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Letter from the Editor-in-Chief

Changing Bulletin Editors

The Bulletin practice is to appoint editors for two years. Each editor is responsible for producing two issues, one
per year, during that time. The last of the four editors of the previous two year cycle have now completed their
issues and are due to "retire”. | want to thank Amr El Abaddi and Elke Rundensteiner for doing a very capable
job and producing high quality issues for Bulletin readers. I'd like to be sure that all readers are aware that each
issue is, in fact, a substantial undertaking. We owe a debt to Amr and Elke for their fine issues and their hard
work.

To complete the appointment of new editors for the next two years, | am delighted to announce that Luis
Gravano and Gerhard Weikum have accepted my invitation to be Bulletin editors.

Luis Gravano is a faculty member in the computer science department at Columbia University. Luis has done
some really inovative work in query processing and data mining, including querying over the web, and across
heterogenous data collections, involving multimedia and textual as well as tabular data. Luis received his Ph.d
from Stanford.

Gerhard Weikum is on the faculty at the University of the Saarlands in Germany. Gerhard received his doc-
toral degree from ETH in Zurich and worked for a number of years at MCC in Austin. He is currently both a
TODS and a VLDB Journal editor. Gerhard has worked on a wide range of research topics, transactions, where
he invented multi-level transactions, query processing, performance analysis, and recovery, on which he and |
have collaborated.

About the Current Issue

Query processing is a subject that is as old as our database research community. But itis an area which continues
to stir intense interest. One fundamental problem is that we never have enough information at the time that query
optimization is done to do the best possible job. This has led, over a number of years now, to exploration of "dy-
namic” or "adaptive” query processing, in which the query plan attempts to take into consideration information
discovered in the process of executing the query.

The editor for this issue is Alon Levy, who has assembled articles with a span from current industrial practice
to cutting-edge research. The query setting varies from the traditional to heterogeneous data sources to web cen-
tric ones, from theory to architecture to operational system to reflections upon prior work. This provides readers
with a sense of where the field is now, where itis going, where it has been, and why. | want to thank Alon for his
very successful effort in bringing this issue to fruition.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

Adaptive query processing has been a subject of research from the early days of query processing, but has only
recently received significant attention in the literature. Techniques for adaptive query processing address the
problem that the query optimizer may not, at compile time, have good selectivity estimates, knowledge of the
run-time bindings in the query, or knowledge of the available system resources. As a result, a static query plan
produced by the optimizer may be far from optimal. The need for adaptive query processing is even greater
in novel data management tasks where systems are processing queries over multiple, autonomous data sources
that may be on a wide-area network. In this context we have even less statistics about the data sources (which
may be changing without central control), and we witness unpredictable data transfer rates over the network.
Broadly speaking, adaptive query processing focuses on techniques for changing the execution plan at run-time,
re-optimizing the query when necessary, and design of novel operators that deal more flexibly with unpredictable
conditions. The papers in this issue describe the current state of the art in adaptive query processing and outline
the future challenges that need to be addressed in this realm.

The first three papers present overviews of different areas of adaptive query processing. In the first paper,
Graefe discusses some of the lessons learned from using adaptive query processing techniques in commercial
database systems, and he suggests future areas of focus in this context. In the second paper, Hellerstein et al.
provide an overview of techniques for adaptive query processing, comparing them by their granularities of adap-
tivity (e.g., inter-operator, intra-operator, per tuple). The authors also describe the adaptive query processing
techniques used in the Telegraph project at UC Berkeley. The paper by Ives et al. points discusses issues that af-
fect the context in which adaptive query processing is employed, such as the underlying data model, the number
of queries expected, and whether the data is streaming. The paper also describes the adaptive query processing
techniques developed in the Tukwila System at the University of Washington.

The second set of papers describe specific techniques for adaptive query processing. The paper by Urhan
and Franklin describes XJoin which is an extension of pipelined hash joins to handle out-of-memory situations
when the source data is bursty. The paper by Cole describes the use of decision theory for evaluating the utility of
interleaving query planning and execution. Finally, the paper by Bouganim et al. describes how the architecture
of a query processor needs to be modified in order to accommodate adaptive query processing.

Clearly, the area of adaptive query processing is likely to receive significant attention in the upcoming years.

I hope this issue will clarify the state of the art in this field and foster more research on this exciting topic.

Alon Levy
University of Washington



Dynamic Query Evaluation Plans: Some Course Corrections?

Goetz Graefe
SQL Server Development
Microsoft Corporation
goetzg@microsoft.com

Purpose: In database query processing, optimization is commonly regarded as “the hard” part, whether in
relational, post-relational, object-oriented, textual-spatial-temporal, federated or web-based database systems.
Query execution, on the other hand, is considered a mostly straightforward exercise in algorithm implementa-
tion, with the currently “hot” twist to consider CPU caches. There is, however, a third piece to the puzzle, namely
physical database design, e.g., the set of useful indexes. The purpose of this brief paper is to tie these three pieces
together and to encourage students and researchers to adopt a broader perspective of adaptive query processing
Another purpose is to present some contrarian viewpoints about interesting and worthwhile research topics.

Compilation effort: It is well known that compilation and early binding are good ideas, where they can be
applied. Thus, compile-time optimization wins over interpretation, in particular for repetitive query execution,
which typically is the bulk of database activity. On the other hand, query optimization based on incomplete infor-
mation often results in plans that perform poorly in many invocations. The Achilles heel of query optimization

is selectivity estimation; thus, missing statistics such as histograms and counts of unique values are a perennial
worry for database administrators, unless the DBMS automatically creates, refreshes, and drops statistics as ap-
propriate. The other important source of selectivity estimation errors is lacking compile-time knowledge about
run-time parameter values. Traditionally, the only remedy has been run-time optimization. Early research into
dynamic or adaptive plans was motivated to address this issue. The basic theme was that the optimized query
plan contains, in some reasonably compact form, multiple alternative execution plans, and selects among them
at start-up time or even at some few carefully pre-planned points during execution. It turned out, not surprisingly,
that execution primitives were relatively easy to design, whereas building effective optimizers for dynamic plans
is still much more art than science, and could greatly benefit from more research into practical techniques, which
then would greatly facilitate technology transfer into products. After all, the point of dynamic plans is to avoid
the effort for frequent re-compilation and re-optimization; if the effort for finding a single dynamic plan is just as
large as or even larger than the effort for repeated re-compilation, not much is gained, other than perhaps start-up
latency.

Cost estimation and dynamic execution techniques: A lesser source of query optimization errors is fluctuat-

ing resource availability and therefore inaccurate cost calculations. For example, the relative costs of index-to-
index-and-record-to-record navigation compared to set-oriented sort- and hash-based query plans depends on the
available memory, available CPU processing bandwidth, available disk bandwidth for permanent and temporary

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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files and tables, etc. Consequently, there have been some, albeit not very many, proposals to address changes in
resource availability using dynamic query evaluation plans. However, rather than using dynamic plans with alter-
native algorithms or alternative plan shapes, more typically resource availability is left to individual algorithms.
Thus, there are many proposals and literature on dealing with resources within a single operator or algorithm, in
particular memory resources, e.g., hybrid hash join, dynamic destaging, merge optimizations in external merge
sort, etc. Aninteresting algorithm for data-driven join processing in memory-rich parallel and distributed systems
is the symmetric hash join using two hash tables. Rather few papers, however, deal with memory management
among multiple operators, in nested queries, or in dynamic query plans. In modern commercial query execu-
tion engines, there are many adaptive techniques, not only within operators but also among operators within a
single query and among multiple concurrent queries. Examples include setting or adjusting the degree of par-
allelism depending on current load, reordering and merging ranges to optimize repeated probes into an index,
sharing scans among multiple queries and user connections, ignoring read-ahead hints if most are buffer hits and
therefore pointless, “bailing out” of hash partitioning and resorting to loops- or merge-based algorithms when
partitioning is not effective (e.g., due to duplicate key values), etc. In spite of this wealth of adaptability, all of
these adaptive techniques are typically ignored in the cost functions of commercial query optimizers, partially
because they are difficult to incorporate and partially because a sufficiently strong case for incorporating them
has not yet been made. What does that say about techniques as adaptive as dynamic query evaluation plans?

Nested iteration: While most resource issues have relatively little impact on optimal plan choices (even if they
affect the ranking among different plans of fairly similar costs), one issue that is crucial in practice but usually
ignored in academic research is the effect of buffer hits and faults in complex query plans. In particular nested
SQL queries as well as nested iteration as operator in both the logical and physical query algebra have been usu-
ally neglected in research. Interesting issues arise if multiple invocations of the same nested computation affect
each other, e.g., the first invocation warms up the I/O buffer for subsequent ones. Other interesting issues arise
if different nested computations compete for resources, e.g., I/O buffer or memory for sort and hash operations
within inner queries. Nested computations are very important in practice, both because queries are authored using
nested SQL queries and because nested iteration based on index-to-index navigation often is the best execution
plan. Therefore, nested computations could be a very fruitful research topic, both execution and optimization,
and could probably also benefit from more dynamic and adaptive techniques than those in use today. However,
we will need a conceptual model of nested queries that is substantially simpler that nested SQL, e.g., based on
algebra expressions with a table of parameter values.

Indexed views: Perhaps the most exciting recent development in database query processing has been the com-
mercial use of materialized views. In a way, materialized views take the concept of early binding a step further
than compile-time optimization. The benefit can be tremendous, as many OLAP tools and applications demon-
strate every day with sub-second response times even for very large volumes of detail data. In effect, when ma-
terialized views work really effectively, complex query processing is reduced to index navigation very similar

to OLTP processing, except for differences in the update load. Fancy techniques for large queries, e.g., shared
scans, bitmap indexes, hash joins, and parallel query processing might once again be of little importance, just as
they were when databases were used only for business operations (OLTP), not data analysis and business intel-
ligence. There are many issues with respect to building redundant indexes on materialized views as well as to
coherency, updates, invalidation, re-computation, incremental updates, etc.; probably the simplest policy (cer-
tainly from the perspectives of the application developer and the end user) is to treat materializations of view
results similar to indexes, meaning instant updates within the original transaction, or even simply to index views
in addition to tables, supporting both non-clustered and clustered indexes (the latter contain all columns in the
table or the view). By doing so, the semantics of views is unchanged whether they are materialized and indexed
or not; thus, indexing a view is (correctly) purely an issue of physical database design and performance, not one



of logical database design and correctness.

Caching recent queries: Another exciting technology that is only starting to take off is closely related to ma-
terialized views: caching the results of recent actual queries in order to exploit them in future queries. Clearly,
some OLAP tools achieve amazing performance using this technique today already, in particular if it is used both
on the server and on the desktop, i.e., both for local and distributed queries. The issues with respect to indexing
as well as invalidation or incremental maintenance are the same as for materialized (or indexed) views. The hard
part, as with materialized views, is the policy deciding which query result to keep and to maintain for how long.

Performance metrics: The goal of indexing and result caching is to improve system performance. However,
there are different definitions of performance. An excellent illustration can be found in the arguments going back
and forth whether the overall performance in the TPC-D benchmark should be based on the arithmetic or geo-
metric mean of the individual query times. For example, is it better to improve one query from 10 seconds to 1
second (9 seconds difference or factor 10) or to improve another query from 10 minutes to 5 minutes (300 sec-
onds difference but only a factor of 2)? A more important performance goal than high performance, however, is
consistent and predictable performance. The vast majority of database servers in production is running on CPUs
much slower than the fastest available CPUs, often by a factor 2. Given that, clearly top performance is not the
top priority; if it were, CPUs would be replaced much more rapidly. In other words, predictability versus risk is

a more important dimension than fast versus slow, within the limits of common sense.

Predictable performance: Predictable performance has several aspects. One of them is that the same request
or very similar requests always take the same time. For example, once a user has seen a certain query complete
in 2 minutes, it is a source of great annoyance (and support calls) if that query usually takes 5 minutes. One
lesson from this observation is that parallel query processing might be a very bad idea indeed, because it may
well lead to unfulfilled expectations. Another aspect of predictability is that a “regular” person must be able to
predict the performance. In other words, fancy adaptive techniques that make a chosen dynamic query plan hard
to predict or to understand are a disservice to developers and users, unless these adaptive techniques work so well
that developers and users never have much interest in looking at query plans, just as little as they have nowadays
in understanding the inner workings of virtual memory.

Index tuning: Several database vendors offer (or include in their main database products) tools for index tun-
ing, including materialized views and their indexes. These tools perform a complex analysis of the workload and
can create indexes as well as drop indexes due to update costs or to space constraints. Clearly, the current versions
of these tools have left room for improvement, in particular in the expense of the analysis and in the immediacy,
i.e., how fast they adapt a physical database design to an initial workload and to changes in the workload. More-
over, most of these tools are based on the assumptions that database tuning is an activity that is separate from
processing requests, requires a trained individual such as a DBA, and takes a substantial amount of system effort,
e.g., for analyzing query plans for various proposed index configurations. Due to their computational overhead,
they typically do not lend themselves to complete automation.

Indexing tuning heuristics: It turns out, however, that fairly simple indexing schemes often work amazingly
well. For example, clustered indexes on primary keys and non-clustered indexes on foreign keys are a pretty
good starting point. Since they rarely change and are important in many applications, non-clustered indexes on
all columns with “date” or “time” data types often help. Finally, columns that appear in “=" predicates probably
benefit from indexes, which actually would include indexes on primary and foreign keys if not already indexed.
Indexes on “in” predicates as well as selective “between” predicates typically are worthwhile, too. To refine these
rules, one can add the primary key and all foreign keys to all indexes, just to make index-to-index navigation



faster. Finally, one can avoid any non-clustered indexes on very small tables, say less than a page, and avoid
using more space for indexes than for the main data.

