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Abstract

A variety of dependency formalisms have been studied for improving data quality. To treat these de-
pendencies in a uniform framework, we propose a simple language, Quality Improving Dependencies
(QIDs). We show that previous dependencies considered for data quality can be naturally expressed as
QIDs, and that different enforcement mechanisms of QIDs yield various data repairing strategies.

1 Introduction
Data quality has been a longstanding line of research for decades, and has become one of the most pressing
challenges for data management. As an example, it is estimated that dirty data costs US companies alone 600
billion dollars each year [11]. With this comes the need for studying techniques for improving data quality.

A variety of dependency formalisms have recently been studied to specify data quality rules, e.g.,
functional dependencies (FDs) [1], conditional functional dependencies (CFDs) [6, 14], order dependencies
(ODs) [22, 29, 23], currency dependencies (CDs) [17], sequential dependencies (SDs) [25], matching depen-
dencies (MDs) [18, 13, 4] and editing rules (eRs) [19]. These dependencies have proved useful in detecting and
correcting inconsistencies in relational data. However, given these different formalisms, one would naturally ask
which dependencies should be used in an application? Is a data quality rule expressible in one formalism but
not in another? Is it more expensive to use one formalism than another? How should dependencies be enforced
to repair data? These suggest that we study these formalisms in a comparative basis.

This paper takes a first step toward answering these questions. We propose a simple dependency language,
referred to as Quality Improving Dependencies (QIDs), and show that all the dependencies mentioned above
can be expressed as QIDs. That is, QIDs provide a uniform language to characterize these formalisms. We also
introduce different mechanisms for enforcing QIDs as data quality rules, via revisions of the chase process [1].
We show that data repairing algorithms [5, 9, 19, 20] are just implementations of these mechanisms.

In the rest of the paper, we introduce QIDs (Section 2), and show that dependencies studied for data quality
are special cases of QIDs (Section 3). In addition, we present data quality problems in terms of QIDs (Section 4),
emphasizing data repairing as QID enforcement. We also give an overview of recent work on these issues.

2 Quality Improving Dependencies
We define QIDs in terms of a notion of comparison relations, which compare pairs of tuples based on some of
their characteristics. Below we first introduce comparison relations, and then define QIDs.
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2.1 Comparison Relations
Consider a database schema R = (R1, . . . , Rm), in which each relation schema Ri is specified with a set of
attributes, denoted by Ri

(
tid, A1, . . . , An(i)

)
. Here tid is a tuple identifier and the domain of attribute Aj is

denoted by dom(Aj). We say that two attributes Aj and Ak are compatible if dom(Aj) = dom(Ak). An instance I
of R is (I1, . . . , Im), where for i ∈ [1,m], Ii is finite set of tuples t with t[Aj ] ∈ dom(Aj) for each Aj ∈ Ri.

A comparison relation is simply a binary relation ∼ ⊆ dom(tid )× dom(tid ). In practice, it is often used to
group tuples (identified by their tid’s) by comparing certain attributes (properties) of the tuples. More specifi-
cally, let X be a set of attributes {A1, . . . , Ak}, and B be a “binary” relation B ⊆ dom(X)× dom(X) that com-
pares the X attributes of tuples, where dom(X) = dom(A1)×· · ·×dom(Ak). A comparison relation via (X,B),
denoted by ∼X

B , is defined such that for any tuples t1 and t2 that contain attributes X , ∼X
B (t1[tid], t2[tid]) iff

B(t1[X], t2[X]). Let I be an instance of R and I be the set of all tuples in I that contain attributes X . Then
∼X

B :=
{
(tid1, tid2) | ti ∈ I, ti[tid ] = tidi, i = 1, 2, B(t1[X], t2[X])

}
for instance I. That is, ∼X

B relates pairs of tuples by only considering the information present in their X
attributes. Observe that a pair of tuples related by ∼X

B may possibly come from different relations in I.
As an example, we consider comparison relations ∼A

B defined on an attribute A, where B is a variation of
the equality relation on A, i.e., a binary relation in dom(A)× dom(A) that is reflexive, symmetric and transitive.

Example 1: One can define ∼A
B to group tuples based on the equality of a certain attribute, via the following B:

(1) eqA = {(a, a) | a ∈ dom(A)}, i.e., for any pair (t1, t2) of tuples, ∼A
eqA

(t1[tid], t2[tid]) as long as t1 and t2
have the same A attribute value. For a specific constant c ∈ dom(A), one can define B to be eqc = {(c, c)}, such
that ∼A

eqc
collects all tuples t in which attribute t[A] is restricted to be the predefined constant c.

