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Abstract—As a powerful statistical image modeling technique,
sparse representation has been successfully used in various image
restoration applications. The success of sparse representation owes
to the development of the /,-norm optimization techniques and
the fact that natural images are intrinsically sparse in some do-
mains. The image restoration quality largely depends on whether
the employed sparse domain can represent well the underlying
image. Considering that the contents can vary significantly across
different images or different patches in a single image, we propose
to learn various sets of bases from a precollected dataset of ex-
ample image patches, and then, for a given patch to be processed,
one set of bases are adaptively selected to characterize the local
sparse domain. We further introduce two adaptive regularization
terms into the sparse representation framework. First, a set of
autoregressive (AR) models are learned from the dataset of ex-
ample image patches. The best fitted AR models to a given patch
are adaptively selected to regularize the image local structures.
Second, the image nonlocal self-similarity is introduced as an-
other regularization term. In addition, the sparsity regularization
parameter is adaptively estimated for better image restoration
performance. Extensive experiments on image deblurring and
super-resolution validate that by using adaptive sparse domain se-
lection and adaptive regularization, the proposed method achieves
much better results than many state-of-the-art algorithms in
terms of both PSNR and visual perception.

Index Terms—Deblurring, image restoration (IR), regulariza-
tion, sparse representation, super-resolution.

1. INTRODUCTION

MAGE restoration (IR) aims to reconstruct a high-quality

image & from its degraded measurement ¥. IR is a typical
ill-posed inverse problem [1], and it can be generally modeled
as

y=DHzx +v (1)
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where « is the unknown image to be estimated, and H and D
are degrading operators and v is additive noise. When H and
D are identities, the IR problem becomes denoising; when D
is identity and H is a blurring operator, IR becomes deblur-
ring; when D is identity and H is a set of random projections,
IR becomes compressed sensing [2]-[4]; when D is a down-
sampling operator and H is a blurring operator, IR becomes
(single-image) super-resolution. As a fundamental problem in
image processing, IR has been extensively studied in the past
three decades [5]-[20]. In this paper, we focus on deblurring
and single-image super-resolution.

Due to the ill-posed nature of IR, the solution to (1) with an
lo-norm fidelity constraint, i.e., & = arg min ||y — DHz||3, is
generally not unique. To find a better solutign, prior knowledge
of natural images can be used to regularize the IR problem. One
of the most commonly used regularization models is the total
variation (TV) model [6], [7]: # = arg min{|ly — DHz||3 + X -
|[Vz|1}, where | V| is the [;-norm of the first-order derivative
of £ and ) is a constant. Since the TV model favors the piece-
wise constant image structures, it tends to smooth out the fine
details of an image. To better preserve the image edges, many
algorithms have been later developed to improve the TV models
[17]-[19], [42], [45], [47].

The success of TV regularization validates the importance of
good image prior models in solving the IR problems. In wavelet-
based image denoising [21], researchers have found that the
sparsity of wavelet coefficients can serve as good prior. This
reveals the fact that many types of signals, e.g., natural im-
ages, can be sparsely represented (or coded) using a dictio-
nary of atoms, such as DCT or wavelet bases, that is, denoting
by @ the dictionary, we have £ ~ ®a and most of the co-
efficients in a are close to zero. With the sparsity prior, the
representation of & over ® can be estimated from its observa-
tion ¢ by solving the following /o-minimization problem: & =
arg min{|ly — DH®«||% + \ - ||a||o }, where the [o-norm counts
the nllllmber of nonzero coefficients in vector . Once @ is ob-
tained, £ can then be estimated as & = ®a. The [y-minimiza-
tion is an NP-hard combinatorial search problem, and is usually
solved by greedy algorithms [48], [60]. The {;-minimization, as
the closest convex function to [y-minimization, is then widely
used as an alternative approach to solving the sparse coding
problem: & = argmin{|ly — DH®a||3 + ) - ||a||1} [60]. In
addition, recent studies showed that iteratively reweighting the
l1-norm sparsity regularization term can lead to better IR re-
sults [59]. Sparse representation has been successfully used in
various image processing applications [2]-[4], [13], [21]-[25],
[32].
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A critical issue in sparse representation modeling is the
determination of dictionary ®. Analytically designed dictio-
naries, such as DCT, wavelet, curvelet, and contourlets, share
the advantages of fast implementation; however, they lack
the adaptivity to image local structures. Recently, there has
been much effort in learning dictionaries from example image
patches [13]-[15], [26]-[31], [55], leading to state-of-the-art
results in image denoising and reconstruction. Many dictio-
nary learning (DL) methods aim at learning a universal and
over-complete dictionary to represent various image struc-
tures. However, sparse decomposition over a highly redundant
dictionary is potentially unstable and tends to generate visual
artifacts [53], [54]. In this paper, we propose an adaptive sparse
domain selection (ASDS) scheme for sparse representation.
A set of compact subdictionaries is learned from high-quality
example image patches. The example image patches are
clustered into many clusters. Since each cluster consists of
many patches with similar patterns, a compact subdictionary
can be learned for each cluster. Particularly, for simplicity,
we use the principal component analysis (PCA) technique to
learn the subdictionaries. For an image patch to be coded, the
best subdictionary that is most relevant to the given patch is
selected. Since the given patch can be better represented by
the adaptively selected subdictionary, the whole image can be
more accurately reconstructed than using a universal dictionary,
which will be validated by our experiments.

Apart from the sparsity regularization, other regulariza-
tion terms can also be introduced to further increase the IR
performance. In this paper, we propose to use the piecewise
autoregressive (AR) models, which are prelearned from the
training dataset, to characterize the local image structures.
For each given local patch, one or several AR models can
be adaptively selected to regularize the solution space. On
the other hand, considering the fact that there are often many
repetitive image structures in an image, we introduce a nonlocal
(NL) self-similarity constraint served as another regularization
term, which is very helpful in preserving edge sharpness and
suppressing noise.

After introducing ASDS and adaptive regularizations (AReg)
into the sparse representation-based IR framework, we present
an efficient iterative shrinkage (IS) algorithm to solve the
l1-minimization problem. In addition, we adaptively estimate
the image local sparsity to adjust the sparsity regularization
parameters. Extensive experiments on image deblurring and
super-resolution show that the proposed ASDS-AReg approach
can effectively reconstruct the image details, outperforming
many state-of-the-art IR methods in terms of both PSNR and
visual perception.

The remainder of this paper is organized as follows.
Section II introduces the related works. Section III presents
the ASDS-based sparse representation. Section IV describes
the AReg modeling. Section V summarizes the proposed algo-
rithm. Section VI presents experimental results, and Section VII
concludes the paper.

II. RELATED WORKS

It has been found that natural images can be generally coded
by structural primitives, e.g., edges and line segments [61], and
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these primitives are qualitatively similar in form to simple cell
receptive fields [62]. In [63], Olshausen et al. proposed to rep-
resent a natural image using a small number of basis functions
chosen out of an over-complete code set. In recent years, such a
sparse coding or sparse representation strategy has been widely
studied to solve inverse problems, partially due to the progress
of lp-norm and /1 -norm minimization techniques [60].
Suppose that z € R™ is the target signal to be coded, and
®=[¢;,....0,,] € R™™™ is a given dictionary of atoms (i.e.,
code set). The sparse coding of z over @ is to find a sparse vector
a = [a1;. . .; ) (i.e., most of the coefficients in e are close to
zero) such that £ ~ ®a [49]. If the sparsity is measured as the
ly-norm of a, which counts the nonzero coefficients in a, the
sparse coding problem becomes Hgn |z — ®al|? s.t. ||allp < T,

where T is a scalar controlling the sparsity [55]. Alternatively,
the sparse vector & can also be found by

6 = argmin {z - alf + Ao} @

where A is a constant. Since the /p-norm is nonconvex, it is often
replaced by either the standard /; -norm or the weighted /; -norm
to make the optimization problem convex [3], [57], [59], [60].
An important issue of the sparse representation modeling
is the choice of dictionary ®. Much effort has been made in
learning a redundant dictionary from a set of example image
patches [13]-[15], [26]-[31], [55]. Given a set of training image
patches S = [81,...,8x] € RN, the goal of dictionary
learning (DL) is to jointly optimize the dictionary @ and the
representation coefficient matrix A = [ay,...,ay] such that
8; ~ ®a; and ||a;||, < T, where p = 0 or 1. This can be
formulated by the following minimization problem:

(®,A) = arg win |1$ - BAI3 st flell, <T Vi (3)

where || - || is the Frobenius norm. The above minimization
problem is nonconvex even when p = 1. To make it tractable,
approximation approaches, including MOD [56] and K-SVD
[26], have been proposed to alternatively optimizing ® and A,
leading to many state-of-the-art results in image processing
[14], [15], [31].

Various extensions and variants of the K-SVD algorithm [27],
[29]-[31] have been proposed to learn a universal and over-
complete dictionary. However, the image contents can vary sig-
nificantly across images. One may argue that a well-learned
over-complete dictionary ® can sparsely code all of the pos-
sible image structures; nonetheless, for each given image patch,
such a “universal” dictionary ® is neither optimal nor efficient
because many atoms in ® are irrelevant to the given local patch.
These irrelevant atoms will not only reduce the computational
efficiency in sparse coding but also reduce the representation
accuracy.

Regularization has been used in IR for a long time to incor-
porate the image prior information. The widely used TV reg-
ularizations lack flexibilities in characterizing the local image
structures and often generate over-smoothed results. As a classic
method, the autoregressive (AR) modeling has been success-
fully used in image compression [33] and interpolation [34],
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[35]. Recently, the AR model was used for adaptive regulariza-
tion in compressive image recovery [40]: min ), ||z; — X, ||§
s.t. y = Az, where ; is the vector contaiging the neighboring
pixels of pixel x; within the support of the AR model, and a;
is the AR parameter vector. In [40], the AR models are locally
computed from an initially recovered image, and they perform
much better than the TV regularization in reconstructing the
edge structures. However, the AR models estimated from the
initially recovered image may not be robust and tend to pro-
duce the “ghost” visual artifacts. In this paper, we will propose
a learning-based adaptive regularization, where the AR models
are learned from high-quality training images, to increase the
AR modeling accuracy.