Queries building indexes: With these simple indexing rules, many query sets, e.g., TPC-D, work pretty well
(definitely for query processors supporting index intersection) — certainly within the same factor of 2 many people
are willing to forgo by not keeping up with the latest hardware. An interesting question is whether these indexes
can be created quickly and quietly. For example, if an equality predicate is found that is not supported by an
existing index, how can one be built with minimal overhead? A separate index creation has to tread lightly, e.g., it
must not “hog” the CPU or the disk, and it must not prevent concurrent user activity. In other words, online index
creation is just as important a feature for fully automated “low-end” data management systems as for carefully
monitored high-end 24x7 systems that strive for “five nines” or better (99.999% availability, or 5 minutes down
time per year, including planned down time). If, on the other hand, an equality predicate without suitable index
results in a full scan, can we design adaptive plans that scan, sort, merge join, and leave behind the appropriate
index for the next execution? Can that still work even if there are concurrent updates that the index must reflect
but the query result must not? Can the new index be fully exploited when the same query is run again, without
re-compilation and re-optimization, by means of a dynamic query plan that exploits an index if it exists or creates
one if it doesn't?

Heuristics for indexing views: While fairly obvious and immediate rules might give satisfactory results for
indexes on tables, this is not the case for materialized (indexed) views. There are some very effective algorithms
and heuristics for pre-aggregations, both in the literature and in products, but many queries used in data analysis,
in particular if dimensions and hierarchies are used, can benefit not only from pre-aggregations but also from
joins, outer joins, nested queries, semi joins, set operations, etc. Crystallizing simple and effective heuristics
and their integration into query processing could substantially benefit the use of database systems, in particular
relational database systems, in data analysis and data mining.

Research for orders of magnitude: Finally, a brief word of caution. A performance- or throughput-oriented
software technique that results in a performance improvement measured as a percentage might very well be im-
portant for a vendor under pressure to win today’s benchmark, but it isn't a worthy research goal or result. An
improvement measured by a small factor (say factor 3) is laudable and useful, but not a breakthrough — improve-
ments in hardware technology will give us the same improvement (fairly predictably!) in just one or two years,
the time it takes to publish a journal paper about the new software technique or to ship it in a product. A typical
example for small-factor performance improvement is research into algorithms exploiting CPU caches, typically
by adapting techniques proven for disks and disk pages, e.g., B-trees, external sorting, and horizontal and verti-
cal partitioning. In order to be truly a breakthrough, a performance improvement has to be measured in orders
of magnitude. Materialized views are one such technique. Dynamic query plans, on the other hand, so far have
not achieved this level of success on a broad scale. Is it possible to achieve it? Can we achieve consistent and
predictable orders-of-magnitude performance improvements for relational and post-relational database systems
by combining dynamic query plans with on-the-fly indexing and materialized views?



Adaptive Query Processing: Technology in Evolution

Joseph M. Hellerstein Michael J. Franklin Sirish Chandrasekaran Amol Deshpande
Kris Hildrum Sam Madden Vijayshankar Raman Mehul A. Shah

Abstract

As query engines are scaled and federated, they must cope with highly unpredictable and changeable
environments. In the Telegraph project, we are attempting to architect and implement a continuously
adaptive query engine suitable for global-area systems, massive parallelism, and sensor networks. To
set the stage for our research, we present a survey of prior work on adaptive query processing, focusing
on three characterizations of adaptivity: the frequency of adaptivity, the effects of adaptivity, and the
extent of adaptivity. Given this survey, we sketch directions for research in the Telegraph project.

1 Introduction

Adaptivity has been an inherent — though largely latent — aspect of database research for the last three decades.
Codd's vision of data independence was predicated on the development of systems that could adapt gracefully
and opaquely to changing data and data structures. Query optimization, with its attendant technologies for cost
estimation, served as an early differentiator between DBMSs and other computer systems. This tradition of dy-
namic, statistically-driven system optimization remains one of the crown jewels of the database systems research
community.

In the last few years, broad sectors of computer science have been exploring the design of systems that are
adaptive to their environment. As computer systems scale up and federate, traditional techniques for system man-
agement and performance tuning must become more loosely structured and more aggressively adaptive. In the
context of database systems, this stretches the traditional techniques for adaptive query processing to the breaking
point, since very large-scale query engines operate in unpredictable and changeable environments. This unpre-
dictability is endemic in large-scale systems, because of increased complexity in a number of dimensions [AHOO]:

Hardware and Workload Complexity: In wide-area environments, variabilities are commonly observable in

the bursty performance of servers and networks [UFA98]. These systems often serve large communities of users
whose aggregate behavior can be hard to predict, and the hardware mix in the wide area is quite heterogeneous.
Large clusters of “shared-nothing” computers can exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in totally homogeneous environments, hardware perfor-
mance can be unpredictable: for example, the outer tracks of a disk can exhibit almost twice the bandwidth of
inner tracks [Met97].

Data Complexity: Selectivity estimation for static alphanumeric data sets is fairly well understood, and there has
been initial work on estimating statistical properties of static sets of data with complex types [Aok99] and meth-
ods [BO99]. But federated data often comes without any statistical summaries, and complex non-alphanumeric
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Frequency of Adaptivity
Batch | Per Query | Inter-Operator | Intra-Operator | Per Tuple
System R [SAC79], | ASE [CR94], Query Scrambling | Ingres [SWK76],| River [AAT 799],
Late Binding Sampling [BDF97], | [AFTU96, UFA98], | RDB [AZ96] Eddies [AHOO]
[HP88, GW89] Mariposa [SAP 96], | Reoptimization WHIRL [Coh98]
[INSS92, GC94] [KD98],
[ACPS96, LP97] Tukwila [IFFT99]

Table 1: Prior work on adaptive query processing, ordered by frequency of adaptivity. We omit specific adaptive
operators from the table, including sorting and joins as they are inherently intra-operator in frequency. We discuss
them further in Section 2.7.

data types are now widely in use both in object-relational databases and on the web. In these scenarios — and
even in traditional static relational databases — selectivity estimates are often quite inaccurate.

User Interface Complexity: In large-scale systems, many queries can run for a very long time. As aresult, there
is interest in Online Aggregation and other techniques that allow users to “Control” properties of queries while
they execute, based on refining approximate results [H@d].

1.1 Telegraph in Context

The goal of the Telegraph project at Berkeley is to architect and build a global-scale query engine that can execute
complex queries over all the data available orflinen designing Telegraph, we are facing new challenges in
wide-area systems, including the quickly shifting performance and availability of resources on the Internet. We
also want Telegraph to serve as a plug-and-play shared-nothing parallel query engine, which must be trivial to
manage and scale incrementally. Finally, we want to support sensor networks (e.g., [EGH99, KKP99, KRB99]),
which are emerging as an increasingly important — and unpredictable — aspect of “ubiquitous” (“calm”, “post-
PC”) computing.

Key to Telegraph is a continuously adaptive query processing engine that can gather and act upon feedback
at a very high frequency. This high-frequency adaptivity opens up both new opportunities and challenges in our
research agenda. In this paper we outline our view of earlier advances in adaptive query processing research,
which set the stage for the challenges we are addressing in building Telegraph. Table 1 provides a brief overview
of the work we survey.

1.2 Framework

Unfortunately, the phrase “adaptive system” is not canonical. These systems are sometimes refered to as “dy-
namic” or “self-tuning” systems, or systems that change their behavior via “learning”, “introspection”, and so
on. There are many tie-ins to work in related fields, such as control theory [Son98] or machine learning [Mit97].
To avoid confusion in terminology, we present our own definition of adaptivity in this context. We will call a
guery processing systeadaptiveif it has three characteristics: (1) it receives information from its environment,
(2) it uses this information to determine its behavior, and (3) this process iterates over time, generating a feedback
loop between environment and behavior

We wish to stress a distinction between adaptive systems, and systems that do static optimization. Static op-

timization contains the first two of these characteristics, but not the third. The feedback involved in an adapative

!The name refers to Telegraph Avenue, the volatile and eclectic main street of Berkeley.



system is key to its efficacy: it allows the system to make — and observe the results of — multiple decisions. This
allows it to consider its own effects on the environment in concert with external factors, and to observe the effects
of “exploiting” previously beneficial behavior, and “exploring” alternative behavior [Mit97].

Based on this definition of adaptivity, we can isolate three distinguishing features of an adaptive system: (1)
the frequencyof adaptivity (how often it can receive information and change behavior), (Hftaetsof adap-
tivity (what behavior it can change), and (3) tetentof adaptivity (how long the feedback loop is maintained).
As we survey prior work on adaptive query processing, we attempt to address all three of these issues.

2 A Survey of Adaptive Query Processing

Without embracing historical relativism too broadly, we admit that our survey says as much about our research
agenda as about the history we present. Indeed, our goal in this short paper is to place our research agenda for
adaptive query processing in the context of our view of the promise and shortcomings of the research to date.

We organize our survey partly chronologically, and partly by increasing frequency of adaptivity. As is clear
from Table 1, the two orderings are roughly correlated, with some interesting exceptions. The progression to-
ward increasing frequency over time seems to be natural, as systems are designed for increasingly complex and
changeable environments.

2.1 Early Relational Systems

From the very first prototypes, relational query processors have incorporated some minimal notion of adaptivity,
typically to capture the changing distributions of data in the database, and use that to model subquery result sizes,
and hence query operator costs.

The System R query optimizer [SAQ9] (which inspired essentially all serious commercial DBMS imple-
mentations today) kept a catalog of statistics, including cardinalities of tables and coarse distributions of values
within columns. By our definition, System R was not exactly adaptive: it did not have any explicit feedback
within the system. On the other hand, the system administrator could manually direct System R to adapt its be-
havior to the data: on command, the system would scan the entire database and update its statistics, which upon
completion would instantly affect all decisions made in query optimization. This heavyweight, pdyaidic
adaptivityapproach remains in nearly all commercial DBMSs today, though of course the statistics gathered —
and the means for gathering them — have become more sophisticated over time. While the frequency of adaptiv-
ity is quite low in these systems (statistics are typically updated once a day or once a week), the effects are broad
and the extent far-reaching: as a result of new statistics, the optimizer may choose completely different access
methods, join orders and join algorithms for all subsequent queries.

The Ingres “query decomposition” scheme [SWK76] was less effective but much more adaptive than Sys-
tem R. Ingres alternated between subplan selection and execution. For a queapltss, it operated as a greedy
but adaptive sequence of nested-loops joins. The smallest tahkechosen to be scanned first. For each tuple
of the smallest table, the next-smallest table was probed for matches via the “one-variable query processor” (i.e.
the table-scan or index lookup module), and a (duplicate-free) result of that probe was materialized. This greedy
process was then recursively applied on the remainingl tables —i.e.n — 2 base tables and one materialized
sub-result. After the recursion unwound, the process began again for the next tuple of the smallest table. Note
that this does not correspond to a static “join order” in the sense of System R: the materialized result of each “tu-
ple probe” could vary in size depending on the number of matches to each individual tuple, and hence the order of
joins in the recursive call could change from tuple to tuple of the smallest table. Although this greedy optimiza-
tion process often resulted in inefficient processing in traditional environments, it had a relatively high frequency
of adapitivity, gathering feedback after each call to the one-variable query processor. The frequency of adaptivity

2Actually, the smallest table after single-table predicates were applied and results materialized (“one-variable detachment”).



in Ingres was thuftra-query, and evenntra-operator, in the sense that adaptation could happened from tuple

to tuple of the outermost table in a sequence of nested loops joins. This remained one of the highest-frequency
schemes in the literature until quite recently. The feedback gathered after each table-scan or index lookup had the
effect of adapting the joiorder on subsequent iterations. Note that the effects of adaptivity in Ingres extended
only across the lifetime of a single query.

2.2 Late Binding Schemes

The schemes we discuss next are in some sense no more adaptive than that of System R, gathering no more in-
formation than is available to a standard optimizer. However, these schemes have a flavor of dynamism, and are
often discussed in the context of adaptive query processing, so for completeness and clarification we cover them
here.

The focus of this body of work is to improve upon a particular feature of System R’s optimizer for frequently
re-executed queries. In addition to its other features, System R introduced the ability for queries to be optimized,
compiled into machine code, and stored with the system for subsequent reuse. This technique, which is available
in commercial RDBMSs today, allows the cost of query optimization to be amortized across multiple executions
of the same query, even if the query’s constants are left unbound until runtime.

In the late 1980’s and early 90's, a number of papers addressed a weakness in this scheme: subsequent runs of
the query occur under different easily-checked runtime parameters, including changes in user-specified constants
that affect selectivity, changes in available memory, and so on [HP88, GW89, INSS92, GC94, ACPS96, LP97].
Query execution performance might be compromised under such changes, but the cost of complete reoptimization
on each small perturbation of the environment could be wasteful. To strike a happier medium, these systems
do some optimization in advance, and need to consider only a subset of all possible plans at runtime. The plan
eventually chosen for execution is intended to be the one that would be achieved by running the full System R
optimizer at runtime. In a typical example of this work, Graefe and Cole desdyitemic query plang5C94].

Given constraints on possible changes in the runtime environment, their optimizer would discard only those query
plans that were suboptimal in all configurations satisfying these constraints. The result of their optimizeetwvas a
of possible query plans, which was searched at runtime based on easily checkable parameters of the environment.

These schemes focus on the problem of postponing a minimal decision until runtime, effectively doing “late
binding” of unknown variables for frequently re-executed queries. But they do not take any special advantage
of iterative feedback, and offer the same frequency, effects and extent of adaptivity that one gets by running a
System R optimizer whenever a query is to be executed.

