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STRAW ’03
Second International

SofTware Requirements to Architectures Workshop

Foreword by the Workshop Co-Chairs

Over the past 10 years, software requirements
engineering and software architecture have been the topic
of fastly growing research disciplines. Requirements
engineering has seen the advent of
g goal-oriented approaches,
g scenario-based requirements engineering,
g sociology- and linguistics-based techniques, and
g formal techniques
for identifying and specifying requirements.

Architecture design has seen the advent of
g patterns research,
g architectural style research,
g attribute-based architecture design,
g architecture description languages,
g component-based approaches, and
g product-line architectures.

There is a clear relationship between requirements
engineering and architecture design. However, for the
most part, the two disciplines have evolved independently
from each other, and promising areas of mutual interest
remain to be explored. For example, an important type of
design research consists of relating classes of problems to
classes of solutions. In software engineering, there are
interesting connections between software problem pat-
terns and software solution patterns. Recent research in
problem frames could therefore be extended by including
architecture patterns and investigating relationships be-
tween the two kinds of patterns.

The patterns paradigm may be extended by including
the wider business context, consisting of business
processes, actors, and strategies. In this wider context, the
problem is one of alignment of software architecture with
business architecture. Here, domain knowledge may be
codified using reference architectures.

A third area of potential fruitful interaction is that of
component-based development. Assembling components
into a system requires an architecture that mediates
between the system requirements and the requirements on
the components. More generally, when we extend our
view from a single system to a hierarchy of systems, the

interplay between requirements and architectures is a cen-
tral guiding principle in system design.

The goal of the Second International SofTware Re-
quirements to Architectures Workshop (STRAW’03), to
be held in Portland, Oregon, U.S.A. in conjunction with
the 2003 International Conference on Software Engineer-
ing, is to bring together researchers from the requirements
engineering and architecture communities to exchange
views and results that are of mutual interest, and to dis-
cuss topics for further research. Topics of interest include,
but are not limited to:
g deriving architecture descriptions in concert with re-

quirements specification,
g attribute-based architecture design,
g tracing architectural decisions to requirements,
g evolving architectures and requirements,
g alignment between software architecture and business

architecture,
g relating architecture patterns to requirements patterns,
g reference architectures,
g reuse of requirements and architectures,
g systems engineering approaches,
g formal foundations of the requirements–architecture

relationship,
g requirements and architecture specification languages,

and
g tools and environments for requirements engineers

and software architects.
Participation in the workshop is limited to 30 people

and is based upon the submitted papers, the best of which
will be presented. All submitted papers will be distribu-
ted to the participants before the workshop starts and are
included in these proceedings. Each presented paper will
be assigned an discussant, who will lead the discussion
about the paper. During the day, participants are expected
to propose issues to be discussed at the end of the day.
The workshop is expected to lead to the generation of
several lists, of issues discussed, of disagreements identi-
fied, of conclusions reached, and of topics to be further
researched.

iii



It is important to remember that a workshop is not a
formal conference. Rather, it is focused on discussion of
current, on-going, and possibly incomplete work. More-
over, the papers appearing in these proceedings are posi-
tion papers submitted both to suggest topics for discussion
and to indicate the authors’ interests in the subject of the
workshop. They are not to be considered formal publica-
tions, and they may be sent in the future to more formal
avenues of publication. Consequently, the organizing
committee, in consultation with the program committee,
decided to accept all papers submitted for publication in
the proceedings. The organizing committee then selected
a small number of these papers for presentation at the
workshop. This small number would allow for more
workshop-style discussion without the pressure to cover a
whole lot of papers, each with only a short period for pre-
sentation and an even shorter period for questions and
discussion.

The papers in these proceedings are divided into three
groups,
1. about moving from architectures to requirements and

realizations,
2. about moving from requirements to architectures, and
3. about requirements–architecture integration.

All papers, counterpoints, and discussion summaries
will be made available electronically at the workshop
website at
http://se.uwaterloo.ca/˜straw03/
soon after the workshop. The site aims to highlight out-
standing issues that should be the focus of future research
in the area.

This second workshop follows the first workshop of
the same name, that was held in Toronto, Ontario,
Canada, in conjunction with the 2001 International Con-
ference on Software Engineering (ICSE’01). That work-
shop’s website is
http://www.cin.ufpe.br/˜straw01/.

We extend our thanks to all those who have partici-
pated in the organization of this workshop, particularly to
the program committee who helped to design the call for
papers and to solicit submissions and who provided ad-
vice to the organizing committee. They are:

Jaelson Castro, Brazil
Anthony Finkelstein, UK
Jaap Gordijn, Netherlands
Carlo Ghezzi, Italy
Manuel Kolp, Belgium
Jeff Kramer, UK
Axel van Lamsweerde, Belgium
Jeff Magee, UK
John Mylopoulos, Canada
Bashar Nuseibeh, UK
Dewayne Perry, USA

Finally, we hope that you will enjoy these proceedings.

Sincerely,
Daniel M. Berry, Canada,
Rick Kazman, USA, and
Roel Wieringa, the Netherlands

the Organizing Committee
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Architectural Requirements Engineering: Theory vs. Practice 
 
 

Robert W. Schwanke 
Siemens Corporate Research, Inc. 
robert.schwanke@scr.siemens.com 

 
 

Abstract 
 

This paper discusses how architectural requirements 
engineering fits into an overall software development 
process in the concept and definition phases of a project. 
It defines a reference process identifying the “ideal” 
artifacts and their interrelationships, describes some key 
technical activities that are useful for producing these 
artifacts, and captures some practical experience in 
commercial projects. 
 

1. Introduction 
 

Theory and practice are generally the same, in theory. 
– Anonymous 

 
This paper is an attempt to reduce the wide gap that so 

often occurs between the theory and practice of 
architecture requirements engineering in real software 
development projects. Too frequently, an organization 
fails to capitalize on a good software architecture, for 
reasons such as: the development process is not aligned to 
profit from it; the key stakeholders do not buy into it; or, it 
simply solves the wrong problem. 

The “theory” aspect of this paper offers a reference 
process for architecture requirements engineering and 
related activities. The artifacts and dependencies are 
foremost in the process definition, because (in practice) 
most software analysis and design activities are artifact-
driven and opportunistically scheduled, so modeling the 
data of the process gives more insight than trying to model 
control. These artifacts are sequenced within a simple 
phase-and-gate framework that shows the phases and 
decision points where the project can be cancelled, sent 
for rework, or approved to enter the next phase. 

The central artifact, for the purposes of this paper, is 
the Global Analysis document, first introduced by 
Hofmeister, Nord and Soni [1]. The software architects at 
Siemens Corporate Research have used Global Analysis in 
half a dozen projects since the book was written. This 
paper gives a brief review of the approach, updated based 
on our experiences. 

The “practice” aspect of this paper offers hints on 
doing software architecture effectively and efficiently. 
Doing it effectively means building stakeholder consensus 
and buy-in for both the technical design and the 
development plan, by obtaining agreement on the 
requirements and other constraints that they must satisfy, 
and convincing people that the design and the plan do 
satisfy the requirements and constraints. Doing it 
efficiently means focusing attention and other resources 
on the important issues, at the right times, while tracking, 
but living with, a large number of less-important 
inconsistencies, unsatisfied constraints, and other 
unknowns. 

The “theory” and “practice” aspects are intermingled in 
the presentation, in hopes of reducing that gap. 

 
2. An Architecture-Centered Process 
 

The architecture group at Siemens Corporate Research 
provides technical and project management consulting 
services to a wide variety of software development groups 
within Siemens (primarily in the United States but 
occasionally in Europe). The process described here is our 
starting point: how we would like to do architecture if we 
could. Naturally, every real project has constraints that 
prevent this, such as the legacy process used previously, 
the legacy artifacts providing input to the project, and the 
skills and comfort zones of the key players. After 
presenting this idealized process we will discuss some of 
the adaptations that may be necessary to use it in a real 
project. (Hereafter, the word “we” usually refers either to 
the SCR architecture team or to the team and the readers 
of this paper, depending on context. “I” refers to the 
author.) 

The process definition has four major parts: the 
artifacts produced, the dependencies between artifacts, the 
phases of the project, and the rules for coordinating 
artifacts. It does not specify any activities separately from 
artifacts, other than reviews, because most activities are 
artifact driven, anyway, and best discussed in the context 
of the artifacts they produce. This process definition also 
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does not describe how to assign artifacts to teams and how 
to coordinate teams; that would take another whole paper. 

For brevity, this process description only covers the 
parts of the process most related to architecture 
requirements engineering. It assumes that the project has 
already completed its “idea phase”, and sufficient 
resources have been allocated to carry out the concept 
phase. It also assumes that the project is predominantly a 
software development project, and therefore does not 
address hardware design, manufacturing, or separate 
“system” artifacts. The principles presented here certainly 
apply to such systems, but would require a longer 
treatment. 

 
3. Artifacts, dependencies, and activities 
 

Figure 1 shows the artifacts and dependencies of the 
process. Each arrow represents a dependency: “X � Y” 
means “information in artifact X depends on (or is 
justified by) information in artifact Y.” Typically, each 
individual item in X, such as a specification, is annotated 
with references to specific items in Y, such as 
requirements. 

 Although many of the artifacts are familiar to the 
reader, a few comments are in order. 
 
3.1. Stakeholder list 
 

A stakeholder is an accessible person who represents a 
class of persons who will be significantly affected by 
architectural decisions. The stakeholder must be 
accessible to the project team to answer questions and 
review artifacts. Sometimes the stakeholder is a member 
of the class (e.g. a testing manager can speak for all 
testers), but sometimes he is appointed to represent the 
class from outside (e.g. a marketing analyst who speaks 
for the end user.) Every such class should be considered 
for representation, including such diverse classes as 
salespersons, buyers, end users (could be multiple 
classes), software testers, installers, trainers, and help desk 
attendants.  

The stakeholder list clarifies exactly who cares about 
the project, why they care, and why that matters. As the 
list develops, it may go through several refinement steps. 
The first draft might identify all the candidate stakeholder 
classes, with stakeholder names, where known, and 
explanations of why each class is important. As the list 
stabilizes, the classes without named stakeholders become 
action items, either to find stakeholders or to explain why 
the class is not important enough to be represented. Later 
on, the list may also prioritize stakeholders or define 
different groups of stakeholders, typically for allocating 
stakeholders to artifact reviews. 

If an organization has a well-developed business 
process model, showing all the actors in the product’s 
target business domain, many of these actors will require 
stakeholders to represent them. However, since such 
business process models are still uncommon in current 
practice, this software process does not assume that such 
an artifact exists. 
 
3.2. Stakeholder requests 
 

Stakeholder requests document the concerns of 
stakeholders. Some stakeholders produce artifacts that are 
defined in the company software process; others just write 
white papers, send e-mails, and attend reviews. For the 
purpose of this process definition, we assume that any 
input from a stakeholder can be documented as a 
stakeholder request. Since a stakeholder could request 
almost anything, we are usually only interested in 
qualified stakeholder requests, which have been reviewed 
and approved as being worth addressing. 

Most stakeholders are “outside” the architecture team. 
The chief architect and the project manager are often also 
stakeholders. However, their requests should be qualified 
by someone outside the project, so that they do not appear 
to abuse their right to write requests. 
 
3.3. Features 
 

Requirements, in general, define properties of the 
product, in terms that external (outside the development 
project) stakeholders recognize and understand. Features 
are requirements at a coarse granularity, suitable for use in 
sales presentations and for allocating to product releases 
(in the Build/Release Plan). A feature could be a specific 
service that the product provides, but it could also be an 
attribute of the whole product, such as “fault-tolerant.” 

The Features artifact should specify which 
stakeholders’ interests it represents. Often, it is limited to 
customer stakeholders, and becomes the “voice of the 
customer.” Eventually, each feature should be annotated 
with references to qualified stakeholder requests that 
justify the feature. 

This process avoids using the terms “functional” and 
“non-functional” to characterize requirements and 
specifications, because these terms mean different things 
to different people. 

 
3.4. Detailed requirements 

 
Detailed requirements spell out what the feature level 

requirements mean in terms that are testable, but still in 
the stakeholders’ language. We often find that 15-30 
detailed requirements are needed per feature, to be 
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complete and unambiguous. A single detailed requirement 
can support several features.  

For user interface requirements, a UI prototype is 
strongly recommended, to capture both the intent and the 
details of features, particularly aesthetic features like 
“easy to use” and “common look and feel”. Eventually, 
the prototype can be captured in a conventional 
requirements artifact by copying screen shots into it, with 
accompanying text and models (e.g. state transition 
diagrams or message sequence charts) to nail down 
exactly what the product should do. 