(2) eqS = ∪c∈Seqc for a (finite) set S ⊆ dom(A), i.e., ∼A
eqS

groups those tuples t in which t[A] ∈ S. Similarly
one may define B as eqS̄ = (eqA \ eqS), such that ∼A

eqS̄
groups tuples t in which t[A] does not belong to S.

(3) When the domain of A is ordered, we may define B as eqS(op b) where S(op b) = {a ∈ dom(A) | a op b},
and op ∈ {<,6, >,>,=, ̸=}; i.e., ∼A

eqS(op b)
groups tuples t such that t[A]op b. �

In practice, it is common to compare values of an attributeA based on their similarity rather than equality. In
general, a similarity relation B ⊆ dom(A)×dom(A) if it is reflexive and symmetric, but not necessarily transitive.

Example 2: Similarity relations are often derived from metrics. Suppose that A is an attribute whose domain is
string. We define the similarity relation ≈dl

θ based on the Damerau-Levenstein metric (with threshold θ):
≈dl

θ = {(s, t) ∈ string × string | edit distance(s, t) 6 θ}.
In fact, any metric such as q-grams or Jaro distance can be turned into a similarity relation (see [10] for a survey
on distance functions), from which a comparison relation (e.g., ∼A

≈dl
θ

) can be readily derived. �
The comparison relations defined in terms of equality and similarity relations can be readily extended to a

set X of attributes, e.g., ∼X
eqX

is defined as
∩

A∈X ∼eqA , and ∼X
≈X

as
∩

A∈X ∼A
≈A

.
A comparison relation ∼X

B via (X,B) is said to be decomposable if there exist Bi ⊆ dom(Ai) × dom(Ai)

such that ∼X
B =

∩
Ai∈X ∼Ai

Bi
. For instance, the comparison relations ∼X

eqX
and ∼X

≈X
given above are clearly

decomposable. Nevertheless, not all comparison relations are decomposable, as shown below.

Example 3: LetX = {A1, . . . , Ak} be a set of ordered attributes, and let ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk)
be tuples in dom(A1) × · · · × dom(Ak). Define ā lexico b̄ iff either ai = bi for all i ∈ [1, k] or there exist a
j ∈ [1, k] such that aj <Aj bj while ai = bi for i ∈ [1, j − 1]. Here <Aj denotes an order on Aj . Then the
corresponding comparison relation ∼X

lexico is not decomposable. Indeed, observe that ∼X
lexico can be written as

(
∩

i∈[1,k]

∼Ai
eq ) ∪

∪
j∈[1,k]

(∼Aj
<Aj

∩
∩

i∈[1,j−1]

∼Ai
eq );

in other words, it can be written as a union of decomposable comparison relations, but not as
∩

i∈[1,k] ∼
Ai
Bi

. This
example also shows that comparison relations can be defined in terms of Boolean operations. �
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2.2 Quality Improving Dependencies
We next define quality improving dependencies in terms of comparison relations. Let R and R′ be two relations
in R. Let X = {A1, . . . , Ak} and X ′ = {A′

1, . . . , A
′
k} be attributes in R and R′, respectively, such that Ai and

A′
i are compatible for each i ∈ [1, k]; similarly for attributes Y = {E1, . . . , Eℓ} and Y ′ = {E′

1, . . . , E
′
ℓ}. Let

∼X
BX

and ∼Y
BY

be comparison relations via (X,BX) and (Y,BY ), respectively.
A quality improving dependency (QID) defined on (R,R′) is of the form

φ =
(
∼X

BX
(R(X), R′(X ′)) → ∼Y

BY
(R(Y ), R′(Y ′))

)
.

An instance I of R satisfies φ, denoted by I |= φ, if

∀ tid ∈ I, tid′ ∈ I ′ : ∼X
BX

(tid, tid′) −→∼Y
BY

(tid, tid′),

where I is the instance of R in I, I ′ is the instance of R′ in I for which attributes of X ′ and Y ′ are renamed as
their counterparts in X and Y , respectively, i.e., A′

i as Ai for i ∈ [1, k] and B′
j as Bj for j ∈ [1, ℓ].

When ∼X
BX

and ∼Y
BY

are decomposable as (BA1
1 , . . . ,BAk

k ) and (BE1
1 , . . . ,BEℓ

ℓ ), respectively, then I |= φ if

∀ tid ∈ I, tid′ ∈ I ′ :
∧

i∈[1,k]

∼Ai
Bi

(tid, tid′) −→
∧

j∈[1,ℓ]

∼Ei
Bi

(tid, tid′).

