
Eliminating NULLs with Subsumption and Complementation

Jens Bleiholder
Opitz Consulting Berlin GmbH, Berlin, Germany

jens.bleiholder@opitz-consulting.com

Melanie Herschel
University of Tübingen, Germany

melanie.herschel@uni-tuebingen.de

Felix Naumann
Hasso Plattner Institute, Potsdam, Germany
naumann@hpi.uni-potsdam.de

Abstract

In a data integration process, an important step after schema matching and duplicate detection is data
fusion. It is concerned with the combination or merging of different representations of one real-world
object into a single, consistent representation. In order to solve potential data conflicts, many different
conflict resolution strategies can be applied. In particular, some representations might contain miss-
ing values (NULL-values) where others provide a non-NULL-value. A common strategy to handle such
NULL-values, is to replace them with the existing values from other representations. Thus, the concise-
ness of the representation is increased without losing information.

Two examples for relational operators that implement such a strategy are minimum union and com-
plement union and their unary building blocks subsumption and complementation. In this paper, we
define and motivate the use of these operators in data integration, consider them as database primitives,
and show how to perform optimization of query plans in presence of subsumption and complementation
with rule-based plan transformations.

1 Data Fusion as Part of Data Integration

Data integration can be seen as a three-step process consisting of schema matching, duplicate detection and data
fusion. Schema matching is concerned with the resolution of schematic conflicts, for instance through schema
matching and schema mapping techniques. Next, duplicate detection is concerned with resolving conflicts at
object level, in particular detecting two (or more!) representations of same real-world objects, called duplicates.
For instance, considering two data sources describing persons, schema matching determines that the concate-
nation of the attributes firstname and lastname in Source 1 is semantically equivalent to the attribute name in
Source 2. Duplicate detection then recognizes that the entry John M. Smith in Source 1 represents the same
person as the entry J. M. Smith in Source 2.

This article focuses on the step that succeeds both schema matching and duplicate detection, namely data
fusion. This final step combines different representations of the same real-world object (previously identified

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Operator Definition
Subsumption A tuple t1 subsumes another tuple t2 (t1 A t2), if (1) t1 and t2 have the same schema, (2) t2 contains more

NULL values than t1, and (3) t2 coincides in all NON-NULL attribute values with t1 [7].

The unary subsumption operator β removes subsumed tuples from a relation R, i.e., β (R) =
{t ∈ R : ¬∃t′ ∈ R : t′ A t}.

Complementation A tuple t1 complements a tuple t2 (t1 ≷ t2) if (1) t1 and t2 have the same schema, (2) values of corresponding
attribute in t1 and t2 are either equal or one of them is NULL , (3) t1 and t2 are neither equal nor do they
subsume one another, and (4) t1 and t2 have at least one attribute value combination in common.

A complementing set CS of tuples of a relation is a subset of tuples from R’s extension where for each pair ti,
tj of tuples from CS it holds that ti ≷ tj . A complementing set S1 is a maximal complementing set (MCS) if
there exist no other complementing set S2 s.t. S1 ⊂ S2.

We define the unary complementation operator κ to denote the replacement of all existing maximal comple-
menting sets in a relation R by the complement of the contained tuples.

Outer, minimum,
and complement
union

The outer union operator (⊎) combines two relations R1 ⊎ R2 with respective schemas S1 and S2 and exten-
sions T1 and T2 by (i) constructing the result schema S = S1 ∪ S2 and (ii) combining the two extensions to
T = T1 ∪ T2, where missing values are padded with ⊥.

The minimum union operator (⊕) is defined as A ⊕ B =β (A ⊎ B).

The complement union operator (�) is defined as A � B =κ (A ⊎ B).

Table 1: Definitions for subsumption, complementation, outer union, minimum union, complement union [2]

during duplicate detection) into one single consistent representation. To do so, fusion has to resolve any con-
flicts existing among the duplicates. The data fusion result is a potentially more concise and more complete
representation of a real-world object than the representations obtained from the individual sources.