Some projects do not need both detailed requirements 
and product specifications. (Cf. Section 6.4) 

 
3.5. Product specifications 
 

Specifications define properties of the product and its 
parts, in technical terms that the developers, testers, 
documenters, project engineers, maintainers, and other 
“downstream” stakeholders understand. We often observe 
an expansion factor of 2-5 between detailed requirements 
and product specifications. A key, theoretical difference 
between detailed requirements and product specifications 
is that a requirement should state what the product should 
do, without reference to any particular implementation, 
whereas the product specification describes the externally-
visible properties of the externally-visible interfaces 
identified in the architecture description. 

When requirements and specifications are written by 
different teams, the product specifications may represent 
“push back” by the development team, conveying the 
message, “We heard what you said you wanted, but this is 
what we think we can build.” 
 

Stakeholder Requests

Detailed Reqts

Product Specs

Test Plan

Features

SW Development Plan

Arch. Description

Project Risks

Build/Release Plan

Detailed Designs

Arch. Concept

Global Analysis
Constraints
Issues
Strategies

Organization, Technology, etc.

Product

Stakeholder List
C

oncept P
hase 

D
efinition Phase 

Figure 1. An architecture-centered process 
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3.6. Feasibility and global analysis 
 

The architecture team has the responsibility to analyze 
everything that may affect the success of the project, 
determine what the critical issues are, propose strategies 
to address those issues, and then develop an architecture 
consistent with this analysis. It is called “global” analysis 
because it is looks at the project from all directions (from 
the perspectives of all the stakeholders), and because the 
critical issues and strategies are typically also global, 
cutting across subsystem boundaries and appearing in 
more than one view of the architecture. The global 
analysis artifact contains three kinds of items: factors, 
issues, and strategies. 

 
3.6.1. Factors. A factor is any fact that is likely to 
constrain or otherwise influence the architecture. Some 
factors can be written as requirements, but others cannot 
be so rigorously stated. Normally, we expect requirements 
to state properties of the product, and to be correct, 
unambiguous, and testable, whereas a factor is often 
unverified, ambiguous, or uncertain, and may describe 
something other than the product itself. Furthermore, we 
usually use a stylized language to write requirements, e.g. 
“The product shall cost no more than $300 per floating 
license per year.” Imposing stylized language on factors 
would interfere with communication. For example, is it 
clearer to write, “The product shall be developed using 
programmers whose previous experience does not include 
ASP technology” or “Our programmers don’t know 
ASP”? The first alternative is verbose, passive voice, 
vague, and might actually be incorrect, if there is an 
option to hire a few ASP developers. The second 
alternative succinctly captures one fact that constrains the 
architecture. 

Factors can come from anywhere. For convenience 
they are grouped into three categories: product factors 
(typically derived from features); technology factors, 
which involve the technologies available to implement the 
product; and, organizational factors, which involve 
properties of the company or other organization that is 
developing the product. These categories are further 
grouped into sub-categories, such as product performance, 
services provided, programming tools, technical 
standards, staff skills, schedule constraints, and so on. 
These categories and sub-categories should not be 
considered exhaustive; any stakeholder request might 
draw attention to a significant factor, whether or not it fits 
neatly into one of the categories. 

A factor should have a standard structure. We typically 
record the following properties: 

 

Category and sub-category 
Name  
Unique ID 
Brief statement of the factor. 
Flexibility (what sort of “wiggle room” is there in 

the factor  today?) 
Changeability (how might it change later on?) 
Impact (how does it affect the architecture?) 
Authority (what or who justifies this constraint?) 
Owner (person responsible for text of this factor) 
Status 
Priority 

 
Previously, we have tried to capture each factor as a row 
in a table of factors, but found several practical problems: 
the columns became too narrow, there was lots of white 
space, cross-referencing the factor name or number was 
awkward, and our usual word processing tool didn’t 
handle word-level change tracking very well in tables. So, 
I recommend organizing the factors into categories and 
subcategories, giving each constraint its own sub-sub-
section within its sub-category, and using a standard text 
structure within the subsection. Figure 2 suggests a 
format. 

 

 
Although storing factors in an ordinary text document 

is often practical, we are also considering using a 

 

1. Organizational Constraints 

1.3 Management 

1.3.5 Buy reporting subsystem  

(Factor-37) 

The reporting subsystem should be based on a 
commercial product, e.g. Crystal Reports 

Flexibility. Previous reporting system was 
implemented in-house, so buying COTS is not a 
rigid requirement. But competitors are already doing 
this. 

Changeability. Reporting features may become 
more specialized, making the “buy” option less 
advantageous. 

Impact. Buying the market leading product has low 
development cost, risk, and time to market, but 
introduces licensing costs and reduces product 
differentiation. 

Authority: Features 135, 136, and 139, and SR 
174 from Jim Smith, who has interviewed 
customers concerning reporting features. 

 
Figure 2. Textual presentation of a constraint 
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requirements management tool to manage architecture 
factors, but have no experience yet. 

Even when a factor is written in the form of an 
architecture requirement, there are two important 
differences between a marketing feature and an 
architecture factor: range and uncertainty. The range of 
the architecture factor is a way of capturing a set of 
similar requirements that vary only in certain dimensions. 
For example, “The architecture must support customers 
with transaction rates between 1 million and 100 million 
per day.” This factor does not say that any particular 
customer installation has to perform well across the whole 
range, nor does it even say that any particular release of 
the product has to handle the whole range. For example, 
there could be two variants of the product for low-volume 
and for high-volume customers.  

The dimensions that factors frequently span include 
numerical ranges, members of a product family, 
successive generations of a product or family, and ranges 
of calendar time. For example, “In four years, the 
architecture must support GUIs on handheld devices.” 
This allows the architect to choose between designing the 
infrastructure for handheld GUIs now, or leaving a 
placeholder for them and designing them in two years, by 
which time the technology will have changed anyway. 
Note that variation over calendar time is different from the 
“stability” of a feature or a factor. In the example above, 
the factor is very stable, but is chronologically positioned 
four years in the future. 

Allowing uncertainty in an architecture factor allows 
the architect to document the problem before the 
uncertainty is resolved. For example, now that Internet 
services are beginning to be offered aboard airplanes, the 
marketing department might envision the day when 
radiologists, traveling on airplanes, want to download 
medical images to their laptops. A factor might be written, 
“the product must be evolvable to support medical image 
viewing over low-bandwidth, high-latency Internet 
connections.” Such a statement would normally be 
disqualified as a requirement, because “evolvable” is a 
vague word. But, such statements are valuable to the 
architect, despite their vagueness. Note that “uncertainty” 
is also somewhat different from “stability”, because the 
statement of the factor explicitly captures the sense in 
which it is uncertain, whereas calling a requirement 
“unstable” has more to do with its status. 

It may be useful to describe range and uncertainty as 
separate attributes of a factor, but we haven’t tried it yet. 

Unlike requirements catalogs, the collection of 
architecture factors does not have to be complete. Global 
analysis prioritizes them, finds conflicts and tradeoffs 
between them, and finally reduces them to a set of key 
issues that shape the architecture. The less important 
factors will likely be ignored, for most purposes, so 
missing a few of them is not important. 

3.6.2. Issues. An architectural issue is a potential conflict 
or tradeoff between two or more factors – usually many 
more! For example, the issue “Aggressive Schedule” 
might be stated as, “The project probably can’t be 
completed in 14 months if we have to train our 
programmers in Java, add new tools to our development 
environment, and implement all 75 major features, 7 of 
which require exploratory prototyping.” Normally, there 
are many potentially significant issues, but certain ones 
rapidly emerge as the most critical. Fortunately, because 
of the inherent uncertainty of many factors, it is not 
necessary to satisfy all of them. The architects must 
identify and prioritize the issues, so that the architecture 
and the project development plan can be designed to 
address the most critical ones. The others are managed as 
project risks, to be addressed later. 
 
3.6.3. Strategies. A strategy is a decision that addresses 
one or more significant issues. The strategy may be 
technical, managerial, or a combination. For example, if 
the issue is “ASP programming is best done in Java, but 
our programmers only know C++”, the architect and 
project manager could choose to “retrain our programmers 
in JSP”, “buy an ASP development environment for 
C++”, or “use some C++ programmers to write C++ 
applets, and retrain others to write JSP.” 

 
3.6.4. Putting it all together. The original description of 
Global Analysis[1] suggested using “Issue Cards”, where 
each card defines and discusses one issue, then defines 
and discusses strategies for addressing it. This approach 
doesn’t work well when a strategy addresses several issues 
– which many of them do. Instead, I recommend 
documenting issues and strategies by embedding them in a 
coherent presentation of the rationale for the architecture. 
The first part of the Global Analysis artifact should be a 
catalog of factors, as described above. The second part 
should present the significant issues and strategies for 
resolving them. Each issue should be documented in a 
format that is partly structured and partly informal.  The 
structured part includes backward references to the most 
relevant factors and references to the most important 
strategies for dealing with the issue.  Each strategy could 
be defined at the first place it is referenced in the text, 
perhaps in a sidebar or an inset box. The informal part of 
the issue description discusses how the factors interact to 
shape the issue, and how the proposed strategies would 
help to resolve the issue. The third part of Global Analysis 
should be a free-flowing, coherent rationale for the 
proposed architectural approach. This presentation 
technique emphasizes coherent argumentation more than 
cataloging and cross-referencing the issues and strategies, 
as we have sometimes done in the past. 
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3.7. Architecture concept 
 
This artifact should not be confused with the 

conceptual view of the architecture. The architecture 
concept artifact is written for external stakeholders, is 
informal, and presents the essential concepts of the 
architecture in notations and words that are comfortable 
for the stakeholders. It is typically based on a paper 
“proof-of-concept”, which describes a slice of the system 
using the proposed architecture approach. It then uses 
portions of this system slice to illustrate the concepts it 
presents, depending on what is needed to educate and 
convince the stakeholders 

 
3.8. Architecture description 
 

This artifact is the complete description of the 
architecture, typically following the IEEE standard 1471-
2000. Note that the architecture description depends on 
the detailed requirements, but the architecture concept 
does not. This is so because (a) the architecture concept 
should not be sensitive to small changes in requirements, 
and (b) the architecture concept usually needs to be 
relatively complete, reviewed, and approved before 
authorizing the expense of developing detailed 
requirements. 
 
3.9. Project risks 
 

This process does not specify how project risks are 
described and managed, but many risks are identified in 
the course of global analysis and architecture design. Any 
key issues that are not fully resolved by the strategies, as 
well as any major assumptions made while drafting the 
architecture description, become risks that must be 
managed. 
 
3.10. Build Plan and Release Plan 
 

The build plan defines a sequence of internal 
development milestones, or builds, with each module, 
product specification, and detailed requirement to be 
implemented in a specified build. We typically 
recommend that the individual builds be scheduled about 
6 weeks apart, to provide rapid feedback on the 
effectiveness of the design and maintain a common 
understanding of the system across the development team. 
Some of the builds are designated as releases that the 
customer will see (although perhaps only as a demo).  
 

3.11. Software development plan 
 
The software development plan depends on the global 

analysis artifact for strategies and on the architecture 
description as the basis for a bottom-up cost estimate. At 
SCR we use an estimation methodology that annotates the 
module view of the architecture with development cost 
estimates, collecting the assumptions needed to make 
those estimates. The modules become tasks in the plan; 
the assumptions become risks to be managed. For more on 
architecture-centric software project management, see 
Paulish’s book of that title [2]. 

 

4. Project phases 
 

Figure 1 divides the artifacts into two phases: the 
concept phase and the definition phase. This division 
signifies the phase in which each artifact receives its first 
critical review and sign-off. Of course, each artifact is 
revised in subsequent phases, as needed. 

 

5. Coordinating artifacts and activities 
 

Other than at the end of each phase, the process does 
not specify an order in which the artifacts are finished and 
reviewed, because this ordering varies widely between 
projects, depending on many “soft” factors. Instead, we 
expect that the artifacts will be written by different people, 
and will therefore evolve concurrently. In order to manage 
this efficiently, it is important to identify where 
information provided in one artifact is used in another, 
and to cross-review artifacts between teams. It is equally 
important to allow, but document and manage, 
incompleteness and inconsistency between artifacts. 

 
5.1. Incompleteness and inconsistency 

 
Recording incomplete links is especially valuable in 

the global analysis artifact. It is true that, eventually, every 
issue should be based on factors, and that those factors 
should derive their authority from other artifacts. 
However, global analysis frequently identifies potentially 
significant factors long before the relevant stakeholders 
have raised concerns about them. Rather than waiting to 
document the factor until the stakeholder writes a request, 
the architect should put a note in the authority field of the 
factor, describing where he expects the authority will 
come from. The note could even include a shortened draft 
of the item (e.g. a feature) that he would like to see added 
to some other artifact. (If necessary, the architect might 
have to write his own stakeholder request.) Similar 
techniques should be used wherever links between 
artifacts may appear. (Incomplete links are very much like 

6



the “fat references” used in the Pattern Languages of 
Programming community.) 