If all comparison relations in a QID φ are decomposable, we say that φ is decomposable.
When R = R′, X = X ′ and Y = Y ′, we say that φ is a mono-QID; otherwise we call it a bi-QID. In the

sequel, we simply write a mono-QID asR(∼X
BX

→∼Y
BY

). We only consider birelational QIDs that relate tuples in
one relation R to tuples in another (possibly the same) R′. In practice, two relations often suffice. Nonetheless,
one can readily extend QIDs to multiple relations. When developing algorithms for discovering and validating
QIDs, and for detecting and correcting errors based on QIDs, it is important to know whether the QIDs under
consideration are decomposable or not, and whether one or two relations are required (see Section 4).

3 Capturing Existing Dependency Formalisms with QIDs
As examples of QIDs, we show that a variety of dependencies studied for data quality can be expressed as QIDs,
as summarized in Table 3. We first consider formalisms that are expressible as decomposable mono-QIDs.

Functional dependencies (FDs) [1]. A functional dependency on a relation R is defined as R(X → Y ),
where X and Y are sets of attributes. An instance I of R satisfies the FD if for any two tuples t1 and t2 in I ,
t1[Y ] = t2[Y ] whenever t1[X] = t2[X], i.e., the X attributes of a tuple uniquely determine its Y attributes.

Every FD R(X → Y ) is a decomposable mono-QID R(∼X
eqX

→∼Y
eqY

), where ∼X
eqX

is defined in Section 2.

Conditional functional dependencies (CFDs) [14]. CFDs extend FDs by incorporating constant patterns. More
specifically, a CFD is defined as R[(X → Y ) | tp], where R(X → Y ) is an FD, and tp is a pattern tuple over
X ∪ Y . For each attribute A ∈ X ∪ Y , tp[A] ∈ dom(A) or tp[A] is wildcard, denoted by ⊔. A tuple t in an
instance I of R is said to match tp in X , denoted by t[X] ≍ tp[X], if for each A ∈ X , either tp[A] = ⊔ and
t[A] can be an arbitrary value in dom(A), or t[A] = tp[A] when tp[A] is a constant. An instance I of R satisfies
the CFD if for any two tuples t1 and t2 in I , if t1[X] = t2[X] ≍ tp[X] then also t1[Y ] = t2[Y ] ≍ tp[Y ]. For
instance,R[(CC, zip → street) | (44,⊔,⊔)] is a CFD, which states that when CC (country code) is 44 (indicating
UK), zip code uniquely determines street.

Every CFD R[(X → Y ) | tp] is a decomposable mono-QID R(∼X
eqC

→∼Y
eqC

), where ∼X
eqC

is defined as∩
A∈X ∼A

eq′A
. Here ∼A

eq′A
is ∼A

eqA
when tp[A] = ⊔, and ∼A

eqc
if tp[A] = c (see Example 1); similarly for ∼Y

eqC
.

Extended CFDs (eCFDs) [6]. This class of dependencies extends CFDs [R(X → Y ) | tp] such that in the
pattern tuples tp, for each A ∈ X ∪ Y , tp[A] = S, tp[A] = S̄ for a finite set of constants S ⊆ dom(A), or
tp[A] = ⊔. We say that t[X] ≍ tp[X] if for each attributeA ∈ X , t[A] ∈ S if tp[A] = S, t[A] ̸= S if tp[A] = S̄,
or tp[A] = ⊔. The semantics of eCFDs is the same as CFDs except for the revised matching operator.

3



Dependencies [References] Quality Improving Dependencies
Mono/Bi decomp. QIDs (basic comparison relations used)

Functional dependencies (FD) [1] Mono Yes R(∼X
eqX

→∼Y
eqY

) (defined with ∼eqA)
Conditional FDs (CFD) [14] Mono Yes R(∼X

eqC
→∼Y

eqC
) (with ∼eqA , ∼eqa )

Extended CFDs (eCFD) [6] Mono Yes R(∼X
eqS

→∼Y
eqS

) (∼eqA , ∼eqS ,∼eqS̄ )
Similarity FD (SFD) [32, 34, 3, 30] Mono Yes R(∼X

≈X
→∼Y

≈Y
) (≈X , reflexive and symmetric)

Domain dependencies (DDs) [12] Mono Yes R(∅ →∼A
≍S

)

Edits [21] Mono Yes R(∼X
≍S

→∼Ak
≍S̄k

) (with ∼A
≍S

and ∼A
≍S̄

)
Association rules (AR) [35, 28] Mono Yes R(∼X

eqC
→∼A

eqa
) (with ∼eqa)

Order dependency (OD) [22, 29, 23] Mono Yes R(∼X
opX

→∼Y
opY

) (op: partial orders)
Currency dependencies (CD) [17] Mono Yes R(∼X

BX
→∼A

≺A
) (∼A

≺A
a currency order)

Binary FDs (BFD) [33] Bi Yes ∼X
eqX

(R(X), R′(X ′)) →∼Y
eqY

(R(Y ), R′(Y ′))