We distinguish two types of conflicts between attribute values, namely uncertainties and contradictions.
We qualify conflicts as uncertainties when all duplicates agree in an attribute value and at least one does not
specify any value, i.e., contains a NULL value for the given attribute. Contradictions, on the other hand, exist
between duplicates if they each do provide a value, albeit different. For instance, consider the two (out of five)
representations of the CD “Comme si de Rien n’Etait” by Carla Bruni shown in Fig. 1. We observe that data
concerning the music label or price information are only provided in one representation, hence, we qualify this
as an uncertainty among the two representations. Opposed to that, both provide an ASIN value, but the values
differ. Clearly, these values contradict each other.

Comme Si de Rien N'Etait [IMPORT]
Carla Bruni

 (24 customer reviews) | More about this product

Available from these sellers.

5 new from $19.98 3 used from $36.00

Buy the MP3 album for $9.49 at the Amazon MP3

Downloads store.

See larger image and other views

Comme Si De Rien N'Etait [IMPORT]
Carla Bruni (Artist)

No customer reviews yet. Be the first. | More about this product

This item has been discontinued by the manufacturer.

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only.

Product Details

Audio CD (July 22, 2008)

Original Release Date: August 5, 2008

Number of Discs: 1

Format: Import

ASIN: B001AY2P26

In-Print Editions: Audio CD | MP3 Download

Product Details

Audio CD (July 22, 2008)

Number of Discs: 1

Format: Import

Label: Phantom Sound & Vision

ASIN: B001JINDU6

Figure 1: CD representations when searching for “Carla Bruni rien” on Amazon.com (January, 9th 2009)

There are many different strategies to handle conflicting data as surveyed in [1]. This paper focuses on
resolving uncertainties using new techniques that follow the TAKE THE INFORMATION resolution strategy,
which takes existing information and leaves aside NULL values [7, 8]. Our techniques stand out by being de-
fined as database primitives. We previously defined relational operators and presented algorithms implementing
them [2, 3] and repeat relevant definitions in Tab. 1.

The main contribution of this paper is a description of how these operators are used within relational query

2

σA.name=Poe∧B.Price<10

κ

β

⊎

BOOKS3◃▹

AUTHOR⊎

BOOKS2BOOKS1

σA.name=Poe∧B.Price<10

κ

β1

⊎

β

σA.name=Poe

BOOKS3

◃▹

β

σA.name=Poe

AUTHOR

β1

⊎

β

BOOKS2

β

BOOKS1

(a) Plan A (b) Plan B

Figure 2: Two query plans for a sample data fusion process

planning. More specifically, we present transformation rules for minimum union (⊕) and complement union (�)
and their building blocks outer union (⊎) subsumption (β) and complementation (κ) [2, 3] in Sec. 2. Further,
we show cost and selectivity estimates for use within a cost-based optimizer in Sec. 3 and some experimental
results in Sec. 4. Sec. 5 briefly discusses related work and concludes.

2 Transformation Rules for Data Fusion Queries

To illustrate transformation rules, consider the following bookstore scenario: one bookstore stores its fiction
books in relation BOOKS1 and its non-fiction books in relation BOOKS2. As a book is either fiction or non-
fiction, there is no overlap between the relations, however, duplicate entries in one relation are still possible.
Authors are stored in an additional relation AUTHOR. A second bookstore stores its books (authors included)
in relation BOOKS3. When integrating data from both bookstores, assume we are interested in (i) removing
subsumed tuples, (ii) combining complementing tuples, and (iii) only selecting books written by Poe and that
cost less than 10 EUR. This task can be expressed by a data fusion query and visualized by a query plan.

Fig. 2 depicts two query plans that express the above task. Plan A first unifies fiction and non-fiction books
using outer union and then combines these with their authors. Next, the books from the second store are added.
Uncertainties are then handled by subsequently applying subsumption and complementation. Finally, the desired
selection is applied. In contrast, Plan B pushes selections as far down as possible and removes subsumed tuples
early in the process. Note that we distinguish two types of subsumption operators: β1 is used when the input
relation can be partitioned such that each partition does not contain subsumed tuples, which is the case when
data without subsuming tuples has been previously combined, whereas β does not make use of such knowledge.