 
5.2. Cross-reviewing artifacts between teams 
 

One of the most important heuristics for effective 
artifact review is, “Choose reviewers who depend on the 
information they are reviewing.” In this process, the 
dependency links between artifacts are an excellent guide 
for identifying reviewers. Consider, for example, the 
detailed requirements. The people who wrote the features 
(if different) will want to be sure that the detailed 
requirements accurately define the features. The people 
who will be writing product specifications will want to 
make sure they receive good-quality detailed 
requirements, to make their job easier. The people who 
have to write tests against the detailed requirements will 
want to be sure the requirements are testable. 

Using the dependency links to identify reviewers also 
reduces the chances of “disconnect” in a project. Many of 
us have experienced projects where artifacts were “thrown 
over the wall” from one group to another, leaving both 
groups dissatisfied. Having such a wall between 
requirements engineering and development, for example, 
tempts developers to ignore the requirements they don’t 
understand or don’t like. By using cross-reviewing to 
strengthen communication and buy-in between teams, 
such problems can be reduced. 

 
5.3. Reviewing links between artifacts 

 
Whenever an artifact is formally reviewed, the links 

between it and other artifacts should also be reviewed. 
This includes both the artifacts on which it depends, and 
the artifacts that depend on it. This is very important for 
building consensus! When a requirements engineer signs 
off on the global analysis artifact, his signature should 
mean that, except for noted defects, (a) all relevant, 
previously documented features have been referenced in 
the right places in the analysis, (b) any relevant, not-yet-
documented features have been discussed and given 
incomplete references in the analysis, and (c) he agrees 
with the analysis of these features. On the other side, 
when the global analyst signs off on the Features artifact, 
his signature means that every feature needed to justify 
significant factors, whether or not they have been 
published yet, appears either in the artifact itself or the 
review notes. 

The review notes then become action items for 
resolving incomplete and inconsistent links. However, the 
resolution does not necessarily need to happen 
immediately. Some of the items may be very low priority, 
some may require further investigation, and some may not 
be resolvable until a later stage of the work. 

5.4. Validation and Consistency 
 

Each significant item in each artifact, such as a feature, 
an issue, or a specification, is subject to validation in the 
course of review. Part of the definition of consistency 
between artifacts is that a link from an item in artifact X to 
an item in artifact Y is only fully consistent when the item 
in artifact Y has been validated. Sometimes the validation 
is simply a yes/no decision on whether the item should be 
included in the artifact; in other cases, included items are 
further assigned to “buckets” that represent different 
development/release cycles. In the latter case, of course, 
the bucket assignments of X and Y must be compatible. 

  
5.5. Phase reviews 

 
At the end of each phase there is a review, often called 

a gate, whereby managers outside the project determine 
whether to continue funding the project. There are 
actually two separate questions to answer: “Is the project 
ready to move into the next phase?” and “Is the company 
ready to pay for it?” Some organizations actually have two 
separate reviews, because some of the decision-makers are 
different for these two questions. 

Each phase review specifies the artifacts that will be 
considered at the review. In this process, each artifact is 
considered at each phase review after its introduction, if it 
is relevant to the decision. Naturally, these artifacts must 
have been reviewed individually prior to the phase review. 
However, they don’t have to be absolutely complete and 
consistent, as long as there is an action plan for resolving 
the inconsistencies.  

 
This approach to handling incompleteness and 

inconsistency is especially valuable when the development 
organization is undergoing change to adapt to new or 
improved development processes. Often artifacts cannot 
be completed and reviewed in the same order as the chain 
of dependencies. Because the show must go on, explicitly 
documenting incompleteness and inconsistency for later 
resolution is often the best approach. 
 

6. Merging the Processes 
 
Because there is little standardization of software 

development processes across organizations, the process 
defined above will normally have to be adapted for use in 
the context of an organization’s existing process. This 
section describes some of the adaptations that are likely to 
be necessary, and some of the issues that may need 
resolving. 
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6.1. Enriching the concept phase 
 
Many existing processes focus mainly on defining 

product features in the concept phase. If possible, one 
should insist on doing some feasibility analysis in the 
concept phase, before committing the resources necessary 
to do a complete high-level design. This feasibility 
analysis would then include global analysis and the 
architecture concept, as well as a UI prototype if the 
product has a user interface. 

 
6.2. Regrouping information in artifacts 

 
Sometimes it is necessary to combine logically separate 

artifacts into a single artifact, or, for reasons of scale, to 
divide a single logical artifact into a main artifact and 
several subsidiary artifacts. However, it can also be 
necessary to redefine an existing artifact so that it carries 
more architecture information than it has in the past. 

For example, a process may define a “System Concept” 
artifact, typically due at the end of the concept phase, 
which has historically been a very informal document. 
This might be a good place to put the Architecture 
Concept. 

 
6.3. Caring for stakeholders 

 
Many existing processes do not address all the 

important stakeholders. For example, a Market 
Requirements artifact might be limited to addressing the 
logical functionality of the product, ignoring non-
functional features. This typically arises from a focus on 
end-users, ignoring the needs of other stakeholders like 
system administrators, buyers, and commissioning 
engineers. The remedy might be to add another artifact to 
carry non-functional features, or to address quality 
attributes in the Global Analysis artifact. 

More generally, the process should be adapted so that 
every important stakeholder has a “voice” in some artifact 
– in Global Analysis, if not elsewhere. 

 
6.4. Detailed requirements vs. specifications 

 
Although in theory there is a clear logical distinction 

between a detailed requirement and a product 
specification, in practice the two artifacts are frequently 
combined. We have found several reasons for this: 
�� Cost pressure: maintaining two descriptions of strongly 

related information is more expensive than maintaining 
one. 

�� Skill shortage: good requirements engineers are under-
appreciated, and therefore in short supply! 

�� Process: without an architecture description, the only 
input to the product specification is the detailed 
requirements, anyway, so why not combine them? 

�� Disconnect: because of inadequate communication 
between those who write features and those who write 
specifications, it is not obvious that the detailed 
requirements are missing. 

�� Difficulty: it is actually quite difficult, in many 
instances, to write a good set of detailed requirements 
without referring to implementations, especially early 
in the definition phase when so many questions are 
unsettled. 
 
One way often suggested to overcome these difficulties 

is to introduce a prototype, often as a controlled process 
artifact, whose purpose is to facilitate consensus-building 
between requirements analysts and developers. The most 
common types, of course, are the UI prototype and the 
proof-of-concept prototype. The detailed requirements 
and product specifications do not need to be written down 
until the prototype stabilizes and is reviewed. Then, both 
artifacts can be derived from it, if both are needed.  

 

7. Future Work 
 
We are currently investigating how to extend our 

process to effectively use rigorous models for domain 
analysis, requirements analysis, design, and testing.  
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Abstract

User requirements for telecommunication systems are
difficult to understand because they are obscured by a long
history of ad hoc feature development and technological
limitations. The presence of a viable modular architecture
for telecommunication features gives us a fresh start. Work-
ing within this framework, we can discover desirable prop-
erties that ought to be requirements for all telecommunica-
tion systems.

1 Introduction

This paper tells a story. By the end of the story there
is a close relationship between requirements and architec-
ture in the telecommunication domain. The recognition of
true requirements developed from the architecture, how-
ever, rather than shaping the architecture as might be ex-
pected.

Although this appears to be a success story, it is far from
over, and there is much work yet to be done.

2 No telecommunication requirements

The life of the Public Switched Telephone Network
(PSTN) began in 1875. Since the 1960s telephone switches
have been controlled by software, which has enabled and
encouraged addition of a steady stream of features of all
kinds.

In this paper, “requirements” refers to user requirements,
descriptions of the behavior of the system as a user observes
it. Requirements concerning performance, reliability, re-
sources, administration, etc., are not discussed.

Beyond the most basic requirement of allowing people to
talk to each other at a distance, the PSTN seems to have no
requirements, or at least no requirements in the sense of de-
sirable properties that are globally satisfied. Every desirable
property one can think of has many exceptions. To give a

simple but rich example, consider this property: If the sub-
scriber owning address � subscribes to a feature that blocks
all calls to or from address � , then the owner of � is never
talking to the owner of � through the telephone network.

This property might not be satisfied because � and � are
associated with devices, and at least one of their owners is
using a different device. This is typical of the ambiguity
we see everywhere in the PSTN—addresses identify many
things, but never what we really want to identify, which is
people.

Alternatively, the property might not be satisfied because
of an interaction among features. For example, the owner of

� might cooperate with the owner of � so that calls to � are
forwarded to � . If the forwarding feature sets the source of
the call to � at the same time that it sets the target of the call
to � (which is the most common behavior), and if � is not
blocking calls from � , then the owner of � can call � and
be connected to the owner of � . In this case the behavior
of the call forwarding feature subverts the intention of the
blocking feature.

The property could also be violated by interaction with a
large-scale conference feature. Such conferences have their
own addresses; participants can join the conference by call-
ing the conference address, or can choose ahead of time to
be called by the conference. Either way, the blocking fea-
ture of � cannot prevent its owner from joining a conference
in which the owner of � is also a participant.

The lack of satisfied requirements in the PSTN is not
surprising, given its long history, incremental development,
technological limitations, and geographical and administra-
tive distribution. There is also, however, a near-complete
lack of understood and agreed upon requirements, whether
satisfied or not. Simply put, we do not know how telecom-
munication systems should behave.

Beyond the obstacles to requirements already men-
tioned, the goals of subscribers often conflict, and there is
no consensus about how to balance them. In addition, many
people appear to believe that a telecommunication system
should behave toward each subscriber exactly as that sub-
scriber might wish during every moment of his life, without
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acknowledging the impossible complexity of reaching such
a goal.

There is now an industry-wide trend away from circuit-
switched networks, and toward packet-switched IP net-
works. This change is removing many technological limita-
tions, but it is not getting us any closer to understanding re-
quirements for telecommunications. On the contrary, the IP
community is much less aware of the issues than the PSTN
community is. There is an unfortunate “Internet boom” ar-
rogance that leads newer entrants in the telecommunications
arena to believe that they have nothing to learn from the
past.

3 The feature-interaction problem in
telecommunications

As features are added to telecommunication software,
they interact with old features, often in subtle, unpre-
dictable, or disastrous ways. This feature-interaction prob-
lem makes telecommunication software extremely expen-
sive to develop. PSTN software is not unreliable, but only
because reliability is so important that switch manufacturers
take heroic measures to ensure that failures are contained.

The feature-interaction problem has been recognized
since the late 1970s, and there has been quite a bit of re-
search attempting to solve it [2, 3, 4, 5, 9].

Ultimately, to manage feature interactions properly we
need to understand what they are, prevent the bad ones, and
enable the good ones. Unfortunately, distinguishing the bad
ones from the good ones depends on having requirements
for desirable global behavior, which is just what we do not
have.

In the shorter term, there is plenty of value to being able
to add and change telecommunication features easily, in a
way that is modular and guaranteed not to break the system.
This is a huge improvement over adding features by patch-
ing monolithic code, with all its attendant difficulties and
dangers, even if feature interactions can still cause behavior
that is undesirable to users. This short-term goal has been
reached with an architectural approach.

4 An architecture for telecommunication ser-
vices

Distributed Feature Composition (DFC) is a component
architecture for telecommunication services [7, 8]. It was
designed for feature modularity, feature composition, struc-
tured feature interaction, and generality within the telecom-
munication domain.

In DFC a request for telecommunication service is satis-
fied by a usage, which is a dynamically assembled graph of

boxes (components) and internal calls. A box is a concur-
rent process providing either interface functions (an inter-
face box) or feature functions (a feature box). An internal
call is a featureless, point-to-point connection with a two-
way signaling channel and any number of media channels.

The fundamental concept of DFC is pipe-and-filter mod-
ularity [10]. Each feature box behaves transparently when
its functions are not needed. Each feature box has the au-
tonomy to carry out its functions when they are called for; it
can place, receive, or tear down internal calls, it can gener-
ate, absorb, or propagate signals traveling on the signaling
channels of the internal calls, and it can process or trans-
mit media streams traveling on the media channels of the
internal calls. A feature box interacts with other features
only through its internal calls, yet does not know what is
at the far ends of its internal calls. Thus each feature box
is largely context-independent; feature boxes can easily be
added, deleted, and changed.

In DFC there are exactly two mechanisms for feature in-
teraction (or component coordination, to use a more archi-
tectural term). One is the signaling through internal calls,
which is governed by the DFC protocol. The other is the
DFC routing algorithm, which routes each internal call to a
box, thus determining the configuration of boxes in each us-
age as it grows, shrinks, and reshapes itself. Feature boxes
can influence the routing in specific ways, which is how
routing becomes a mechanism for feature interaction.

DFC has been notably successful at reaching its goals. It
is not easy to say how one could reproduce the success in
another application domain, but here are a few observations
that seem relevant:
� Michael Jackson and I began work on DFC at the be-

ginning of 1997. At that time one or both of us had
been studying the telecommunication domain, on and off,
since 1982. Trying to tame the complexity of feature in-
teractions, we had run up seemingly every possible blind
alley.