In recent years, the nonlocal (NL) methods have led to
promising results in various IR tasks, especially in image
denoising [15], [36], [39]. The mathematical framework of
NL means filtering was well established by Buades et al. [36].
The idea of NL methods is very simple: the patches that have
similar patterns can be spatially far from each other, and thus
we can collect them in the whole image. This NL self-similarity
prior was later employed in image deblurring [8], [20] and
super-resolution [41]. In [15], the NL self-similarity prior was
combined with the sparse representation modeling, where the
similar image patches are simultaneously coded to improve the
robustness of inverse reconstruction. In this work, we will also
introduce an NL self-similarity regularization term into our
proposed IR framework.

III. SPARSE REPRESENTATION WITH ADAPTIVE SPARSE
DOMAIN SELECTION (ASDS)

Here, we propose an ASDS scheme, which learns a series of
compact subdictionaries and assigns adaptively each local patch
a subdictionary as the sparse domain. With ASDS, a weighted
l1-norm sparse representation model will be proposed for IR
tasks. Suppose that {®;}, k = 1,2,... K, is a set of K or-
thonormal subdictionaries. Let z be an image vector, and x; =
R;z,i=1,2,...,N,bethe i patch (size: \/n x \/n) vector of
z, where R; is a matrix extracting patch «; from z. For patch z;,
suppose that a subdictionary ®y,, is selected for it. Then, z; can
be approximated as &; = @y, a;, ||a;||; < T, via sparse coding.
The whole image z can be reconstructed by averaging all of the
reconstructed patches &;, which can be mathematically written
as [22]

-1 N

N

&= (Z R,L-TR,L) S (R,L-T<I>kiai> . )
i=1 i=1

In (4), the matrix to be inverted is a diagonal matrix, and hence

the calculation of (4) can be done in a pixel-by-pixel manner

[22]. Obviously, the image patches can be overlapped to better

suppress noise [15], [22] and block artifacts. For the conve-

[P

nience of expression, we define the following operator “o”:

-1 N

> (Rfena)  ©

i=1

N
G—Goal (ZRfR,-,)
=1
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where @ is the concatenation of all subdictionaries {®,} and a
is the concatenation of all a;.

Lety = DHzx + v be the observed degraded image, our goal
is to recover the original image « from y. With ASDS and the
definition in (5), the IR problem can be formulated as follows:

& =argmin {|y - DH®oal; + Nlal:i}.  ©

Clearly, one key procedure in the proposed ASDS scheme
is the determination of @, for each local patch. To facilitate
the sparsity-based IR, we propose to learn offline the subdic-
tionaries {® }, and select online from {®;, } the best fitted sub-
dictionary to each patch z;.

A. Learning the Subdictionaries

In order to learn a series of subdictionaries to code the var-
ious local image structures, we need to first construct a dataset
of local image patches for training. To this end, we collected a
set of high-quality natural images and cropped from them a rich
amount of image patches with size /n x \/n. A cropped image
patch, denoted by s;, will be involved in DL if its intensity vari-
ance Var(s;) is greater than a threshold A, i.e., Var(s;) > A.
This patch selection criterion is to exclude the smooth patches
from training and guarantee that only the meaningful patches
with a certain amount of edge structures are involved in DL.

Suppose that M image patches S = [81, 82, ..., 85] are se-
lected. We aim to learn K compact subdictionaries {®y, } from S
so that, for each given local image patch, the most suitable sub-
dictionary can be selected. To this end, we cluster the dataset S
into K clusters, and learn a subdictionary from each of the K
clusters. Apparently, the K clusters are expected to represent
the K distinctive patterns in S. To generate perceptually mean-
ingful clusters, we perform the clustering in a feature space. In
the hundreds of thousands patches cropped from the training im-
ages, many patches are approximately the rotated version of the
others. Hence, we do not need to explicitly make the training
dataset invariant to rotation because it is naturally (nearly) rota-
tion invariant. Considering the fact that human visual system is
sensitive to image edges, which convey most of the semantic in-
formation of an image, we use the high-pass filtering output of
each patch as the feature for clustering. It allows us to focus on
the edges and structures of image patches without taking into ac-
count the pixel intensities and helps to increase the accuracy of
clustering. The high-pass filtering is often used in low-level sta-
tistical learning tasks to enhance the meaningful features [50].

Denote by S, = [s?,sh,... s, the high-pass filtered
dataset of §. We adopt the K-means algorithm to partition
S;, into K clusters {C1,C5,---,Ck} and denote by p; the
centroid of cluster Cy. Once S}, is partitioned, dataset S can
then be clustered into K subsets Sy, k = 1,2,..., K, and Sy is
a matrix of dimension n X mj, where m;, denotes the number
of samples in Sy.

Now the remaining problem is how to learn a subdictionary
®,. from the cluster S} such that all the elements in S can
be faithfully represented by ®;. Meanwhile, we hope that the
representation of Sy, over ®,, is as sparse as possible. The design
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of ®;. can be intuitively formulated by the following objective
function:

(@1 Ar) = arg i {1~ BeAelz + MAL ) D

where Ay, is the representation coefficient matrix of S, over ®.
Equation (7) is a joint optimization problem of ®;, and A, and
it can be solved by alternatively optimizing ®; and Ay, like in
the K-SVD algorithm [26].

However, we do not directly use (7) to learn the subdictionary
®,. based on the following considerations. First, the [ — 1 joint
minimization in (7) requires much computational cost. Second,
and more important, by using the objective function in (7), we
often assume that the dictionary ®;. is over-complete. Nonethe-
less, here S}, is a subdataset after K -means clustering, which
implies that, not only is the number of elements in S}, limited,
but also these elements tend to have similar patterns. Therefore,
it is not necessary to learn an over-complete dictionary ®;, from
S.. In addition, a compact dictionary will decrease much the
computational cost of the sparse coding of a given image patch.
With the above considerations, we propose to learn a compact
dictionary while trying to approximate (7). ThePCA) is a good
solution to this end.

PCA is a classical signal de-correlation and dimensionality
reduction technique that is widely used in pattern recognition
and statistical signal processing [37]. In [38] and [39], PCA has
been successfully used in spatially adaptive image denoising by
computing the local PCA transform of each image patch. In this
paper, we apply PCA to each subdataset S, to compute the prin-
cipal components, from which the dictionary ®;, is constructed.
Denote by €2y, the co-variance matrix of dataset S. By applying
PCA to Q, an orthogonal transformation matrix Py, can be ob-
tained. If we set Py, as the dictionary and let Z;, = P{S ks WE
will then have || Sy — Pka||§, = ||Sk — PkaskHi =0.In
other words, the approximation term in (7) will be exactly zero,
yet the corresponding sparsity regularization term || Zy||, will
have a certain amount because all the representation coefficients
in Z}, are preserved.

To make a better balance between the /1 -norm regularization
term and />-norm approximation term in (7), we only extract the
first » most important eigenvectors in Py, to form a dictionary
®,., ie.,®,. =[p,py,...,p,]. Let A, = <I>;‘,FS’k. Clearly, since
not all of the eigenvectors are used to form ®,., the reconstruc-
tion error || Sy — (I>TAT||; in (7) will increase with the decrease
of r. However, the term ||A..||; will decrease. Therefore, the op-
timal value of r, denoted by r,, can be determined by

ro = arg min {||sk — @A+ )\||AT||1} C®

Finally, the subdictionary learned from subdataset Sy, is ®; =
[p17p27 ce 7p7‘0]‘

Applying the above procedures to all of the K subdatasets
S, we could get K subdictionaries ®, which will be used
in the ASDS process of each given image patch. In Fig. 1, we
show some example subdictionaries learned from a training
dataset. The left column shows the centroids of some sub-
datasets after K -means clustering, and the right eight columns
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Fig. 1. Examples of learned subdictionaries. The left column shows the cen-
triods of some subdatasets after /{ -means clustering, and the right eight columns
show the first eight atoms of the learned subdictionaries from the corresponding
subdatasets.

show the first eight atoms in the subdictionaries learned from
the corresponding subdatasets.

B. Adaptive Selection of the Subdictionary

In the previous subsection, we have learned a dictionary ®;,
for each subset S.. Meanwhile, we have computed the centroid
. of each cluster C), associated with Sy. Therefore, we have
K pairs {®, ;. }, with which the ASDS of each given image
patch can be accomplished.

In the proposed sparsity-based IR scheme, we assign adap-
tively a subdictionary to each local patch of x, spanning the
adaptive sparse domain. Since & is unknown beforehand, we
need to have an initial estimation of it. The initial estimation
of & can be accomplished by taking wavelet bases as the dictio-
nary and then solving (6) with the iterated shrinkage algorithm
in [10]. Denote by % the estimate of £ and denote by Z; a local
patch of &. Recall that we have the centroid g, of each cluster
available, and hence we could select the best fitted subdictionary
to &; by comparing the high-pass filtered patch of ;, denoted
by .’i:? , to the centroid pu,,. For example, we can select the dic-
tionary for &; based on the minimum distance between :i? and

By, 1.e.,

~h
el 9
& — ), ©

k; = arg min
k

However, directly calculating the distance between :f:? and
4, may not be robust enough because the initial estimate & can
be noisy. Here, we propose to determine the subdictionary in
the subspace of p;,. Let U = [pq, iy, - . ., ] be the matrix
containing all the centroids. By applying SVD to the co-variance
matrix of U, we can obtain the PCA transformation matrix of
U. Let ®. be the projection matrix composed by the first several
most significant eigenvectors. We compute the distance between
:i:f and p,, in the subspace spanned by ®. as

(10)

ost o,

k; = arg min
k

Compared with (9), (10) can increase the robustness of adaptive
dictionary selection.



1842

By using (10), the k;th subdictionary ®;,. will be selected and
assigned to patch Z;. Then, we can update the estimation of z by
minimizing (6) and letting £ = ®o&. With the updated estimate
Z, the ASDS of z can be consequently updated. Such a process
is iteratively implemented until the estimation & converges.

