inside the region of integration, and (i ) .
. " dates. The least-squares method avoids to compute a&matri
all the cubature weights are positive. The proposed ru e L . N .
. " . . . Inversion explicitly, whereas the triangularization edssly
entails 2n equal, positive weights for an-dimensional ; .
. computes a triangular square-root factor of the covariance
unbounded region and hence belongs to a good cubaturﬁq ! ; )
. ! . without square-rooting a squared-matrix form of the covari
family. Of course, we hardly find higher-degree cubature : .
. . . ance. Appendix B presents the SCKF algorithm, where all of
rules belonging to a good cubature family especially f% :
. : i : . e steps can be deduced directly from the CKF except for the
high-dimensional integrations. ! . ) L
. . ) update of the posterior error covariance; hence we derive it
In the final analysis, the use of higher-degree cubaturesrulg o, ared-equivalent form of the covariance in the appendix
in the design of the CKF may often sabotage its performance.y 4 computational complexity of the SCKF in terms of
flops, grows as the cube of the state dimension, hence it
VI. THE SQUARE-ROOT CUBATURE KALMAN FILTER is comparable to that of the CKF or the EKRVe may
This section addresses (i) the rationale for why we neéeduce the complexity significantly by (i) manipulating spa
a square-root extension of the standard CKF and (ii) hosity of the square-root covariance carefully and (i) cadin
the square-root solution can be developed systematidally. triangularization algorithms for distributed processwemory
two basic properties of an error covariance matrix are @chitectures.
symmetry and (ii) positive definiteness. It is importantttha
we preserve these two properties in each update cyclg. The VII. A COMPARISON OFUKE WITH CKE
reason is that the use of a forced symmetry on the solution of _
the matrix Ricatti equation improves the numerical stgpili  Similarly to the CKF, the unscented Kalman filter (UKF)
of the Kalman filter [36], whereas the underlying meaninty another approximate Bayesian filter built in the Gaussian
of the covariance is embedded in the positive definiteneﬁ@.mam. bUt_USGS a completely different set of determmlstl
In practice, due to errors introduced by arithmetic operati Weighted points [10], [39]. To elaborate the approach taken
performed on finite word-length digital computers, these twthe UKF, consider an-dimensional random variabtehaving
properties are often lost. Specifically, the loss of the tp@si & symmetric prior densityI(x) with mean,. and covariance
definiteness may probably be more hazardous as it stops thewithin which the Gaussian is a special case. Then a set of
CKF to run continuously. In each update cycle of the CKK2n + 1) sample points and weight$t;, w;}7", are chosen
we mention the following numerically sensitive operatitimst to satisfy the following moment-matching conditions:
may catalyze to destroy the properties of the covariance: n
« Matrix square-rooting (see (38) and (43)). ZwiXi = pu
o Matrix inversion (see (49)). i=0

o Matrix squared-form amplifying roundoff errors (see 2n T
(42), (47) and (48)). YowilXi—pe) (X —pe) = S
« Substraction of the two positive definite matrices present =0
in the covariant update (see (51)). Among many candidate sets, one symmetrically distributed

Moreover, some nonlinear filtering problems may be numeg&ample point set, hereafter called igma-point setis picked
cally ill. For example, the covariance is likely to turn oattte UP as follows:

non-positive definite when (i) very accurate measuremenats a Y- A K
processed, or (ii) a linear combination of state vector comp 0= 0 n+kK
nents is known with greater accuracy while other combimatio T e 1
are essentially unobservable [37]. i=nt (Yt w)n); i 2(n + k)
As a systematic solution to mitigate ill effects that ma 1
) p ) PR

eventually lead to an unstable or even divergent behavier, t nti = 2(n+ k)’



wherei = 1,2,...n and thei-th column of a matrixA4 is
denoted by(A);; the parameter is used to scale the spread of
sigma points from the prior mean hence the name “scaling
parameter”. Due to its symmetry, the sigma-point set matche
the skewness. Moreover, to capture the kurtosis of the prior
density closely, it is suggested that we choede bex = (3—

n) (Appendix | of [10], [39]). This choice preserves moments
up to the fifth order exactly in the simple one-dimensional
Gaussian case.