� We were completely content to be domain-specific; we
had no interest in any other domain, believing that
telecommunications was more than enough challenge for
us. More general applications of the ideas in DFC are just
now beginning to emerge.

� In important ways, DFC is low-level: it is close to the true
building blocks of telecommunication implementations.
This accounts for its generality.

� At the same time, DFC is abstract enough to be formally
defined in a few pages. This makes the application of
formal methods to DFC tractable.
Since 1997 we have made a number of changes to the

original DFC architecture [7]; these are documented in the
manual [8]. Some changes are refinements, while others ex-
tend DFC to cover aspects of telecommunications not orig-
inally considered, for example multimedia. Nevertheless,
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the central ideas of the original architecture are still present
and essentially unchanged.

5 Experience with the architecture

Since 1999 we have been implementing and exploiting
DFC within AT&T Research. Our BoxOS system [1] is an
IP implementation of DFC with excellent interoperation ca-
pabilities; for example, it can be packaged as a SIP applica-
tion server.

We have used this environment to create interesting
voice-over-IP services. In 2002 alone we implemented
features for personal mobility, mid-call movement from
one device to another, switching, small-scale conferencing,
transfering, augmenting a telephone with a graphical user
interface on a nearby personal computer, call logging, voice
mail, speed dialing, click-to-dial, voice signaling, reaching
a representative of a group, and large prescheduled confer-
ences.

This rapid feature development creates relentless pres-
sure to understand feature interactions better. When a fea-
ture developer is faced with a seemingly arbitrary choice
of feature behavior, he wants to know the consequences of
each choice. Which choice will cause the feature to interact
best with all other features, present and future?

Although the pressure to understand feature interactions
returned us to the seemingly hopeless problem of discover-
ing the requirements for telecommunications, we returned
to it with some additional weapons in the arsenal. The im-
provement was due to the presence of a viable architecture.
Because of the architecture, we could implement features
quickly and plan ambitiously; this gave us a broader base of
knowledge about features, how they can interact, and what
people are trying to use them for. Also because of the ar-
chitecture, we had a tractable formal framework in which to
reason, without loss of generality, about features and their
interactions.

6 Example: call forwarding

As an example of the subtleties of telecommunication
behavior, let’s return to the example of call forwarding as
introduced in Section 2. When the owner of � calls � and
the features of � forward the call to � by changing its target
address to � , should the source address of the call also be
changed to � ?

Most forwarding features make the source change, both
in telephony and in electronic mail [6]. If some error occurs
in attempting to reach the new target address � , then the
error should be reported to the features or owner of � , which
know about � . If the error is reported to the features or
owner of � , the result may be confusion or a violation of

privacy, since � may know nothing about � . There is also
a vague concern that if the source address is not changed
and no trace is left of the role of � , there might be security
problems.

On the other hand, changing the source address during
forwarding has negative consequences. The source address
is no longer a reliable indication of who the callee will be
talking to when he answers the call, which is why the block-
ing feature is undermined. Also, � may have features that
automatically return a received call, by placing a new call
to its source address, under various circumstances. If one
of these features is activated while � is still forwarding its
incoming calls to � , then a forwarding loop will be created.

It might seem attractive to solve this problem by main-
taining a complete address history within the signals of the
call protocol, rather than just two addresses. Unfortunately,
this also has many negative consequences.

Because address histories can grow quite long, they
place a heavy burden on the infrastructure. In fact, the
voice-over-IP protocol SIP, which maintains an address his-
tory for reasons other than the ones discussed here, is caus-
ing implementation problems due to very long headers. Ad-
dress histories do not interoperate well with the existing
telecommunication infrastructure, all of which is based on
calls with two addresses.

Equally important, address histories can violate privacy.
Consider a physician calling patients from home. He has
a feature that allows him to change the source address of
his calls to his office address. A complete address history
would reveal to patients the address of his home telephone,
which is the original source of each call. Yet the physician
has a legitimate right to keep this information private.

7 Ideal address translation

It should be clear by now that if we accept the telecom-
munication domain as it exists today, the call-forwarding
problem has no solution. Any choice we make about its
behavior violates some desirable property that should be a
global requirement.

One way out of this dilemma is to concentrate on an ideal
version of telecommunications in which there are no legacy
constraints, and both the infrastructure and the features be-
have in the right way. This gives us the freedom necessary
to figure out what the right way might be.

Address translation is the function performed by a fea-
ture when it changes the source or target address of a call.
Call forwarding performs address translation, as do many
(perhaps even most) other features. For the feature interac-
tions caused by address translation, a search for the ideal has
succeeded, yielding two important and highly intertwined
results [11]:
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� Requirements that a telecommunication system should
satisfy.

� Constraints on the infrastructure and on feature behav-
ior that guarantee satisfaction of the requirements without
sacrificing functionality.

The constraints on the infrastructure are architectural, and
are inspired by DFC.

It is outside the scope of this paper to present the princi-
ples of ideal address translation. As a substitute, here is a
brief, informal explanation of how the conflicts of the pre-
vious section can be resolved.

In the recommended infrastructure, a call is implemented
by a chain of requests, feature modules, and interface mod-
ules as shown in Figure 1. Each request has source and tar-
get addresses. The chain has a source region in which there
are (optional) feature modules associated with source ad-
dresses. For example, s1 might be the address of the physi-
cian’s home telephone, and s2 might be the physician’s of-
fice address. The source feature module of s1 changes the
source address of the call to s2 at the physician’s request.

The source region is followed by a target region in which
there are (optional) feature modules associated with target
addresses. For example, t2 might be � , and the target fea-
ture module of t2 might do call forwarding by changing the
target address from t2 to t1.

There is an authenticity requirement that the source ad-
dress of a request chain should reveal to the callee the entity
at the other end of the call. Call forwarding is not chang-
ing the source of the call in any way, and therefore must
not change the source address. It if does, the authenticity
requirement will certainly be violated.

This constraint on the behavior of call forwarding and
other target-region features is necessary but not sufficient
for authenticity. For example, an unauthorized person might
use the physician’s home telephone, or might even program
the features of his own telephone to set the source address
of the call to s2!

The authenticity of s2 as a source address can only be
secured if the source feature module of s2 contains an au-
thentication feature that demands a password or other proof
of identity. The infrastructure guarantees that any request
chain containing s2 as a source address must pass through
this module and therefore be subject to authentication.

There is a reversibility requirement that a target-region
feature or targeted user should be able to call the source
address of a request chain and thereby target the entity at the
source of the request chain. Clearly this is another reason
why call forwarding must not change the source address.

In this example, the source address s2 that reaches the
target region identifies the physician in his role as a physi-
cian. It is more abstract than s1, which is only the address
of a particular device. This is why the reversibility require-
ment is stated in terms of “the entity at the source of the

request chain” rather than “the device at the source of the
request chain.”

In the formal definition of the reversibility requirement,
an abstract address such as s2 is considered to identify a
truer source of the request chain than a concrete address
such as s1. This has important consequences. If a patient
misses the physician’s call and calls back later, the physi-
cian may no longer be at home, and the s1 address would
not reach him. However, his role address s2 can subscribe
to a location feature that will locate him wherever he is now.

There is a privacy requirement that use of a more abstract
address such as s2 effectively conceals a more concrete ad-
dress such as s1. This requirement is also guaranteed by the
constraints in [11].

Note that privacy and authenticity balance the conflicting
goals of knowing and concealing. The effect of privacy is a
person can conceal an address that he owns behind another
address that he owns. The effect of authenticity is that an
address can only be used by a person who owns it.

Errors are signaled back through the request chain. So
if target address t1 turns out to be unknown, then the error
signal will first reach the target feature module of t2, which
should handle the error if possible, and conceal t1 if neces-
sary.

8 Future work

There are many other areas of feature behavior and fea-
ture interaction besides address translation. It is important
to attack them with the same weapons, in the hopes that
they, also, will yield their secrets.

The infrastructure that supports ideal address translation
is generally similar to all telecommunication protocols in
use today. At the same time, it is different in crucial ways
from all of them except DFC as implemented in BoxOS.
So a gap has been opened between theory and practice that
must be bridged in some way. This will require the utmost
creativity, pragmatism, and patience.

Even though current telecommunication systems fall
short of satisfying them, the requirements discovered so far
are simple, compelling, and convincing. They would have
been discovered long ago, except for the complications of
a long history that has made them as difficult to see as to
satisfy.
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Abstract

The large gap in the levels at which requirements are
specified results in inadequate means for ensuring that
business goals are properly supported. Architecture-level
requirements specifications help us reduce this problem
by providing necessary constructs and traceability mech-
anisms. Enhancing traditional requirements engineering
approaches by incorporating architecture-level requirement
specifications will facilitate business goals satisfaction and
simplify the design of appropriate software architectures.

1. Introduction

Since its early days, software development has been
implementation driven. Programming, still considered by
many as the most important and difficult development ac-
tivity, has attracted most of the research attention over time.
While sufficient in some cases, programming has become
a relatively routine activity compared to the other develop-
ment activities in the development of today’s large, com-
plex, and constantly changing software systems. The main
difficulty in today’s development is not anymorehow to
build the system, butwhat to build and how to make it as
adaptable to future change as possible [6].

Because of its early importance, implementation tech-
nologies and paradigms have influenced all development
stages, even the early ones such as requirements analysis
and design. For example, structured and object-oriented
programming paradigms resulted in structured [12, 31, 30]
and object-oriented analysis and design techniques [21, 9,
4]. This tradition continues with emergence of new method-
ologies such as aspect-oriented analysis [1], which has its
origin in aspect-oriented programming paradigm.

The success of such approaches was mostly due to the
fact that the traditional way of development focused on
one product at a time [19]. A clear product-level require-
ments specification combined with low-level design, us-

ing structured or object-oriented concepts, was appropri-
ate for a product development in relatively stable and well-
understood problem domains.

Domain-level requirements analysis and specification
appeared as a solution to a need for building software
systems for large, difficult to understand, and changing
problem domains. Goal-driven requirements engineering
emerged as a leading approach for dealing with domain-
level requirements for large systems [10, 23, 29]. The main
emphasis of this approach was on making sure that soft-
ware actually fulfills business goals. This goal fulfillment
problem was one of the main weaknesses of the traditional
product-level requirements engineering approach.

Now, with the emergence of new economic trends, the
Internet as a business medium, software as a commodity,
etc., even small systems have become much more diffi-
cult to build and maintain. New software paradigms and
technologies such as web services, agility, and product
lines, emerged to solve this new wave of problems. In this
new situation, both business systems and software systems
change faster than ever before. Naturally, both domain and
product-level requirements specifications become obsolete
very quickly, in some cases even before the product is built
[17, 19].

2. Agility, Web Services, and Product Lines

In this section I would like to emphasize the common-
alities of agile development paradigms, web services, and
product lines as related to requirements specification. Even
though all three concepts seem to have contradictory goals,
they do share and contribute many new common develop-
ment principles.

First, they deemphasize product-level requirements
specifications. The agile development philosophy states
that a detailed up-front specification of the product level
requirements is unnecessary [18, 3]. Rather, agile follow-
ers believe that product-level requirements are best discov-
ered on the fly,i.e., by developers who directly communi-
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cate with clients and implement these features without doc-
umenting them or preserving their rationale. Web services
elevate responsibility for product-level requirements from
the application developer to the service provider. Applica-
tion developers can choose and integrate many different ser-
vices which vary in particular feature details. A product line
stresses the development of several product at a time. The
main focus of the product line development is on the es-
tablishment of a robust architecture that will support many
kinds of different product-level variations. In all three cases,
we have a shift from product-level thinking to a whole new
way of thinking, which allows us to think in terms of future
changes and how we can accommodate them as easily as
possible.

Second, all three approaches take into account the con-
stant change in the problem domain. This is similar to the
changes at the product-level.

So in summary, now we have the situation that software
systems have to adapt to constantly changing problem do-
mains, and also to be easily adaptable to new problem do-
mains. This leads us to the following main constraints that
requirement specifications should satisfy:

• Requirements artifacts should be reusable and easily
modified,i.e., they should beassets.

• The focus should be on the clear separation between
commonalities and variabilities, from the requirements
perspective.

• Domain and product-level requirements should be sec-
ondary as they describe mostly variations in function-
ality, and low-level requirements should be left to de-
velopers.

• We should emphasize stable, change resistent require-
ments with a high architectural impact.

3. Requirement Abstraction Levels

Requirements are specified either directly or indirectly
for many different purposes, and as part of many different
engineering activities. For our purposes, we can sort them
according to different levels at which they usually appear:

1. Business-level requirements specification: Business-
level requirements are most often indirectly speci-
fied as the part of business reengineering activities
[17, 11, 2, 27]. The most common concepts that appear
at this specification level are business goals, processes,
resources, and rules. It can be argued that this is proba-
bly the most important type of requirements specifica-
tions, as the goal of software systems is to ultimately
satisfy and contribute to the fulfilment of these busi-
ness processes, goals,etc.