C. Adaptively Reweighted Sparsity Regularization

In (6), the parameter A is a constant to weight the /;-norm
sparsity regularization term ||c||1. In [59] Candes et al. showed
that the reweighted /1 -norm sparsity can more closely resemble
the lp-norm sparsity than using a constant weight and conse-
quently improve the reconstruction of sparse signals. Here, we
propose a new method to estimate adaptively the image local
sparsity and then reweight the /;-norm sparsity in the ASDS
scheme.

The reweighted [/;-norm sparsity regularized minimization
with ASDS can be formulated as follows:

N n
o = argmin{ [ly - DH®oal3+3 > Aijlail
i=1 j=1
(1)

where «; ; is the coefficient associated with the jth atom of ®,
and )\, ; is the weight assigned to a; ;. In [59], A; ; is empirically
computed as A; ; = 1/(]&i, ;| + €), where &; ; is the estimate
of a; ; and € is a small constant. Here, we propose a more ro-
bust method for computing A; ; by formulating the sparsity es-
timation as a maximum a posterior (MAP) estimation problem.
Under the Bayesian framework, with the observation y the MAP
estimation of & is given by

a = argmax {log P(aly)}

= arg min {— log P(y|a) — log P(a)} .
23

By assuming ¥ is contaminated with additive Gaussian white
noises of standard deviation o,,, we have

12)

1
Pla) =~ exp (~505lly - DE®oal}) . (13

1
onV 2T
The prior distribution P(a) is often characterized by an i.i.d.
zero-mean Laplacian probability model

Pe) =111 \/510 - exp (—g@:,ﬂ) (14)

where o; ; is the standard deviation of a; ;. By plugging P(y|e)
and P(a) into (12), we could readily derive the desired weight in
(11)as \; ; = 2v/202 /o, ;. For numerical stability, we compute
the weights by

2\/502
ij = =
0ij T €

15)

where 6; ; is an estimate of o; ; and ¢ is a small constant.
Now, let us discuss how to estimate o; ;. Denote by z; the
estimate of #; and by :17 I =1,2,..., L, the nonlocal similar
patches to &;. (The determmatlon of nonlocal similar patches
to Z; will be described in Section IV-C.) The representation
coefficients of these 51m11ar patches over the selected subdic-
tionary ®, is a = ¢I>k .'1: Then, we can estimate o; ; by cal-
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culating the standard deviation of each element &; ; in &é. Com-
pared with the reweighting method in [59], the proposed adap-
tive reweighting method is more robust because it exploits the
image nonlocal redundancy information. Based on our experi-
mental experience, it could lead to about 0.2 dB improvement
in average over the reweighting method in [59] for deblurring
and super-resolution under the proposed ASDS framework. The
detailed algorithm to solve the reweighted /; -norm sparsity reg-
ularized minimization in (11) will be presented in Section V.

IV. SPATIALLY ADAPTIVE REGULARIZATION

In Section III, we proposed to select adaptively a subdic-
tionary to code the given image patch. The proposed ASDS-
based IR method can be further improved by introducing two
types of adaptive regularization (AReg) terms. A local area in
a natural image can be viewed as a stationary process, which
can be well modeled by the autoregressive (AR) models. Here,
we propose to learn a set of AR models from the clustered
high quality training image patches, and adaptively select one
AR model to regularize the input image patch. Besides the AR
models, which exploit the image local correlation, we propose
to use the nonlocal similarity constraint as a complementary
AReg term to the local AR models. With the fact that there
are often many repetitive image structures in natural images,
the image nonlocal redundancies can be very helpful in image
enhancement.

A. Training the AR Models

Recall that, in Section III, we have partitioned the whole
training dataset into K subdatasets Sy. For each Sy, an AR
model can be trained using all of the sample patches inside it.
Here we let the support of the AR model be a square window,
and the AR model aims to predict the central pixel of the window
by using the neighboring pixels. Considering that determining
the best order of the AR model is not trivial, and a high order
AR model may cause data over-fitting, in our experiments a 3
x 3 window (i.e., AR model of order 8) is used. The vector of
AR model parameters, denoted by ay, of the k0 subdataset Sy,
can be easily computed by solving the following least square

problem:
aj = arg mln Z
8, €S},

—d"q,)’ (16)

where s; is the central pixel of image patch s; and g, is the
vector that consists of the neighboring pixels of s; within the
support of the AR model. By applying the AR model training
process to each subdataset, we can obtain a set of AR models
{a1,as,...,ax} that will be used for adaptive regularization.

B. Adaptive Selection of the AR Model for Regularization

The adaptive selection of the AR model for each patch
x; is the same as the selection of a subdictionary for x;
described in Section III-B. With an estimation #; of z;,
we compute its high-pass Gaussian filtering output :i:f . Let
k; = arg mkin ||<I)p:irf — ®_p,||,, and then the k;th AR model
a;., will be assigned to patch ;. Denote by z; the central pixel
of patch z; and by X, the vector containing the neighboring
pixels of z; within patch ;. We can expect that the prediction
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error of z; using a, and x; should be small, i.e., |z; — af, XL||;
should be minimized. By incorporating this constraint into the
ASDS-based sparse representation model in (11), we have a
lifted objective function as follows:

N n
@ = argmin { |ly - DH® o a5 + Z Z)‘i»ﬂaivﬂ

i=1 j=1
+y - Y i —afxls g (A7)
T, ExT

where + is a constant balancing the contribution of the AR regu-
larization term. For the convenience of expression, we write the

. 2 .
thirdterm ), [|z; — a;‘gxiHQ as ||(I— A)z||%, where I is the
identity matrix and

A(i,j) = {g‘j’

Then, (17) can be rewritten as

if ; is an element of x;, a; € ay,
otherwise.

N =n
&=argmin{ [ly - DH®o a5+ > Nijlai, |

i=1 j=1

+y | = Azl . (18)

C. Adaptive Regularization by Nonlocal Similarity

The AR model-based AReg exploits the local statistics in
each image patch. On the other hand, there are often many repet-
itive patterns throughout a natural image. Such nonlocal redun-
dancy is very helpful to improve the quality of reconstructed
images. As a complementary AReg term to AR models, we fur-
ther introduce a nonlocal similarity regularization term into the
sparsity-based IR framework.

For each local patch z;, we search for the similar patches
to it in the whole image @ (in practice, in a sufficiently large
area around z;). A patch z! is selected as a similar patch to
z; if e, = ||& — &L||2 < t, where ¢ is a preset threshold,
and z; and .'i:i are the current estimates of x; and z!, respec-
tively, or we can select the patch .'i‘é if it is within the first L
(L = 10 in our experiments) closest patches to ;. Let z; be
the central pixel of patch z;, and z! be the central pixel of
patch z!. Then, we can use the weighted average of z!, i.e.,
Zlel blazt, to predict z;, and the weight b assigned to z! is set
as b} = exp(—el/h)/c;, where h is a controlling factor of the
weight and ¢; = Y., exp(—el/h) is the normalization factor.
Considering that there is much nonlocal redundancy in natural
images, we expect that the prediction error [|z; — 1, bixiH;
should be small. Let b; be the column vector containing all the
weights b} and 3; be the column vector containing all zt. By in-
corporating the nonlocal similarity regularization term into the
ASDS based sparse representation in (11), we have

N n
d:argmin ||’.¢I—DH<I>oa||§—|—ZZ)\Z-,]-|0¢,;,]-|

i=1 j=1
T 2
+n- Z Hﬂ?z - b; B ) (19)
T, Ex
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where 7 is a constant balancing the contribution of nonlocal
regularization. Equation (19) can be rewritten as

N n
d:argngn ||y—DH<I>oa||§+ZZ)\i,j|ai,j|

i=1 j=1

+n- (I - B)®a|” 5 (20)

where I is the identity matrix and

B(i.l) = b, if 2! is an element of B3;,bl € b;
’ 0, otherwise.

7

V. SUMMARY OF THE ALGORITHM

By incorporating both the local AR regularization and
the nonlocal similarity regularization into the ASDS-based
sparse representation in (11), we have the following
ASDS-AReg-based sparse representation to solve the IR
problem:

& =argmin | [ly — DH® o all3 + - [|(I - A)® o al;

N n
(= Beoali+ 30 Ao,
i=1 j=1
2D
In (21), the first l5>-norm term is the fidelity term, guaran-
teeing that the solution £ = ® o & can well fit the obser-
vation ¥ after degradation by operators H and D; the second
lo-norm term is the local AR model-based adaptive regular-
ization term, requiring that the estimated image is locally sta-
tionary; the third /s-norm term is the nonlocal similarity regu-
larization term, which uses the nonlocal redundancy to enhance
each local patch; and the last weighted /1 -norm term is the spar-
sity penalty term, requiring that the estimated image should be
sparse in the adaptively selected domain. Equation (21) can be
rewritten as
2

Y DH
a=argmin| [0 - |y - I-A) | Poa
« 0 n-(I—B) 5
N n
O3 " Nijlai gl (22)
i=1 j=1
By letting
Y DH
y=|0 K= |y (I-4) (23)
0 n-(I—B)
(22) can be rewritten as
N n
&zarga min ||Z~/—K<I>oa||2+22)\7;,j|aq;,j|
i=1 j=1
(24)

This is a reweighted /;-minimization problem, which can be
effectively solved by the iterative shrinkage algorithm [10]. We
outline the iterative shrinkage algorithm for optimizing (24) in
Algorithm 1.
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Algorithm 1

1) Initialization:

a) By taking the wavelet domain as the sparse domain,
we can compute an initial estimate, denoted by %, of
« by using the iterated wavelet shrinkage algorithm
[10];

b) With the initial estimate &, we select the
subdictionary ®;, and the AR model a; using (10),
and calculate the nonlocal weight b, for each local
patch ;;

¢) Initialize A and B with the selected AR models and
the nonlocal weights;

d) Preset «, n, P, e and the maximal iteration number,
denoted by Maz_Iter;

e) Setk = 0. )