We summarize the query rewriting rules we have shown to be correct for moving the subsumption and
the complementation operators around in query plans in Tab. 2. Minimum union and complement union can be
moved around in a tree by splitting the operators into their individual components (subsumption/complementation
and outer union) and moving these components separately.
Combinations with Outer Union: As there may be subsuming tuples across sources, simply pushing subsump-
tion through outer unions is not possible without leaving an additional subsumption operation on top of the outer
union (Rules S1 and S2). As mentioned above, β1 denotes the subsumption operator that only tests for subsumed
tuples across subsumption-free partitions of its input. Using a similar technique for complementation, i.e., a cor-
responding κ1, is not possible, because complementation and outer union are not exchangeable in general. This
is due to the fact that tuple complementation is not a transitive relationship (Rules C1 and C2).
Combinations with Projection: For subsumption, potentially all attributes are needed to decide if one tuple
subsumes another. So, in general, it is not possible to introduce arbitrary projections below a subsumption

3

Combinations with outer union
C1 κ (A⊎ B) =κ (A) ⊎ κ (B), if there are no comple-

menting tuples across sources, and
C2 κ (A⊎ B) ̸=κ (A) ⊎ κ (B), in all other cases
Combinations with projection
C3 κ (A) ̸=κ (π (A)), and
C4 π (κ (A)) ̸=κ (π (A))

Combinations with selection
C5 κ (σc (A)) ̸=σc (κ (A)), if c is of the following form:

x IS NULL, x IS NOT NULL, or x <op> y with x,y
being attributes and <op> being one of {=, ̸=}, and

C6 σc (κ (σc∨cnull (A))) =σc (κ (A)), in all other cases,
with cnull being the additional test for NULL values for
all involved columns

Combinations with cartesian product and join
C7 κ (A×B) =κ (A) ×κ (B), if the base relations A and

B do not contain subsumed tuples, and
C8 κ (A×B) =κ (κ (A) ×κ (B)), in all other cases
Combinations with grouping and aggregation
C9 γf(c) (κ (A)) =γf(c) (A), for any column c and ag-

gregation function f ∈ {max,min}
C10 κ (γf(c) (A)) =γf(c) (A), for column c and any f
C11 γc,f(d) (κ (A)) =γc,f(d) (A), for columns c, d with

c as grouping column not containing NULL values and
aggregation function f ∈ {max,min}

C12 κ (γc,f(d) (A)) =γc,f(d) (A), for columns c, d with
c as grouping column not containing NULL values and
aggregation function f ∈ {max,min}

Other combinations
C13 τ (κ (A)) ̸=κ (τ (A))
C14 δ (κ (A)) =κ (δ (A))
C15 κ (κ (A)) =κ (A)
C16 κ (A) =A, if A has only one or two attributes

Combinations with outer union
S1 β (A⊎ B) =β (A) ⊎ β (B), if there are no subsumed

tuples across source relations, and
S2 β (A⊎ B) =β1 (β (A) ⊎ β (B)), in all other cases.
Combinations with projection
S3 β (A) ̸=β (π (A)), and
S4 π (β (A)) ̸=β (π (A))

Combinations with selection
S5 β (σc (A)) ̸= σc (β (A)), if c is of the following

form: x IS NULL, with x being an attribute with NULL

values, and
S6 β (σc (A)) =σc (β (A)), in all other cases
Combinations with cartesian product and join
S7 β (A×B) =β (A) ×β (B)
S8 β (A◃▹cB) =β (A) ◃▹cβ (B), whenever selection with

condition c can be pushed down
Combinations with grouping and aggregation
S9 γf(c) (β (A)) =γf(c) (A), for any column c and ag-

gregation function f ∈ {max,min}
S10 β (γf(c) (A)) =γf(c) (A), for any column c and any f
S11 γc,f(d) (β (A)) =γc,f(d) (A), for any different

columns c, d with c being the grouping column and
not containing NULL values and aggregation function
f ∈ {max,min}

(S12 β (γc,f(d) (A)) =γc,f(d) (A), for any different
columns c, d with c being the grouping column and
not containing NULL values and aggregation function
f ∈ {max,min}

Other combinations
S13 τ (β (A)) ̸=β (τ (A))
S14 δ (β (A)) =β (δ (A))
S15 β (β (A)) =β (A)
S16 κ (β (A)) ̸=β (κ (A))

(a) Rules for complementation (b) Rules for subsumption

Table 2: Transformation rules for subsumption and complementation in combination with other operators.