Matching dependencies (MD) [18, 4] Bi Yes ∼X
≈X

(R(X), R′(X ′))→∼Y
eqY

(R(Y ), R′(Y ′))

Editing rules (eR) [19] Bi Yes ∼X
BX

(R(X,Xp), R
′(X ′, Xp))→∼B

eqB
(R(B), R′(B′))

Sequential dependencies (SD) [25] Mono No R(∼X
succ(<)→∼A

gap)

Table 1: Different quality improving dependencies

Each eCFD [R(X → Y ) | tp] is also a decomposable mono-QID R(∼X
eqS

→∼Y
eqS

). Here ∼X
eqS

is defined as∩
A∈X ∼A

eq′A
, where ∼A

eq′A
is ∼A

eqA
when tp[A] = ⊔, ∼A

eqS
when tp[A] = S, and it is ∼A

eqS̄
when tp[A] = S̄ (see

Example 1 for the definitions of ∼A
eqS

and ∼A
eqS̄

); similarly for ∼Y
eqS

.

Similarity functional dependencies (SFDs) [32, 34, 3, 30]. Similarity FDs are a subclass of fuzzy FDs in which
equality eq is relaxed to similarity relations that are reflexive and symmetric, but not necessarily transitive.
More specifically, for each attribute A in R, a similarity relation ≈A on dom(A) is defined. A similarity FD
R(X → Y ) is specified the same as an FD. It is interpreted along the same lines as FDs, except that it is based
on similarity, and its satisfaction may be a “truth degree” in the range [0, 1] rather than true or false.

Leveraging comparison relations ∼X
≈X

(∼Y
≈Y

) defined in Section 2, one can verify that each SFDR(X → Y )
can be expressed as a decomposable mono-QID R(∼X

≈X
→∼Y

≈Y
).

Domain dependencies (DDs)/Edits [12, 21]. A DD [12] is of the form R(A,S), where A is an attribute and S
is a set of constants taken from dom(A). It aims to assure that for each tuple t in an instance of R, t[A] ∈ S. An
edit e is of the form R([A1 : S1]× · · · × [Ak : Sk]), where Si is a set of constants in dom(Ai) [21]. It states that
for any tuple t in an instance of R, t[A1, . . . , Ak] ̸∈ S1×· · ·×Sk. Observe that edits can be expressed as eCFDs
in which pattern tuples contain no wildcards. In contrast not every such eCFD is an edit rule.

To express DDs and edits as QIDs, we use a relation ≍S= {(a, b) ∈ dom(A) × dom(A) | a, b ∈ S}.
Intuitively, ≍S states that elements in S are indistinguishable. We also use ≍S̄ = dom(A)2\ ≍S , to identify
elements not in S. We define comparison relation ∼A

≍S
and ∼A

≍S̄
in terms of ≍S and ≍S̄ , respectively.

A DD R(A,S) can be expressed as a decomposable mono-QID R(∅ →∼A
≍S

). An edit R([A1 : S1] × · · · ×
[Ak : Sk]) can be specified as a decomposable mono-QID R(∼X

≍S
→∼Ak

≍S̄k
), where ∼X

≍S
=

∩
i∈[1,k−1] ∼

Ai
≍Si

.

Association rules with 100% confidence (ARs) [35, 28]. An association rule (AR) is defined by means of an
implication R(([A1 : a1], . . . , [Ak : ak]) → [B : b]), where Ai and B are attributes, and ai and b are constants
from the corresponding domains. An instance I of R satisfies the AR with 100% confidence if for each tuple t
in I , if t[A1, . . . , Ak] = (a1, . . . , ak) then t[B] = b. Such association rules are a special case of CFDs in which
the pattern tuples consist of constants only. Hence, ARs are decomposable mono-QID defined in terms of ∼A

eqa
.

Order dependencies (ODs) [22, 29, 23]. Order dependencies (ODs) are specified as standard FDs in which
equality may be replaced by a partial order relations <,≤, >,≥ on ordered attributes, as well as their comple-
ment relations (e.g., ≤c). More specifically, an OD is of the form R(X̃ → Ỹ ) in which X̃ and Ỹ are sets of at-
tributes that are either unmarked (for =), or marked with one of the partial order relations. ODs can be expressed
as decomposable mono-QIDs defined in terms of ∼A

eqA
(if the attribute A is unmarked) and ∼A

op (if A is marked).

4



Here for op ∈ {<,≤, >,≥,≤c}, ∼A
op is defined in terms of relation op = {(a, b) ∈ dom(A)×dom(A) | a op b}.