2. Domain-level requirements specification: As men-
tioned previously, domain-level requirements are one
of the traditional approaches to the requirements spec-
ification [10]. Newer, more systematic versions of
domain-level requirements engineering have received
a lot of attention recently [5, 7, 24]. Most of its ap-
plications are in the area of business systems, which
are getting increasingly complex and difficult to ade-
quately support by software systems [8, 16, 15]. The
most common concepts that appear at this specification
level are user goals, user tasks, domain input, domain
output,etc. More recent trend is the incorporation of
agent-based analysis as the part of domain modelling
[26, 20, 25, 14].

3. Product-level requirements specification: Product-
level requirement specifications are the most common
type of requirement specifications. There exists an ex-
tensive body of knowledge about them, and most of
the previous research focused on perfecting different
techniques used to elicitate, specify, and validate this
type of requirements. The most common artifacts and
concepts that occur as the part of product-level spec-
ifications are features, use-cases, functional lists, data
input, data output,etc.

4. Design-level requirements specification: This is an-
other type of well understood and widely used type of
specification. A lot of efforts were invested into its
standardization through Unified Modelling Language
(UML) [21, 13]. UML artifacts present the most com-
mon types of concepts and techniques used to capture
requirements at this level. This level acts as a tran-
sition phase between product-level specification and
code-level requirement specifications.

5. Code-level requirements specification: Lastly, usually
considered as a part of programming activity, low-level
algorithm and data structure specification makes what
we refer to as the code-level requirements specifica-
tion. This is the type of the specification which most
programmers are familiar with, as it is inseparable part
of coding. It focuses mostly on the implementation re-
lated issues and constraints. This is also probably the
best understood requirements specification level.

From this discussion, we can observe that most of the
current forms of requirement specifications focus on the
specification of functionality at the different levels. This
leads us to the definition of the problem I am aiming to
solve.

15



4. Problem Statement

While new development technologies and paradigms
stress structure and quality over changeable functionality,
traditional requirements engineering techniques still focus
on primarily capturing the low-level functionality of the
system. Structure and quality requirements are often deem-
phasized and hidden within specifications. The requirement
engineering artifacts must be adapted to support this new
development reality and improve the return on investment
in all possible ways. Therefore, the problem that we are
dealing with is: How should we organize and specify re-
quirements in such way to emphasize structure, quality, and
stable requirements, and at the same time provide a way for
capturing changeable and variable requirements?

In addition, as change is occurring in both, business sys-
tem and supporting software system, we have to perform
the analysis and specify structural and quality requirements
of both systems. A software system has to be adaptable to
support also several different business systems, and to allow
the evolution of all of them.

In my opinion, the most promising way to deal with these
issues at design, implementation, and maintenance stages
of software development cycle is the effective use of soft-
ware architecture principles and techniques. Nevertheless,
the effectiveness of software architecture techniques, espe-
cially when one has to develop multiple architectures at the
same time, is in my opinion limited, as they are based on
requirement specifications which are tailored to emphasize
different issues such as low-level functionality, one product
focus,etc. The goal is to try to solve this problem by intro-
duction of architecture-level requirements specifications.

5. Proposed Solution

The hypothesis is that architecture-level requirements
specification provides more support for the development of
software systems using web services, agility principles, and
product lines, than traditional domain and product level-
requirements specifications. This support reflects through
an improved architecture for the system, clear identifica-
tion of common structural elements and functionality, and
identification of variation points and constraints on the fu-
ture evolution of the system. Also, architecture-level spec-
ification lies conceptually between domain and product-
level specifications, allowing clear definition and verifica-
tion of the mechanisms through which product features help
achieve the business goals. Providing this traceability is
identified as one of the most important requirement engi-
neering problems [22].

Therefore, my work will focus on the definition of differ-
ent requirement specification levels, together with the anal-
ysis and adaptation of different requirement specification

techniques and artifacts to these levels. In particular, I will
define a set of techniques and artifacts that can be used to
capture architecture-level requirements. These include an
architecture-level requirements specification method, which
is based on the the focus shift from product and domain to
their architectural properties, integration, and qualities.

6. Architecture-Level Use Cases

One of the already identified uses of architecture-level
requirement specifications is the architecture recovery of
software systems [28]. I successfully performed extraction
and specification of architecture-level requirements in the
form of architecture-level use cases.

Use cases — that is, narrative descriptions of domain
processes — appear in different forms in all phases of a de-
velopment cycle. They are typically used as the artifacts
around which development cycles are organized. When
used this way, all other activities and artifacts depend on
them.

A use case describes the interactions between actors and
system processes. A use case encapsulates responsibilities
that are performed during a computation by actors and by
system processes.

Architecture-level use cases are use cases that describe
logical processeswithin the system. In my study, these
use cases were not created by developers, but were gener-
ated using high-level responsibilities that were written as
the part of the code documentation. The purpose of this
generation was to document dynamic processes within the
system. This was a technique used as the part of the logical
architecture view in order to present dynamic interactions
in a comprehensible format.

Requirements were discovered and abstracted from the
method-level to the subsystem level. While module-level
responsibilities provide a compact way to encapsulate and
represent architecturally significant features, method-level
responsibilities are used to understand and present mod-
ule and subsystem interactions using architecture-level use
cases. The advantage of architecture-level use cases over
other presentations like sequence diagrams is that they
present dynamic aspects in a comprehensible way while
hiding low-level details.

Architecture-level use cases were built using naviga-
tional capabilities of several code-browsing tools in con-
junction with documented responsibilities. The main value
of this approach was not in a documentation of all possible
use cases, but in an ability to recover them as needed. Al-
though responsibilities were not required to be documented
within source code, the advantage of having them docu-
mented there is that a transition from architectural level
analysis to low-level design analysis is seamless. Bellow is
an example of a fully developed architecture-level use case:
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• Name:Play Song

• Actors:End-user

• Stakeholders:

1. End-user

2. Music provider

• Event:User pushes play button

• System:xmms, libxmms, input, output, visualization

• Purpose:Describe collaboration among subsystems to
accomplish “play” functionality

• Priority: 10/10-core business process, crucial for busi-
ness operation

• Overview: Input stream is processed to produce
wanted output (song playing or streaming to a file on
hard disk)

• References:None

• Related Use-Cases:Setup

• Responsibility:Play media stream or write it to a file

• Preconditions: Play-list was configured, Setup use-
case successfully performed

• Postconditions: System stops playing, after input
stream end, if Repeat option is turned off.

• Invariants:None

• Main Scenario:

1. xmms: User interface component signals “play”
event is raised.

2. xmms: Signal to input subsystem to start pro-
cessing data

3. xmms: Connector between input and output is
established

4. input, output, visualization: Start processing data
streams

5. input: If end of the stream signal xmms and stop

6. xmms: If “Repeat” option turned on signal in-
put to start processing again, else “stop” signal to
output and visualization

• Alternatives:

– step 4: data stream disconnected before end of
it (file deleted, network connection went down,
etc.) — raise exception and inform user

– step 4: special effects events raised — activate
appropriate plugin, which alters output

• Quality Attributes:

1. Responsiveness — events are handled without
delays

2. Reliability — user is informed within 1 second if
system stops due to data stream problems

• Technology: Network access support for network
streams

• Special Requirements:For low-end systems, output
processes have higher priority over visualization and
affect subsystem’s processes

• Open Issues:None

A single column format was used to document this par-
ticular use case. One could also use multiple column format
to emphasize subsystems and modules. The second option
has a drawback that it is harder to format text properly thus
increasing production and maintenance time.

7. Current Work and Open Questions

Currently, I am involved in an exploration of the follow-
ing topics:

• Identification of architecture-level requirements: prop-
erties and patterns. This topic involves analysis of
which properties of the requirements have a significant
architectural impact. This knowledge can be used to
discover them and isolate from the different software
requirement specification documents.

• Recovery of the architecture-level requirements from
code, UI, and deployment properties. This recovery is
a process of abstracting and combining requirements
all the way up to the business level. Its value is in be-
ing able to analyze how software impacts the business.
This analysis is important in situations in which new
software is acquired and business is tailored to it.

• Analysis of the architecture-level requirements
change. This analysis is an observational study of
several systems to try to discover the evolution pat-
terns and properties of the requirements that actually
change over time.

• Techniques for the architecture-level requirements
specifications. There are two main techniques:
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– Proposal of a new way to organize software re-
quirement specifications. The aim is to structure
the requirement specifications in order to pre-
serve and emphasize business and software archi-
tecture requirements and concepts.

– Architecture-level use cases for capturing dy-
namic properties and functional requirements at
the subsystem level.

8. Conclusion

This paper has attempted to emphasize the importance
of the conceptual shift from the traditional domain and
product-level requirement specifications to multiple level
specifications and to architecture-level requirements spec-
ifications, in particular. The main purpose of this shift
is to accommodate the development using new software
paradigms. Also presented were some parts of the work
that was done as a part of a study in software architecture
recovery.
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Abstract 

This paper presents a practical approach to 
architecture-based design of computer based systems. The 
approach is discussed in relation to other existing 
methods of performing discovery, abstraction, refinement 
and evolution of systems’ architectures. It has also be 
shown that this approach  can be supported by formal 
methods of refinement.  The approach assists the designer 
to maintain a strict focus of reasoning about the 
architecture and its qualities.  

1. Introduction 

The importance of architecture in the engineering of 
computer based systems is widely recognised [19, 22, 34, 
38]. Given a strong architectural model [30], the 
architectures of systems can be visualised [9], reasoned 
about [4, 8, 27, 32], and evolved [36].  These activities are 
part of any process of architecture-based design, which we 
call A-Design.  This paper particularly investigates the area 
of (formal) design traditionally called refinement.1 

It is important to consider architecture-based design in a 
practical engineering context and in particular to address 
the practical concerns of the engineering effort involved in 
developing (short term change) and evolving [36] (long 
term change) a given Computer Based System (CBS). One 
must always be sure that in designing a system the non-
functional requirements of the system are satisfied [5, 11]. 
Additionally, no system is ever built from nothing; in 
practice the designers will have suggestions for the system 
at every level of abstraction [3, 29, 41]. 

The latest IEEE Requirements standard recommends 
that requirements are hierarchical [21] and always have 
some associated implementation restrictions. As a result 
there will be a need to place these restrictions at whichever 
level of abstraction is most appropriate [5, 11, 31]. In 
addition to this need to be able to interact at which ever 

                                                                        
1 If refinement is the process of taking an architecture from the abstract to 
the concrete, then “abstracting” is the reverse process - taking an 
architecture from the concrete to the abstract. For the purposes of this 
paper we refer to both the concepts of “abstracting” and traditional 
refinement as (part of) design. 
 

level of abstraction is most appropriate, the practicing 
designer will often as a first step need to discover the 
architecture of an as-built system. That is, they will need to 
develop a concrete architecture of a system and abstract 
away details until the underlying architecture of the system 
is exposed [14, 24]. 

This paper presents a practical approach to architecture-
based design of CBSs. The approach is discussed in 
relation to other existing methods of performing discovery, 
abstraction, refinement and evolution of systems’ 
architectures. It will also be shown that this approach 
(whilst generally being more practically based than other 
more formal methods) can be supported by these formal 
methods of refinement in particular.  The approach also 
helps to maintain a strict focus of reasoning about the 
architecture and its qualities. 

General architectural definitions are presented in section 
2. Section 3 presents a discussion of related work on 
refinement in general and section 4 builds upon this work 
with our concept of architecture-based design. Finally a 
practical approach to architecture-based design is presented 
in section 5. The paper finishes with a discussion of future 
work and a conclusion (section 5.1). 

2. Architecture 

This section presents some general architectural 
definitions to establish the vocabulary of the paper.  From 
the IEEE [22] and extended by the ECBS Architecture 
Working Group [37] and UTS [26] the following 
definitions are provided; 

System:  A set of interrelated entities which display a 
specified behaviour while interacting with the system’s 
particular environment. 

Architecture:  Any  well defined form of a system’s  
essential, unifying structure defined in terms of 
components, connections and constraints along with the 
system’s interaction with its environment. 

Architectural description (A-Description):  A product 
which documents an architecture and consists of zero or 
more architectural models, including rationale for and 
relationships between the models and views chosen. 

Architectural models (A-Models):  Any formal 
description of a system which describes the system’s 
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architecture.  Typically A-Models are formulated using a 
specific A-Style while embodying (or portraying) one or 
more A-Views (refer to [26]).  

Architectural Model Elements (A-Elements):  The 
constituents of a system’s architectural model which 
represent the components (Cp), connections (Cn) and 
constraints (types, implementations, properties, etc) of the 
proposed system architecture. 