operator without changing the final result (Rules S3 and S4). For complementation and projection, the same
considerations apply as for subsumption and projection (Rules C3 and C4).
Combinations with Selection: The main goal is to push selections toward the base relations to decrease input
cardinality. In case the selection is applied to a column c without NULL values (e.g., a key), we can indeed
push selection down through the operator (Rule S6). If column c allows NULL values, pushing selection through
subsumption alters the result only if a tuple subsuming another tuple is removed from the input of subsumption
by the selection. We distinguish several cases resulting in Rules S5 and S6. In contrast to subsumption, where
only the subsuming tuple needs to be preserved, computing the complement requires all complementing tuples
to be kept in the input of complementation. We consider the same cases as for subsumption and need to assure
that either both or none of the complementing tuples pass the selection. This property can be achieved for some
cases when pushing selection through complementation by adding an additional condition B IS NULL to the
selection predicate. However, as complementation combines its input tuples into new tuples, the original selec-
tion has to be applied again after complementation (Rules C5 and C6). If the operator tree includes a selection
with conjuncts or disjuncts of conditions, we can push it entirely through subsumption or complementation if
there is no single condition that prohibits the pushdown. Then, we first need to split the conditions using the
standard transformation rules for selection and then push them according to the rules above.
Combinations with Join: When exchanging subsumption and cartesian product we must ensure that when

4

applying cartesian product, (1) no additional subsuming tuples are introduced if there are none in the base re-
lations, and (2) all subsuming tuple pairs in the base relations still exist after applying cartesian product. The
former follows from the definition of tuple subsumption and the latter follows from the fact that by cartesian
product, two subsuming tuples from one base relation are combined with the same tuples from the other base
relation and therefore the two resulting tuples being subsumed in the result of the cartesian product. When
exchanging β and ◃▹c in the query plan, we need to apply the rules involving selection from the previous para-
graph (Rules S7 and S8). Considering complementation, the same two properties as for subsumption have to be
ensured. However, already the first property is no longer satisfied: applying cartesian product may introduce
complementing tuples, even if there are no complementing tuples in the base relation. More precisely, it can be
shown that this is the case for base relations that contain subsumed tuples. We can fix this problem by intro-
ducing an additional κ operator on top that removes the newly introduced complementing tuples (Rules C7 and
C8). Based on the above observation and the transformation rules for selection and complementation, a general
rule for combining join and complementation cannot be devised.
Combinations with Grouping and Aggregation: In general, subsumption and grouping and aggregation are
not exchangeable, because subsumption may remove tuples that are essential for the computation of the ag-
gregate. However, there are certain cases in which we can remove the subsumption operator and leave only the
grouping/aggregation (Rules S9-S13). If non-standard aggregation functions are allowed, the rules above extend
in a way that only null-tolerant, duplicate-insensitive functions are allowed to be be used as function f , such as
min, max, shortest, and longest. Similar rules (Rules C9-C12) hold for complementation.
Other Combinations. The subsumption and complementation operators are not order-preserving (Rules S13
and C13). When dealing with bags of tuples, subsumption/complementation and distinct do not interfere with
each other (Rules S14 and C14). Additionally, two subsumption operators can be combined into one (Rule
S15). Although they seem to handle two entirely different cases, subsumption and complementation are not
exchangeable. Their order matters, as a tuple that complements another tuple (and therefore adds some additional
information to it) may well be subsumed by another tuple, resulting in that additional information not being
added (Rule S16). Finally, two complementation operators can be combined into one (Rule C15) and a relation
needs to have at least three attributes for two tuples being able to complement each other (Rule C16).

Referring to the example in Fig. 2, Plan A can be transformed into Plan B by splitting the selection, applying
rules C6, S6, pushing down selections, S1, S8, S1, and recombining the top selection again.