Currency dependencies (CDs) [17]. Currency dependencies (CDs) are constraints of the form

∀t1, . . . , tk : R(
∧

j∈[1,k](t1[eid] = tj [eid] ∧ ψ) −→ tu ≺A tv),

where u, v ∈ [1, k], tu ≺A tv indicates that tv[A] is more current than tu[A]; and ψ is a conjunction of predicates
of the form tj [A] op th[A] with op ∈ {=, ̸=, <,≤, >,≥,≺}, tj [A] = a or tj [A] ̸= a for a ∈ dom(A). Here eid
denotes an entity id attribute, as introduced by Codd [8]. The CD is to assert that when ti’s are tuples pertaining
to the same entity, and if condition ψ is satisfied, then tuple tv must be more up-to-date than tu in attribute A.

When k = 2, CDs can be expressed as decomposable mono-QIDs of the form R(∼X
BX

→∼A
≺A

). Here ∼A
≺A

is
a comparison relation defined in terms of relation ≺A, and ∼X

BX
is an intersection of comparison relations ∼E

op

for op ∈ {<,≤, >,≥,=, ̸=}, and ∼E
eqS(op a)

for op ∈ {=, ̸=}, to express the condition ψ.

There are also mono-QIDs that are not decomposable.

Sequential dependencies (SDs) [25]. A sequential dependency (SD) is of the form R(X →g A), where X
is a set of ordered attributes, A is a numerical (linear ordered) attribute, and g ⊆ dom(A) is an interval. It
is to assert that for a predefined permutation π of tuples in an instance I of R that are increasing in X , i.e.,
tπ(1)[X] <X tπ(2)[X] <X · · · <X tπ(N)[X], we have that for any i ∈ [1, N − 1], tπ(i+1)[A]− tπ(i)[A] ∈ g. A
conditional variant of sequential dependencies is studied [25] in which a sequential dependency is to hold only
an a subset of tuples in I , where the subset is selected by means of admissible ranges of attribute values in X .

To express SDs as QIDs, we define the following two comparison relations: (1) ∼A
gap in terms of relation

gap = {(a, b) ∈ dom(A) × dom(A) | b − a ∈ g}, which is neither reflexive, symmetric nor transitive; and
(2) ∼X

succ(<)=∼X
π \(∼X

π strict ∩(∼X
π strict)

◦), where ∼X
π is the comparison relation derived from the predefined

order π, ∼X
π strict=∼X

π \ ∼X
eq, and S◦ denotes the reversal operation on binary relation S; observe that ∼X

succ(<)
is defined as a Boolean combination of comparison relations, and is not decomposable.

An SD R(X →g A) can be readily expressed as a non-decomposable mono-QID R(∼X
succ(<)→∼A

gap). In
addition, for the conditional extension of SDs given in [25], one can construct an appropriate comparison relation
∼X

range that restricts ∼X
succ(<) and groups tuples together that fall in the admissible range.

We next consider decomposable bi-QIDs.

Binary FDs (BFDs) [27, 33]. A binary FD is an FD that relates attributes in two different relations. More
specifically, a BFD is of the form R[X] = R′[X ′] → R[Y ] = R′[Y ′] where X , X ′ and Y , Y ′ are lists of
pairwise compatible attributes in R and R′, respectively. For an instance (I, I ′) of (R,R′), it is to assure that
for any pair of tuples t ∈ I and t′ ∈ I , if t[X] = t′[X ′] then also t[Y ] = t′[Y ′].

We can express BFDs as decomposable bi-QIDs of the form ∼X
eqX

(R(X), R′(X ′)) →∼Y
eqY

(R(Y ), R′(Y ′)),
where ∼X

eqX
and ∼Y

eqY
are defined in terms of ∼A

eq as given earlier for the case of FDs, but across R and R′.

Matching dependencies (MDs) [18, 13, 4]. Matching dependencies (MDs) were proposed to specify record
matching rules in [18]. MDs were originally defined in terms of a dynamic semantics. Here we attempt to
redefine MDs as QIDs, and interpret their dynamic semantics in terms of their enforcement strategies in Section 4.

When specified as QIDs, MDs can be viewed as an extension of both SFDs and BFDs. They compare certain
attributes of tuples (possibly across different relations) in terms of similarity, and if these attributes are similar
enough to each other, then identify some other attributes of the tuples. More specifically, an MD is of the form

(
∧

i∈[1,k]

R[Ai] ≍i R
′[A′

i]) −→ (
∧

j∈[1,ℓ]

R[Bj ] = R′[B′
j ]).