Please note: For reasons of brevity and concentration, 
the concepts of Architectural Styles (A-Style), 
Architectural Patterns (A-Patterns), Architectural 
Principles (A-Principles) and Stakeholders concerns are 
extensively discussed in other places, including our 
working group [26] but omitted here.  

In Figure 1, UML notation [40] is used as an extended 
entity relationship diagram, to compare and contrast the 
meanings of the definitions. 
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Figure 1 – Interrelationship between key 

Architectural terms [26] 

3. Related Work 

This section discusses the history of refinement methods 
in general from it’s origins in early program proving work 
to the emergence of architectural refinement methods in the 
1990’s.  Additionally, existing architectural refinement 
approaches are discussed, and, finally the strong 

relationship between requirements and refinement is argued 
with a recognition of the importance of hierarchical 
requirements to a refinement approach. 

3.1 History of Refinement Methods 

Existing refinement methods have their origins in the 
program proving work of Dijkstra [10] and Hoare [17].  
The initial work on stepwise refinement by Dijkstra [10] 
appears to be the first to use logic in the construction of a 
program from a design, as specified by pre/post conditions. 
Refinement of programs from models gained a boost with 
the work on the Vienna Development Method (VDM) [23] 
and Z [15] and B [2].  These methods specify systems, and 
refine them to programs using predicate calculus and proof 
obligations.  Z has been used on large practical systems to 
reverse specify  and then, by proof techniques, understand 
and re-specify industrial systems, including the IBM CICS 
system [42].  They have also been used to model and prove 
the correctness of systems. Another approach, exemplified 
by the LARCH project, [25] makes use of axioms and 
rewriting logic to model a system and prove the correctness 
of an implementation.  

All these methods have one major weakness in that there 
is no concept of design attributes being satisfied.  For 
example, the design requirement that the system be 
maintainable could require the application of the principles 
of coupling and cohesion. One exception is Object-Z [7] 
which implicitly applies the principles of coupling and 
cohesion since it forces an information hiding paradigm on 
the modeller. 

3.2 What is Architectural Refinement 

Architectural refinement methods have been developed 
since the early 1990’s. Broadly speaking, these methods 
can be classified into predicate logic reasoning and 
refinement methods [4], and methods focussing on 
rewriting logic or mapping architectural patterns and styles. 
[5, 31]. 

In [6], Bϋchi discusses refinement from a formal 
specifications perspective. He refers to refinement to be 
that “the implementation actually complies with its 
specification, or, more precisely, is a refinement thereof”. 
This perspective is similar to the classical refinement 
approach which uses the notion of “behavioural 
substitutability”.  That is, the concrete representation 
should not show any behaviour not observable in the 
abstract representation [13].  This is the approach used in 
CSP [18]. Moriconi et al [31] argue that behavioural 
substitutability may not be sufficient and introduce 
“conservation extension”. That is, if a feature is not 
explicitly included in the abstract then it is implicitly 
claimed not to exist [13]. According to the above authors, 
refinement is thus the process of ensuring that these 
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conditions of “behavioural substitutability” and 
“conservation extension” are met. 

Garlan [13] introduces his own perspective on 
refinement by claiming “that there is no single definition of 
refinement. Rather, refinement rules must be specific about 
what kinds of properties they are preserving in the refined 
design”. This sort of definition is moving towards the 
notion that refinement can be thought of in terms of 
ensuring the non-functional properties of a system such as 
evolvability and performance. 

3.3 Refinement and Requirements 

Egyed et al [11] imply a strong relationship between 
requirements (both functional and non-functional) and 
refinement. They mention the “need of having requirements 
engineering and architectural modeling being intertwined 
and mutually-dependent development activities in order to 
ensure their complete and consistent treatment (i.e., 
refinement).” This perspective is also supported by 
Bolusset et al [5] who state that refinement is used to 
ensure that the system’s concrete implementation still 
meets its requirements. 

We propose to extend Egyed et al and Bolusset et al’s 
concepts of architectural refinement by including the 
concept of hierarchical requirements, supported by the 
latest IEEE standard on System Requirements 
Specifications [21]. It argues that requirements are 
assembled “into a hierarchy of capabilities where more 
general capabilities are decomposed into subordinate 
requirements”. The implication of this to architecture-based 
design is that at each level of abstraction a certain subset of 
the overall system requirements will be addressed.  This is 
further discussed in the following section. 

4. Architecture-based Design 

This section defines the architecture-based design of 
Computer Based Systems (CBSs). Additionally two types 
of architecture-based design (horizontal and vertical) are 
identified and discussed with regard to the differing 
reasons for using each one. The section concludes with a 
diagrammatic summary of the terms and relationships 
introduced in this section. This diagram provides the basis 
for the proposed practical design approach (section 5). 

4.1 Definition 

The more recent interpretations of refinement [5, 11] 
and the concept of hierarchical requirements [21] 
influences the definition of architecture-based design used 
within this paper. Within the context of the architecture-
based design approach discussed herein and the general 
architectural definitions of the UTS [26] (summarised in 
section 2)  architecture-based design (A-Design) can be 
defined as; 

A-Design: the addition (or removal) of A-Elements 
to the A-Model to ensure a larger subset of the 
overall requirements are met. 

As is evident in Figure 2, A-Design can be seen in terms 
of developing another A-Model that satisfies more of the 
overall systems requirements. The initial A-Model satisfies 
a certain set of the system’s requirements, R1. After the 
refinement step, the final A-Model satisfies the set of 
requirements, R2. Given that R1 is a proper subset of R2, 
the final A-Model also satisfies all of the requirements 
originally satisfied by the initial A-Model. 

In practice, R1 may not be a proper subset of R2 after the 
first attempts at refining. The actual refinement method 
must detect this and ensure that the condition is met before 
the refinement step is considered complete. This is 
discussed further in section 5. 
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Figure 2 - Relationship between A-Design 

and Requirements 

4.2 Types of A-Design 

Following the general definition of A-Design given in 
section 4.1, more specific definitions can be given for two 
types of A-Design, horizontal and vertical, that are often 
discussed, though not entirely agreed upon, in literature. 

Bolusset et al [5] refer to horizontal refinement as 
inducing a specification modification where there is no 
change of abstraction level. We build on this, and within 
our approach and architectural definitions of the UTS [26] 
(summarised in section 2), define; 

Horizontal A-Design: the addition (or removal) of 
A-Elements at the same level of abstraction to 
satisfy an additional subset of the overall 
requirements – both functional and non-functional. 
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In [5] the process of vertical refinement is referred to as 
moving “closer to the implementation by going from a first 
architecture description language, to a second one”, that is, 
moving from one level of abstraction to a second one. 
“Details are added to remove a part of indeterminism or to 
facilitate implementation”. This interpretation of vertical 
refinement as involving a transition of levels of abstraction 
is generally well understood. 

Whilst discussing the vertical case with respect to their 
refinement method, Moriconi et al [31] comment that “we 
are guaranteed that the most concrete architecture in the 
hierarchy meets the requirements of the most abstract 
architecture in the hierarchy.” Thus vertical refinement 
involves a transition of levels of abstraction.  

We build on these concepts and within our approach and 
architectural definitions of the UTS [26] (summarised in 
section 2) define: 

Vertical A-Design: the addition (or removal) of A-
Elements at a more concrete or less concrete level 
of abstraction to satisfy an additional subset of the 
overall requirements – both functional and non-
functional. 

Of particular note is the “more concrete or less 
concrete” portion of the definition which reflects the 
concept of  abstracting (from concrete to abstract) being 
the reverse process of refining (from abstract to concrete).   

4.3 Levels of Abstraction 

A fundamental aspect of our architecture-based design 
(A-Design) approach is the concept of levels of abstraction 
for A-Models that originates from the work of Ward and 
Mellor. In [41] they introduce the concepts of an Essential 
Model and an Implementation Model: 

“Given that a system must function in a specific 
environment, and given that it has a purpose to 
accomplish, it is possible to describe what it must do 
(the essential activities) and what data it must store 
(the essential memory) so that the description is true 
regardless of the technology used to implement the 
system…an essential model. 
It is also possible to describe a system as actually 
realised by a particular technology…an 
implementation model. 
The implementation model is defined as an 
elaboration of the essential model that contains 
enough detail to permit a successful implementation 
with a particular technology.” [41] 

 
We extend these concepts to the domain of systems 

architecture by introducing the essential architecture and 
the implementation architecture. In addition to these two 
architectures we also introduce the concept of many 

intermediate architectures. In all cases, these architectures 
are actually represented using the UTS [26] terms 
summarised in section 2. Each of the essential, intermediate 
and implementation architectures represent differing levels 
of abstraction in modelling the system. 

4.3.1 Essential Architecture 

The essential architecture is the most abstract 
representation that a particular project will use of the 
architecture.  It utilises abstraction to help highlight key 
system properties, architectural components and 
component interaction.  The essential A-Model(s) are the 
primary model(s) about which one can reason about to 
ensure that the system is capable of meeting its 
requirements.  Further essential modelling concepts may be 
drawn from systems engineering and systems theory 
literature to help establish the essential A-Model [3, 29, 
41].  Our approach is used to formalise the concepts 
associated with the essential A-Model and then provides a 
basis on which to reason about the feasibility of the 
proposed architecture. 

The most important aspect of an essential architecture is 
that, by definition, it contains no implementation details. 
As Ward and Mellor state, the system as described by an 
essential architecture could equally be implemented by 
humans manually executing the required processes as it 
could by a computer system [41]. The essential architecture 
should give no indication of what technology should be 
used in the final implementation. 

4.3.2 Intermediate Architecture 

Depending on the complexity of the system being 
modelled, there may be multiple intermediate 
architectures. The intermediate architectures describe the 
system in successively more detail than the (essential) 
requirements driven essential architecture.  The 
intermediate A-Models are a primary tool in refining the 
system down to a subsequent implementation architecture 
that is capable of meeting the system’s functionality, 
performance and quality (including evolvability) 
requirements.  Our approach is used to develop the 
intermediate A-Models and provides a basis on which to 
continue to reason about the feasibility of the proposed 
architecture, and its relation to the essential architecture.  
In relation to the essential architecture, we are especially 
interested in the intermediate architecture being a correct 
refinement, which shows promise in meeting the non-
functional requirements.  

One important point to raise here is that by having 
intermediate architectures one can approach the A-Design 
of a system at whatever level of abstraction the designers 
are comfortable with, or have data with which to populate 
the A-Model [3, 29, 41]. The merits of this flexibility 
concept in our A-Design approach will be further discussed 
in section 5. 
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4.3.3 Implementation Architecture 

A system’s essential and intermediate A-Models are 
important abstractions, however they do not consider the 
system solution sufficiently with respect to implementation 
issues – it is the final implementation architecture that 
delivers the final, specified functionality and capability [39, 
43].  Our approach is used to ensure that the architectural 
solution chosen is appropriate and feasible given the skills 
and technology available. 

The final implementation architecture is not the end of 
the detailed design process, it is in fact, the beginning.  The 
implementation architecture components, connections and 
constraints are now ready to be implemented as (e.g.) 
collections of classes. 

4.4 A representation of A-Design 

Given the definitions for architecture-based design (A-
Design) and the essential, intermediate(s) and 
implementation A-Models as discussed above, an approach 
for A-Design can now be presented that facilitates the 
mapping between each of the A-Models.   

Figure 3 illustrates the important concepts in our 
approach for performing A-Design. It can be seen that A-
Design can occur in two “dimensions”: horizontal and 
vertical, and that each of these dimensions is bi-directional. 
Each level of abstraction (essential, intermediate(s) or 
implementation) satisfies a certain subset of the system’s 
requirements. The requirements shall either be fulfilled 
directly at that level of abstraction, or indirectly via the fact 
that the architecture at the current level of abstraction is a 
faithful interpretation of those architectures at a higher 
level of abstraction. Thus, at the implementation 
architecture, all requirements shall be fulfilled [31]. 

It is important to note that while each vertical 
refinement of the A-models in Figure 3 is shown as a 
graphically similar A-model this is not necessarily the case.  
As represented graphically and described in [12], for 
successive A-models “a given element from one space can 
map to zero, one, or more elements in the lower level 
space”. 

5. A Practical A-Design Approach 

This section presents a practical approach to 
architecture-based design (A-Design). Firstly, the 
requirements for A-Design (the necessary capabilities of a 
A-Design method) are presented. The details of a practical 
A-Design method follow. The section finishes by 
discussing how this practical A-Design method satisfies the 
requirements of A-Design. 

 

 
Figure 3 – Architecture-based design (A-
Design) using architectural models (A-

Models) of different levels of abstraction 

5.1 Requirements of A-Design 

Following from the previous discussion, and definitions, 
we propose that the following requirements need to be met 
in order to produce a practical A-Design process that will 
aid the designer in both the development and the evolution 
of Computer Based Systems. The A-Design approach must: 

1) Be scalable and practical for large, heterogeneous 
systems. 

2) Provide the ability to begin design with an A-Model 
at any level of abstraction. 