3 Cost Model and Selectivity Estimates for Subsumption and Complementation

To estimate runtimes of query plans we give a brief sketch of cost formulas for some of the implementations
for computing subsumption and complementation. We consider the subsumption algorithms – presented in [2] –
Simple Subsumption and Null-Pattern-Based Subsumption with special partitioning steps, which exhibited high
efficiency in practice. For complementation we consider the Simple Complement algorithm and the Partitioning
Complement algorithm, which were introduced in [3]. The cost formulas are based on the number of distinct
tuple operations (e.g., tuple comparisons). A detailed cost model would require quite specific information about
the distribution of NULL and other values among the attributes to determine partition sizes. As such information
is difficult to acquire or costly to store and to keep up-to-date we restrict the cost model to only include the
number of partitions and the size of the NULL partition as both can easily be deduced.
Cost formulas: Let n be the number of tuples in the relation. The cost formula for the Simple Subsumption
algorithm is given as CSMPS = 1

2n
2. The cost formula for the Null-Pattern-Based Subsumption algorithm is

given as CNPBS = n log n. We cover its partitioning variant in more detail; all algorithms are given in [2].
Assuming k = |P⊥| as the size of the NULL partition and p as the number of partitions Pi, then the average size
of a partition Pi is n−k

p (assuming uniform distribution). Furthermore, we assume an intermediate selectivity
of 100% (no tuple subsumes the other), assume using the Simple Subsumption algorithm and that creating the

5

partitioning can be done at practically no cost while reading the relation into memory. Then, the cost formula
for the Partitioning(SMPS) algorithm is: CPartitioning(SMPS) =

1
2k

2+ 1
2
(n−k)2

p +nk−k2. We consider two special
cases: If there is no NULL partition, then k = 0 and the formula is simplified to CPartitioning(SMPS) =

1
p
1
2n

2, thus
showing the performance boost by partitioning. This effect has been verified in experiments. The second special
case is to partition by a key, and additionally allowing for a NULL partition. Then, the number of partitions
p is p = n − k, thus simplifying the formula to CPartitioning(SMPS) = −1

2k
2 − 1

2k + 1
2n + nk, resulting in an

asymptotic runtime of O(n) in the number of tuples and O(k2) in the size of the NULL partition. A cost formula
for Partitioning(NPBS) can be devised accordingly: CPartitioning(NPBS) = k log k+(n−k) log

(
n−k
p

)
+(n−k)k.

For complementation we consider cost functions for the Simple Complement algorithm and the Partitioning
Complement algorithm given in [3]. With m being the size of the largest set of tuples complementing each other
(largest maximal complementing set MCS) and n being the number of tuples of the relation, the cost results as
the sum of the costs for the two steps of the algorithm CSimple Complement =

1
2n(n−1)2m+n2m. As in the case for

partitioning and subsumption we assume k = |P⊥| as the size (in tuples) of the NULL partition, n as the size of
the relation and p as the number of partitions Pi, then – assuming an equal distribution of tuples among partitions
– the average size of a normal partition Pi is n−k

p . In the algorithm, tuples from |P⊥| are added to each partition
before building complements on the partitions, so each P ′

i has a size of n−k
p +k. Furthermore we assume apply-

ing the Simple Complement algorithm to the partitions and that creating the partitioning can be done at practi-
cally no cost while reading the relation into memory. This leads to the general cost formula for the Partitioning
Complement algorithm: CPartitioning Complement = 2mp

(
1
2

(
n−k
p + k − 1

)(
n−k
p + k

)
+
(
n−k
p + k

))
+ pk. We

consider two special cases: If there is no NULL partition, then k = 0 and we simplify to CPartitioning Complement =
1
2
1
pn

22m + 1
2n2

m. Considering the second special case, where we partition by a key, and additionally al-
low for a NULL partition, then the number of partitions p is p = n − k and the cost formula results in:
CPartitioning Complement = 2m(n− k)(32k + 1

2k
2 + 1) + nk − k2.

Selectivity estimation: Given a selectivity factor S for an operator, the output cardinality of an operation is
computed by multiplying it with the input cardinality. In the case of subsumed and complementing tuples,
selectivity estimation is accomplished by estimating how many tuples will be subsumed or complemented by
computing probabilities of NULL values existing in tuples.

Consider the case of a simple relation with only one attribute. All tuples that are NULL in that single attribute
are subsumed by others. The number of NULL values can easily be deduced from the relations histogram; the
probability P(a1 = ⊥) that a tuple has a NULL value in attribute a1 can be determined likewise. We present
a simple model for estimating selectivity based on this limited information. However, estimating the correct
number of subsumed tuples in general is a difficult task: Our experiences with real-world datasets show that
(1) this number can significantly vary, and that (2) NULL values – which highly influence this number – are not
always evenly distributed among tuples and columns.