In summary, the sigma-point set is chosen to capture a

number of low-order moments of the prior densityx) as
correctly as possible.

Then the unscented transformations introduced as a
method of computing posterior statistics gf € R™ that
are related tax by a nonlinear transformatiog = f(x). It
approximates the mean and the covariance bf a weighted
sum of projected sigma points in tl™ space, as shown by

Ely] = - f(x)TI(x)dx
2n
~ Z wi Vi (36)
=0
covly] = [ (#60) ~ Blyl)(£6x) - Ely) " TIGx)dx

2n

> wi(Vi - Ely) (Vi - Ely])”, (37

=0

where); = f(X;), i = 0,1,...2n. The unscented transforma-
tion approximating the mean and the covariance, in pagicul

is correct up to @-th order nonlinearity when the sigma-point
set correctly captures the firgtorder prior moments. This can
be proved by comparing the Taylor expansion of the nonlinear

function f(x) up to p-order terms and the statistics computeﬁ'gJ

by the unscented transformation; heffex) is expanded about
the true (prior) mean, which is related tax via x = 1+ e

-2 2

(a) Sigma point set for the UKF

2 2

(b) Third-degree spherical-radial cubature point set fier CKF

. 3. Two kinds of distributions of point sets in two-dim@rsl space.

with the perturbation erroe ~ A/(0, X) [10]. nation of a monomial of degree at most three and some other

The UKF and the CKF share a common property- they u§igher odd-degree monomials. Then we may readily guarantee
a weighted set of symmetric points. Fig. 3, shows the sprelitt the error, incurred in computing the integralfef) with
of the weighted sigma-point set and the proposed cubatuf@SPECt t0 a Gaussian weight function, vanishes. As in the
point set, respectively in the two-dimensional space; thiatp Sigma-point approach, the functidii.) does not need to be
and their weights are denoted by the location and the heighg!l approximated by the Taylor polynomial about a prior

of the stems, respectively. However, as shown in Fig. 3, th&jfan.

are fundamentally different. To elaborate further, wedethe
cubature-point set built into the new CKF with totally diféat
philosophy in mind:

« We assume the prior statisticsoto be Gaussian instead
of a more general symmetric density.

« Subsequently, we focus on how to compute the posterior
statistics ofy accurately. To be more specific, we need to
compute the first two-order momentsygxactly because
we embed them in a linear update rule.

In this line of thinking, the solution to the problem at hand
boils down to the efficient third-order cubature rule. As in
the sigma-point approach, we do not treat the derivation of a
point set for the prior density and the computation of paster
statistics as two disjoint problems.

Moreover, suppose a given functidi.) is a linear combi-

po
Cu

Finally, we mention the following limitations of the sigma-
int set built into the UKF, which are not present in the
bature-point set built into the CKF:

« Numerical inaccuracyTraditionally, there has been more
emphasis on cubature rules having desirable numerical
quality criterion than on the efficiency. It is proven
that the cubature rule implemented in a finite-precision
arithmetic machine introduces a large amount of roundoff
errors when the stability factor defined 'i' is

larger than unity [18], [28]. We look at formulas (36)-

(37) in the unscented transformation from the numerical

integration perspective. In this case, whegoes beyond

three, 7 |wi| = (& — 1) and 32" w; = 1. Hence,
the stability factor scales linearly with, thereby induc-
ing significant perturbations in numerical estimates for
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Fig. 4. Effect of the powep on the shape off = (\/1 + xTx)?.