3) Provide the ability to design in any dimension and 
direction (see section 4). 

4) Support “long term design”, that is, evolution 
5) Ensure that both functional and non-functional 

requirements are met. 
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6) Be rigorous, yet flexible, with no specified ordering 
of horizontal or vertical A-Design steps. 

5.2 Approach 

This section describes in steps a process for practical A-
Design. The input to the A-Design process is an A-Model, 
and the output is simply another A-Model that has been 
refined or abstracted depending on the dimension in which 
refinement is occurring. 

There are two “pre-steps”, or essentially tasks that are 
assumed to have been done prior to use of the practical A-
Design approach, as follows: 

Pre-Step A (A-Model Population / A-Discovery):  
This pre-step involves gathering the appropriate 
“information” from the most appropriate available sources. 
Examples include requirements documents, especially 
constraints and specified equipment, source code, design 
documents and interviews with system architects / 
designers. Once this information is parsed (either manually 
or automatically) a collection of elements (but not 
necessarily A-Elements) will exist. A-Discovery is 
concerned with reasoning about the gathered elements and 
deciding which of those are legitimate A-Elements and 
which are not. Thus, after gathering the elements they must 
be filtered so as to keep only the A-Elements. Once this is 
done we have the initial architecture model, designated A-
Modeli. A-Modeli may represent the system at any level of 
abstraction (from Essential to Implementation ). 

Pre-Step B (Requirements):  
A requirements analysis has to have been completed before 
the A-Design can commence. The requirements need not 
be completely defined from the outset, however when the 
A-Design takes place it will simply work off whichever 
requirements are defined at that stage. As such the 
approach could be used in many different system 
development life cycles, from traditional waterfall to 
evolutionary, all of which have a different notion as to what 
stage and level of completion the requirements analysis 
shall be completed before embarking on the subsequent life 
cycle stages. 

Once these pre-steps have been completed, the main 
steps of the architecture-based design approach can 
commence. The input to the approach is a certain A-Model, 
A-Modeli. The output from an iteration of the approach is 
the next A-Model, A-Modeli+1. The composition of the new 
A-Model depends on which direction and dimension A-
Design is taking place. For example if one is abstracting 
(vertical A-Design moving upwards) the A-Model might 
typically contain fewer A-Elements and be generally 
simpler, whereas if one is refining (vertical A-Design 
moving downwards) the A-Model might typically contain 
more A-Elements and be generally more complex. 

The main steps of the approach are shown 
diagrammatically in Figure 4 and are as follows: 

Step 1 (Initial Evaluate and Prove):  
This step is important as it sets the baseline “status” for A-
Modeli. This step gives the approach the ability to know 
where one is coming from, in order to guide where one is 
going to. For example, assume at a high level of 
abstraction, an architecture exhibited a strong peer-to-peer 
architectural shape, however an implementation 
requirement is the specification of a particular client-server 
(shaped) database. The evaluation of the architecture when 
the client-server implementation detail is added would be 
flagged as a “mismatch”. 

Essentially, the aim is to prove whether the functional 
requirements (RF) are met, and to evaluate whether the 
non-functional requirements (RNF) are met (for more details 
see step 4). Regardless of whether the requirements are met 
or not, this evaluation, or performance index (PI),  is fed to 
the A-Principles “knowledge base”. This knowledge base is 
used for the generation of new A-Models, that is, it is used 
to gauge how successful previous modifications to the A-
Models have been, and to then guide the proposal of new 
A-Models. 

Step 2 (Propose New A-Model):   
This step involves generating a proposed alternative to the 
current A-Modeli, designated A-Modeli+1. The generation 
of the next A-Modeli+1 is guided by the A-Principles 
knowledge base (as discussed above). Given A-Modeli, the 
PI guides the designer in making the appropriate 
aggregations, substitutions and decompositions depending 
on the dimension and direction being refined (see section 
4).  

Step 3 (Evaluate and Prove):   
This step is a repetition of the activities of step 1 and 
involves checking A-Modeli+1 against the requirements, 
both functional and non-functional. It must be proven that 
the functional requirements are met. It is at this point in the 
approach that existing methods of architectural refinement 
could be used. The specific method used would vary 
depending on how the functional requirements had been 
expressed [5, 31]. Typical non-functional requirements 
evaluated in this step are performance, evolvability and 
openness.  

Once these proofs and evaluations are complete, we can 
see whether A-Modeli+1 satisfies the requirements. The 
results of the evaluation are fed back into the A-Principles 
PI so as to enhance the “knowledge” contained. Should the 
evaluation prove that the requirements have been met, the 
fact that the changes from A-Modeli to A-Modeli+1 resulted 
in a successful refinement are incorporated into the 
knowledge base. The same is true for the reverse case - the 
changes did not result in the requirements being met, and 
this is also fed back into the knowledge base. If the answer 
is “No” then the process is repeated from step 2 again until 
we are successful in meeting the requirements and we have 
the refined A-Model, designated A-Modeli+1. 
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It is evident, via step 1 of the approach, that we have the 
ability to enter the A-Design process at whichever level of 
abstraction is most appropriate. Obtaining the initial A-
Modeli from source code will result in a refinement process 
that begins at a much more concrete level of abstraction 
than one that begins with a high level architectural 
description. 
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Figure 4 – An Iteration of the Architecture-

based design (A-Design) Approach 

Within this approach, A-Design can proceed in any 
dimension and any direction (horizontal moving left and 
right, and vertical moving up and down respectively). This 
is partly due to the evaluation method described in step 1 
and 3 which allows any new model, A-Modeli+1 to be 
evaluated against the functional and in particular the non-
functional requirements of the system. 

The benefit of this to the designer is that it gives them 
the ability whilst typically developing a new system, to 
design vertically and down in order to approach a more 
concrete model. In addition, for an as-built system which is 
required to evolve in a certain way, it gives the designer the 
ability to enter the A-Design process with a typically more 
concrete model, and to abstract vertically and upwards until 
the model is sufficiently abstract to reason about and make 
the required changes. Once this reasoning is complete and 
satisfactory, the A-Design process can proceed in the 
reverse direction (that is, vertically and down) until a 
suitably concrete model is again obtained. This “round 
trip” of abstracting up, reasoning, making alterations and 
then refining down is an approach that is very well suited to 
the long term evolution of a system. 

Consequently, the approach is very flexible in allowing 
the designer the freedom to enter at any level of 
abstraction, and to move in any dimension and direction as 

required by the designing task at hand. However, at the 
same time, the approach is rigorous in that at each A-
Design step the new model is evaluated against the overall 
requirements of the system to ensure that no unsuitable or 
unwanted changes have been made. 

Non-functional requirements and their evaluation are 
fundamental to this approach and it is in this area that the 
practical A-Design approach described here differs the 
most from existing refinement methods [5, 18, 31]. 

The approach is tied heavily to the satisfaction of 
requirements, functional and importantly non-functional. 
Consequently, it gives the designer confidence that they are 
not only producing an architecture that is a valid 
refinement or abstraction of their starting point, but 
additionally that it is a “good” architectural solution. 

6. Future Work and Conclusion 

There are three aspects to the future work.  Firstly, to 
incorporate related work such as co-design [35], and other 
methods such as MASCOT.  Secondly, to include into the 
approach the idea of evolution as a third dimension of A-
Design.  We also need to develop a  formal method for 
evolution.  Finally, we need to incorporate the whole 
approach into the ABACUS tool suite [1].  

In conclusion, we have developed a practical approach 
to the architecture-based design (referred to as A-design) 
which aims to simultaneously satisfy the functional and 
non-functional properties of a system.  This approach is 
based upon the various architectural refinement calculi. 
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ABSTRACT

This position paper suggests an approach for building
software systems using patterns, right from business
architecture to software architecture. Further, the
approach incorporates a concurrent and iterative
development process to ensure that the business
architecture and software architecture are aligned, end
to end. Usage of patterns leads to reuse of various
artifacts, involved in the software development life
cycle.

1. INTRODUCTION

It is highly desirable to start the development of a
software system with most of the system requirements
being captured in the form of use cases. However, in
practice systems evolve. New requirements crop up
when the business on which the system is based keeps
growing/changing. Also, development of a system gives
rise to new ideas, which could be incorporated in the
system. Thus, in practice, activities take place
concurrently, rather than sequentially.

Nuseibeh [15] mentions that there are compelling
economic arguments why an early understanding of
stakeholders’ requirements leads to systems that more
closely meet these stakeholders’ expectations. There are
equally compelling arguments why an early
understanding and construction of a software system
architecture provides a basis for discovering further
system requirements and constraints, for evaluating
alternative design solutions and states that, in practice,
software development starts from either requirements or
software architecture [15].

It is obvious that the requirements, both functional and
nonfunctional, are derived from business architecture.
The underlying business architecture may be either
implicit or explicit. Hence, we propose that the
approach suggested by Nuseibeh could be extended to

business architecture, as well. It is apparent that the
effect on requirements would have a cascading effect on
the business architecture, and vice-versa. Sometimes,
the effect of the software architecture, which led to
modification of requirements, could even lead to
business process re-engineering.

This article illustrates the linkages that would be there
between various artifacts used in the development of a
software system.  We also suggest a concurrent and
iterative process to software development.

2. BUSINESS ARCHITECTURE

The role of architecture in building any type of structure
is well defined. A well-designed architecture makes it
possible to thoroughly understand the structure being
built, to plan the actual construction, and to estimate
costs; it serves as the basis for the blueprints of the
structure. Once construction has been completed, a
good architecture remains as the documentation of the
process and the result, making it possible to understand,
maintain and, if so desired, to extend the structure [18].

An architecture captures the vital parts of a structure in
an organized manner and is a practical tool for
managing a complex system, such as a software system
or a business. Business Architecture defines the
business structure, so modeling this architecture is key
to understanding the business and how it functions [18].

Eriksson and Penker [18] propose a business
architecture description using four views: business
vision, business process, business structure, and
business behavior.

They state “The knowledge and information in a
business architecture is used to define the software
architecture. This isn’t a one-to-one mapping, and there
is no simple algorithm to convert the business model
into a software model. They are two different models
that serve different purposes. The business model
describes a business or a specific part of a business; not
all of the business goes into the software systems. To
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define a software architecture, the business architecture
is used to:

Identify  suitable support systems.
Identify functional requirements.
Identify nonfunctional requirements.
Act as basis for analysis and design.
Identify suitable components.”

Creating a business model before the software models,
then using the information in that business model for
the creation of software models, will increase the
quality of the software systems. Systems that better
support the business of which they are a part will be the
result [18].   They have also catalogued some business
patterns.

At times, it may so happen that while establishing the
business goals it may be realized that some of the
business processes may have to be changed, event to the
extent of having a business process reengineering.

3. SOFTWARE ARCHITECTURE

A Software Architecture is a description of the
subsystems and components of a software system and
the relationships between them. Subsystems and
components are typically specified in different views to
show the relevant functional and non-functional
properties of a software system. The software
architecture of a system is an artifact. It is the result of
the software design activity [8].

Buschmann [25] states: “According to its definition, a
pattern system for software architecture should support
building concrete software systems with help of
patterns. Fortunately, many well-described patterns for
software architecture already provide steps and
guidelines that specify their implementation [GHJV95]
[POSA1] [POSA2]. Many such patterns also provide
information about their refinement and combination
with other patterns. Whenever another pattern is
referenced, its implementation steps can be applied:
they thus complement and complete the implementation
steps of the original pattern.” He also sees some
drawbacks in application of patterns to certain areas like
partial design and suggests improvements in the
application of patterns in building software architecture.

4. FROM BUSINESS ARCHITECTURE TO
SOFTWARE ARCHITECTURE

UML is a de-facto as well as de-jure standard for
modeling object-oriented systems. The business
architecture could be developed by using UML, as
suggested by Eriksson and Penker. The software
architecture could also be modeled using the UML or
any Architecture Description Language. Between the
two ends we could consider the use cases for capturing
and documenting requirements, the class diagrams to
capture the analysis models as well as design models.
The other diagrams of the UML could be used to
support the development process.

This  paper suggests that the conceptual class diagrams
derived from the use cases be refined. It is suggested
that the conceptual class diagrams be refined using the
classes that can be derived from the analysis patterns of
the specific domain or the generalized analysis patterns
which apply to the domain under consideration. It may
be mentioned that a good number of analysis patterns
have been documented covering domains like
insurance, virtual libraries, oil & refinery and so on
[21,22,23].

It would involve some experience or training to
understand that a transaction would give birth to an
association class, which has to be identified and
documented as an analysis class. Similarly, analysis
patterns help in identification of additional classes. This
would help in refining the conceptual class diagrams.

The other suggestion is with regard to the design class
diagrams. The design class diagrams which are
identified in the system could be refined using the
design  patterns. Apart from the design patterns
documented by Gamma and others there are design
patterns specific to technologies like EJB, J2EE and so
on. These would help in refining the class diagrams.