2.3 Per-Query Adaptivity: Making System R More Adaptive

System R’s statistics-gathering scheme was coarse grained, running only periodically, requiring administrative
oversight, and consuming significant resources. Chen and Roussopoulos propésksgire Selectivity Es-
timation (ASE) scheme to enhance a System R-style optimizer by piggybacking statistics-gathering on query
processing [CR94]. When a query was executed in their scheme, the sizes of sub-results would be tracked by
the system, and used to refine statistical metadata for future optimization decisions. This provided an organic
feedback mechanism, leveraging the natural behavior of query processing to learn more and perform better on
subsequent queries. ASE operated on a moderately qoarsgieryfrequency — still inter-query like System R,
but finer grained and more naturally adaptive. The effects of feedback in ASE were potentially as significant
as those of System R, affecting access method selection, as well as join order and join method selection, with a
long-term, inter-query extent. Note however that while ASE exploited information available from queries once
they were issued, it did not gather information on tables that had not yet been referenced in queries.

The Mariposa distributed DBMS enabled per-query adaptivity with federated administratiort @6ARMari-
posa used an economic model to let sites in a distributed environment autonomously model the changing costs
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of their query operations. During query optimization, Mariposa requested “bids” from each site for the cost of
performing subplans. The bidding mechanism allowed sites to observe their environment from query to query,
and autonomously restate their costs of operation for subsequent queries. In the initial experiments, Mariposa
used this flexibility to allow the sites to incorporate load average and other transient parameters into their costs.
More sophisticated “pricing agents” could be programmed into the system via a scripting language, and the com-
mercial version of the system (Cohera [HSC99]) exposes an extensible API suitable for 3rd-party pricing agents
(or "bots”). In terms of frequency, this is essentially like ASE: inter-query adaptivity at a per-query granular-
ity. The novelty in Mariposa comes from the way that economics enables autonomous and extensible control of
adaptive policies at sites in a federation. Mariposa used a “two-phase” optimization scheme, in which join orders
and methods are chosen by a central optimizer, and bids only affect the choice of sites to do the work.

2.4 Competition and Sampling

One of the more unusual query optimizers to date is that of DEC (later Oracle) RDB [AZ96]. RDB was the
first system to emplogompetitionto help choose query plans. The RDB designers focused in particular on the
challenge of choosing access methods for a given single-table predicate. They noted that the relative performance
of the two access methods could be differentiated on-line by running both for only a short time. Based on this
insight, they chose to simultaneously execute multiple access methods for a given table, and halt all but the most
promising access method after a short time. RDB was the first system after Ingres to support adaptivityeat an
operatorfrequency, though it only made one decision per table in a query, and only had effects on the choice of
access method.

The RDB scheme is not unlike sampling-based schemes for selectivity estimation, which also perform partial
guery executions to learn more about the performance of a full run. A sequence of papers in the last decade has
studied how to use sampling to estimate the selectivity of predicates (see Section 9 ofJBDér a survey).
Sampling has typically been proposed for use during query optimization, and used only to direct the initial choice
of a query plan (with the exception of online query processing, Section 2.7.2). Thus like ASE or Mariposa, this
is per-queryfrequency — a finer grain than System R, but not the intra-query frequency of RDB. The effects are
like those of System R: changing statistics can affect all aspects of query processing. However the extent is much
shorter than System R, lasting only for the run of a single query.

2.5 Inter-Operator Reoptimization and Query Scrambling

As outlined in the introduction, the need for adaptivity grows with the uncertainty inherent in the query processing
environment. Highly unpredictable environments, such as the Internet, require adaptivity even during the exeuc-
tion of a single query. A number of projects focusing on uncertain environments have employed intra-query
adaptivity. Inter-operator adaptivity was a natural first step in this agenda. One approach used in distributed
systems was to send subqueries to remote sites and then to use the arrival of the subquery results to drive the
scheduling for the remaining parts of the query that used them TBDCONK™96]. Such approaches deal with
uncertainties in the execution costs of the remote subqueries, and if subquery results are materialized, can also
cope with unexpected delays to some extent.

Query Scrambling [AFTU96] was developed specificaly to cope with unexpected delays that arise when pro-
cessing distributed queries in a wide-area network. With Query Scrambling, a query is initially executed accord-
ing to a plan generated by a System R-style query optimizer. If, however, a significant performance problem is
detected during the execution, the query plan is modified on the fly. Query Scrambling uses two basic techniques
to cope with unexpected delays: 1) it changes the execution order of operations in order to avoid idling, and 2)
it synthesizes new operations to execute in the absence of other work to perform. As described in [UFA98], the
scrambling process can be driven by a lightwieght, response-time based query optimizer.

Kabra and DeWitt proposedaoptimizationscheme [KD98] to address uncertainties in the sizes of subquery
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results. Asin Query Scrambling, an initial query plan is chosen by a traditional System R-style optimizer. After
every blocking operator in that plan, the remainder of the plan is reoptimized with the knowledge of the size of
the intermediate result generated thus far. The Tukwila system proposed a very similar technique, with a rule
language to specify logic for deciding when to reoptimize, and the preservation of optimizer state to reduce the
cost of reoptimization [IFF99].

In essence, inter-operator adaptivity is a long-postponed marriage of the Ingres and System R optimization
schemes: like Ingres, it takes advantage of the cardinality information in materialized subresults; like System R
it uses cost-based estimation of unknown work to be done. These schemes adapt at an inter-operator frequency,
with arbitrary effects on theemaining stepafter a block in a query plan; the extent does not go beyond the rest
of the query.

2.6 Intra-Operator Adaptivity Revisited: WHIRL

WHIRL is a data integration logic designed at AT&T labs that focuses on textual similarity predicates, with an
information-retrieval-style semantics of ranked results. The AT&T implementation of WHIRL attempts to return
the top ranked answers quickly. The basic query processing operators in the WHIRL implementation are essen-
tially scans (“exploding a literal”) and ranked index lookups from inverted-file indexes (“constraining a literal”).

At the end of each table-scan or index lookup, the implementation can choose among all subsequent possible
table-scans or index lookups. The AT&T WHIRL implementation is remarkably similar to INGRES in its intra-
operator adaptivity: it supports only nested loops joins, and adapts join order during a pipeline of these joins —
potentially changing the order after each complete call to an access method.

2.7 Adaptive Query Operators

Up to this point, the effects of adaptivity that we have discussed have been at the level of query optimization:
the choice of access methods, join methods, and join orders (and in the case of distributed queries, the choice of
sites). Adaptivity can occur at the level of individual operators, which can adapt at an intra-operator frequency
even within the context of a fixed query plan.

2.7.1 Memory-Adaptive Sorting and Hashing

Two of the basic operations in query processing are sorting and hashing. Both of these operations have costs that
are a function of the amount of main memory available. Query optimizers estimate these costs under assump-
tions of memory availability. In some systems, adequate memory is reserved to guarantee these costs prior to
execution; in others, memory allocation is allowed to proceed without regard to global consumption. The former
technique is conservative, potentially resulting in under-utilization of resources and increases in query latency.
The latter is aggressive, potentially resulting in paging and both decreased query throughput and increased la-
tency.

Athird approach is to modify sorting and hashing algorithms to adapt to changing amounts of available mem-
ory. Such schemes typically address both sudden losses and sudden gains in memory. Losses of memory are
typically handled by spilling hash partitions or postponing the merger of sorted runs; gains in memory are ex-
ploited by reading in spilled hash patrtitions, or adding sorted runs to a merge phase. Exemplary work in this area
was done by Pang, Carey and Livny, who studied both memory-adaptive variants of hash join [PCL93b] (based
on earlier work including [NKT88, ZG90]), and memory-adaptive variants of out-of-core sorting [PCL93a] (fol-
lowed by related work in [ZL97]).
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2.7.2 Pipelining and Ripple Join Algorithms

The pipelining property of join algorithms has been exploited for parallelism; Wilschut and Apers proposed the
symmetric hash join to maximize pipelined parallelism in their PRISMA/DB parallel, main-memory DBMS [WA91].
More recently, both the Tukwila and Query Scrambling groups extended the pipelining hash join in a natural
fashion so that it would run out-of-core. The Query Scrambling grodp&nalgorithm [UF99] pushed the out-
of-core idea further, to exploit delayed data feeds: when a particular tablescan is delayed, the XJoin expolits the
idle time by pulling spilled partial partitions off of disk and joining them. Neither of these extensions is adaptive
in the sense of our earlier definition, but both were used in the context of adaptive systems.

Recent work oronline query processinip the Control project highlighted the ability for pipelining opera-
tors to provide continuous feedback and hence drive adaptivity [F#9]. In the initial work on Online Ag-
gregation [HHW97], pipelining query processing algorithms were cited as a necessary condition for allowing
userfeedback during query processing. In subsequent work, system feedback was used interiggle figin
algorithms to automatically adapt the relative rates at which they fetch data from different tables, subject to a sta-
tistical performance goal [HH99]. The access methods in online query processing have typically been assumed to
do progressive sampling without replacement, putting this work in the tradition of sampling for cost estimation.

Haas and Hellerstein [HH99] broadly define the ripple joins as a family of pipelining join algorithms that
sweep out the cartesian plane in ever-larger rectangles, with the opportunity to adaptively control or tolerate
changing “aspect ratios” of those rectangles based on observed statistical and performance behavior. They in-
clude in their definition the earlier pipelining hash join and index nested-loops joins, along with new iterative
and “block” ripple joins that they introduce as modifications of the traditional nested loop3.j&ipple joins
as a class providmtra-operator frequency of adaptivity: behavior is visible apar-tuplefrequency, though
decisions are made in [HH99] at a slightly coarser granularity, at the end of each “rectangle” swept out in pro-
cessing. This adaptivity was exploited only for controlling the relative rates of 1/0 from different tables, during
the run of a single query.

2.8 Rivers: Adaptive Partitioning

In a shared-nothing parallel DBMS, intra-operator parallelism is achieved by partitioning data to be processed
among the nodes in the system. Traditionally this partitioning is done statically, via hashing or round-robin
schemes.River [AAT 799] is a parallel dataflow infrastructure that was proposed for making this partitioning
more adaptive. In developing the record-setting NOW-Sortimplementation [2X(; the River designers noted

that large-scale clusters exhibited unpredictable performance heterogeneity, even across physically identical com-
pute nodes. As a result, they designed two basic mechanisms in River to provide data partitioning that adapted to
the relative, changing rates of the various nodeBRigtributed Queuenechanism balanced work among multiple
consumers running at different (and potentially changing) rat€saduated Declusteringcheme dynamically

adjusted the load generated by multiple redundant producers of data. Both these mechanisms adapted at a per-
tuple frequency, affecting the assignment of work to nodes, with effects lasting for the duration of the operator.

2.9 Eddies: Continuous Adaptivity

In a query plan (or subplan) composed of pipelining operators like ripple joins, feedback is available on a tuple-
by-tuple basis. As aresult, it should be possible for a pipelined query (sub)plan to adapt at that frequency as well.
Ripple joins, rivers, and other schemes leverage the feedback within an operator to change the behavior of the
operatorEddiesare a mechanism to get inter-operator effects with intra-operator frequency of adaptivity [AHOO].

3The aspect ratio of index nested-loops join is actually not subject to modification: the indexed relation is fully “swept” upon each
index probe. However it was included in the family since it can present a performance enhancement over the iterative ripple joins when
an index is available
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Figure 1. An eddy in a pipeline. Data flows into the eddy from input relat®n$ andT'. The eddy routes tuples

to pipelining operators; the operators run as independent threads, returning tuples to the eddy. The eddy sends a
tuple to the output only when it has been handled by all the operators. The eddy adaptively chooses an order to
route each tuple through the operators.

An eddy is an encapsulated dataflow operator, akin to a join, sort, or access method jisidtaninterface.

In the same way that thexchangeoperator of Volcano encapsulates parallelism, eddies are used to encapsulate
adaptivity. An eddy is intended to be interposed between the tablescans in a plan (which produce input tuples to
the eddy), and other “upstream” operators in the plan (which serve both to consume the eddy’s output tuples and
produce additional inputs).

As originally envisioned, the eddy — combined with pipelining operators like ripple joins — serves to adapt
join order on a tuple-by-tuple basis. Every operator “upstream” of the eddy returns its results to the eddy, which
passes them along to remaining operators for further processing. As aresult, the eddy encapsulates the ordering of
the operators by routing tuples through them dynamically (Figure 1). Because the eddy observes tuples entering
and exiting the pipelined operators, it can adaptively change its routing to effect different operator orderings. It
does so via a lottery scheduling scheme [WW94]. It can also control the rates of input from tablescans (if this is
under the control of the system, as in the original online aggregation scenario.) In their original incarnation, the
extent of adaptivity in eddies is restricted to a single query. In the next section we describe our agenda to extend
the effects and extent of eddies.

3 Challenges in Adaptive Query Processing

While adaptivity has long been an issue in database research, we believe that the frequency of adaptivity in prior
systems has been insufficient for many of the emerging large-scale environments. Work on continuous adaptivity
has just begun, and we see a number of challenges and opportunities in this space.

In designing Telegraph, we are exploring new ideas in continuously adaptive query processing. The Tele-
graph query engine is a dataflow architecture based on rivers, eddies, and pipelining query processing operators
like ripple joins and XJoins. As such, it is architected for fine-grained adaptivity and interactive user control.
Rivers and eddies are quite general concepts, and we view them more broadly than the specific incarnations pre-
sented in the original papers. In particular, a major goal of Telegraph is to enhance both the extent and the effects
of both schemes. Enhancing their extent is relatively simple: a metadata store can be used to save information
at the end of each query, and this information consulted to set up initial conditions for subsequent queries (data
partitioning, relative numbers of lottery tickets, etc.) Enhancing the set of effects from rivers and eddies is more
complicated, and we are considering a number of challenges in this regard:
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Spanning trees: As originally presented, eddies have no effect on the spanning tree for the query: i.e., the set
of binary joins that connect the relations in the query. For cyclic join graphs, it is attractive to consider adapting
the choice of spanning tree on the fly, by connecting the eddy to joins (or cross-products) between more pairs of
tables than is strictly necessary. This is essentially a form of competition among spanning trees, and hence it can
consume significant resources and produce duplicate results, two issues that we are currently investigating.