moment integrals. VIIl. SIMULATIONS

« Unavailability of a square-root solutionMe perform the | thjs section, we report the experimental results obthine
square-rooting operation (or Fhe Choles.ky factonza‘uor@)y applying the CKF when applied to two nonlinear state-
on the error covariance matrix as the first step of boftyiimation problems: In the first high-dimensional illasire
the time and measurement updates in each cycle of b@ifheriment, we use the proposed cubature rules to estimate
the UKF and the CKF. From the implementation poinfhe mean and variance of a nonlinearly transformed Gaussian
of view, the square-rooting is one of the most numeriznqom variable. In the second application-oriented éxper
cally sensitive operations. To avoid this operation in gent we use the CKF to track a maneuvering aircraft in two
systematic manner, we may seek to develop a square-rggferent setups- in the first setup, we assume the measateme

version of the UKF. Unfortunately, it may be impossiblg,gise to be Gaussian, whereas in the second setup, it takes a
for us to formulate the square-root UKF that enjoyga,ssian mixture model.

numerical advantages similar to the SCKF. The reason

is that when a negatively weighted sigma point is used . ) . )

to update any matrix, the resulting down-dated matrie: lustrative high-dimensional example

may possibly be non-positive definite. Hence, errors may As described in Section I, the CKF uses the spherical-tadia

occur when executing a ‘pseudo’ square-root version ofibature rule to numerically compute the moment integrals o

the UKF in a limited word-length system (see the pseudbe formnonlinear functionx Gaussian The more accurate

square-root version of the UKF in [40]). the estimate is, the quicker the filter converges to the corre
« Filter instability. Given no computational errors due tcsState. We consider a general form of the multi-quadric fianct

an arithmetic imprecision, the presence of the negative ———\p

weight may still prohibit us from writing a covariance y = ( 1 +XTX)

matrix P in a squared form such tha® = SS”. To wherex is assumed to be am-dimensional Gaussian random

state it in another way, the UKF-computed covariancgariable with mean:, and covariancé. In this experimentp

matrix is not always guaranteed to be positive definitgakes valuepy = 1,—1,—3, and -5 (Fig. 4). Our objective

Hence, the unavailability of the square-root covariande to use four different methods, namely (i) the first-order

causes the UKF to halt its operation. This could be disaylor series-based approximation built into the EKF, fii®

astrous in practical terms. To improve stability, heucistiunscented transformation (with= 3 —n) built into the UKF,

solutions such as fudging the covariance matrix artif{iii) the cental difference method with a step-size\é$ built

cially (Appendix Il of [10]) and the scaled unscentednto the CDKF and (iv) the spherical-radial rule built intoet

transformation [41] are proposed. CKF, to compute the first two order (uncentralized) moments

— A/ Ty \P .
Note that the parameter of the sigma-point set may be Ely) = /n( L+ XTX)PN (% p, )X
forced to be zero to match the cubature-point set. Unfortu- ) Torp
nately, in the past there has been no mathematical jusiificat andE(y”) = /n(l + X X)PN (X; p, 2)dx

or motivation for choosings = 0 for its associated inter-
pretabilities. Instead, more secondary scaling parasépart
from x) were introduced in an attempt to incorporate know!
edge about the prior statistics in the unscented transtavma
[41].

for different dimensions and prior information. We geto be
gero because the function has a significant nonlinearity nea
the origin. Covariance matrices are randomly generateld wit
diagonal entries being all equal 4§ for 50 independent runs.
The Monte Carlo (MC) method with 10,000 samples is used
To sum up, we claim that the cubature approach is mot@ obtain the optimal estimate. To compare the filter esthat
accurate and more principled in mathematical terms than thimtistics against the optimal statistics, we use the lahb
sigma-point approach. Leibler (KL) divergence assuming the statistics are Gaussi
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Fig. 5. Ensemble-averaged KL divergence plots whgn= 1. Fig. 6. Ensemble-averaged KL divergence plots whes 50.

irrespective ofn, thereby failing to capture global properties
Of course, the smaller the KL divergence is, the better tloé the function. On the other hand, the cubature points are
filter estimate is. located at a radius that scales wi{fiz. Note also that the