In the following we assume a) an equal distribution of values in an attribute and b) independence among
attributes. We estimate the number of subsumed or complementing tuples by computing the number of tuples
that contain NULL values, as this is the precondition for a tuple to be subsumed or complementing. However,
this way, we might overestimate the number of actual subsumed or complementing tuples, because for a tuple
being subsumed there must exist another tuple that coincides in all NON-NULL attributes.

Given a relation with two attributes a1 and a2, and the likelihood that a1 = ⊥ by p⊥1 and a2 = ⊥ by p⊥2
respectively. Then the likelihood P2 that a tuple contains at least one NULL values is 1 − (1 − p⊥1)(1 − p⊥2).
Expanding this formula to the case of k attributes ai results in the following formula for the likelihood that a
tuple contains at least one NULL value: Pk = (tuple contains at least one NULL value) = 1− P(all ai = ⊥) =
1−P(

∧k
i=0 ai ̸= ⊥) = 1−

∏k
i=1(1− p⊥i) The likelihood p⊥i can be approximated by the count of NULL values

in the attributes from the relations histogram. If all values in ai are uniformly distributed, then p⊥i = 1
|ai| with

|ai| being the number of different attribute values in ai. Thus, P=
k = 1−

∏k
i=1(1−

1
|ai|).

6

Selectivity estimation for subsumption and complementation then is determined using probability Pk: Sβ =

Sκ = 1 − Pk =
∏k

i=1(1 − p⊥i) for operators β and κ and p⊥i being the likelihood of a NULL value present in
column ai. Additionally, in both cases the lower bound for selectivity is given by the maximum of distinct values
over all attributes, as this marks the number of tuples that are left over at least: Sβ ≥ max|ai|

|R| and Sκ ≥ max|ai|
|R| .

4 Experimentation

0x

10x

20x

30x

40x

0% 20% 40% 60% 80%

Im
p
ro
v
e
m
e
n
t

Selectivity

1% complemented

5% complemented

10% complemented

(a) Pushing selection below complementation

0.0x

0.7x

1.4x

2.1x

2.8x

0% 20% 40% 60% 80%

Im
p
ro
v
e
m
e
n
t

Selectivity

1% subsumed

5% subsumed

10% subsumed

(b) Pushing subsumption below join

Figure 3: Runtime improvement on artificial
data when applying Rules C6 and S8.

We exemplarily evaluate transformation Rules C6 and S8, mea-
suring the effect they have on runtime. More specifically, in
both cases, we measure the runtime of a set of simple queries
on artificial data where a selection/join follows a complemen-
tation/subsumption and compare their runtime to the trans-
formed queries where complementation/subsumption follows se-
lection/join. In both cases, we respectively varied the percent-
age of complemented and subsumed tuples (1%, 5%, and 10%).
Also, we tested different selectivities between 1% and 80% for
the selection and join operator, respectively. We report the per-
formance gain of both cases in Fig. 3, on generated tables with
six columns. Runtimes are median values over ten runs and
the figure shows the values for tables of (a) one million and
(b) 20.000 tuples. As implementations of subsumption and com-
plementation, we used Partitioning Complement and the Simple
algorithm [2, 3], respectively.

Regarding Fig. 3(a), we see that pushing selection be-
low complementation pays off. A similar improvement (not
shown here) has been observed for the combination selec-
tion/subsumption (Rule S6). Indeed, the performance gain ranges
from around 1.4x times for a selectivity of 80% up to around 37x for a selectivity of 1%, indicating that the
transformed query (selection pushed down) is always faster for the tested combinations of selectivity, size, and
percentage of subsumed tuples. Experiments with other table sizes show similar results. The performance gain
is higher for lower selectivities of the selection, as in these cases fewer tuples pass the selection and are in-
put to the costly complementation operation. The difference in performance gain between tables with different
percentages of complemented tuples is small, but consistently existent, except the outlier for 20% selectivity.

The results reported in Fig. 3(b) show an improvement of around 2.5x for all selectivities and the three
percentages of subsumed tuples. Experiments with other table sizes show a comparable behavior. Improvement
varies a bit but we see a tendency to a general and uniform performance gain. This is mainly due to the difference
in total runtime of the two considered operators: whereas the subsumption operator is optimized for performance,
the main part of the queries’ total runtime is consumed by the implementation of the join1. Essentially, Fig. 3(b)
shows the improvement caused by the reduced input cardinality of the join. The improvement is higher for
tables with 10% subsumed tuples (than it is for tables with 5% or even 1% subsumed tuples), because more
subsumed tuples are removed from the input to the join. Although the improvement is not as large as in the other
experiment, it shows that applying the transformation rule pays off.