Data sources:River handles multiple potential data sources via graduated declustering, but requires a particular
layout for those sources. We would like to extend this idea to a federated environment like the Internet, where
data layout — and even data contents — are not under our control. This may produce duplicate or even inconsistent
results, which need to be resolved.

Join and access methodsThe choice of join and access methods can only be made on the fly by an eddy if
they are run competitively, allowing the eddy to explore their behavior. In exploring this idea, we need to watch
resource contention as well as the production of duplicates.

Moving state in rivers: The original River paper did not explicitly discuss how per-node state (e.g. hash par-
titions in a hash-join) could be migrated as the system adapts. We are investigating applying the ideas from
memory-adaptive hash joins in this context.

In addition to extending rivers and eddies to have more general effects over a longer extent of time, we are
considering a number of additional adaptivity questions:

Two-dimensional interactivity: Prior work on online query processing allowed “horizontal” user feedback on
therowsto be favored for processing. We are also considering the “vertical” case in Telegraph: partially-joined
tuples should be available at the output, and users should be able to express their relative desire for different
columns or even combinations of rows and columns. Partially-joined tuples may not necessarily have matches
in all tables in the query, meaning that even though they are passed to the output, they may not be contained in
the final answer. This has implications for user interfaces, client APIs, and of course the policies used in eddies.

Initial delays: Prior work on query scrambling addressed initial delays, but it is not clear how this work might
dovetail with eddies and rivers. Challenges arise from the complete lack of feedback available in initial-delay
scenarios.

Caching and prefetching: Caching is probably the most well-studied adaptive problem in computer systems,
and is particularly relevant for a high-latency Internet environment. Prefetching is a similarly robust adaptive
problem, dynamically predicting data fetches in the face of changing workloads. We are aggressively exploring
both techniques in the context of Telegraph.

In addition to the constructive goals of Telegraph, many analytic questions remain as well. The first is to
more carefully characterize the vagaries of all the application environments we are considering, including the
wide area, clusters, and sensor networks. We have evidence that each of these environments merits a fine-grained
frequency of adaptivity, and we believe that broad effects and extent of adaptivity will be appropriate as well.
However the more we know about these environments, the better our adaptive systems should be able to perform.
Second, we are actively engaged with our colleagues in theoretical computer science and machine learning in
developing a formal framework for eddies, to try and characterize questions of convergence and stability, and to
tune the policies used for adapting.
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Abstract

As the area of data management for the Internet has gained in popularity, recent work has focused
on effectively dealing with unpredictable, dynamic data volumes and transfer rates using adaptive query
processing technigues. Important requirements of the Internet domain include: (1) the ability to process
XML data as it streams in from the network, in addition to working on locally stored data; (2) dynamic
scheduling of operators to adjust to I/0 delays and flow rates; (3) sharing and re-use of data across mul-
tiple queries, where possible; (4) the ability to output results and later update them. An equally important
consideration is the high degree of variability in performance needs for different query processing do-
mains: perhaps an ad-hoc query application should optimize for display of incomplete and partial incre-
mental results, whereas a corporate data integration application may need the best time-to-completion
and may have very strict data “freshness” guarantees. The goal of the Tukwila project at the University
of Washington is to design a query processing system that supports a range of adaptive techniques that
are configurable for different query processing contexts.

1 Introduction

Over the past few years, a new set of requirements for query processing has emerged, as Internet and web-basec
guery systems have become more prevalent. In this emerging data management domain, queries are posed ovel
multiple information sources distributed across a wide-area network; each source may be autonomous and may
potentially have data of a different format. In some applications, the Internet query systems’ results are fed into
other data management tools; in other cases, the system interacts directly with the user in an ad-hoc environment.
In certain contexts, the query processing system will handle a small number of concurrent queries; in others, there
can be hundreds or even thousands of simultaneous requests. These different Internet query applications have
many common requirements, but also require certain context-specific behaviors.

Modern query processors are very effective at producing well-optimized query plans for conventional databases,
by leveraging I/O cost information as well as histograms and other statistics to determine the best executable
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plans. However, data management systems for the Internet have demonstrated a pressing need for new tech-
nigues. Since data sources in this domain may be distributed, autonomous, and heterogeneous, the query opti-
mizer will often not have histograms or any other quality statistics. Moreover, since the data is only accessible
via a wide area network, the cost of I/O operations is high, unpredictable, and variable.

These factors can be mitigated throwgkaptive query processinghere the query processor adapts its ex-
ecution in response to data sizes and transfer rates as the query is being executed. Moreover, the high 1/O costs
suggest that data should be processed as it is streaming across the network (as is done in relational databases with
pipelining), scheduling of work should be dynamic to accommodate 1/O latencies and data flow rates, and re-use
and sharing of intermediate query results should be done wherever possible — both across concurrent queries,
and between successive queries that execute within some short time delta of each other.

Adaptive query processing helps solve most of the problems common to Internet query systems. However,
another important issue in using adaptive techniques, one that has seldom been considered, is the needs of the
specific query context: the performance goals, as well as the applicable adaptive techniques, may vary widely
depending on the application. For an ad-hoc, interactive query domain, the user may wish to see incomplete
results quickly, but for a business-to-business environment, the emphasis may be on providing complete results
as quickly as possible, with strict guarantees about data freshness.

The Tukwila project at the University of Washington is a data integration system, in which we attempt to
answer queries posed across multiple, autonomous, heterogeneous sources. All of these data sources are mapped
into a commomediated schemd he data integration system attempts to reformulate the query into a series of
gueries over the data sources, then combine the data into a common result. Tukwila’s ancestors, the Information
Manifold [LRO96] and Razor [FW97], focused on the problems of mapping, reformulation, and query planning;
Tukwila attempts to address the challenges of generating and executing plans efficiently with little knowledge
and variable network conditions.

The goal of Tukwila is to support efficient query processing of streaming XML data using adaptive query
processing techniques, including display of incremental results and the sharing of sub-results across queries. In
conjunction with this, we believe there is need for a method of expressing query proqesigiies— providing
different query performance behaviors for different contexts.

In this paper we discuss a hnumber of important areas that must be addressed using adaptive techniques for an
effective wide-area XML data integration system. The paper is organized as follows: we begin in Section 2 with
an overview of the different dimensions of adaptive query processing, which underly our research agenda for
the Tukwila system. Section 3 describes adaptive technigues currently used within the Tukwila data integration
system, and explains how they address some of the problems in this domain; in Section 4, we discuss the current
focus areas of the Tukwila project. Finally, we conclude in Section 5.

2 Context-Specific Requirements in Adaptive Query Processing

Adaptive query processing encompasses a variety of techniques, some of which date back to the beginnings of
relational database technology. These techniques can be classified by the granularities of adaptivity, as in the
paper by Hellerstein et al. in this issue. Here we present an orthogonal classification of these techniques, based
on the set of dimensions over which applications of adaptive query processing differ. We argue that adaptive
query processors should be built in a flexible fashion, so they can be easily configured for any of these different
application contexts. Below we begin by identifying the set of dimensions for Internet query processing, and
in Sections 3 and 4, we discuss how current and future work on Tukwila addresses the requirements of these
dimensions.

Data model To this point, most adaptive query processing techniques have focused on a relational (or object-
relational) data model. While there are clearly important research areas within this domain, other data models
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may require extensions to these techniques. In particular, XML, as a universal format for describing data, allows
for hierarchical and graph-structured data. We believe an execution model similar to pipelining is important for
the XML realm, as processing of streaming data is of growing impact.

Remote vs. local data Traditional database systems have focused on local data. Recent work has focused
on techniques for increasing the performance of network-bound query applications, including [UFA98, UF99,
IFF99, AHO0, HH99]. (See the Hellerstein et al paper in this volume for greater detail.)

Firstvs. lasttuple Fordomains inwhich the data is used by an application, the query processor should optimize
for overall query running time — the traditional focus of database query optimizers. Most of today’s database
systems do all of their optimization in a single step; the expectation (which does not generally hold for large
guery plans [AZ96] or for queries over data where few statistics are available) is that the optimizer has sufficient
knowledge to build an efficient query plan. The INGRES optimizer [SWKH76] and techniques for mid-query
re-optimization [KD98] often yield better running times, because they re-optimize later portions of the query plan
as more knowledge is gained from executing the earlier stages. Similar re-optimization techniques can also be
applied to interactive domains, as discussed in {188, AHOO, UFA98], because they can often produce output
faster by using a superior query plan.

Approximate results In interactive domains, we may wish to see incremental display of the query results, with
incomplete or approximate answers that evolve towards their final values. Operators supporting output of par-
tial results have been a focus of recent work in [HHW97], which provided incremental display of approximate
results for root-level aggregation, and [ST@D], which proposed a more general approach for providing partial
results on demand. However, another important aspect of this area is a method of spetiitmprovide par-

tial answers, as the user may only want to see tentative results for certain data items. Moreover, a more formal
definition is needed for the semantics of when a partial or approximate result is meaningful.

Incremental updates In certain applications where data constantly changes, itis important to be able to execute
the query over an initial data set, and thereafter to process “deltas” describing updates to the original data values.
Early work in this area includes the partial-results feature of the Niagara system [®[.D

Number of queries If the domain includes large numbers of similar queries being posed frequently, the query
processor should generate query plans with a focus on materialization of partial results for future reuse, and it
should make use of common subexpressions. Work in this area includes the NiagraCQ [CDTWO0O0] system at
Wisconsin and the OpenCQ and WebCQ projects at Georgia Tech. This problem is similar to that of multi-query
optimization [Sel88, RSSBO00] but with a more “online” character — as optimization is done for pofatuial

reuse of subquery results — and generally larger numbers of queries.

Freshness Data may often be prefetched and cached by the query processor, but the system may also have to
provide data freshness guarantees. Caching and prefetching are well-studied areas in the database community.
Likewise, the work on rewriting queries over views [Lev00] can be used to express new queries over cached data,
rather than going to the original data sources.

3 The Tukwila Data Integration System

In a domain where costs are unpredictable and dynamic, such as data integration for the wide area, a query pro-
cessing system must react to changing conditions and acquired knowledge. This is the basic philosophy behind
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the Tukwila project, which focuses on providing a configurable platform for adaptive query processing of stream-
ing data.

In this section, we present an overview of the basic techniques implemented in Tukwila. There are three pri-
mary aspects to the Tukwila adaptive framework: an event-condition-action-based rule system, a set of adaptive
operators, and the ability to incrementally re-optimize a query plan as greater knowledge about the data is gained.
Here we provide a brief overview of these capabilities; for more information, see 9gjF

3.1 Controlling Adaptive Behavior

Animportant need in dealing with network-based query sources is the ability to respond to unexpected conditions:
slow data sources, failed sources, amounts of data that are much larger than expected, etc. In order to handle
conditions such as these, Tukwila incorporates event-condition-action rules that can respond to execution events
such as operator start, timeout, insufficient memory, end of pipeline, and so forth. In response to these events,
Tukwila can return to the query optimizer to re-optimize the remainder of a query plan; it can modify memory
allocations to operators; it can switch to an alternate set of data sources. Note that these rules are at a lower
granularity than triggers or active rules: they respond to events at the sub-operation level, and can also modify
the behavior of query plan operators.

3.2 Intra-Operator Adaptivity

The Tukwila system provides two operators that can respond to varying network conditions and produce optimal
behavior. The first is an implementation of the pipelined hash join [WA91] with extensions to support overflow
of large hash tables to disk; in many ways it resembles the hash ripple join [HH99] and the XJoin [UF99].

A pipelined hash join operates with two hash tables, rather than the single hash table of a typical hybrid hash
join. A tuple read from one of the operator’s inputs is stored in that input's hash table and probed against the
opposite table. Each input executes in a separate thread, and this provides two highly desirable characteristics: it
allows overlap of I/0 and computation, which is important in an I/O-bound environment, and it produces output
tuples as early as possible. The pipelined hash join also adjusts its behavior to the data transfer rates of the sources.
The trade-off is that it uses more memory than a standard hybrid hash join; however, this problem can be mitigated
with the overflow strategies implemented by Tukwila or the XJoin operator.

In many web applications, there may be multiple sites from which the same input data can be obtained; some
of these data sources may be preferable to others, perhaps because of connection speed or cost.colikwila’'s
lector operator provides a robust method for reading data from sources with identical schemas: according to a
policy specified in Tukwila’s rule language, the collector attempts to read from a subset of its sources; if a given
source is slow or unavailable, the collector can switch to one or more alternate data sources. This operator allows
the query engine to choose data sources based on criteria such as availability or speed.

3.3 Incremental Re-Optimization

Adaptive behavior during query execution is key in situations where I/O costs are variable and unpredictable.
When data sizes are also unpredictable, it is unlikely that the query optimizer will produce a good query plan,
so it is important to be able to modify the query plan being executed. As a result, Tukwila supports incremental
re-optimization of queries during particular plan execution points.

The Tukwila re-optimization model is based foagmentsor pipelined units of execution. Fragment bound-
aries, at which a pipeline is broken and the results are materialized, are chosen by the optimizer according to their
cost and potential benefits. In general, a large query plan must already be broken into smaller pipelines so oper-
ators will fit into memory; this is particularly true if memory intensive operators such as the pipelined hash join
are used. At each materialization point, Tukwila’s execution system can check whether the result cardinality was
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close to that expected by the optimizer; if the cardinality is sufficiently divergent, Tukwila will keep the current
guery subresults and re-optimize the remainder of the query plan, using the subresults as inputs for a new and
better plan.

The Tukwila model for re-optimization is similar to that proposed in [KD98], but it allows the optimizer to
choose fragmentation points in an integrated, cost-based approach, rather than adding the capabilities in a separate
postprocessing step.

4 Current Areas of Focus in Tukwila

The Tukwila system already supports a number of adaptive techniques, but the system is being extended in a
number of ways. Our current work focuses on many of the areas discussed in Section 2.