2) Iterate on k until ||.'i‘(k) - :i:(k+1)||2/N < eor
k > Max_Iter is satisfied.
a) #FH1/2) — 3 4 K73 - K:ir(k)) — :ir(k)—i-(Uy —
Uz® — v&®), where U = (DH)TDH and
V =221 - A (I - A) + (I - B (I - B);
b) Compute a*t1/2) =
[®F Rz - @] Rya* ),
where N is the total number of image patches;
c) a;k%l) = soft(a,gf"*lﬂ), 7i,j)» where soft(-,7; ;) is a
soft thresholding function with threshold 7; ;;
d) Compute 2+ = @ 0 @*+1 using (5), which
can be calculated by first reconstructing each image
patch with &; = @y, aEkH) and then averaging all
the reconstructed image patches;
e) If mod(k, P) = 0, update the adaptive sparse
domain of & and the matrices A and B using the

improved estimate D,

In Algorithm 1, e is a prespecified scalar controlling the con-
vergence of the iterative process, and M ax _Iter is the allowed
maximum number of iterations. The thresholds 7; ; are locally
computed as 7; ; = \; ;/r [10], where )\, ; are calculated by
(15) and r is chosen such that r > ||(K®)" K®||5. Since the
dictionary ®y,, varies across the image, the optimal determina-
tion of r for each local patch is difficult. Here, we empirically
set 7 = 4.7 for all of the patches. P is a preset integer, and
we only update the subdictionaries @y, , the AR models a; and
the weights b; in every P iterations to save computational cost.
With the updated a; and b;, A and B can be updated, and then
the matrix V' can be updated.

VI. EXPERIMENTAL RESULTS

A. Training Datasets

Although image contents can vary a lot from image to image,
it has been found that the micro-structures of images can be
represented by a small number of structural primitives (e.g.,
edges, line segments and other elementary features), and these
primitives are qualitatively similar in form to simple cell re-
ceptive fields [61]-[63]. The human visual system employs a
sparse coding strategy to represent images, i.e., coding a natural
image using a small number of basis functions chosen out of an
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over-complete code set. Therefore, using the many patches ex-
tracted from several training images which are rich in edges and
textures, we are able to train the dictionaries which can repre-
sent well the natural images. To illustrate the robustness of the
proposed method to the training dataset, we use two different
sets of training images in the experiments, each set having five
high-quality images as shown in Fig. 2. We can see that these
two sets of training images are very different in contents. We
use Var(s;) > A with A = 16 to exclude the smooth image
patches, and a total amount of 727 615 patches of size 7 x 7
are randomly cropped from each set of training images. (Please
refer to Section VI-E for the discussion of patch size selection.)

As a clustering-based method, an important issue is the se-
lection of the number of classes. However, the optimal selection
of this number is a nontrivial task, which is subject to the bias
and variance tradeoff. If the number of classes is too small, the
boundaries between classes will be smoothed out and thus the
distinctiveness of the learned subdictionaries and AR models
is decreased. On the other hand, a too large number of the
classes will make the learned subdictionaries and AR models
less representative and less reliable. Based on the above con-
siderations and our experimental experience, we propose the
following simple method to find a good number of classes: we
first partition the training dataset into 200 clusters, and merge
those classes that contain very few image patches (i.e., less
than 300 patches) to their nearest neighboring classes. More
discussions and experiments on the selection of the number of
classes will be made in Section VI-E.

B. Experimental Settings

In the experiments of deblurring, two types of blur kernels,
a Gaussian kernel of standard deviation 3 and a 9 x 9 uniform
kernel, were used to simulate blurred images. Additive Gaussian
white noises with standard deviations \/i and 2 were then added
to the blurred images, respectively. We compare the proposed
methods with five recently proposed image deblurring methods:
the iterated wavelet shrinkage method [10], the constrained TV
deblurring method [42], the spatially weighted TV deblurring
method [45], the [y-norm sparsity based deblurring method [46],
and the BM3D deblurring method [58]. In the proposed ASDS-
AReg Algorithm 1, we empirically set v = 0.0775,n = 0.1414,
and 7; ; = \; j/4.7, where \; ; is adaptively computed by (15).

In the experiments of super-resolution, the degraded LR
images were generated by first applying a truncated 7 x 7
Gaussian kernel of standard deviation 1.6 to the original image
and then down-sampling by a factor of 3. We compare the pro-
posed method with four state-of-the-art methods: the iterated
wavelet shrinkage method [10], the TV-regularization based
method [47], the Softcuts method [43], and the sparse repre-
sentation based method [25].! Since the method in [25] does
not handle the blurring of LR images, for fair comparisons we
used the iterative back-projection method [16] to deblur the HR
images produced by [25]. In the proposed ASDS-AReg based
super-resolution, the parameters are set as follows. For the
noiseless LR images, we empirically set v = 0.0894, n = 0.2
and 7;; = 0.18/6;;, where 6; ; is the estimated standard

'We thank the authors of [42], [43], [45], [46], [58] and [25] for providing
their source codes, executable programs, or experimental results.
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Fig. 2. Two sets of high-quality images used for training subdictionaries and AR models. (a) Training dataset 1. (b) Training dataset 2. We see that the two training

datasets are very different in the contents.

Fig. 3. Comparison of deblurred images (uniform blur kernel, ,, = +/2) on Parrot by the proposed methods. Top row: original, degraded, ASDS-TD1
(PSNR = 30.71 dB, SSIM = 0.8926), ASDS-TD2 (PSNR = 30.90 dB, SSIM =0.8941). Bottom row: ASDS-AR-TD1 (PSNR = 30.64 dB, SSIM = 0.8920),
ASDS-AR-TD2 (PSNR = 30.79 dB, SSIM = 0.8933), ASDS-AR-NL-TD1 (PSNR = 30.76 dB, SSIM =0.8921), ASDS-AR-NL-TD2 (PSNR = 30.92 dB,

SSIM =0.8939).

deviation of «; ;. For the noisy LR images, we empirically set
Y= 0.2828, n = 0.5 and Tij = /\i7j/16.6.

In both of the deblurring and super-resolution experiments, 7
x 7 patches (for HR image) with 5-pixel-width overlap between
adjacent patches were used in the proposed methods. For color
images, all of the test methods were applied to the luminance
component only because human visual system is more sensitive
to luminance changes, and the bi-cubic interpolator was applied
to the chromatic components. Here we only report the PSNR and
SSIM [44] results for the luminance component. To examine
more comprehensively the proposed approach, we give three re-
sults of the proposed method: the results by using only ASDS

(denoted by ASDS), by using ASDS plus AR regularization (de-
noted by ASDS-AR), and by using ASDS with both AR and
nonlocal similarity regularization (denoted by ASDS-AR-NL).2

C. Experimental Results on Deblurring

To verify the effectiveness of ASDS and adaptive regulariza-
tions and the robustness of them to the training datasets, we first
present the deblurring results on image Parrot by the proposed
methods in Fig. 3. More PSNR and SSIM results can be found

2A website of this paper has been built, where all of the experimental results
and the Matlab source code of the proposed algorithm can be downloaded. [On-
line]. Available: http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_AReg.htm
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TABLE I
PSNR (dB) AND SSIM RESULTS OF DEBLURRED IMAGES (UNIFORM BLUR KERNEL, NOISE LEVEL o, = v/2)
ASDS- | ASDS- | ASDS- | ASDS- | ASDS-AR- | ASDS-AR-
Images | [10] [42] [43] [46] 58] TDI TD2 | AR-TD1 | AR-TD2 | NL-TD! | NL-TD2
Barb 2583 | 2559 | 26.11 | 2628 | 27.90 | 2660 | 2665 | 2693 | 26.99 27.63 27.70
arbara {7492 | 0.7373 | 0.7580 | 0.7671 | 0.8171 | 0.7764 | 0.7709 | 0.7932 | 0.7893 | 0.8166 0.8192
Bik 23.09 | 2424 | 2438 | 2415 | 2477 | 2529 | 2550 | 2521 | 25.40 2532 25.48
e 1 0.6959 | 07588 | 0.7564 | 0.7530 | 0.7740 | 0.8014 | 0.8082 | 0.7989 | 0.8052 | 0.8003 0.8069
o 2096 | 2131 | 21.65 | 2132 | 22.67 | 2232 | 2238 | 2239 | 2245 2251 22.56
raw H 04856 | 0.5415 | 0.5594 | 05322 | 0.6541 | 0.6594 | 0.6651 | 0.6563 | 0.6615 | 0.6459 0.6540
Boat 2880 | 2894 | 2044 | 29.81 | 2990 | 2885 | 2894 | 2940 | 2948 30.73 30.76
oars N 08274 | 0.8331 | 0.8459 | 0.8496 | 0.8528 | 0.8076 | 0.8039 | 0.8286 | 0.8272 | 0.8665 0.8670
parrors | 2780 | 2880 | 2896 [ 29.04 [ 3022 | 3071 [ 3090 | 30.64 [ 3079 30.76 30.92
arrols 108652 | 0.8704 | 0.8722 | 0.8824 | 0.8906 | 0.8926 | 0.8941 | 0.8920 | 0.8933 | 0.8921 0.8939
Bab 21.06 | 21.16 | 2133 | 2121 | 2146 | 2143 | 2145 | 2156 | 21.55 21.62 21.62
avoon 4 o 4811 | 0.5095 | 0.5192 | 0.5126 | 0.5315 | 0.5881 | 0.5863 | 0.5878 | 0.5853 0.5754 0.5765
Hat 2975 | 3113 | 3088 | 3091 | 3085 | 3146 | 31.67 | 3141 | 3158 3143 31.65
a 0.8393 | 0.8624 | 0.8567 | 0.8591 | 0.8608 | 0.8702 | 0.8736 | 0.8692 | 0.8721 | 0.8689 0.8733
Penta- | 24.69 | 2512 | 2557 | 2526 | 2600 | 2558 | 25.62 | 2588 | 25.89 26.41 26.46
gon |l 0.6452 | 0.6835 | 0.7020 | 0.6830 | 0.7210 | 0.7285 | 0.7290 | 0.7385 | 0.7380 | 0.7511 0.7539
Camera || 2573 | 2672 | 2738 | 2686 | 2724 | 2701 | 2714 | 2725 | 2737 27.87 28.00
-man || 0.8161 | 0.8330 | 0.8443 | 0.8361 | 0.8308 | 0.7956 | 0.7836 | 0.8255 | 0.8202 | 0.8578 0.8605
» 2789 | 2844 | 2887 | 2875 | 2870 | 2824 | 2825 | 2864 | 2868 29.46 29.51
PPerS I 08123 | 0.8131 | 0.8298 | 0.8274 | 0.8151 | 0.7749 | 0.7682 | 0.7992 | 0.7941 0.8357 0.8359
P 2556 | 26.15 | 2646 | 2636 | 2697 | 2675 | 2685 | 2693 | 27.02 27.37 27.47
verage \l 07217 | 0.7443 | 0.7544 | 0.7500 | 0.7748 | 0.7695 | 0.7683 | 0.7789 | 0.7786 | 0.7910 0.7943