Figs. 5(a) and 5(b) show how the KL divergence of ththird-degree spherical-radial rule is exact for polyndmiaf
CDKF and CKF estimates varies, respectively when the dll 0dd degrees even beyond three (due to the symmetry of the
mensionn increases fow? = 1. The EKF computes a zero Spherical rule) and this may be another reason for the isecka
variance due to zero gradient at the prior mean; the unsten@curacy obtained using the CKF.
transformation often fails to yield meaningful results doe  Figs. 6(a) and 6(b) show how the KL divergence of the
the numerical ills identified in Section VII; hence, we do nofDKF and CKF estimates varies, respectively when the prior
present the results of the EKF and UKF. As shown in Figs. 5(4§fiancecg increases for a dimensiom = 50. As expected,
and 5(b), the CDKF and the CKF estimates degrade when fié increase in the prior variance; causes the posterior
dimensionn increases. The reason is that thalimensional Variance to increase. Hence, all filter estimates degradieeor
state vector is estimated from a scalar measurement, éwesp<L divergence increases when we increage as shown in
tive of n. Moreover, when the nonlinearity of the multi-quadri¢i9- 6. However, for all values of, again we find that the
function becomes more ‘severe’ (whenchanges from 1 to CKF estimate is superior to the CDKF and the reason can
-5), we also see the degradation as expected. However, for§ attributed to the facts just mentioned. The CDKF estimate
cases of considered herein, the CDKF estimate is inferior t Seen to be more degraded and deviate significantly from
the CKF and the reason is as follows: Consider the integraft¢ CKF estimate when the prior variance is larger and the
obtained from the product of a multi-quadric function angimension is higher.
the standard Gaussian density over the radial variableadt h )

a peak occurring at distance from the origin proportional @- Target tracking
v/n. The central-difference method approximates the nonlinea Scenario 1We consider a typical air-traffic control scenario,
function by a set of grid-points located at a fixed distancghere an aircraft executes maneuvering turn in a horizontal
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location.

plane at a constant, but unknown turn r&te Fig. 7 shows

a representative trajectory of the aircraft. The kinensat€
the turning motion can be modeled by the following nonlinear
process equation [42]:

sinoT

—coxe
1 9 0 —(=7F) 0
0 coT" O —s_mQT 0 Time, k

Xp = 0 L0 sSior 0 | XK1 (b) RMSE in velocity.
0 sinQT" 0 cofT 0
0 0 0 0 1
+ Vi,

where the state of the aircraft=[¢ ¢ 1 7 Q]T; ¢ andy
denote positions, andl and 7 denote velocities in the: and
y directions, respectively]" is the time-interval between two
consecutive measurements; the process neise- AV (0, Q)
with a nonsingular covarianc® = diaggsM oM .7,

where
T3 T2 %0 éo 7‘0 a‘o s;o 100
3 E Time, k
\/1 frd 3 2 ’

T2 .
= T (c) RMSE in turn rate.

The scalar parameterg and ¢, are related to process noiserig. 8. True RMSE (solid thin- CDKF, solid thick- CKF) Vs. #it-estimated
intensities. A radar is fixed at the origin of the plane an@MSE (dashed thin- CDKF, dashed thick- CKF) for the first scén
equipped to measure the range,and bearingd. Hence, we

write the measurement equation _ _
and the associated covariance

r / 2_|_ 2
( 92 > = ( taskl(g_g'ﬁ > + W, Py = diag100m?* 10m*s~? 100m? 10m*s>
—2
where the measurement noise, ~ A(0,R) with R = L00mrad's 2],
diago? 7). The initial state estimatex,,, is chosen randomly from
Data: N (Xo, Py)0) in each run; the total number of scans per run
is 100.
T = Is To track the maneuvering aircraft we use the new square-
Q = -3 root version of the CKF for its numerical stability and compa
¢ = 01m’s?? its performance against the EKF, the UKF, and the CDKF. For
_ —4—3 a fair comparison, we make 250 independent Monte Carlo
¢ = 175x107%s : .
runs. All the filters are initialized with the same condition
op = 10m each run.
o9 = +/10mrad Performance metricsTo compare various nonlinear filter

performances, we use the root-mean square error (RMSE)
of the position, velocity and turn rate. The RMSE vyields a
Xo = [1000m 300ms~! 1000m Ooms™* — 3°s7 17, combined measure of the bias and variance of a filter estimate

True initial state
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(a) RMSE in position.