When operators can be eliminated from the tree (e.g., C9-C12 and S9-S12) performance gain is evident.
Other rules, such as C3-C4 and S3-S4, do not need evaluation. Experimentation for the remaining rules is
deferred to future work.

1We implemented our operators in the XXL framework [5] and use its general-purpose Nested-Loop-Join implementation.

7

5 Related Work and Conclusions

Related work on conflict resolution and data fusion is widely covered in [1]. The minimum union operator [7]
is used in many applications, e.g., in query optimization for outer join queries [6, 9]. However, an efficient
algorithm for the general subsumption task is still considered an open problem therein. Different to our work
is the assumption that the base relations do not contain subsumed tuples and the use of join instead of union
to combine tables before removing subsumed tuples. [9] proposes a rewriting for subsumption, using the data
warehouse extensions provided by SQL. However, removing subsumed tuples using the proposed SQL rewriting
depends on the existence of an ordering such that subsuming tuples are sorted next to each other. As subsumption
establishes only a partial order, such an ordering does not always exist. [2] presents efficient algorithms to
compute subsumption in the general case as well as more related work. Data fusion with the semantics of
complement union has been first introduced in [2, 3], together with definitions, implementation details and
a first draft of transformation rules. However, similar concepts have been previously explored. Replacing
complementing tuples by their complement in a relation is equivalent to finding all maximal cliques in a graph
that has been constructed by creating one node per tuple and an edge between nodes if the corresponding tuples
complement one another [4].

To conclude, data fusion, despite its seemingly simple nature, is a complex and important task in the field
of data integration. In this article we have addressed only cases in which a NON-NULL value competes with
a NULL-value – deciding to choose the NON-NULL value for the fused record is natural. However, doing so
in a consistent and efficient manner is not trivial. We have introduced the two concepts of subsumption and
complementation as new algebraic operators, and have shown how to incorporate them into relational DBMS by
providing corresponding transformation rules, a simple cost model and selectivity estimates. Future work lies in
the direction of a refinement of the cost model.
Acknowledgments. This research was partly funded by the German Research Society (DFG grant no. NA 432)
and was performed while the authors worked at the Hasso Plattner Institute.

References
[1] Jens Bleiholder and Felix Naumann. Data fusion. ACM Computing Survey, 41(1):1–41, 2008.

[2] Jens Bleiholder, Sascha Szott, Melanie Herschel, Frank Kaufer, and Felix Naumann. Subsumption and complementa-
tion as data fusion operators. In International Conference on Extending Database Technology (EDBT), 2010.

[3] Jens Bleiholder, Sascha Szott, Melanie Herschel, and Felix Naumann. Complement union for data integration. In
International Workshop on New Trends in Information Integration (NTII), 2010.

[4] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications of the
ACM, 16(9):575–577, 1973.

[5] Jochen Van den Bercken, Björn Blohsfeld, Jens-Peter Dittrich, Jürgen Krämer, Tobias Schäfer, Martin Schneider, and
Bernhard Seeger. XXL - a library approach to supporting efficient implementations of advanced database queries. In
International Conference on Very Large Databases (VLDB), 2001.

[6] César Galindo-Legaria and Arnon Rosenthal. Outerjoin simplification and reordering for query optimization. ACM
Transactions on Database Systems (TODS), 22(1):43–74, 1997.

[7] César A. Galindo-Legaria. Outerjoins as disjunctions. In ACM International Conference on Management of Data
(SIGMOD), 1994.

[8] Sergio Greco, Luigi Pontieri, and Ester Zumpano. Integrating and managing conflicting data. In Revised Papers from
the 4th International Andrei Ershov Memorial Conference on Perspectives of System Informatics, pages 349–362.
Springer-Verlag, 2001.

[9] Jun Rao, Hamid Pirahesh, and Calisto Zuzarte. Canonical abstraction for outerjoin optimization. In ACM International
Conference on Management of Data (SIGMOD), 2004.

8