4.1 XML: a Foundation for Data Integration

Tukwila was initially developed for a relational data model, and requinegppersfor every data source, to trans-
late data from source formats into the standard Tukwila data format. XML reduces the difficulty of building
wrappers, as most data sources have begun to include XML export capabilities, and as various HTML-to-XML
wrapper toolkits (e.g. [SA99, LPH00]) have emerbediowever, the use of XML, which supports flat, hier-
archical, and graph-structured data, has led to a natural extension of the Tukwila data model to fully support
semistructured data.

Our data model is based on an ordered, directed-graph approach like that of XML-QI-@OFF his model
is powerful enough to support any of the proposed XML query languages, including XML-QL, XQL [RLS98],
XPath [CD99], and Quilt [CRFO00]. As discussed below, one of our goals in Tukwila is to support the processing
of streams of changing data. To this end, we are developing a language for specifying updates to XML documents.

4.2 Processing Streaming XML Data

To this point, XML query processors have worked by mapping XML data into an underlying local store — re-
lational, object-oriented, or semistructured — and have done their processing within this store. For a network-
bound domain where data may need to be re-read frequently from autonomous sources to guarantee “freshness,”
this approach does not produce good performance. Thus it is imperative that an XML data integration system
support direct querying of data as it streams in, much as a relational engine can pipeline tuples as they stream in.

In order to provide pipeline-like processing of network data, we must be able to support efficient evalua-
tion of regular path expressionsver the incoming data, and incremental output of the values they select. Reg-
ular path expressions are a mechanism for describing traversals of the data graph using edge labels and optional
regular-expression symbols such as the Kleene-star (for repetition) and the choice operator (for alternate sub-
paths). Regular path expressions bear many similarities to conventional object-oriented path expressions, and
can be computed similarly; however, the regular expression operators may require expensive operations such as
joins with transitive closure.

We have developed thescanoperator, which evaluates regular path expressions across incoming XML
data, and which binds query variables to nodes and subgraphs within the XML document. X-scan is discussed in
greater detail in [ILWO00], and includes support for both tree- and graph-structured documents, while preserving
document order.

Building upon X-scan, we are developing a complete query processor over streaming XML data. The key
additional operators we are considering areatoperator, which nests subelements under parents, in a join-like

!Legacy applications will still need wrappers to convert from their formats to XML, but those wrappers should be generic enough to
be usable by all XML data consumers, unlike the previous situation where a separate wrapper needs to be created for each data provider
and consumer.
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fashion; and duseoperator, which can be used to support graph-model features in an XML output document by
consolidating multiple output nodes.

4.3 Specifying Adaptive Behavior

In Section 2, we discussed a number of dimensions of adaptive query processing. Different data management
applications have very different needs within these dimensions. Factors may include whether to optimize for first
or last tuple, how fresh the data from each query must be (and thus how long data can be cached), and whether
(and when) the user should see approximate or incomplete data.

Additionally, the query optimizer should behave quite differently if the domain is one in which many similar
gueries are being posed, rather than one in which a few simple queries are given. For the multi-query case, the
guery processor should evaluate the potential benefits of materializing subresults for reuse in future queries.

Although optimizing for each of these various needs has been fairly well-studied, much less work has been
done on actually expressing the query processing requirements, and on being able to support all of these cases
within a single unified framework. This is an area we plan to address within Tukwila: developing a system to
support a wide range of applications, and, equally important, providing a configuration language for specifying
the requirements of a given domain.

4.4 Increasing Pipelined Behavior

In terms of query execution, an important need for interactive applications is to facilitate output of first tuples —
the user should receive results as soon as possible. Tukwila includes adaptive operators whose intent is to address
this requirement.

However, these needs must be balanced by the fact that the query optimizer, which does not have good knowl-
edge of the data sources, may have produced a suboptimal plan. The optimizer initially divides the plan into
fragments (pipelines with materialization points) based on expected memory usage and other factors such as con-
fidence in its statistics. Each of these materialization points breaks the pipeline, generally slowing time to first
tuple — however, if the plan gets re-optimized into a more efficient form, the net result should be a faster time
to completion, and potentially even a better time to first tuples.

4.4.1 Dynamically Choosing Materialization Points

Clearly, there is a trade-off between the number of materialization points and the query processing time. Unfor-
tunately, with few statistics available, the optimizer is unlikely to be able to choose good materialization points;
it is likely to have too many, too few, or poorly placed breaks in the pipeline. (This problem is also present in
traditional systems with quality statistics, appearing for complex queries with many join operations.) We are
investigatating the performance implications of choosing the materialization points adaptively, during plan ex-
ecution. In our approach, the query optimizer creates long pipelines; when these pipelines run out of memory
(e.g. ajoin algorithm needs to overflow to disk), the execution engine will, using “hints” provided by the opti-
mizer, insert a new materialization point into the middle of the pipeline. All operators “upstream” of this new
materialization point will flush their results to disk; execution of the operators below the materialization point
will continue. Once they complete, the upstream operators will reload their intermediate results, begin reading
from the materialized file, and resume normal operation.

We expect that there will be several benefits to this approach. First, early results will likely be able to perco-
late through the entire long pipeline before the system runs out of memory — this speeds time to initial tuples.
Second, the system will only insert materialization points where necessary, something that is extremely difficult
to do statically. Third, the cost of breaking a pipeline should generally be less than that of having multiple join al-
gorithms simultaneously overflowing, as it allows the query processor to “stage” portions of the data that exceeds
memory.
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4.4.2 Returning Incremental Results

Another important feature that is important for interactive applications is the ability to display approximate results
incrementally. Initial work in this area has been done in the context of the Niagara system(Q8J[Which

allows the user to request partial results at any time, and also within the CONTROL project [HHW97] for top-
level aggregate operators.

Our focus in this area is on two important problems. First, an interactive query system would ideally provide
incremental results for all query types in an interactive, browsable window, where the query processor “focuses”
on finalizing the results currently in the user’s view. Second, it will often be the case that for a given domain or
query, approximate or partial results are only useful for certain items within the data set. A system that supports
partial results should also support a mechanism for expressing which data items should be approximated. We
believe this should be one aspect of the configuration language discussed in Section 4.3.

5 Conclusions

Adaptive query processing is a rapidly growing field, as evidenced by this special issue. Certain aspects of this
work go back to the early days of relational databases, but the evolution of data integration and data management
systems for the Internet has led to a number of recent developments.

We believe that one of the most important areas of future exploration should be in developing a system flex-
ible enough to meet the wide range of domain-specific needs, and providing a means of specifying the relevant
parameters to the system. The Tukwila project is attempting to address aspects of both of these problems, us-
ing XML as the standard data format and data model. We believe that the current system has taken a number
of steps in this direction, and that our current and future work will take us much closer to a comprehensive data
management solution for Internet-based data.
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Abstract

Wide-area distribution raises significant performance problems for traditional query processing tech-
niques as data access becomes less predictable due to link congestion, load imbalances, and temporary
outages. Pipelined query execution is a promising approach to coping with unpredictability in such en-
vironments as it allows scheduling to adjust to the arrival properties of the data. We have developed
a non-blocking join operator, called XJoin, which has a small memory footprint, allowing many such
operators to be active in parallel. XJoin is optimized to produce initial results quickly and can hide in-
termittent delays in data arrival by reactively scheduling background processing. We show that XJoin is
an effective solution for providing fast query responses to users even in the presence of slow and bursty
remote sources.

1 Wide-Area Query Processing

The explosive growth of the Internet and the World Wide Web has made tremendous amounts of data available
on-line. Emerging standards such as XML, combined with wrapper technologies address semantic challenges
by providing relational-style interfaces to remote data. Beyond the issues of structure and semantics, however,
there remain significant technical obstacles to building responsive, usable query processing systems for wide-
area environments. A key performance issue that arises in such environnresisoisse-time unpredictability

Data access over wide-area networks involves a large number of remote data sources, intermediate sites, and
communications links, all of which are vulnerable to overloading, congestion, and failures. Such problems can
cause significant and unpredictaldelaysin the access of information from remote sources. These delays, in
turn, cause traditional distributed query processing strategies to break down, resulting in unresponsive and hence,
unusable systems.

In previous work [AFTU96] we identified three classes of delays that can affect the responsiveness of query
processing: linitial delay, in which there is a longer than expected wait until the first tuple arrives from a remote
source; 2slow delivery in which data arrive at a fairly constant but slower than expected rate; dnd<3y ar-
rival, in which data arrive in a fluctuating manner. With traditional query processing techniques, query execution
can become blocked even if only one of the accessed data sources experiences such delays.
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We developed Query Scrambling to address this problem and showed how it can be used to hide initial de-
lays [UFA98] and bursty arrivals [AFT98]. Query Scrambling igactiveapproach to query execution; it reacts
to data delivery problems by on-the-fly rescheduling of query operators and restructuring of the query execution
plan. Query Scrambling is aimed at improving the response time foentiee query, and may actually slow
down the return of some initial results in order to minimize the time required to produce the remaining portion
of a query answer once all necessary data has been obtained from all of the remote sources.

In this paper we explore a complementary approach using a non-blocking join operator we call XJoin. XJoin
is based on two fundamental principles:

1. Itis optimized for producing results incrementally as they become availstien used in a fully pipelined
query plan, answer tuples can be returned to the user as soon as they are produced. The early delivery of
initial answers can provide tremendous improvements in the responsiveness observed by the users.

2. It allows progress to be made even when one or more sources experience diakrgsare two reasons for
this. First, XJoin requires less memory, which allows for bushier plans. Thus, some parts of a query plan
can continue while others are stalled waiting for input. Second, by employing background processing on
previously receivedluples from both of its inputs, an XJoin operator can produce results even when both
inputs are stalled simultaneously.

XJoin is based on the Symmetric Hash Join (SHJ) [WA91, HS93] which was originally designed to allow a
high degree of pipelining in parallel database systems. As originally proposed, however, SHJ requires that hash
tables for both of its inputs be kept in main memory during most of the query execution. As a result, SHJ cannot
be used for joins with large inputs, and the ability to run multiple joins (e.qg., in a bushy query plan) is severely
limited. XJoin extends the symmetric hash join to use less memory by allowing parts of the hash tables to be
moved to secondary storage. It does this by partitioning its inputs, similar in spirit to the way that hybrid hash
join solves the memory problems of classic hash join.

Simply extending SHJ to use secondary storage, however, is insufficient for tolerating significant delays in
receiving data from remote sources. For this reason, a key component of XJoeaidigely scheduledack-
ground process, which opportunistically utilizes delays to produce more tuples earlier. We show that by using
XJoin it is possible to produce query execution plans that can better cope with data delivery problems and that
can deliver initial results orders of magnitude faster than traditional techniques, with in many cases, little or no
degradation in the time required to deliver the entire result.

The main challenges in developing XJoin include the following:

Managing the flow of tuples between memory and secondary storage.

Controlling the background processing that is initiated when inputs are delayed.

Ensuring that the full answer is ultimately produced (i.e., no answers should be lost).

Ensuring that no duplicate tuples are inadvertently produced.

The work described in this paper is related to other recent projects on improving the responsiveness of query
processing, including techniques for returning initial answers more quickly [BM96, CK97] and those for return-
ing continually improving answers to long running queries [VL93, HHW97]. Our work differs from this other
research due to (among other reasons) the focus on coping with unpredictable delays arising from wide-area re-
mote data access. The Tukwila system [IFBO] incorporates an extension of SHJ called Double Pipelined
Hash Join (DPHJ) that can work with limited memory. DPHJ differs from XJoin in several details such as the
way in which tuples are flushed to secondary storage. More importantly, as originally specified, DPHJ does not
include reactively-scheduled background processing for coping with delayed sources. Both DPHJ and XJoin can
be thought of as types of Ripple Joins [HH99] which are a class of pipelined join operators that allow the order
of data delivery to be adjusted dynamically.
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Figure 1: Handling the partitions.

2 The Design of XJoin

In this section we only give a brief overview of the mechanisms used by XJoin. A more detailed description of
XJoin is given in [UF99].

2.1 The Three Stages of XJoin

XJoin proceeds in three stages, each of which is performed by a separate thread. The first stage joins memory-
resident tuples, acting similarly to the standard symmetric hash join. The second stage joins tuples that have been
flushed to disk due to memory constraints. The third stage is a clean-up stage, which performs any necessary
matching to produce results missed by the first two stages. The first and second stages run in an interleaved
fashion — the second stage takes over when the first becomes blocked due to a lack of input. These stages are
terminated after all input has been received, at which point the third stage is initiated.
First Stage

The first stage works similarly to the original symmetric hash join. The main difference is that in XJoin,
the tuples are organized in partitions (Figure 1). In general each partition can consist of two portions: a memory-
resident portion, which stores the most recently arrived tuples for that partition, and a disk-resident portion, which
contains tuples of the partition that have been flushed to disk due to memory constraints. When an input tuple
arrives from a source, if there is memory available for the tuple then it is simply placed in its partition and used
to probe the memory-resident portion of the corresponding partition for the other source (Figure 2). If, however,
memory is full, then one of the patrtitions is chosen as a victim and its memory-resident tuples flushed to disk
(i.e., appended to its disk-resident portion). Join processing then continues as usual. The first stage runs as long
as at least one of its inputs is producing tuples. If the first stage ever times out on both of its inputs (e.g., due to
some unexpected delays), it blocks and the second stage is allowed to run. The first stage terminates when it has
received all of the tuples from both of its inputs.
Second Stage

The second stage is activated whenever the first stage blocks. It first chooses a partition from one source using
optimizer-generated estimates of the output cardinality and the cost of performing the stage using the partition.
It then uses the tuples from the disk-resident portion of that partition to probe the memory-resident portion of
the corresponding partition of the other source. Any matches found are output (subject to duplicate detection
as described in Section 2.2) as result tuples. After a disk-resident portion has been completely processed, the
operator checks to see if either of the join inputs have resumed producing tuples. If so, then the second stage
halts and the first stage is resumed, otherwise a different disk-resident portion is chosen and the second stage is

!Note that the same partition can be used multiple times, as the partition grows over the course of the join execution.
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continued. As an additional optimization, tuples brought into memory during one iteration of the Second Stage
can be probed with disk-resident tuples from the corresponding partition of the other source in the subsequent
iteration.