We define the RMSE in position at tinie as

N
RMSEpogk) = Z + (g = )?),

where (€2, 77) and (£, 77) are the true and estimated posi-
tions at then-th Monte Carlo run. Similarly to the RMSE
in position, we may also write formulas of the RMSE in
velocity and turn rate. As a self-assessment of its estomati ‘ ‘
errors, a filter provides an error covariance. Hence, weidens Time, k
the filter-estimated RMSE as the square-root of the averaged (b) RMSE in velocity.
(over Monte Carlo runs) appropriate diagonal entries of the
covariance. The filter estimate is refereed to be consistent
the (true) RMSE is equal to its estimated RMSHEe may
expect the CKF to be inconsistent or divergent when its desig
assumption that the conditional densities are all Gausssan
violated.

Figs. 8(a), 8(b) and 8(c) show the true and estimated RMSEs
in position, velocity and turn rate, respectively for the KID
and the CKF in an interval of 50-100s. Owing to the fact that
the EKF is sensitive to information available in the prewou
time step, it diverges abruptly after 70-80s. The UKF using
xk = (—2) was found often halt its operation for the reasons
outlined in Section VII. For these reasons, we do not present = o0 ® ek " % 100
the results of the EKF and the UKF here. As can be seen from ,
Figs. 8(a), 8(b) and 8(c), the CKF marginally outperforms (c) RMSE in turn rate.
the CDKF. Moreover, the true RMSEs closely follow the
RMSEs estimated by both filters; hence they are consistent.
The overall results obtained for the CDKF and the CKEig.10. True RMSE (solid thin- CDKF,_solidthick-CKF)Vs.tﬁr-estir_nated
conform to our expectation because the considered scen&&>C (dashed thin- CDKF, dashed thick- CKF) for the secorahado.
is a low-dimensional nonlinear-Gaussian filtering prohlem

Scenario 2We go on to extend the above problem to see
how the estimation errors affect the CKF when the Gaussihighly asymmetric. The filters use an equivalent measurémen
nature of the problem is explicitly violated. To accomplibls, noise covariance of the above Gaussian mixture model. Other
we deliberately make the measurement naigeto follow a data remain the same as before.

Gaussian mixture of the form: Not surprisingly, as can be seen from Figs. 10(a), 10(b)
~ 05N(0,R 0.5N (0, Ry), and 10(c), bot_h filters _exh|b|t d|vergence due to a mlsmatgh
Wk ( ks ( 2) between the filter-design assumption and the non-Gaussian

where nature of the problem. During the divergence period, the tru
100m2 15m mrad RMSEs of both filters exceed their corresponding estimated

Ry ( 15m mrad  10mrad ) RMSES. AIthou'gh there is little significant differ.ence pe@m
Em? 10m mrad covariance estimates produced by the two filters, it is en-
Ry = couraging to see that unlike the CDKF, the CKF improves
10m mrad 100mrad®

the performance after a short period of divergence. To put it
As shown in Fig. 9, the measurement noise density is naw another way, the CKF does not permit estimation errors
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to accumulate continuously, thereby avoiding an immediate be designed in a nonlinear setting, under the Gaussian
‘blow-up’ in this scenario. assumption.

In a nutshell, the CKF is a new and improved algorithmic
IX. CONCLUSION addition to the kit of tools for nonlinear filtering.