Fig. 4. Comparison of the deblurred images on Parrot by different methods (uniform blur kernel and o, = /2). Top row: original, degraded, method [10]
(PSNR = 27.80 dB, SSIM = 0.8652) and the method in [42] (PSNR = 28.80 dB, SSIM = 0.8704). Bottom row: the method in [45] (PSNR = 28.96 dB,
SSIM = 0.8722), the method in [46] (PSNR = 29.04 dB, SSIM = 0.8824), BM3D [58] (PSNR = 30.22 dB, SSIM = 0.8906), and the proposed method

(PSNR = 30.92 dB, SSIM = 0.8936).

in Table I. From Fig. 3 and Table I, we can see that the proposed
methods generate almost the same deblurring results with TD1
and TD2. We can also see that the ASDS method is effective in
deblurring. By combining the adaptive regularization terms, the
deblurring results can be further improved by eliminating the
ringing artifacts around edges. Due to the page limit, we will

only show the results by ASDS-AR-NL-TD2 in the following
development.

The deblurring results by the competing methods are then
compared in Figs. 4-6. One can see that there are many noise
residuals and artifacts around edges in the deblurred images by
the iterated wavelet shrinkage method [10]. The TV-based
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Fig. 5. Comparison of the deblurred images on Barbara by ditferent methods (uniform blur kernel and o,, = 2). Top row: original, degraded, method [10]
(PSNR = 24.86 dB, SSIM = 0.6963) and the method in [42] (PSNR = 25.12 dB, SSIM = 0.7031). Bottom row: the method in [45] (PSNR = 25.34 dB,
SSIM = 0.7214), the method in [46] (PSNR = 25.37 dB, SSIM = 0.7248), BM3D [58] (PSNR = 27.16 dB, SSIM = 0.7881) and the proposed method

(PSNR = 26.96 dB, SSIM = 0.7927).

Fig. 6. Comparison of the deblurred images on Cameraman by different methods (uniform blur kernel and ¢,, = 2). Top row: Original, degraded, method [10]
(PSNR = 24.80dB, SSIM = 0.7837) and the method in [42] (PSNR = 26.04 dB, SSIM = 0.7772). Bottom row: the method in [45] (PSNR = 26.53 dB,
SSIM = 0.8273), the method in [46] (PSNR = 25.96 dB, SSIM = 0.8131), BM3D [58] (PSNR = 26.53 dB, SSIM = 0.8136) and the proposed method

(PSNR = 27.25 dB, SSIM = 0.8408).

methods in [42] and [45] are effective in suppressing the noises;
however, they produce over-smoothed results and eliminate
much image details. The [yp-norm sparsity-based method of [46]
is very effective in reconstructing smooth image areas; however,
it fails to reconstruct fine image edges. The BM3D method
[58] is very competitive in recovering the image structures.

However, it tends to generate some “ghost” artifacts around the
edges (e.g., the image Cameraman in Fig. 6). The proposed
method leads to the best visual quality. It can not only remove
the blurring effects and noise, but also reconstruct more and
sharper image edges than other methods. The excellent edge
preservation owes to the adaptive sparse domain selection



1848

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 7, JULY 2011

TABLE II
PSNR (dB) AND SSIM RESULTS OF DEBLURRED IMAGES (UNIFORM BLUR KERNEL, NOISE LEVEL o,, = 2)

ASDS- | ASDS- | ASDS- | ASDS- | ASDS-AR- | ASDS-AR-
Images | [10] [42] [43] [46] 58] TDI TD2 | AR-TD1 | AR-TD2 | NL-TDI1 | NL-TD2
Barsara | 2436 | 2512 ] 2534 T 2537 [ 27.16 [ 2633 [ 2635 [ 2645 [ 2648 26.89 26.96
0.6963 | 0.7031 | 0.7214 | 0.7248 | 0.7881 | 0.7756 | 0.7695 | 0.7784 | 0.7757 | 0.7899 0.7927
Bik 2230 | 2407 | 23.61 | 2333 | 24.13 | 2446 | 2461 | 2443 | 2458 24.59 24.72
e 1 06391 | 07487 | 0.7142 | 0.7049 | 0.7446 | 0.7608 | 0.7670 | 0.7599 | 0.7656 | 0.7649 0.7692
s 2039 | 21.07 | 21.00 | 20.81 | 21.98 | 21.78 | 2178 | 21.79 | 21.80 21.81 21.88
W N 04112 | 05300 | 0.4885 | 0.4727 | 0.5946 | 0.5991 | 0.6027 | 0.5970 | 0.6008 | 0.5850 0.5934
Boat 2747 | 2785 | 2866 | 2875 | 29.19 | 2880 | 2883 | 2897 | 29.00 29.83 29.83
oars I 07811 | 0.7880 | 0.8201 | 0.8181 | 0.8335 | 0.8145 | 0.8124 | 0.8195 | 0.8187 | 0.8441 0.8435
Parross | 2684 | 2858 | 2806 | 2798 | 2045 | 2977 [ 2998 | 2073 | 29.94 29.94 30.06
arrois Al 8432 | 0.8595 | 0.8573 | 0.8665 | 0.8806 | 0.8787 | 0.8802 | 0.8784 | 0.8798 | 0.8800 0.8807
Bab 2058 | 2098 | 2087 | 2080 | 21.13 | 21.10 | 2L.10 | 21.17 | 2L.16 21.24 21.24
aboon W o 4048 | 0.4965 | 0.4528 | 0.4498 | 0.4932 | 0.5441 | 0.5429 | 0.5428 | 0.5410 | 0.5285 0.5326
Hat 2892 | 3079 | 3028 | 30.15 | 3036 | 3071 | 3089 | 30.69 | 30.86 30.80 30.99
a 0.8153 | 0.8524 | 0.8433 | 0.8420 | 0.8507 | 0.8522 | 0.8556 | 0.8516 | 0.8550 | 0.8545 0.8574
Penta- || 2388 | 2459 | 2486 | 2454 | 2546 | 2534 | 2531 | 2542 | 2539 25.74 25.75
gon || 05776 | 06587 | 0.6516 | 0.6297 | 0.6885 | 0.7051 | 0.7042 | 0.7069 | 0.7066 | 0.7118 0.7146
Camera | 2480 | 2604 | 2653 | 2596 | 2653 | 2667 | 2681 | 2669 | 2686 27.11 2725
-man || 0.7837 | 0.7772 | 0.8273 | 0.8131 | 0.8136 | 0.8211 | 0.8156 | 0.8243 | 0.8238 | 0.8365 0.8408
Ponpers | 2704 | 2746 | 2833 | 2805 [ 2815 | 2830 | 2824 | 2837 | 2837 28.82 28.87
PP 0.7889 | 0.7660 | 0.8144 | 0.8106 | 0.7999 | 0.7995 | 0.7904 | 0.8038 | 0.7988 | 0.8204 0.8209
tver 2471 | 2566 | 2575 | 2557 | 2635 | 2633 | 2639 | 2637 | 2644 26.68 26.75
verage | 0.6741 | 0.7180 | 0.7191 | 0.7132 | 0.7487 | 0.7551 | 0.7540 | 0.7562 | 07566 | 0.7615 0.7646
TABLE III
PSNR (dB) AND SSIM RESULTS OF DEBLURRED IMAGES (GAUSSIAN BLUR KERNEL, NOISE LEVEL 7,, = v/2)
ASDS-T | ASDS-T | ASDS-A | ASDS-A | ASDS-AR- | ASDS-AR-
Images || [10] [42] [43] [46] [58] DI D2 R-TD1 | R-TD2 | NL-TD1 | NL-TD2
Barb 23.65 | 2322 | 23.19 | 2371 | 23.77 | 2381 | 2381 | 2381 | 23.81 23.86 23.86
arbara\ 6411 | 05971 | 0.5892 | 0.6460 | 0.6489 | 0.6560 | 0.6556 | 0.6566 | 0.6563 | 0.6609 0.6611
Bik 2178 | 2190 | 2120 | 2220 | 2271 | 2259 | 22.63 | 2259 | 22.62 22.80 22.82
e 1 06085 | 0.6137 | 05515 | 0.6407 | 0.6774 | 0.6657 | 0.6693 | 0.6663 | 0.6688 | 0.6813 0.6830
s 2028 | 19.76 | 1933 | 2033 | 21.02 | 2076 | 2081 | 20.79 | 20.82 20.91 20.93
W N 04005 | 03502 | 0.2749 | 0.4087 | 0.5003 | 0.4710 | 0.4754 | 04729 | 04773 | 0.4866 0.4894
Boat 26.19 | 2553 | 2477 | 2664 | 2699 | 2712 | 27.14 | 27.11 | 27.13 2727 27.31
0as 07308 | 0.7056 | 0.6688 | 0.7464 | 0.7486 | 0.7617 | 0.7633 | 0.7616 | 0.7625 | 0.7651 0.7677
parross | 2640 | 2596 [ 2521 [ 2684 [ 2772 | 2742 | 27.50 | 2745 | 2752 27.67 27.70
arros 108321 | 0.8080 | 0.7949 | 0.8444 | 0.8580 | 0.8539 | 0.8538 | 0.8540 | 0.8540 | 0.8600 0.8598
Bab 2022 | 2001 1985 | 2024 | 2034 | 2036 | 2035 | 2036 | 2035 20.39 20.38
aboon N 3622 | 03396 | 0.3011 | 03673 | 03923 | 0.3908 | 0.3889 | 0.3916 | 03893 | 0.3976 0.3959
Hat 28.11 | 2890 | 2829 | 2885 | 2887 | 2880 | 2892 | 28.80 | 28.89 28.96 29.01
“ 0.7916 | 0.8100 | 0.7924 | 0.8122 | 0.8119 | 0.8074 | 0.8104 | 0.8074 | 0.8099 | 0.8110 0.8134
Penta- || 2333 | 2248 | 2209 | 2339 | 2382 | 2389 | 2388 | 2389 | 23.89 24.00 24.01
gon || 05472 | 0.4881 | 0.4387 | 0.5540 | 0.5994 | 0.5974 | 0.5958 | 0.5978 | 0.5971 | 0.6086 0.6089
Camera || 23.08 | 2326 | 2259 | 2351 | 2377 | 2385 | 2390 | 23.83 | 23.89 24.03 24.05
-man || 0.7332 | 0.7483 | 0.7187 | 0.7521 | 0.7249 | 0.7603 | 0.7637 | 0.7599 | 0.7630 | 0.7619 0.7649
P 2596 | 2558 | 2494 | 2661 | 2665 | 2699 | 2701 | 2698 | 26.99 27.12 27.14
PPETS 1 07666 | 0.7411 | 0.7236 | 0.7843 | 0.7626 | 0.7883 | 0.7900 | 0.7880 | 0.7898 | 0.7880 0.7902
P 23.90 | 23.66 | 23.15 | 2423 | 2457 | 2456 | 2459 | 2456 | 24.59 24.70 24.72
verage |l 0.6414 | 0.6202 | 0.5854 | 0.6556 | 0.6724 | 0.6752 | 0.6766 | 0.6756 | 0.6768 | 0.6821 0.6834