It is important to note that XJoin follows the Query Scrambling philosophy of hiding delays by performing
other work. In particular, the second stage incurs processing and I/0O overhead in the hope of generating result
tuples. This work is essentially free as long as the inputs of the XJoin are delagetb progress could be made
in that situation anyway. This is where the benefit of the second stage comes in. The risk is that when one or
both of the inputs become unblocked it is not noticed until after the current disk-resident partition has been fully
processed. In this case, the overhead of the second stage is no longer completely hidden.

Third Stage

The third stage executes after all tuples have been received from both inputs. Itis a clean-up stage that makes
sure that all the tuples that should be in the result set are ultimately produced. This step is necessary because the
first and second stages may only partially compute the result.

2.2 Handling Duplicates in XJoin

The multiple stages of XJoin may produce spurious duplicate tuples because they can perform overlapping work.
Duplicates can be created in both the second and third stages. To address this problem XJoin uses a duplicate
prevention mechanism based on timestamps.

XJoin augments the structure of each tuple with two persistent timestamps: an Arrival TimeS3t&si) (
which is assigned when the tuple is first received from its source and a Departure TimeB@&S) {hich is
assigned when the tuple is flushed from memory. Aifi&5 and DT'S together describe the time interval during
which a tuple was in the memory-resident portion of its partition.

These timestamps are used to check whether two tuples have previously been matched by the first stage or
second stage. If so these tuples are not matched again. Checking for the matches from first stage is easy. For a
pair of tuples to have been matched by the first stage they both must have been in memory at the same time, thus
they must have overlappinT’S and DT'S ranges. Any such pair of tuples are not considered for joining by the
second or third stages.

The AT S andDT S are not enough to detect tuples matched in the second stage. In order to solve this problem
XJoin maintains a linked list for each partition processed by the second stage. The entries in the list are of the
form { DTS5, ProbeT S} whereDT Sy, is the DT'S value of the last tuple of the disk-resident portion that
was used to probe the memory-resident tuples,nebeT'S is the timestamp value at the time that the second
stage was executed. These entries can be used to infer that all tuples of disk-resident portion hEXisy
values up to (and includingpT' S,,; were used by the second stage at tift@beT'S.

When two tuples’y andT's, are later matched we first check wHEfR was used to probe memory-resident
tuples using the linked list maintained for the partition it belongs’dfwas memory-resident during this time
we do not join these two tuples again. The same check is performed for the symmetrical case to det&imine if
was memory resident whéfy; was used to probe memory-resident tuples.

2.3 Controlling the second stage

Recall that the overhead incurred by the second stage is hidden only when both inputs to the XJoin experience
delays. As aresult, there is a tradeoff between the aggressiveness with which the second stage is run, and the
benefits to be obtained by using it. To address this tradeoff, our implementation includes a mechanism that can be
used to restrict the second stage to processing only those partitions that are likely to yield a significant number of
result tuples. Thigctivation thresholds specified as a percentage of the total number of result tuples expected

2Note that the timestamp value remains unchanged during an execution of the second stage since no tuples can be added to or evicted
from memory while it is executing.
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to be produced from a partition during the course of the entire join. For example, if the join of a partition is
expected to contribute 1000 tuples to the result, a threshold value of 0.01 will allow the second stage to process
the partition as long as it is expected to produce 10 or more tuples. Thus, a lower activation threshold results in
a more aggressive use of the second stage.

In our implementation of XJoin we dynamically change the valuactifzation thresholdstarting with an ag-
gressive value (0.01) and gradually make it more conservative (up to 0.20) as more output tuples are produced.
This has the effect of emphasizing the interactive performance at the beginning of the execution and overall per-
formance (i.e., a more traditional criterion) towards the end of the execution.

3 Experimental Results

We have implemented XJoin in an extended version of PREDATOR [SP97], an Object-Relational DBMS, and
performed detailed experiments to investigate performance issues associated with various aspects of XJoin. Due
to space limitations, however, we only present a portion of the results here. Detailed results can be found in [UF99].

3.1 Experimental Environment

In the experiments we modeled the behavior of the network using trace data that was obtained by fetching large
files from 15 randomly chosen sites. From these arrival patterns, we chose two as representatives of the behavior
of a bursty and a fast source (figures 3, and 4). The arrival patterns in these figures show the quantity of data
received at the query site. We refer to the bursty pattern also as “slow” arrival pattern due to its low transfer rate.

The database used in the experiments contained up to six 100,000 tuple Wisconsin benchmark relations [BDT83
Each input tuple is 86 bytes after projections have been applied. Join attributes used are one-to-one, producing
100,000 result tuples. We ran the experiments on a Sun Ultra 5 Workstation with 128 MBytes of memory. In the
experiments the XJoin operator is given 3 MBytes of memory.
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Figure 3: Bursty arrival. Avg. Rate 23.5 KBytes/sedrigure 4. Fast arrival. Avg. Rate 129.6 KBytes/sec.

3.2 Results

We compared the performance of XJoin to that of Hybrid Hash Join (HHJ). In order to separate out the contri-
butions of the major components of the algorithm we also examined two other XJoin variants. The first variant,
labeledXJoin-No2ng¢ does not use the second stage at all. The second variant, [atlerdAggris an aggres-
sive version of XJoin which uses an aggressivelyastivation thresholdi.e., 0.01) . We also tried to improve
the responsiveness of HHJ by allowing base tuples to be fetched in parallel in the background. This parallelism
allows HHJ to overlap delays from one input with the processing of the other.

Figures 5 and 6 show the cumulative response times for the four algorithms for the bursty and fast arrival
cases respectively. The x-axis shows a count of the result tuples produced and the y-axis shows the time at which
that result tuple was produced. In both cases XJoin and its variants produce the first answers several orders of
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magnitude faster than HHJ, thereby providing far superior interactive performance. XJoin also outperforms HHJ
in terms of the time to return the entire result.

A comparison between the XJoin and XJoin-No2nd highlights the importance of the second stage in improv-
ing the responsiveness of the system. XJoin-No2nd, although performing competitively for the very initial re-
sults, fails to maintain this performance for majority of the results. A comparison between XJoin and XJoin-Aggr
is perhaps more interesting as it demonstrates the tradeoff of executing the second stage. In the slow network case
XJoin-Aggr performs slightly better than XJoin in the middle range. This is because there is enough delay to hide
the extra work introduced by XJoin-Aggr. However this improvement is at the expense of poor response in the
fast network case (Figure 6). In the absence of enough delay to overlap the overhead of second stage XJoin-Aggr
falls behind XJoin.

Other results, not included in this paper, have also showed the superiority of XJoin in delivering the initial
portion of the result under variety of conditions. Experiments measuring the effect of memory size have shown
that XJoin has robust performance even with very limited memory. Further experiments stress tested XJoin by
running queries involving up to 5 join operators (up to 6 inputs). In all the cases XJoin was able to outperform
HHJ in delivering the initial portion of the result with only minor degradation in delivering the last tuple.

4 Conclusion and Future Work

In this paper, we described the design of XJoin, a reactively scheduled pipelined join operator capable of provid-
ing responsive query processing when accessing data from widely-distributed sources. XJoin incorporates the
Query Scrambling philosophy of hiding unexpected problems in data arrival by performing other (non-scheduled)
useful work. The smaller footprint is obtained through the use of partitioning. The delay-hiding feature is im-
plemented through the use of a reactively-scheduled “second stage”, which aims to produce result tuples during
periods of delayed or slow input by joining tuples of one input that have been spooled to secondary storage with
the memory-resident tuples of the other input.

In terms of future work, we plan to investigate the scheduling issues in complex query plans with multiple
XJoin operators. Currently XJoin operators are scheduled in a round-robin fashion. Rate at which initial por-
tion of the result delivered can be improved by scheduling more productive operators (i.e., low cost operators
that contribute more to the result) frequently. We also plan to work on delivering more “interesting” portions of
a result (such as some subset of columns) faster in wide-area environments. Such query behavior is desirable
when the semantics of the application are such that some identifiable portions of the data are substantially more
important than others.

In the larger context, XJoin represents one piece of technology that can help extend database systems to the
wide-area environment. In fact, there are a spectrum of techniques for making query processing more adaptive,
ranging from delayed-binding, to adaptive re-optimization and beyond. One interesting recent development is
the “Continuous Query Optimization” (CQO) developed by Avnur and Hellerstien [AHO0O], which foregoes tra-
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ditional optimization for an adaptive queue-based scheduler that in effect learns an efficient query plan during the
guery execution. We plan to investigate the integration of XJoin with such mechanisms as part of the Telegraph
project at Berkeley.
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Abstract

Since the classic optimization work in System R, query optimization has completely preceded query eval-
uation. Unfortunately, errors in cost model parameters such as selectivity estimation compromise the op-
timality of query evaluation plans optimized at compile time. The only promising remedy is to interleave
strategy selection and data access using run-time-dynamic plans. Based on the principles of decision
theory, our cost model enables careful query analysis and prepares alternative query evaluation plans at
compile time, delaying relatively few, selected decisions until run time. In our prototype optimizer, these
run-time decisions are based only on those materialized intermediate results for which materialization
costs are expected to be less than the benefits from the improved decision quality.

1 Introduction

Query processing can be divided into query optimization and query execution; this dichotomy has been followed
almost exclusively ever since the classic System R optimizer paper{38JCFor queries with 10, 20, or 100
operators, this clear-cut distinction is no longer applicable. If each operator’s selectivity is consistently underes-
timated by a mere 10%, the error after 10 operators is a factor of 2.8; the error after 20 operators is a factor of
8.2; and after 100 operators, it is a factor of 37,649. Beyond a level of query complexity somewhere between
10 and 20 operators, selectivity and cost estimates are more guesses than predictions, and plan choices are more
gambles than strategic decisions [CV84, MCS88, IK91, Loh89]. Note that queries involving views, CASE

tools, and data warehouse queries [KRRT98, Bri99] in particular often involve hundreds of operators. Thus, the
problem addressed here is of great interest to database system vendors and implementors.

Not only estimates for intermediate result sizes, but also forecasts for available resources may err. The re-
source situation, e.g., available memory, processors, temporary disk storage, net bandwidth, internet site avail-
ability, and so on may change between compilation and execution, even from the time when a complex query
is started to the time when the query completes its last operation. Since cost calculations and decisions among
alternative plans depend on input sizes and available resources, selected optimization decisions and resource al-
location decisions must be shifted from compile time into run time.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Research into this problem has taken several paths: improving the optimizer’s statistical profile of the database
system [MCS88, MRL98]; building static plans using a least-expected-cost metric [CHS99]; building start-up-
time-dynamic plans [CG94]; materializing all intermediate results, i.e., Ingres Decomposition [WY76]; using
intra-algorithm, i.e., record level adaptation [DG94, HRR99, AHOO], decision theoretic techniques based on sam-
pling [SBM93]; competitions between algorithms [Ant96]; heuristic approaches to materializing intermediate
results [UFA98, BFMVO00]; and partial plan re-optimization at run time [KD98, NWMN99,189]. Note that
many of these techniques are compatible with each other.

In the industrial arena, only the Inforn#Red Brick® Decision Servél[Bri99] delays preselected opti-
mization decisions until runtime. Red Brick applies information available at run time specifically to optimization
decisions for star-schema queries [KRRT98, Bri99]. The server materializes the intermediate results of prelimi-
nary plans, each one composed from a star-schtimansion tablgi.e., a primary key defining table referenced
by a foreign key definingact table (Note that fact tables may contain billions of records.) Based on the materi-
alized intermediate results, cost based, run-time decisions are made between compile-time generated alternative
plans. Run-time decisions are also made between fact table orders, alternative join indexes, view maintenance
algorithms, as well as the final determination of data partitioning functions and degrees of query parallelism.

In combination with join algorithms specialized for star-schema query processing, the run-time techniques
employed by the Red Brick server enable efficient query evaluation of complex data warehouse queries involv-
ing many fact and dimension tables. One successful application’s schema design involves 33 fact tables and 160
dimension tables. In this context, queries routinely join a many as 32 tables. Unfortunately, because of the diffi-
culty in quantifying the advantages of these run-time techniques, their application is limited to star-schema query
plans and sub-plans. What we need is a generalized compile-time approach to quantifying the advantages of such
run-time decisions.

In this short paper, we briefly describe an extension of our previous work on start-up-time-dynamic plans
[CG94], in order to address the problems posed by complex queries and uncertain cost model pai@rarters.
up-time-dynamic query evaluation plaage dynamic plans implementing decisions typically made at compile
time that are delayed until the start of a query’s evaluat®uan-time-dynamic query evaluation plaar® plans
that make decisions between alternative, potentially optimal, algorithms, operator ordering, and plan shapes based
upon additional knowledge obtained while evaluating the plan. For example, in our prototype run-time-dynamic
plan optimizer [Col99], this additional knowledge is obtained by materializing intermediate results, thus provid-
ing exact cardinality and allowing accurate planning of subsequent query evaluation. Materializing intermediate
results may also supply additional information about the distributions of attributes contained in the result, e.g.,
dynamically constructed histograms of join attribute values may facilitate improved costing of join algorithm
alternatives [KD98].

The difficult aspect of this approach is determining which subsets of plan operators to materialize. Because
interrupting the plan’s data-flow and intermediate data materialization has an associated cost, the compile-time
optimizer must trade off this cost against the benefit of additional knowledge and subsequently improved query
evaluation. The techniques we employ to solve this problem are provided by statistical decision theory and it is
the generalized application of decision theory to query optimization that is the key contribution of this work.