For an instance (I, I ′) of (R,R′), it assure that for any tuples t ∈ I and t′ ∈ I ′, if t[Ai] ≍i t
′[A′

i] for i ∈ [1, k],
where ≍i is a similarity relation, then t[Bj ] and t′[B′

j ] must be identified for j ∈ [1, ℓ], indicated by equality.
MDs can be written as decomposable bi-QIDs of the form ∼X

≈X
(R(X), R′(X ′)) → ∼Y

eqY
(R(Y ), R′(Y ′)),

where ∼X
≈X

and ∼Y
eqY

are given earlier for SFDs and FDs, respectively.
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Editing rules (eRs) [19]. Editing rules (eRs) were introduced for correcting errors in a data relation (R) with
accurate values from a master relation (R′). An eR is of the form [(R(X), R′(X ′) → R(B), R′(B′)) | tp[Xp]],
whereX andX ′ are lists of compatible attributes in schemasR andR′, respectively, and |X| = |X ′|. Moreover,
B is an attribute of R but B ̸∈ X , and B′ is an attribute of R′ but is not in X ′. Finally, tp is a pattern tuple
over a set of distinct attributes Xp in R, where for each A ∈ Xp, tp[A] is either ⊔ or a constant a drawn from
dom(A), similar to pattern tuples in CFDs. Intuitively, for an instance (I, I ′) of (R,R′) and for any tuple t ∈ I ,
if t[Xp] ≍ tp[Xp], where ≍ is the match relation defined for CFDs, and moreover, if there exists t′ ∈ I ′ such that
t[X] = t′[X ′], then we update t[B] by letting t[B] := t′[B], i.e., taking the value t′[B] from the master tuple t′.

Like MDs, eRs also have a dynamic semantics. Nevertheless, we can express eRs as QIDs in terms of a
standard static semantics, by using equality to indicate updates. More specifically, an eR can be written as
decomposable bi-QIDs of the form ∼X

BX
(R(X,Xp), R

′(X ′, Xp)) → ∼B
eqB

(R(B), R′(B′)), where ∼X
BX

is
defined as

∩
A∈X ∼A

eqA
∩
∩

E∈Xp
∼E

eq′E
. Here ∼A

eqA
is the equality relation on attributes of tuples across R and

R′, and ∼E
eq′E

is defined along the same lines as its counterpart for CFDs onR attributes only, to enforce patterns.

4 Data Quality Problems
We have proposed QIDs as data quality rules, to catch and fix errors. Below we address several central data
quality issues associated with QIDs, and provide an overview of recent advances in the study of these issues.

Discovering QIDs. To use QIDs as data quality rules, it is necessary to have techniques in place that can
automatically discover QIDs from real-life data. Indeed, it is often unrealistic to rely solely on human experts to
design data quality rules via an expensive manual process. This suggests that we settle the following problem.

Given a database I, the profiling problem is to find a minimal cover of all QIDs that I satisfies, i.e., a
non-redundant set of QIDs that is logically equivalent to the set of all QIDs that hold on I. We want to learn
informative and interesting data quality rules from (possibly dirty) data, and prune away insignificant rules.

Several algorithms have been developed for discovering FDs (e.g., [26]), CFDs [7, 15, 24] and MDs [31].
These algorithms allow a considerable pruning of the search space when QIDs are decomposable.

Validating QIDs. A given set Σ of QIDs, either automatically discovered or manually designed, may be incon-
sistent itself. In light of this we have to find those QIDs from Σ that are consistent and non-redundant, to be used
as data quality rules. These highlight the need for studying the following classical problems for dependencies.

The satisfiability problem for QIDs is to determine, given a set Σ of QIDs defined on a relational schema R,
whether there exists a nonempty instance I of R such that I |= Σ, i.e., I |= φ for each QID φ ∈ Σ.

The implication problem for QIDs is to decide, given a set Σ of QIDs and a single QID φ defined on a
relational schema R, whether Σ entails φ, i.e., whether for all instances I of R, if I |= Σ then I |= φ. Effective
implication analysis allows us to remove redundancies and deduce new data quality rules from Σ.

These problems have been studied for FDs [1], CFDs [14], SFDs [3], edits [21], ODs [29], BFDs [27], MDs
[13] and editing rules [19]. These issues are, however, nontrivial. When CFDs are concerned, for instance, both
problems are intractable [14]. This calls for the study of effective heuristic algorithms for their analyses.

Error detection (localization). After a consistent set of data quality rules is identified, the next question con-
cerns how to effectively catch errors in a database by using the rules. Given a set Σ of QIDs and a database I,
we want to detect inconsistencies in I, i.e., to find all tuples and attributes in I that violate some QID in Σ. Error
detection can be done more efficiently for decomposable mono-QIDs due to the absence of intra-relational joins.