strategy and adaptive regularizations. The PSNR and SSIM
results by different methods are listed in Tables I-IV. For the
experiments using uniform blur kernel, the average PSNR
improvements of ASDS-AR-NL-TD2 over the second best
method (i.e., BM3D [58]) are 0.50 dB (when o,, = v/2) and
0.4 dB (when o,, = 2), respectively. For the experiments using
Gaussian blur kernel, the PSNR gaps between all the competing
methods become smaller, and the average PSNR improvements
of ASDS-AR-NL-TD2 over the BM3D method are 0.15 dB

(when o,, = \/5) and 0.18 dB (when o,, = 2), respectively. We
can also see that the proposed ASDS-AR-NL method achieves
the highest SSIM index.

D. Experimental Results on Single-Image Super-Resolution

Here, we present experimental results of single-image super-
resolution. Again, we first test the robustness of the proposed
method to the training dataset. Fig. 7 shows the reconstructed
HR Parrot images by the proposed methods. We can see that
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TABLE IV
PSNR (dB) AND SSIM RESULTS OF DEBLURRED IMAGES (GAUSSIAN BLUR KERNEL, NOISE LEVEL 7,, = 2)
ASDS- | ASDS- | ASDS- | ASDS- | ASDS-AR- | ASDS-AR-
Images || [10] [42] [43] [46] [58] TDI TD2 | AR-TDI | AR-TD2 | NL-TD1 | NL-TD2
Barb 2357 | 23.19 | 23.07 | 23.62 | 23.70 | 23.72 | 2372 | 2373 | 23.73 23.78 23.78
arbara 66309 | 0.5933 | 05776 | 0.6351 | 0.6399 | 0.6464 | 0.6464 | 0.6468 | 0.6471 0.6520 0.6521
Bik 2158 | 21.88 | 2097 | 2193 | 2253 | 2241 | 2245 | 2241 | 2245 22.66 22.69
e 1 05903 | 0.6125 | 05324 | 0.6178 | 0.6643 | 0.6506 | 0.6527 | 0.6513 | 0.6536 | 0.6685 0.6704
s 20.10 | 19.75 | 1924 | 20.10 | 20.81 | 2057 | 20.60 | 2058 | 20.62 20.72 20.75
raw 03750 | 0.3499 | 02590 | 03781 | 0.4762 | 0.4471 | 04500 | 0.4484 | 04529 | 0.4664 0.4698
Boas | 2587 | 2548 | 2463 | 2624 | 2671 | 2678 | 2682 | 2681 | 268 26.98 26.96
oa 0.7157 | 07032 | 0.6602 | 0.7292 | 0.7359 | 0.7464 | 0.7488 | 0.7478 | 0.7487 | 0.7503 0.7521
Parrors || 2610 | 2592 | 2505 [ 2638 | 2740 [ 2708 | 2714 | 2713 | 27.24 2747 27.50
arrots | 08234 | 0.8053 | 0.7907 | 0.8337 | 0.8523 | 0.8443 | 0.8447 | 0.8452 | 0.8460 | 0.8536 0.8535
Bab 20.16 | 20.00 | 1979 | 20.17 | 2028 | 2028 | 2028 | 2029 | 2028 20.32 2031
avoon {3497 | 0.3389 | 0.2905 | 03533 | 03826 | 0.3775 | 0.3758 | 03775 | 03762 | 0.3858 0.3839
Hat 27.94 | 2886 | 2827 | 2859 | 28.67 | 2859 | 2869 | 2859 | 28.69 28.80 28.87
a 0.7857 | 0.8084 | 0.7913 | 0.8043 | 0.8049 | 0.8009 | 0.8036 | 0.8009 | 0.8036 | 0.8056 0.8080
Penta- || 23.13 | 2246 | 2189 | 23.13 | 2365 | 23.69 | 23.69 | 23.69 | 23.70 23.80 23.81
gon || 05267 | 04876 | 04200 | 0.5299 | 0.5843 | 0.5784 | 0.5770 | 0.5793 | 0.5783 | 0.5922 0.5917
Camera || 2293 | 2323 | 2236 | 2325 | 2360 | 2372 | 2376 | 2371 | 23.76 23.95 23.95
-man || 0.7256 | 0.7465 | 07130 | 0.7412 | 0.7198 | 0.7533 | 0.7568 | 0.7528 | 0.7564 | 0.7557 0.7583
» 2572 | 2550 | 2438 | 2624 | 2644 | 2670 | 2676 | 2671 | 26.76 2691 26.93
ePPers N 07570 | 0.7373 | 0.7034 | 0.7723 | 0.7555 | 0.7770 | 0.7800 | 0.7773 | 0.7804 | 0.7774 0.7799
P 2371 | 23.63 | 2296 | 2397 | 2438 | 2436 | 2439 | 2437 | 24.40 24.54 24.56
verage I 0.6280 | 0.6183 | 05738 | 0.6395 | 0.6616 | 0.6622 | 0.6636 | 0.6627 | 0.6643 | 0.6707 0.6720

Fig. 7. Super-resolution results (scaling factor 3) on image Parrot by the proposed methods. Top row: original, LR image, ASDS-TD1 (PSNR = 29.47 dB,

SSIM = 0.9031) and ASDS-TD2 (PSNR = 29.51 dB, SSIM =

(PSNR = 30.00 dB, SSIM = 0.9093).

the proposed method with the two different training datasets
produces almost the same HR images. It can also be observed
that the ASDS scheme can well reconstruct the image, while
there are still some ringing artifacts around the reconstructed
edges. Such artifacts can be reduced by coupling ASDS with
the AR model based regularization, and the image quality can

0.9034). Bottom row: ASDS-AR-TD1 (PSNR = 29.61 dB, SSIM =
ASDS-AR-TD2 (PSNR = 29.63 dB, SSIM = 0.9038), ASDS-AR-NL- TD1 (PSNR =

0.9036),

29.97 dB, SSIM = 0.9090), and ASDS-AR-NL-TD2

be further improved by incorporating the nonlocal similarity
regularization.

Next we compare the proposed methods with state-of-the-art
methods in [10], [25], [43], [47]. The visual comparisons are
shown in Figs. 8 and 9. We see that the reconstructed HR images
by the method in [10] have many jaggy and ringing artifacts.
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Fig. 8. Reconstructed HR images (scaling factor 3) of Girl by different methods. Top row: LR image, method [10] (PSNR = 32.93 dB, SSIM = 0.8102)
and the method in [47] (PSNR = 31.21 dB, SSIM = 0.7878). Bottom row: the method in [43] (PSNR = 31.94 dB, SSIM = 0.7704), the method in [25]
(PSNR = 32.51 dB, SSIM = 0.7912) and the proposed method (PSNR = 33.53 dB, SSIM = 0.8242).

Fig. 9. Reconstructed HR images (scaling factor 3) of Parrot by different methods. Top row: LR image, method [10] (PSNR = 28.78 dB, SSIM = 0.8845)
and the method in [47] (PSNR = 27.59 dB, SSIM = 0.8856). Bottom row: the method in [43] (PSNR = 27.71 dB, SSIM = 0.8682), the method in [25]
(PSNR = 27.98 dB, SSIM = 0.8665) and the proposed method (PSNR = 30.00 dB, SSIM = 0.9093).

The TV-regularization-based method [47] is effective in sup- edges and fine structures, making the reconstructed image look
pressing the ringing artifacts, but it generates piecewise constant  unnatural. By sparsely coding the LR image patches with the
block artifacts. The Softcuts method [43] produces very smooth  learned LR dictionary and recovering the HR image patches
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Fig. 10. Reconstructed HR images (scaling factor 3) of noisy Girl by different methods. Top row: LR image, method [10] (PSNR = 30.37 dB, SSIM = 0.7044)
and the method in [47] (PSNR = 29.77 dB, SSIM = 0.7258). Bottom row: the method in [43] (PSNR = 31.40 dB, SSIM = 0.7480), the method in [25]
(PSNR = 30.70 dB, SSIM = 0.7088) and the proposed method (PSNR = 31.80 dB, SSIM = 0.7590).