2 Cost Model

A cost model which optimizes run-time-dynamic plans must first capture the benefit of run-time decisions and,
second, the cost of obtaining run-time information to make these decisions. Because we restrict ourselves to
complete materialization of data, rather than partial sampling, we simplify the cost calculation of obtaining run-
time information. Itis simply the cost of the materialization itself, which is a function of the expected number and
size of records to be read and written to a temporary result. In order to capture the benefit of run-time decisions
we use the techniques of decision theory [RS68, Lin72].
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2.1 Decision Theory

There are several elements involved in making a decision (largely from Raiffa and Schlaifer [RS68]): the set of
possible actionsd = {a}, wherea is an action chosen from the domain of actiofisthe current state of the

world © = {6}, wheref is a particular state from domaéh and choosing an actiandepends & that may not

be predicted with certainty; a set of possible experimefits; {e}, that may improve our knowledge 6f; the
potential outcome of an experimett, = {z}; for every combination ofi, ¢, e, andz there is a consequence,

often expressed as the utility(-, -, -, -), defined onA x © x E x Z, that captures the benefit and cost of per-
forming an experiment, observing an outcome, and taking a particular action; and we have prior estimates of the
probabilities of the various states of the world before and after an experiment.

How do these principles apply to our problem? To optimize run-time-dynamic plans we apply them as fol-
lows: the domainA is the set of alternative query evaluation algorithms and plans; the state of the @orld,
consists of known or estimated distributions for the parameters of the cost model, e.g., predicate selectivities or
resources such as available memory; the set of possible experinigrisscomprised of methods for obtain-
ing better estimates for distributions énthat are only known approximately, e.g, sampling techniques, or as in
our case, intermediate result materialization; the cost of the experimel®pends on the potential materialized
outcome,z, since its cost is a function of the number of records materialized; in decision theory one typically
wants to maximize the utilityu(a, 6, e, z), however, rather than defining utility as negative cesta, 6, e, z),
we choose to minimize positive costa, 0, e, z), a perspective compatible with typical query optimizers; and we
have prior probabilities for the uncertain parameters of the cost model, such as predicate selectivities or available
resources, that capture their accuracy.

2.2 The Value of Information

Since the utility or cost of our experiments and actions are additive, we can think about the increase in the utility,
or in our case decrease in optimizer cost, of an action for a given experiment. In decision theory, this increase
is called thevalue of information For a given experimental outcome we can computecthlitional value of
information but since we do not know these outcomes a priori we must resort to computiegpeted value

of information Before running an experiment, e.g., before materializing intermediate results, we typically have
some idea about the expected value of the cost model parameter, in this case intermediate result cardinality, and
the accuracy with which we know the expected value. That is, we have a probability distribution for the expected
value! Using this previously known distribution, referred to asphier distribution, we compute theonditional

cost with original informatio CCWOI), conditional with respect toandé, and theexpected cost with original
information(ECWOI) as follows.

The forme(a|@)p(0) is the computation of CCWOI for cost that is a function of the action takétihe algo-
rithm used), and the cardinality of the algorithm’s ingytweighted by the probability density function represent-
ing our prior knowledge of the distribution of that cardinaljpy¢). Integrating their product over the rangefof
(the state of the world), and minimizing owe(the algorithm set), gives the expected cost of making a particular
algorithm choice, i.e., the ECWOlI igin, [ c(a|@)p(0) db.

Even without further development, the expected cost with original information is already a powerful decision
theoretic concept when applied to a cost-based query optimizer. By minimizing the ECWOI, a query optimizer
can build a static plan that has increased robustness without requiring start-up-time or run-time decisions. (This
concept is similar to that explored by Chu et al.[CHS99]).

If we materialize intermediate query results, then for decisions between algorithms that directly depend on
these results we will have perfect information for making decisions at run time. We can compuatantie
tional cost with perfect informatio(CCWPI), conditional orf, and theexpected cost with perfect information
(ECWPI) asmin,c(a|@)p(0) and [y min.c(a|0)p(0) do respectively. Note the relocation of thein, term in

n lieu of continuous probability distributions we could instead use discrete distributions, as provided by histograms, etc.
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these equations when compared to the ECWOI. From the ECWPI and ECWOI we may compaxeeitted
value of perfect informationr EVPI as ECWOI ECWPL providing an upper bound on the value of a perfect
experiment.

2.3 The Value of Materialized Information

Materializing data may be an effective technique to obtain information for decision making immediately after
materialization, in which case we have perfect information about cardinality and perhaps other information as
well, e.g., domain histograms. However, the effectiveness of materializing data is reduced as subsequent oper-
ators operate on the materialized result. Decisions between alternative algorithms situated more than a single
operator above (in the graph of operators) become less than perfect as intervening operators may introduce addi-
tional uncertainty, and the cost of materialization may ultimately outweigh its reduced benefit. The effect of this
uncertainty is captured by thexpected cost with materialized informatiE@CWMI).

To develop the ECWMI we use tlextensivéorm of statistical analysis [Lin72]. Given the decision tree in

Figure 1: Experimental Decision Tree

Figure 1, where circles denote random variables and rectangles denote decisions, a formulation is developed to
maximize the value of the experiment(Causality is in the direction of the arrows, from left to right and bottom
to top.) First an experimeng, is chosen, which produces experimental datdased upon this information we
choose an actiom, resulting in outcomé and utility«(a, 6, e, z). Working backwards by first averaging the util-
ity overd where the applicable distributionp$d|z, e), itis then maximized over the set of available actionse.,
maz,, followed by averaging over the valuesgfwhere the applicable distribution jgz|e), maximized over
the set of experiments i.e.,maz., producing the equationaz. [, maz, [ou(a,0,e,2)p(0|z,e) dd p(z|e) dz,
maximizing the expected utility.

The optimization of run-time-dynamic plans is analogous to the decision tree of Figure 1. The experiment
e performed is the materialization of intermediate query results, the result of this experimenthe size of
the preliminary plan’s intermediate result, the set of actiansre the set of alternative sub-plans available to
Choose-Plan, and the final outcomeis the actual result cardinality. Because we have chosen a priori to mate-
rialize intermediate results, the experimentis fixed, i.e., we either materialize an intermediate result entirely
or not at all. Therefore, we may dispense with thez. term and references win general. A further sim-
plification can be made because we know utility is not directly influenced by the experimental outcome. The
cost of an algorithm in this example is only dependent on the cardinality of its immediate input. Therefore the
ECWMIis [, min, [g c(a,8)p(0]z) dO p(z) dz, and theexpected value of materialized informati¢EVMI) is
ECWOI—- ECWML.
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2.4 An Extensive Form Example

Alg-A Alg-B Choose-Plan
Alg-Y Alg-Y Alg-X Alg-A Alg-B
Alg-X Alg-X Alg-Y Alg-Y

(a) Static Plan A (b) Static Plan B (c) Run-Time-Dynamic Plan
Figure 2: Run-Time-Dynamic Plan with Additional Uncertainty

Consider Figure 2 with static plans in diagrams (a) and (b), composed from generic algorithms Alg-A and Alg-B
both having inputs Alg-Y and Alg-X, and in diagram (c) the run-time-dynamic plan having two alternatives, one
of which will be chosen at run time based upon the cardinality of preliminary plan Alg-X materialized by the
Choose-Plan operator as part of its decision procedure. If algorithm Alg-Y also introduces uncertainty in the input
cardinality and uncertainty in the costs of algorithms Alg-A and Alg-B, then its effect must be considered in the
design of the cost modélThis additional uncertainty is exactly what the ECWMI captures. In this example, the
experiment performed is the materialization of the intermediate result produced by Alg-X, therefore we replace
z in our ECWMI with z in order to associate it with Alg-X. Similarly, the final outcome is the intermediate result
cardinality of Alg-Y and we substitutefor 8 in our original definition of the ECWMI. With these modifications,

the ECWMI of the example run-time-dynamic plan in Figure 2 (c)snin, [y c(a,y)p(y|z) dy p(x) dz, and

after substituting for the cost of the specific alternative algorithms we have

Jx min[ [y c(Alg-Aly)p(ylz) dy, [, c(AIg-Bly)p(yl|z) dy] p(z) da.

2.5 A Prototype Plan and Preliminary Results

Figure 3 presents the graph of a dynamic plan produced by a prototype optimizer that applies the decision the-
oretic concepts just described [Col99]. Each node in the graph represents a typical operator [Gra93], with its
name abbreviated as follows: EX - Execute (performs plan initialization), CP - Choose-Plan (evaluate prelim-
inary plan(s) and choose from alternative plans) HJ - Hash-Join, FL - Filter (apply a predicate), FS - File-Scan
(sequentially scan a file), FJ - Functional-Join (row identifier based join), and BS - Btree-Scan (with range re-
stricting predicate). Each edge in a plan graph has an associated numeric label indicating the absolute order of
inputs for an operator. For example, label O indicates the first input of an operator, label 1 the second, and so on.
Preliminary plans, i.e., materialized sub-plans, are identified by dashed edges proceeding directly from the root
node of a preliminary plan to the Choose-Plan operator(s) benefiting from its materialization.

The plan is for a four table join query having equijoin predicates and other, local predicates on all base tables.
For one of these local predicates, the statistical profile of the database indicated much uncertainty in the predi-
cate’s selectivity. In this run-time-dynamic plan, there are many plan alternatives because of the decisions to be
made between different base data algorithms, Functional-Join:Btree-Scan versus Filter:File-Scan, and different
join orders for the Hash-Joins. Note that the operator that implements the uncertain predicate has been identified
and its intermediate result is planned to be materialized. The materialized information is shown to be propagated
to all Choose-Plan operators and determines all run-time choices. In the decision theoretic sense, the evaluation
of this plan will be optimal.

2Alg-Y need not be a single operator. It is representative of an arbitrarily complex sub-plan. Our decision analysis applies whether
or not Alg-Y is a single operator or a sub-plan composed of multiple operators.
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Figure 3: Discovering Localized Uncertainty: A Prototype Dynamic Plan
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Such qualitative results are encouraging, as are preliminary quantitative results. Large cost improvements
have been realized for reasonable increases in compile-time optimization. For simple queries of a single table,
experiments are easily constructed that produce relative cost improvements, by comparing the cost of dynamic
plans to their analogous static plans, of more than a factor of three for very little additional optimization effort.
More complex queries can produce similar improvements for an increase in optimization time that is reasonable
depending on the context. For example, a query having 20 tables, 39 predicates, and 60 operators derived from
10%! equivalent physical forms was optimized in 20 seconds, compared to 1 second for the analogous static plan.
In absolute terms, 20 seconds is an acceptable optimization time, especially when the result of that optimization
is amortized over many query evaluations via precompiled plans.

3 Conclusion

The application of decision theory to query optimization was first considered by Seppi et al.[SBM93]. The focus
of Seppi’'s work was on the application of Bayesian decision theory to three selected database query optimiza-
tion problems: making decisions between alternative algorithms for evaluating simple selection predicates, join
predicates over distributed relations, and the transitive closure of binary relations. The emphasis was on prepos-
terior analysis, used to compute the optimal amount of sampling information to obtain before making a decision.
(A later application of decision theory to query optimization was proposed by Chu et al.[CHS99]; however, the
resulting plans remain static and there appears to be no adaptation during run time.)

Rather than focusing on any one specific query algorithm, we take a general approach that is independent of
the algorithms under consideration, one that is useful for modeling the effective cost of inter-operator uncertainty.
We also avoid dependency on any one specific distribution or family of data distributions, e.g., the exponential
family of distributions as in Seppi's work. Finally, our emphasis is on the terminal analysis, i.e., analysis of the
expected cost of algorithm decisions, rather than on the preposterior analysis, i.e., analysis of the expected effect
of different sampling plans.

The accumulation of even small errors in the estimation of a predicate’s selectivity can result in static query
evaluation plans that are poorly optimized. Run-time-dynamic query evaluation plans are a promising approach
to solving this problem of uncertain cost model parameters. To our knowledge, there has been no other work that
proposes the generalized application of decision theory to query optimization for run-time adaptation.
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Abstract

Execution plans produced by traditional query optimizers for data integration queries may yield poor per-
formance for several reasons. The cost estimates may be inaccurate, the memory available at run-time
may be insufficient, or the data delivery rate can be unpredictable. All these problems have led database
researchers and implementors to resort to dynamic strategies to correct or adapt the static QEP. In this
paper, we identify the different basic techniques that must be integrated in a dynamic query engine. Fol-
lowing on our recent work [6] on the problem of unpredictable data arrival rates, we propose a dynamic
query processing architecture which includes three dynamic layers: the dynamic query optimizer, the
scheduler and the query evaluator. Having a three-layer dynamic architecture allows reducing signifi-
cantly the overheads of the dynamic strategies.

1 Introduction

Research in data integration systems has popularized the mediator/wrapper architecture whereby a mediator pro-
vides a uniform interface to query heterogeneous data sources while wrappers map the uniform interface into
the data source interfaces [13]. In this context, processing a query consists in sending sub-queries to data source
wrappers, and then integrating the sub-query results at the mediator level to produce the final response.

Classical query processing, based on the distinction between compile-time and run-time, could be used here.
The query is optimized at compile time, thus resulting in a complete query execution plan (QEP). At runtime, the
guery engine executes the query, following strictly the decisions of the query optimizer. This approach has proven
to be effective in centralized systems where the compiler can make good decisions. However, the execution of
an integration query plan produced with this approach can result in poor performance because the mediator has
limited knowledge of the behavior of the remote sources.