Error detection methods have been developed for centralized databases [14] and distributed data [16], based
on CFDs. Nevertheless, it is rather challenging to precisely localize errors in the data. Dependencies typically
help us catch a pair of tuples (or attributes) that are inconsistent with each other, but fall short of telling us which
attribute is erroneous. As an example, consider a simple CFD R[(CC,AC → city) | (44, 131,Edi)], which states
that in the UK (CC = 44), when the area code (AC) is 131, then the city must be Edinburgh. A tuple t: (CC = 44.
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AC = 131, city = Ldn) violates this CFD: AC is 131 but the city is London. The CFD finds that t[CC], t[AC] or
t[city] is incorrect, i.e., an error is present in the tuple. However, it does not tell us which of the three attributes
is wrong and to what value it should be changed. To rectify this problem, we need to adopt a stronger semantics
when enforcing QIDs for data imputation, as will be seen below when we discuss editing rules [19].

Data repairing (data imputation). After the errors are detected, we want to automatically correct the errors
and make the data consistent. This is known as data repairing [2]. Given a set Σ of QIDs and a database instance
I of R, it is to find a candidate repair of I, i.e., another instance I ′ of R such that I ′ |= Σ and cost(I, I ′) is
minimum. Here cost() is a metric defined in terms of (a) the distance between I and I ′ and (b) the accuracy
of attribute values in I (see, e.g., [5, 9]). When a value v in I is changed to v′ in I ′ in data repairing, the more
accurate the original value v is and the more distant the new value v′ is from v, the higher the cost of the change
is. That is, we want to avoid changing accurate values in I, and want the repair I ′ to minimally differ from I.

No matter how important, the data repairing problem is nontrivial: it is intractable even when only a fixed
set of FDs is considered [5]. In light of this, several heuristic algorithms have been developed, to repair data
based on different strategies for enforcing FDs, CFDs, MDs and eRs [5, 9, 19, 20].

These QID enforcement strategies can be uniformly characterized in terms of a revised chase process (see,
e.g., [1] for details about chase). More specifically, assume that for each attribute A ∈ R, a fixing function
σA : dom(tid) → dom(A) is defined. Given a tuple t in I identified by tid, the function is used to change the
values of t[A] to the value σA(tid). Let σ̄ denote a set of fixing functions σA, one for each A ∈ R. Consider
a QID φ = (∼X

BX
(R(X), R′(X ′)) → ∼Y

BY
(R(Y ), R′(Y ′))), and two tuples t1, t2 in I. We say that an

instance I ′ of R is the result of enforcing φ on t1 and t2 in I using σ̄, denoted by I →σ̄
φ,(t1,t2)

I ′, if

• in I: we have that ∼X
BX

(t1[tid], t2[tid]) holds, whereas ∼Y
BY

(t1[tid], t2[tid]) does not hold;

• in I ′: t1[Ai] = σAi(t1[tid]), t2[Ai] = σAi(t2[tid]) for all Ai ∈ X ∪Y , and both ∼X
BX

(t1[tid], t2[tid]) and
∼Y

BY
(t1[tid], t2[tid])) hold; and finally,

• I and I ′ agree on every other tuple and attribute value.

For a set Σ of QIDs, we say that I ′ is a Σ-repair of I if there is a finite chasing sequence I0 . . . , Ik such that

I0 = I −→σ̄1

φ1,(t11,t
1
2)

I1 −→σ̄2

φ2,(t21,t
2
2)

· · · −→σ̄k

φk,(tk1 ,t
k
2)

Ik = I ′,

and furthermore, I ′ |= Σ, where φi ∈ Σ and σ̄i is a set of fixing functions for i ∈ [1, k]. A Σ-repair I ′ of I is
minimal if cost(I, I ′) is minimum. We say that an enforcement strategy of QIDs is Church-Rosser if for any set
Σ of QIDs, all Σ-repairs obtained via different finite chasing sequences result in the same instance of R.

A repairing algorithm is essentially an implementation of the “chase”-process, determined by (a) how fixing
functions are defined, (b) in what order the QIDs in Σ are enforced, and (c) for each QID φ, how it is enforced on
the tuples in I that violate φ. Below we outline how existing algorithms compute Σ-repairs by enforcing QIDs.
Here decomposable QIDs again simplify the chase process because fixing functions can be defined independently
for different attributes in a decomposable QID.

(Conditional) Functional dependencies [5, 9]. Given a set Σ of FDs and an instance I, the repairing al-
gorithm of [5] computes a Σ-repair by enforcing the FDs in Σ one by one, as follows. (1) For each FD
φ = R(∼X

eqX
→∼B

eqB
) in Σ and each tuple t in I, it finds the set Vφ,t of all tuples t′ in I such that