Fig. 11. Reconstructed HR images (scaling factor 3) of noisy Parrot by different methods. Top row: LR image, method [10] (PSNR = 27.01 dB, SSIM =
0.7901) and the method in [47] (PSNR = 26.77 dB, SSIM = 0.8084). Bottom row: the method in [43] (PSNR = 27.42 dB, SSIM = 0.8458), the method
in [25] (PSNR = 26.82 dB, SSIM = 0.7769) and the proposed method (PSNR = 28.72 dB, SSIM = 0.8668).

with the corresponding HR dictionary, the sparsity-based pair that can represent various LR/HR structure pairs. It is ob-
method in [25] is very competitive in terms of visual quality. served that the reconstructed edges by [25] are relatively smooth
However, it is difficult to learn a universal LR/HR dictionary and some fine image structures are not recovered. The proposed
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TABLE V
PSNR (dB) AND SSIM RESULTS (LUMINANCE COMPONENTS) OF RECONSTRUCTED HR IMAGES (NOISE LEVEL o,, = 0)

Images [10] [43] [25] [47] ASDS- ASDS- | ASDS-AR | ASDS-AR | ASDS-AR | ASDS-AR

TDI D2 -TD1 -TD2 | -NL-TDI | -NL-TD2

Girl 32.93 31.94 32.51 3121 33.40 33.41 33.42 3341 33.54 33.53
08102 | 0.7704 | 07912 | 0.7878 | 08213 | 0.8215 | 08218 | 08216 | 0.8242 | 0.8242

Parror 28.78 2771 27.98 27.59 29.47 29.51 29.61 29.63 29.97 30.00
arro 0.8845 | 0.8682 | 08665 | 0.8856 | 09031 | 09034 | 09036 | 09038 | 09090 | 0.9093
Butr 25.16 25.19 23.73 26.60 26.24 2627 26.24 26.23 27.09 27.34
utterfly | (¢336 | 08623 | 07942 | 09036 | 08775 | 08779 | 08758 | 08753 | 08975 | 0.9047
. 24.59 2434 2435 24.58 25.94 25.97 25.93 25.95 26.78 26.80
eaves | 08310 | 08372 | 08170 | 0.8878 | 0.8847 | 08856 | 0.8835 | 0.8842 | 09050 | 0.9058
26.32 25.87 24.08 25.89 26.63 26.61 26.63 26.62 26.82 26.83

Parthenon

0.7135 0.6791 0.6305 0.7163 0.7279 0.7278 0.7279 0.7277 0.7348 0.7349
28.16 27.50 27.76 27.38 28.80 28.82 28.82 28.84 29.19 29.19

Flower | ¢120 | 07800 | 07929 | 08111 0.8351 0.8354 | 08352 | 0.8358 | 0.8480 | 0.8480
Hat 29.92 29.68 29.65 29.19 30.70 30.69 30.65 30.64 30.92 30.93
a 0.8438 | 08389 | 08362 | 08569 | 08653 | 0.8648 | 0.8643 | 08641 | 0.8707 | 0.8706
R 28.80 27.96 28.49 27.53 29.06 29.10 29.11 29.13 29.23 29.24
accoon | 7549 | 0.6904 | 07273 | 0.7076 | 0.7648 | 07658 | 0.7657 | 0.7664 | 07675 | 0.7677
Bik 23.48 2331 23.20 23.61 24.10 24.11 24.08 24.07 24.48 24.62
the 0.7438 | 0.7219 | 07188 | 07567 | 0.7760 | 07772 | 07752 | 07752 | 0.7948 | 0.7962
Plant 31.87 31.45 31.48 31.28 32.85 32.91 32.85 32.88 33.47 33.47
ans 08792 | 0.8617 | 08698 | 0.8784 | 0.8985 | 0.8996 | 0.8987 | 0.8995 | 0.9094 | 0.9095
28.03 27.49 27.69 27.49 28.72 28.74 28.73 28.74 29.15 29.16

Average

0.8115 0.7910 0.7954 0.8190 0.8354 0.8359 0.8352 0.8354 0.8461 0.8463

TABLE VI
PSNR (dB) AND SSIM RESULTS (LUMINANCE COMPONENTS) OF RECONSTRUCTED HR IMAGES (NOISE LEVEL ,, = 5)

Images [10] [43] [25] [47] ASDS- ASDS- | ASDS-AR | ASDS-AR [ ASDS-AR [ ASDS-AR

TDI D2 “TD1 TD2 | -NL-TDI | -NL-TD2
Noisv Girt | 3037 31.40 30.70 29.77 31.72 31.76 31.72 31.75 31.79 31.80
oBy Gl 07044 | 0.7480 | 07088 | 0.7258 | 07583 | 0.7596¢ | 0.7584 | 0.7594 | 0.7593 | 0.7590
Noisy 27.01 27.42 26.82 26.77 28.81 28.91 28.74 28.83 28.66 28.72
Parrot | 0.7911 0.8458 | 0.7769 | 0.8084 | 08673 | 0.8689 | 08634 | 08676 | 08632 | 0.8668
Noisy 23.67 24.95 23.50 25.47 25.54 25.76 25.50 25.61 25.99 26.08
Butterfly | 07777 | 08427 | 0.7576 | 08502 | 0.8362 | 0.8435 | 0.8350 | 0.8388 | 0.8591 | 0.8612
Noisy 23.62 23.17 23.35 23.78 25.14 2521 25.11 25.13 25.49 25.50
Leaves | 0.7751 | 0.7939 | 07467 | 08457 | 0.8457 | 0.8491 | 0.8444 | 08455 | 0.8633 | 0.8645
Noisy 25.31 25.65 23.89 2524 26.06 26.09 26.06 26.08 26.09 26.10
Parthenon| 06163 | 0.6587 | 05847 | 06651 | 06826 | 0.6845 | 0.6816 | 0.6826 | 0.6807 | 0.6821
Noisy 26.61 27.16 26.51 26.45 27.58 27.55 27.64 27.65 27.67 27.69
Flower | 06991 | 0.7591 | 07020 | 07509 | 0.7683 | 0.7699 | 07710 | 0.7733 | 0.7738 | 0.7767
Noisy Har | 2814 29.27 28.32 28.11 29.56 29.70 29.50 29.58 29.57 29.63
OBy HAtl 06944 | 0.8049 | 07282 | 0.7768 | 0.8086 | 0.8151 0.8075 | 0.8129 | 08127 | 0.8175
Noisy 27.05 27.60 27.20 26.73 27.98 28.01 27.99 28.01 28.01 28.01
Raccoon | 0.6434 | 0.6707 | 0.6418 | 06640 | 0.688 | 0.6882 | 0.6880 | 0.6876 | 0.6840 | 0.6810
Noisv Bike| 2274 23.06 22.42 23.07 23.49 23.57 23.43 23.49 23.52 23.57
oLy BIkel 06672 | 0.6984 | 06459 | 07118 | 07201 | 07239 | 0.7182 | 0.7205 | 0.7205 | 0.7220
Noisy 29.93 30.80 29.51 29.67 31.01 31.03 30.95 30.99 31.09 31.10
Plants | 07760 | 08343 | 07691 | 08028 | 08324 | 08342 | 08308 | 08327 | 08350 | 0.8363
P 26.49 27.05 26.34 26.52 27.69 27.76 27.66 27.71 27.79 27.82
verage | 07048 | 0.7657 | 0.7090 | 0.7604 | 0.7808 | 0.7837 | 0.7798 | 0.7821 0.7851 0.7867
method generates the best visual quality. The reconstructed Often in practice the LR image will be noise corrupted, which

edges are much sharper than all the other four competing makes the super-resolution more challenging. Therefore, it is
methods, and more image fine structures are recovered. necessary to test the robustness of the super-resolution methods
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Fig. 12. Some example images in the established 1000-image dataset.

TABLE VII

AVERAGE PSNR AND SSIM VALUES OF THE DEBLURRED IMAGES ON THE 1000-IMAGE DATASET

Method Uniform blur kernel Uniform blur kernel Gaussian blur kernel Gaussian blur kernel
etho o=2 0,2 =2 0,=2
ASDS-AR-NL-TD2 29.36 (0.8397) 28.66 (0.8163) 26.22 (0.7335) 26.10 (0.7261)
[58] 28.51 (0.8139) 27.96 (0.7966) 26.09 (0.7297) 25.91 (0.7209)
[46] 28.26 (0.8081) 27.41 (0.7763) 25.63 (0.7072) 25.37 (0.6934)
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Fig. 13. PSNR gain distributions of deblurring experiments. (a) Uniform blur kernel with &,, = /2. (b) Uniform blur kernel with o,, = 2. (c) Gaussian blur

kernel with ¢,, = \/5 . (d) Gaussian blur kernel with o,, = 2.

to noise. We added Gaussian white noise (with standard
deviation of 5) to the LR images, and the reconstructed HR im-
ages are shown in Figs. 10 and 11. We see that the method in [10]
is sensitive to noise and there are serious noise-caused artifacts
around the edges. The TV-regularization-based method [47]
also generates many noise-caused artifacts in the neighborhood

of edges. The Softcuts method [43] results in over-smoothed
HR images. Since the sparse representation-based method [25]
is followed by a back-projection process to remove the blurring
effect, it is sensitive to noise and the performance degrades
much in the noisy case. In contrast, the proposed method shows
good robustness to noise. Not only the noise is effectively
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TABLE VIII
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Method Noise level g,=0 Noise level ¢,=5
ASDS-AR-NL-TD2 27.53 (0.7975) 26.56 (0.7444)
[25] 26.26 (0.7444) 25.34 (0.6711)
[47] 26.09 (0.7705) 25.31 (0.7156)
0.09
PSNR Gain over [25] PSNR Gain over [25]
0.08} — - — - PSNR Gain over [47] — - — - PSNR Gain over [47]
0.07f
0.06
£0.05
§ 0.04
a
0.03
0.02
0.01 ‘.
o 6 8 10 3 4 & 61 B
PSNR improvement (dB) PSNR improvement (dB)
(a) (b)
Fig. 14. PSNR gain distributions of super-resolution experiments. (a) Noise level o,, = 0. (b) Noise level o,, = 5.
TABLE IX
AVERAGE PSNR AND SSIM RESULTS BY THE PROPOSED ASDS-AR-NL-TD2 METHOD WITH DIFFERENT NUMBERS OF CLASSES ON THE 1000-IMAGE DATASET
. Deblurring with uniform blur Super-resolution with noise level
Number of classes _
kernel and ;=2 0,=0
100 29.29 (0.8379) 27.51(0.7971)
200 29.36 (0.8397) 27.52 (0.7974)
400 29.31 (0.8380) 27.53 (0.7975)

suppressed, but also the image fine edges are well reconstructed.
This is mainly because the noise can be more effectively re-
moved and the edges can be better preserved in the adaptive
sparse domain. From Tables V and VI, we see that the av-
erage PSNR gains of ASDS-AR-NL-TD2 over the second best
methods [10] (for the noiseless case) and [43] (for the noisy
case) are 1.13 and 0.77 dB, respectively. The average SSIM
gains over the methods [10] and [43] are 0.0348 and 0.021 for
the noiseless and noisy cases, respectively.