For a linear Gaussian dynamic system, the Kalman filter
provides the optimal solution for the unknown state in the
minimum mean squared-error sense. In general, howevér, rea
world systems are plagued by nonlinearity, non-Gaussianit
or both. In this context, it is difficult to obtain a closed- Time Update
form solution for the state estimate, and therefore SOMe1) Assume at timek that the posterior density function
approximations have to be made. Consequently, finding a more
accurate nonlinear filtering solution has been the subjéct o
intensive research since the celebrated work on the Kalman
filter. Unfortunately, the presently known nonlinear fifter Poije—1 = Sk—1k=155 _1jp_1- (38)
which are exemplified by the extended Kalman filter, the )
unscented Kalman filter, and the quadrature Kalman filter,
experience divergence or the curse of dimensionality on.bot Xik—1k=1 = Sk—1jk—1& +Xp—1jk—1, (39)

In this paper, we derived a more accurate nonlinear filter
that could be applied to solve high-dimensional nonlinear
filtering problems with minimal computational effort. The

APPENDIXA
CKF ALGORITHM

p(Xk—1|Dr-1) = NXp—1jk—1, Pe—1jk—1) is known.
Factorize

Evaluate the cubature points (i=1,2,...,m)

wherem = 2n,,.
3) Evaluate the propagated cubature points (i=1,2,...,m)

Bayesian filter solution in the Gaussian domain reduces to Xf,k\kq = F(Xip1jp—1, We—1). (40)

the problem of how to compute multi-dimensional integrals, . )

whose integrands are all of the formonlinear function x Estimate the predicted state

Gaussian densityHence, we are emboldened to say that 1

the cubature rule is the method of choice to solve this Xplk—1 = szikw_y (41)
=1

problem efficiently. Unfortunately, the cubature rule haei
overlooked in the literature on nonlinear filters since tithb ~ 5) Estimate the predicted error covariance
of the celebrated Kalman filter in 1960. We have derived a m

third-degree spherical-radial cubature rule to computegirals Pyt = 1 Z X?k\k_1xf£|k_1 _ f(k‘kilﬁg‘k_l
numerically. We embedded the proposed cubature rule ieto th mi= ’
Bayesian filter to build a new filter, which we have named the +Qr—1. (42)

cubature Kalman filter (CKF).
The cubature rule has the following desirable properties:

« The cubature rule is derivative-free. This useful property
helps b_rqadgn. the appllcabllhty of the CKF to situations Pupr = Sk\k715kT|k71~ (43)
where it is difficult or undesirable to compute Jacobians . .
and Hessians. For example, consider a model configured?) Evaluate the cubature points (i=1,2,...,m)

_by various model units ha_lvmg compllcat_ed nonlinearities; Xikfio1 = Super& + Kepeor. (44)
it may be inconvenient if we are required to calculate
Jacobians and Hesssians for the resulting model. Addi-3) Evaluate the propagated cubature points (i=1,2,...,m)
tionally, a derivative-free computation allows us to write

' Zipik—1 = h(X; . 45
prepackaged, or ‘canned’ computer programs. i,k|k—1 (Xik|k—1, Uk) (45)

o The cubature rule entaildn cubature points, where 4) Estimate the predicted measurement
is the state-vector dimension; hence, we are required L
to compqteQn functional evaluations gt each updatg Zpp—1 = _Zzﬁklkﬂ. (46)
cycle. This suggests that the computational complexity m=
scales linearly with the dimension in terms of the
functional evaluations whereas it grows cubically in terms o
of flops Hence, the CKF eases the burden on the curse of |, _ 1 Z 7. T _s 57
dimensionality, but, by itself, it is not a complete remedy 2z klk=1 m GkIk=1%iklk—1 7 Zklk—1%k]k—1
for th_e dimensionality issue. . +R,. (47)

o A third-degree cubature rule has a theoretical lower _ _ .
bound of2n cubature points. We proved that a cubature 6) Estimate the cross-covariance matrix