∼X
eqX

(t[tid], t′[tid]) but not ∼Y
eqY

(t[tid], t′[tid]). (2) It defines fixing functions σ̄ such that for allB ∈ Y and for
all t′ ∈ Vφ,t∪{t}, σB(t[tid]) is the same constant c, which is a value drawn from {t′′[B] | t′′ ∈ Vφ,t∪{t}} such
that the total cost of changing t′[B] to c is minimum. That is, it enforces φ on all tuples in Vφ,t consecutively,
by changing the values of their attributes in the right-hand side of φ to the same value. Furthermore, in order for
the repairing process to terminate, a hard constraint is imposed, which requires that once σB identifies attributes
of a pair of tuples, these attributes remain identified throughout the repairing process. Note that this still allows
adjustments to the values of those attributes at a later stage, i.e., different fixing functions σ̄i may be used in the
process. This enforcement strategy guarantees to find a Σ-repair for a set of FDs, but is not Church-Rosser.
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This is extended by the algorithm of [9] for CFDs, in which fixing functions allow attribute values to be
changed to a constant specified by a CFD, provided that the hard constraints imposed so far is not violated. For
instance, tuple t : (CC = 44,AC = 131, city = Ldn) can be changed to (CC = 44,AC = 131, city = Edi) as
specified by CFDR[(CC,AC → city) | (44, 131,Edi)], unless Ldn was assigned earlier by a fixing function σcity.
In the latter case, σcity will not make any change to the right-hand side attribute, but instead a fixing function on
the left-hand side attributes is applied; e.g., t could be changed to (CC = 44,AC = 020, city = Ldn) by σAC.
Termination is also assured, but the enforcement strategy is not Church-Rosser.

Matching dependencies [4, 18]. MDs were proposed in [18] to infer matching rules. An enforcement strategy
was introduced in [4] for repairing data with MDs. It enforces a set Σ of MDs one by one on an instance I
as follows. Given an MD φ =∼X

≈X
(R(X), R′(X ′)) → ∼Y

eqY
(R(Y ), R′(Y ′)), for each B ∈ Y , it employs

matching functions mB : dom(B) × dom(B) → dom(B) that are idempotent (mB(b, b) = b), commutative
(mB(b, b

′) = mB(b
′, b)) and associative (mB(b,mB(b

′, b′′)) = mB(mB(b, b
′), b′′)). For a pair (t1, t2) of tuples

in I that violate φ, it defines fixing functions σB such that σB(t1[tid]) = σB(t2[tid]) = mB(t1[B], t2[B]), and
hence, computes I →σ̄

φ,(t1,t2)
I ′, where σ̄ consists of σB for all B ∈ Y . It is shown in [4] that mB imposes a

bounded lattice-structure on dom(B) and that I ′ is an instance that dominates I in the corresponding bounded
lattice on instances of R. From this follows the termination of the process. The strategy is not Church-Rosser.

Employing both CFDs and MDs, a data repairing algorithm was developed in [20], with fixing functions
defined for CFDs and MDs as above. It enforces a set of CFDs and MDs by interleaving data repairing and record
matching operations; by leveraging their interaction, the algorithm improves the accuracy of repairs generated.

Editing rules [19]. As remarked earlier, dependencies typically only detect the presence of errors, but do not
locate precisely what attributes are wrong and how to fix the errors. As a result, repairing algorithms often fail
to correct errors and worse still, may even introduce new errors in the repairing process. To rectify this problem,
a repairing strategy was proposed in [19] that aims to find a certain fix of a tuple, i.e., a fix that is guaranteed
correct, by using editing rules (eRs) and master data. Consider an eR φ =∼X

BX
(R(X,Xp), R

′(X ′, Xp)) →
∼B

eqB
(R(B), R′(B′)), a tuple t1 in a data instance I of R, and a tuple t2 in a master relation of schema R′

that provides consistent and correct data values. It defines a fixing function σB that equalizes t1[B] and t2[B]
by always setting σB(t1[tid]) and σB(t2[tid]) to the master value t2[B]. Furthermore, it allows I →σB

φ,(t1,t2)
I ′

by enforcing φ only if (a) t1[X,Xp] has been assured correct (i.e., validated), either by users or via inference
from fixes generated earlier; and (b) enforcing different eRs on t1 and master tuples yields the same repair. In
addition, after an attribute t1[B] is updated, it is no longer changed since it is already validated.

For instance, tuple t : (CC = 44,AC = 131, city = Ldn) is changed to (CC = 44,AC = 131, city = Edi)
only if (a) t[CC,AC, city] is already validated, and (b) for all eRs φ in a given set Σ and all master tuples t′ in I ′,
either φ does not apply to t and t′, or φ requires that t[city] and t′[city] be equalized and moreover, t′[city] = Edi.

From these it follows that the enforcement strategy guarantees the termination of repairing processes. Fur-
thermore, it is per definition Church-Rosser and assures that the fixes generated are certain.

These algorithms are just examples of the revised chase. We expect that different QID enforcement strategies
could be developed along the same lines, and yield data repairing algorithms for a wider range of applications.
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