E. Experimental Results on a 1000-Image Dataset

To more comprehensively test the robustness of the proposed
IR method, we performed extensive deblurring and super-res-
olution experiments on a large dataset that contains 1000 nat-
ural images of various contents. To establish this dataset, we
randomly downloaded 822 high-quality natural images from
the Flickr website3 and selected 178 high-quality natural im-
ages from the Berkeley Segmentation Database* A 256 x 256
subimage that is rich in edge and texture structures was cropped
from each of these 1000 images to test our method. Fig. 12
shows some example images in this dataset.

For image deblurring, we compared the proposed method
with the methods in [46] and [58], which perform the second
and third best in our experiments in Section VI-D. The average

3[Online]. Available: http://www.flickr.com/

4[Online]. Available: http://www.eecs.berkeley.edu/Research/Projects/CS/
vision/grouping/segbench.

PSNR and SSIM values of the deblurred images by the test
methods are shown in Table VII. To better illustrate the ad-
vantages of the proposed method, we also drew the distribu-
tions of its PSNR gains over the two competing methods in
Fig. 13. From Table VII and Fig. 13, we can see that the pro-
posed method constantly outperforms the competing methods
for the uniform blur kernel, and the average PSNR gain over
the BM3D [58] is up to 0.85 dB (when o,, = V?2). Although
the performance gaps between different methods become much
smaller for the nontruncated Gaussian blur kernel, it can still be
observed that the proposed method mostly outperforms BM3D
[58] and [46], and the average PSNR gain over BM3D [58] is
up to 0.19 dB (when o,, = 2). For image super-resolution,
we compared the proposed method with the two methods in
[25] and [47]. The average PSNR and SSIM values by the test
methods are listed in Table VIII, and the distributions of PSNR
gain of our method over [25] and [47] are shown in Fig. 14. From
Table VIII and Fig. 14, we can see that the proposed method per-
forms constantly better than the competing methods.

With this large dataset, we tested the robustness of the
proposed method to the number of classes in learning the
subdictionaries and AR models. Specifically, we trained the
subdictionaries and AR models with different numbers of
classes, i.e., 100, 200, and 400, and applied them to the estab-
lished 1000-image dataset. Table IX presents the average PSNR
and SSIM values of the restored images. We can see that the
three different numbers of classes lead to very similar image
deblurring and super-resolution performance. This illustrates
the robustness of the proposed method to the number of classes.
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TABLE X
PSNR AND SSIM RESULTS OF DEBLURRED IMAGES BY THE PROPOSED ASDS-AR-NL-TD2
WITH DIFFERENT PATCH SIZES (UNIFORM BLURRING KERNEL, 0,, = /2)

IZ,” ch Barbara Bike Straw Boats Parrots | Baboon Hat Penta- | Camer- Peppers | Average
ize gon aman
13 27.33 25.68 22.32 30.04 31.07 21.61 32.12 26.44 28.09 29.55 27.49
i 0.7936 0.8173 0.6320 0.8651 0.9024 0.5713 0.8816 0.7509 | 0.8455 | 0.8270 0.7887
555 27.59 25.54 22.44 30.81 31.04 21.61 31.84 26.48 28.11 29.63 27.51
X 0.8116 0.8089 0.6428 0.8689 0.8968 0.5751 0.8745 0.7549 | 0.8599 | 0.8339 0.7927
7x7 27.70 25.48 22.56 30.76 30.92 21.62 31.65 26.46 28.00 29.51 27.47
* 0.8192 0.8069 0.6540 0.8670 0.8939 0.5765 0.8733 0.7553 0.8605 | 0.8359 0.7943
TABLE XI
PSNR AND SSIM RESULTS OF RECONSTRUCTED HR IMAGES BY THE PROPOSED ASDS-AR-NL-TD2 WITH DIFFERENT PATCH SIZES (NOISE LEVEL o,, = 0)
Patch Size Girl Parrot | Butterfly | Leaves | Parthenon | Flower Hat | Raccoon | Bike | Plants | Average
13 33.55 | 29.96 27.28 27.00 26.84 29.27 30.95 29.18 2446 | 3354 29.20
2% 0.8251 | 0.9104 | 0.9055 | 0.9139 0.7366 0.8527 | 0.8739 | 0.7660 | 0.7961 [ 0.9131 | 0.8493
545 33.56 | 30.09 27.39 27.00 26.90 29.25 31.10 29.22 2453 | 33.59 29.26
X 0.8240 | 0.9121 | 0.9058 | 0.9118 0.7377 0.8500 | 0.8742 | 0.7664 | 0.7965 [ 0.9116 | 0.8490
7x7 33.55 | 30.14 27.34 26.93 26.89 29.19 | 31.04 29.24 24.62 | 3337 29.22
X 0.8204 | 0.9092 | 0.9047 | 0.9099 0.7357 0.8463 | 0.8716 | 0.7655 | 0.7962 [ 0.9061 | 0.8464
TABLE XII

AVERAGE PSNR AND SSIM RESULTS BY THE PROPOSED ASDS-AR-NL-TD2 METHOD WITH DIFFERENT PATCH S1ZES ON THE 1000-IMAGE DATASET

Patch size Deblurring with uniform blur Super-resolution with noise level
kernel and o;,=+/2 ,=0
3x3 29.60 (0.8466) 27.51 (0.7979)
5%5 29.56 (0.8450) 27.54 (0.7984)
7x7 29.36 (0.8397) 27.53 (0.7976)

Fig. 15. Visual comparison of the deblurred images by the proposed method with different patch sizes. From left to right: patch size of 3 X 3, patch size of 5 X

5, and patch size of 7 X 7.

Another important issue of the proposed method is the size
of image patch. Clearly, the patch size cannot be big; otherwise,
they will not be micro-structures and hence cannot be repre-
sented by a small number of atoms. To evaluate the effects of
the patch size on IR results, we trained the subdictionaries and
AR models with different patch sizes, i.e., 3 x 3,5 x 5and 7
x 7. Then we applied these subdictionaries and AR models to
the ten test images and the constructed 1000-image database.
The experimental results of deblurring and super-resolution are
presented in Tables X—XII, from which we can see that these
different patch sizes lead to similar PSNR and SSIM results.
However, it can be found that the smaller patch sizes (i.e., 3 x 3
and 5 x 5) tend to generate some artifacts in smooth regions, as
shown in Fig. 15. Therefore, we adopt 7 X 7 as the image patch
size in our implementation.

F. Discussions on the Computational Cost

In Algorithm 1, the matrices U and V are sparse matrices, and
can be precalculated after the initialization of the AR models
and the nonlocal weights. Hence, Step 2a) can be executed fast.
For image deblurring, the calculation of U #*) can be imple-
mented by FFT, which is faster than direct matrix calculation.
Steps 2b) and 2d) require Nn? multiplications, where 7 is the
number of pixels of each patch and N is the number of patches.
In our implementation, N = Nj/4, where Ny is the number
of pixels of the entire image. Since each patch can be sparsely
coded individually, Steps 2b) and 2d) can be executed in parallel
to speed up the algorithm. The update of subdictionaries and
AR models requires N operations of nearest neighbor search.
We update them in every P iterations (P = 100 in our imple-
mentation) to speed up Algorithm 1. As an iterative shrinkage
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algorithm, the proposed Algorithm 1 converges in 700 ~ 1000
iterations in most cases. For a 256 x 256 image, the proposed
algorithm requires about 2 ~ 5 min for image deblurring and
super-resolution on an Intel Core2 Duo 2.79G PC under the
MATLAB R2010a programming environment. In addition, sev-
eral accelerating techniques, such as those in [51] and [52], can
be used to accelerate the convergence of the proposed algorithm.
Hence, the computational cost of the proposed method can be
further reduced.

VII. CONCLUSION

We proposed a novel sparse representation-based image
deblurring and (single-image) super-resolution method using
adaptive sparse domain selection (ASDS) and adaptive regu-
larization (AReg). Considering the fact that the optimal sparse
domains of natural images can vary significantly across dif-
ferent images and different image patches in a single image, we
selected adaptively the dictionaries that were prelearned from
a dataset of high-quality example patches for each local patch.
The ASDS improves significantly the effectiveness of sparse
modeling and consequently the results of image restoration. To
further improve the quality of reconstructed images, we intro-
duced two AReg terms into the ASDS based image restoration
framework. A set of autoregressive (AR) models were learned
from the training dataset and were used to regularize the image
local smoothness. The image nonlocal similarity was incor-
porated as another regularization term to exploit the image
nonlocal redundancies. An iterated shrinkage algorithm was
proposed to implement the proposed ASDS algorithm with
AReg. The experimental results on natural images showed
that the proposed ASDS-AReg approach outperforms many
state-of-the-art methods in both PSNR and visual quality.
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