First, the data arrival rate, at the mediator from a particular source, is typically difficult to predict and control.
It depends on the complexity of the sub-query assigned to the source, the load of the source and the characteristics
of the network. Delays in data delivery may stall the query engine, leading to a dramatic increase in response time.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Second, the characteristics of the sub-query results are difficult to assess, due to the autonomous nature of the
data sources. The sizes of intermediate results used to estimate the costs of the integration QEP are then likely to
be inaccurate. As the amount of available memory at runtime for processing the integration query may be much
less than that assumed at compile time, executing the query as is might cause thrashing of the system because of
paging [4,12].

All these problems have led database researchers and implementors to resort to dynamic strategies to correct
or adapt the static QEP. In this paper, we identify the different basic techniques that must be integrated in a dy-
namic query engine. This is based on our recent work [6] on the problem of unpredictable data arrival rates. We
then propose a dynamic query processing architecture which includes three dynamic layers: the dynamic query
optimizer, the scheduler and the query evaluator. Having a three-layer dynamic architecture allows reducing sig-
nificantly the overheads of the dynamic strategies.

The remainder of the paper is organized as follows. Section 2 presents the context and the query execution
problems. In Section 3, we derive from the experience of [6] the basic concepts of a dynamic architecture and
describe the architecture of our dynamic query execution engine. In Section 4 we describe the specification of the
query engine components which we exemplify with the solution given in [6] for unpredictable delays. Finally,
Section 5 concludes.

2 Problem Formulation

An integration query is nothing else than a standard centralized query except that the data are collected in re-
mote sources instead of being extracted from local storage units. In this section, we first present standard query
processing techniques and show their problems. Query processing is classically done in two steps. The query
optimizer first generates an "optimal” QEP for a query. The QEP is then executed by the query engine which
implements an execution model and uses a library of relational operators [7].

=P Blocking edge
—» Pipdinable edge

(___) Pipelinechain

Figure 1: A simple Query Execution Plan (QEP)

A QEP is represented as an operator tree. Nodes represent atomic physical operators and edges represent
data-flow. Two kinds of edges are distinguished: blocking and pipelinable. A blocking edge indicates that the
data is entirely produced before it can be consumed. Thus, an operator with a blocking input must wait for the
entire operand to be materialized before it can start. A pipelinable edge indicates that data can be consumed "one-
tuple-at-a-time”. Therefore, the consumer can start as soon as one input tuple has been produced. Figure 1 shows
a QEP for a query integrating three data sources represented by wrdppel® s andW¢, respectively. The
three wrapper’s results are joined using asymmetric join operators (e.g., hash-join) that have one blocking input
and one pipelinable input, and produce a pipelinable output. Such QEP can be decomposed in three fragments
calledpipeline fragments(PF’s): p4, pg andpc. A pipeline fragment (PF for short) is a maximal set of physical
operators linked by pipelinable edges.

'with standard asymmetric join operators, pipeline fragments reduce to pipeline chains.
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The most popular execution model for processing relational queries isetheor mode]7]. It resembles
closely those of commercial systems, e.g., Ingres, Informix and Oracle. In the iterator model, each operator of
the QEP is implemented as an iterator supporting three different calls: open() to prepare the operator for pro-
ducing data, next() to produce one tuple and close() to perform a final clean-up. A QEP is activated starting at
the QEP root and progressing towards the leaves. The iterator model allows for pipelined execution. Moreover,
the shape of the QEP fixes the order of execution, generally recursively from left to right. For example, a query
engine implementing the iterator model would execute the QEP of Figure 1 following thepardes, pc. So,
standard query processing techniques plan completely the execution and thus, cannot react to unpredictable sit-
uations which may compromise planning decisions taken at several levels:

e at the QEP level, the actual values of parameters (cardinalities, selectivities, available memory) are far
from the estimates made during planning, thus invalidating the QEP [8,9];

e atthe scheduling level, when the query engine faces unpredictable delays while accessing remote data. The
query engine then stalls, thereby increasing the response time [1,2,6,15].

e at the physical operator level, discovering, for instance, that the available memory for the operator execu-
tion is not sufficient [4,8].

Poor performance of integration query processing lies in the fact that the execution is fully specified before it
starts, and is never revised until it finishes. The problem is therefore to define a query engine architecture which
allows to dynamically adapt to unpredictable situations arising during the execution.

3 Dynamic Query Processing

The performance problems of integration queries can be solved by medyisashic strategiethat try to adapt
dynamically to the execution context. This adaptation can be done at three different levels:

e at the QEP level, by partially re-optimizing the query plan in order to adapt to the actual values of cardi-
nality, selectivity and available memory [8,9].

e at the scheduling level, by modifying on the fly the scheduling of the operators to avoid query engine
stalling [1,2,6,15].

e at the operator level, using auto-adaptive relational operators [4, 8].

These techniques are complementary and should be used together to provide good performance [8,15]. In-
deed, partial re-optimization of the query plan is difficult to implement and tune [15]. Moreover, the possi-
bility for re-optimization decreases as query execution reaches completion (because of the results previously
computed). Solving most problems at the operator or scheduling level can alleviate the need for dynamic re-
optimization.

A general algorithm for dynamic processing can thus be sketched as follows:

Produce an initial QEP
Loop

Process the current QEP using dynamic strategies

If these strategies fail or the plan appears to be sub-optimal

apply dynamic re-optimization
End Loop

Implementing dynamic strategies require to design a new query engine architecture. In this section we give
an overview of our recent work [6], focusing on the problem of unpredictable data arrival rates. Based on that
work, we identify the basic techniques, necessary to introduce dynamism into a query engine. We then present
the dynamic query engine architecture.
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3.1 Unpredictable Data Arrival Rate

The iterator model produces a sequential execution. Such an execution, i.e., consuming entirely the data produced
by one wrapper before accessing another one, leads to a response time with a lower bound equal to the sum of
the times needed to retrieve the data produced by each wrapper. Thus, for a given wrapper, if the time to retrieve
the data is larger than the time to process it, the query engine stalls. Handling delays in data arrival is therefore
crucial for obtaining good performance. A first solution to the problem raised by a sequential execution is to
interleave the execution of several PF's. For instance, with the QEP of Figwre dndpp can be triggered
concurrently at the beginning of the execution. If delivery delays occur while retrieving datdifrgrthe query
engine can avoid stalling by executipg. However, this approach is limited by the number of PF’'s which can
be executed concurrently due to memory limitation or dependency constraints. For non-executable PF’s (e.g.,
pc Which must be executed alone for dependency constraint reasons), the delays can be amortized by triggering
a materialization of the associated wrapper’s result (&%;). Such a materialization occurs while executing
concurrently other executable PF’s (e, andpg). However, scheduling materializations can incur high 1/0
overheads. Thus, these overheads must be estimated and compared with the potential benefit. Since the data
delivery rate is typically unpredictable and may vary during the query’s execution, we must monitor it along the
execution and react to any important variation. Thus, the materialization of a given wrapper’s result must stop as
soon as the PF becomes executable or the benefit becomes too small (if for instance, the delivery rate increases).
Analyzing this problem and its intuitive solution, we can identify some basic techniques, necessary to im-
plement such a dynamic strategy: (i) decomposition of the QEP into PF’s; (ii) (partial) materialization of the
wrapper’s result; (iii) Concurrent execution of (partial) materializations and PF’s; and (iv) execution monitoring
in order to react with up-to-date meta-data.

3.2 Dynamic Query Engine Architecture

The main property of a dynamic query engine is to divide the query execution into several phases: planning
and execution. Planning phases adapt the QEP to the current execution context. Execution phases stop when
the execution context changes significantly. The architecture of a dynamic query engine must include planning
components, execution components and define the interaction between these components.

We propose a dynamic query engine (see Figure 2) where the planning responsibility is divided between the
dynamic query optimizer and the dynamic query scheduler.

TheDynamic Query OptimizefDQO) may implement dynamic re-optimization strategies such as the ones
described in [4,8,9,15]. Each planning phase of the DQO can potentially modify the QEP, which is passed on to
the dynamic query scheduler.

The Dynamic Query ScheduldDQS) takes as input the QEP and producestzeduling plar(SP) i.e., it
makes exclusively scheduling decisions. The scheduling plan consists of ageetrpffragmentgQF’s) that
can be evaluated concurrently, i.e., pipeline fragments which fits together in memory and have no dependency
constraints and partial materializations. The SP also includes priority information for QF execution.

The Query Fragment EvaluatofQFE) implements the execution component of the system and evaluates
concurrently the query fragments of the SP, following the specified priorities.

The DQO, the DQS and the QFE interact synchronously, i.e., they never run concurrently. The DQO calls
the DQS passing the QEP as an argument. The DQS, in turn, calls the QFE passing the SP as an argument. The
QFE, then evaluates the query fragments of the SP and returns an interruption event informing the DQS of the
reason why the execution phase must be terminated. The interruption event can be processed by the DQS, or
returned to the DQO depending on its nature, thereby starting new planning phases.

Two kinds of interruption events can occur: Normal interruptions, signaling the end of a QF (for the DQS)
or the end of the QEP (for the DQO); and abnormal interruptions, signaling any significant change in the system
which may imply a revision of the SP (for the DQS) or even, of the QEP (for the DQO).
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Figure 2: Dynamic Query Engine Architecture

Finally, the Communication ManagefCM) implements the communicating component of the system. It
receives data from the wrappers and makes it available to the QFE. The QFE and the CM run asynchronously in
a producer-consumer mode by means of communication queues.

The proposed architecture is hierarchical. The highest layers have large dynamic capabilities (e.g., the DQO
may change completely the QEP), while the lowest layers have more restricted capabilities. Asin any hierarchical
architecture, each layer should process the interruption event when it is of its domain and refer to higher layer
when it is not. However, an important concern is that, although there are more capabilities at the highest layers
of the architecture, they have higher risk and cost.

This architecture allows one to implement dynamic strategies which favor low-layer, cheap, and secure re-
actions in order to minimize higher-layer, expensive, and risky reactions. For instance, when dealing with un-
predictable delays, the strategy presented in [6] is based on dynamic scheduling techniques. It would invoke
dynamic re-optimization only when there is no more possible dynamic scheduling reaction since, in that case,
re-optimization is hazardous [15].

4 Implementing Dynamic Strategies

The architecture we propose provides a uniform way to implement dynamic strategies. In this architecture, a
dynamic strategy is described by specifying the DQO, the DQS and the QFE. In this section, we specify each
component which we exemplify with the solution given in [6] for unpredictable delays.

4.1 Query Fragment Evaluator

The Query Fragment Evaluator must obviously evaluate the QF’s with respect to the scheduling plan. Addition-

ally, it is responsible for detecting abnormal situations (e.g., delays, estimate inaccuracy) and producing inter-
ruption events. This requires to divide the query fragment execution into atomic execution steps followed by

detection steps. Thus, when designing the QFE for a given strategy, we need to define (i) the granularity of the
atomic execution steps; (ii) the situations to detect and (iii) the reaction to each situation. Depending on the sit-
uation, the reaction can be handled by the QFE itself or by the higher levels.
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In [6], our objective was to design a QFE which interleaves the QF’s execution in order to overlap delays in
data delivery with respect to the priorities defined in the scheduling plan. During an atomic execution step, the
QFE scans the queue associated with the QF which has the highest priority and processes a batch of tuples. If the
gueue does not contain a sufficient amount of tuples (abnormal situation), the QFE scans the second queue in the
list and so on (reaction of the QFE). When a QF evaluation ends or a significant change has occurred in the data
delivery rate, the QFE returns &mdOfQFor RateChangénterruption event. Finally, if the QFE is stalled (i.e.
there is no available data for all the QF’s that are scheduled concurrently) the QFE refimelautinterruption
event. These events interrupt the QF's evaluation since they may change the scheduling decisions.

4.2 Dynamic Query Optimizer and Scheduler

Specifying the DQO and DQS requires to describe (i) their strategy; (ii) the events to which they react; and (iii)
the corresponding reactions. Additionally, the DQS may produce events for the DQO.

In [6], our objective for the DQS was to produce an SP which contains a sufficient number of query fragments
in order to prevent query evaluator stalling. The important parameters for computing a scheduling plan which is
always executable with the allocated resources and which is beneficial are (i) the QEP; (ii) the memory require-
ment of each pipeline fragment; (iii) the total available memory for the query execution; and (iv) information
which allows to estimate the gain brought by partial materialization. The details of the DQS strategy are given
in [6].

The DQS reacts to three events sent by the QFE, namely EndOfQF, RateChange and TimeOut. Since these
events affect at various degrees the scheduling decisions, the reaction is to recompute the scheduling plan . The
DQS is also in charge to detect that a QF cannot be evaluated using the available memory. In this case, it sends
aMemoryOverfovevent to the DQO since a QEP modification is necessary.

The solution provided in [6] does not handle QEP sub-optimality. The unique dynamic feature of the DQO
is to handle the MemoryOverflow event. In that case, the DQO applies a strategy similar to the one developed
in [4], i.e., break a pipeline fragment in order to reduce memory consumption.

5 Conclusion

Static QEPs for data integration queries may yield poor performance because of inaccurate cost estimates, insuffi-
cient memory at run-time or unpredictable data delivery rate. A good solution is to resort to dynamic strategies to
correct or adapt static QEPs. In this paper, we identified the different basic techniques that must be integrated in
a dynamic query engine. We proposed a dynamic query processing architecture which is general enough to sup-
port a large spectrum of dynamic strategies. The architecture is hierarchical and includes three dynamic layers:
the dynamic query optimizer, the scheduler and the query evaluator. The highest layers have larger dynamic ca-
pabilities than the lowest layers. This allows one to implement dynamic strategies which favor low-layer, cheap,
and secure reactions in order to minimize higher-layer, expensive, and risky reactions.

Dynamic query processing for data integration systems is still in its infancy. Much more work is needed to
better understand its potential. Research directions in this area should include : prototyping and benchmarking
with performance comparisons with static query processing; devising guidelines or heuristics to decide when
to avoid reoptimization; dealing with distributed mediator systems such as LeSelect [18] which provide more
parallelism for data integration.
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