Measurement Update
1) Factorize

Estimate the innovation covariance matrix

rule of degree three is optimal when embedded in the m
Bayesian filter. Consequently, the CKF using the pro- Prkp—1 = Zwixi7k|k,1zg:k|k_1 —ik\kqif\k,l-
posed spherical-radial cubature rule may be considered as i=1

an optimal approximation to the Bayesian filter that could (48)



7) Estimate the Kalman gain

Wi = Pa;z,k\k—lp;,lkw_l- (49)
8) Estimate the updated state
Xk = Xplk—1 + Wr(zp — Zgp—1).  (50)
9) Estimate the corresponding error covariance
Py = Pypo1 — WiPo g Wil (51)
APPENDIX B

SCKF ALGORITHM

Below, we summarize the square-root cubature Kalman
filter (SCKF) algorithm writing the steps explicitly when
they differ from the CKF algorithm. We denote a general
triangularization algorithm ( e.g., the QR decompositias)
S = Tria(A), where S is a lower triangular matrix. The
matricesA and S are related as follows: Lek be an upper
triangular matrix obtained from the QR decomposition oh
AT then S = RT. We use the symbol / to represent the
matrix right divide operator. When we perform the operation
A/B, it applies the back substitution algorithm for an upp
triangular matrix B and the forward substitution algorithm
for a lower triangular matrix3:

Time Update
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3) Estimate the cross-covariance matrix

Posiih—1 = Zik—1Zik1 (56)
where the weighted, centered matrix
1
Zrik-1r = —[Xikk-1 — Xglk—1 Xoklk—
k|k—1 \/ﬁ[ 1,k|lk—1 — Xk|k—1 2,k|k—1

~Xplk—1 - - X k=1 — Xg|k—1]- (B7)
4) Estimate the Kalman gain
W, = (Pzz,k|k—1/Si«,k|k71)/szz,k\k—1~ (58)

5) Estimate the updated statg;, as in (50).
6) Estimate the square-root factor of the corresponding
error covariance

= Tra([Zrr—1—WkZir—1 WrSri])-

(59)

Skk

Here we derive the square-root error covariance as follows:

Substituting (49) into (51) yields

Py = Pip—1— P KT (60)
epOMe matrix manipulations in (49) lead to
KPl yho1 = KPejpaKT. (61)
Adding (60) and (61) together yields
Pur = Pepe1 — Poopp1 KT+ KP. 1 KT
—KP - (62)

1) Skip the factorization (38) because the square-rootef th

error covariancey_1x—1, is available. Compute from Using the fact thatP;,_, = '%Mk*l'%fkjfkfl and substituting

(39)-(41).
2) Estimate the square-root factor of the predicted error
covariance
Spik—1 = Ta([Zy—1 Squw-1]).  (52)

whereSg —1 denotes a square-root factor@f,—, such
ththk,l = Skaflsg,k—l and the _vveighted, centered
(prior mean is subtracted off) matrix

1
* _ * ~ *
Zpk—1 = _\/ﬁ[ Lklk—1 — Xklk—1 X3 pjp—1

_fck‘k,1 e X:n,k|k—1 — f‘k|k—1]- (53)

Measurement Update

(54), and (56) into (62) appropriately, we have

Py Lk—1Zfi—1 — Zap-1 21 KT
+K (21 ngUc—l + SR7k'SI€,k)KT
~K Zyh 1 B

[(Zhik—1 — K 21

X[ Zrjp—1 — K 21

KSg k]

KSri]*.  (63)

Py, in (63) is the Joseph covariance in disguise. Hence, the
matrix triangularization of (63) leads to (59).
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(44)-(46).
2) Estimate the square-root of the innovation covariance
matrix
(1]
Sookk—1 = Tna([Zur—-1 Srxl) (54)

where Sy ;. denotes a square-root factor Bf, such that (2
Ry = Sr1Sk,, and the weighted, centered matrix

1 .
Zhjk— = —\/m[z1,k|k—1—zk|k—1 Z3 klk—1

(3]

[4]

X X 5
~Zklk—1 - Zm k-1 — Zk|k—1]- (55) Bl
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