Taking into consideration the existing architectural
patterns/styles could refine the identified software
architecture.

Thus, the software architecture, which is a composition
of patterns, is derived from the business architecture.

Each of the artifacts would affect the other, as shown in
figure 1 (Appendix IV).

5. SOFTWARE DEVELOPMENT PROCESS

The Unified Process describes process workflows as:
business modeling, requirements, analysis & design,
implementation, test and deployment. It describes
configuration & change management, project
management and environment as the supporting
workflows.

The waterfall methodology describes the various phases
of software development cycles as; requirements
gathering, analysis, design, coding, testing and
maintenance.

The phases of the waterfall model or the workflows
suggest sequencing of activities. However, in practice
we experience that activities in the phases or workflows
happen concurrently.

We strongly feel that the concurrent and iterative
development approach presented in [14] and [15], using
the Twin Peaks, is close to reality. We suggest that the
approach be extended to Three Peaks, with the addition
of  the business architecture as the third peak. The
modification is as given in figure 2 (Appendix V).

6. A Case Study
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We had studied a knowledge management system,
developed in-house, to identify and discover analysis
and design patterns in the system [1]. The identified and
discovered analysis and design patterns are  presented
in Appendix II and Appendix III respectively.

Further, study of the system in identifying the business
patterns led to the identification of the business patterns
presented in Appendix I.

As regards the solution architecture of  the system, our
study shows that the System follows the MVC
architecture. We have used the Microsoft’s ASP
technology.

7. CONCLUSIONS

We advocate the continuing of use cases for capturing
requirements. However, use case driven approach leads
to identification of classes, with boundary, control and
entity stereotypes. The conceptual class diagram, which
has thus been arrived at, would be similar to a design
class diagram without the application of design patterns.
Hence, the analysis patterns of the domain or
generalized analysis patterns could be used to refine the
conceptual class diagram. This would enable creation of
rich conceptual class diagrams. The conceptual
diagrams could lead to the questioning of business
processes and requirements.

The design class diagrams could be refined using design
patterns. This would lead to development of systems,
which would address the nonfunctional attributes like
flexibility, scalability, maintainability, etc..

Some of the issues that need to be addressed are:

Training the various stakeholders.

Analysis patterns for more domains have to be
developed.

This methodology has to be validated.
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APPENDIX I - Business Patterns

Resource and Rules Patterns:
1. Actor-Role: Provides guidelines for using actor and

role concepts, including  how they should be
separated and how they can be combined.

2. Organization and Party: Used to create flexible and
qualitative organizational (processes)charts in
object-oriented models.

3. Product Data Management: All businesses have
many products and/or documents that must be
organized and structured. Capturing the structure of
the relationship between documents and products is
a difficult but common problem in all businesses.

4. Thing – Information: Eliminates the focus-shifting
that occurs during the modeling process by
referring to two frequently used foci(thing focus
and information focus) in business modeling and
how they are related to each other.

5. Title-Item: Helps modelers to simplify the design
process for systems that involve objects that exist
in multiple copies or instances. It separates the
information about the title from the information
about individual instances of that title.

6. Type-Object-Value: Models the relationships
between a type, its Object, and value.

Goal patterns:

7. Business Goal – Problem: Used to identify the
connection between business goals and their related
problems in order to correct the problems and
achieve the goals

Process Patterns:

8. Action Workflow: A tool for analyzing
communication between parties, with the purpose

of understanding and optimizing this
communication.
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APPENDIX II - Analysis Patterns

The following analysis patterns have been identified in
the System:

1. Recurring event pattern: (Fowler [3]).

2. Individual instance method (Fowler [3]).

3. Effectivity analysis pattern (Fowler [3]).

4. Range analysis pattern (Fowler [3]).

5.  Structured Pin Board (Hahsler [2]).

The following analysis patterns have been discovered in
the System:

1. Push Pull Analysis Pattern and

2. Collaborative Problem Solving Analysis Pattern.

APPENDIX III - Design Patterns

During our literature survey, we had come across two
types of design patterns. The first dealing with the user
interface and the second dealing with the functionality
of the System. We have used all the UI Design Patterns
mentioned in [12]. We have used 3 design patterns of
GoF [4] and 12 design patterns from Fowler [5].

The identified design patterns from the Gang of Four
are: Decorator, Iterator and Facade.

The identified design patterns from Fowler are: Front
Controller, Two Step View, Server Session State,
Gateway, Mapper, Service Layer, Recordset , Data
Access Object, Transaction Script, Domain Model,
Table Module and Active Record.

APPENDIX IV

Figure 1 – Relationship between the various artifacts:

Use Cases

Analysis Class
Diagram

Design  Class
Diagram

Solution
Architecture

Business
Architecture
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APPENDIX IV

Figure –2: Three Peaks – a model of the concurrent
development of business architecture, requrirements
and software architecture

Business
Architecture

Requirements
Software
Architecture
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Abstract 
 

A practical method for analyzing the factors that 
influence software architectures is presented.  Factors 
include organizational context and constraints, available 
technologies, and product requirements.  Analyzing the 
factors uncovers a small number of issues that drive the 
design of the architecture.  These issues arise from the 
factors that have little flexibility, a high degree of 
changeability, and a global impact on the system.  The 
result of the analysis is a set of global strategies that 
guide the architecture design.  

A two-phase approach for analyzing factors and 
developing architecture design strategies is given.  
Experience has been gained with this approach in three 
ways: (1) developing the approach during the design of 
an imaging system; (2) using the approach to analyze 
four systems in retrospect; (3) using the approach in new 
software development projects.  

Introducing global analysis into the software 
development process resulted in a new global analysis 
specification document that helped bridge the gap 
between requirements and architecture design and 
provided a place to explicitly record design rationale. 
 

1. Introduction 
 

Global analysis analyzes factors that globally influence 
the architecture design of a system.  Factors include 
organizational context and constraints, available 
technologies, and product requirements.  This analysis 
focuses on key issues that transcend boundaries between 
development activities, subsystems, and architecture 
views.  The result of the analysis is a set of global 
strategies that guide the architecture design and improve 
its adaptability with respect to changes in the factors. 

Successful projects prepare for change by noting the 
flexibility of influencing factors and their likelihood of 
change, characterizing interactions among the factors and 
their impact, and selecting cost-effective design strategies 
to reduce the expected impact of the changes [8]. 

Three categories of influencing factors are considered 
during global analysis: organizational, technological, and 
product. 

Organizational factors arise from the business 
organization.  Organizational factors constrain the design 
choices while the product is being designed and built.  
They are external to the product, but influence it.  Their 
influence is important because if they are ignored, the 
architecture may not be buildable. 

External technology solutions are embedded or 
embodied in the product.  These factors are primarily 
hardware and software technologies and standards.  These 
technological factors are external to the product being 
designed.  Unlike the organizational factors, however, 
they can affect the product throughout its lifetime.  
Further, they can change over time, so the architecture 
should be designed with this changeability in mind. 

Product factors are used to describe the product’s 
requirements for functionality, the features seen by the 
user, and nonfunctional properties.  The product factors 
are also subject to change over time, so the architecture 
should be designed to support such changes. 

In this paper, we present the concept of global analysis, 
a practical method for analyzing factors that influence 
software architectures.  We demonstrate its role in 
software architecture design and discuss its relationship to 
other software development activities.  We present our 
experience with developing the method and its use by 
others in new software development projects.  We 
conclude with lessons learned about the method’s value 
and where further improvement is needed. 
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2. Related Software Development Activities 
 

Figure 1 shows the relationship of global analysis to 
software architecture design and project planning 
activities. 

 

 
Figure 1: Software Architecture Design and  

Project Planning Activities 
 

Global analysis complements requirements analysis 
tasks.  Global analysis helps focus on the important 
architecture requirements; these are the quality attribute 
requirements.  But global analysis goes further than just 
examining requirements; it includes organizational and 
technological factors that are not typically included in the 
requirements document.   

The method helps bridge the gap between requirements 
and architecture design by analyzing the impact of 
requirements on important technical and business issues 
that affect design.  Global analysis records rationale and 
provides traceability as requirements are linked to 
strategies that guide design.   

The description of requirements is often textual, but 
more rigorous requirements analysis methods may employ 
some combination of feature modeling [6], use case 
modeling, or object modeling [5].  If such an approach is 
used, then the artifacts will provide useful input to the 
global analysis method.  Features will be put in global 
analysis factor tables for further analysis.  Use cases show 
a specific interaction between a stakeholder and the 
system and provide a means to evaluate the impact of the 
design decisions in providing a solution to the design 
issue.  Objects encapsulate system responsibilities and 
will inform the choice of conceptual components in the 
global analysis strategies that guide the design. 

Global analysis generates issues and strategies that 
guide architecture design and provide input to architecture 
evaluation.  Global analysis begins as the architecture is 
defined and continues as the design decisions are made.  
Figure 2 shows the iterative nature between global 
analysis and the design tasks for any given architectural 

view.  Global analysis guides design decisions.  As design 
decisions are made, additional constraints may arise that 
are in turn analyzed and in turn guide additional design 
decisions. 

 

 
 

Figure 2: Architecture Design 
 
Global analysis complements architecture evaluation 

tasks, such as the Architecture Tradeoff Analysis Method 
(ATAM) [3].  Often, much time is spent at the beginning 
of the evaluation capturing information about relevant 
business drivers, quality attribute requirements, and 
architectural approaches.  Rather than record these after 
the fact, the best time to capture them is as they are made 
during the design activity.  Global analysis captures this 
information and provides design strategies and their 
rationale that can be reviewed during the ATAM.  ATAM 
will uncover risks for which additional strategies may 
need to be developed. 

Global analysis provides input to project planning and 
management activities.  It is used to generate project 
strategy conclusions that help define project goals [10]. 
 

3. Global Analysis Activities 
 

The global analysis method consists of two phases: 
Analyze the factors and Develop issues and strategies.   

 

 
 

Figure 3: Global Analysis Activities 
 
The process is iterative and may start with either phase.  
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Phase 1: Analyze the Factors: The first phase 
analyzes the factors using three steps: (1) Identify and 
describe the factors; (2) Characterize the flexibility or the 
changeability of the factors; and (3) Analyze the impact of 
the factors.   

Identify and describe the factors: Consider factors that 
have a significant global influence, those that could 
change during development, those that are difficult to 
satisfy, and those with which you have little experience.  
Can the factor’s influence be localized to one component 
in the design, or must it be distributed across several 
components?  During which stages of development is the 
factor important?  Does the factor require new expertise? 

Characterize the flexibility of the factors: Describe 
what is negotiable about the factor.  Is it possible to 
influence or change the factors so that it makes your task 
of architecture development easier?  Use this information 
when factors conflict or for some other reason become 
impossible to fulfill. 

Characterize the changeability of the factors: Describe 
what could change about the factor, both in the near and 
more distant future.  In what way could the factor change?  
How likely is it to change during or after development?  
How often will it change?  Will the factor be affected by 
changes in other factors? 

Analyze the impact of the factors: If the factor will 
change, which of the following would be affected and 
how: other factors, components, modes of operation of the 
system, other design decisions. 

Phase 2: Develop Issues and Strategies: The second 
phase develops strategies for the architecture design using 
three steps: (1) Identify issues; (2) Develop solutions and 
specific strategies; and (3) Identify related strategies. 

Identify issues: An issue may arise from factors in 
many ways: 

• limitations or constraints 
 (e.g., Aggressive Schedule) 

• reducing the impact of changeability  
(e.g., Changes in Software Technology) 

• difficult-to-satisfy product factors  
(e.g., Easy Addition and Removal of Features) 

• common solution to global requirements  
(e.g., Implementation of Diagnostics) 

Develop solutions and specific strategies: Discuss a 
general solution to the issue, followed by a list of 
associated strategies.  The solution description records 
analysis-based rationale that illustrates that the strategies 
satisfy the issue.  Strategies should address the issue and 
one or more of the following goals: 

• reduce or localize the factors’ influence  
(e.g., Buy rather than build) 

• reduce the impact of the factors’ changeability 
(e.g., Use a pipeline for image processing) 

• localize required areas of expertise (e.g., Map 
independent threads of control to processes) 

• reduce overall time and effort  
(e.g., Use incremental development) 

Identify related strategies: When a strategy belongs to 
more than one issue, describe it in one place and reference 
it as a related strategy in the other issues where it applies.   

 

4. Experience with Developing the Method 
 

We developed the approach informally while designing 
the architecture of an image acquisition and processing 
system.  After the conclusion of the project, we developed 
a more rigorous description of the method and provided 
an example of its use in terms of a fictional system we call 
IS2000, inspired by this and other systems we studied [4].  
The IS2000 system consists of a probe that takes sensor 
readings that are processed according to the type of 
acquisition procedure selected by the user.  The results of 
the first phase are documented in a factor table.  We 
illustrate the factor table with an excerpt from IS2000.   

  

 Factor Flexibility/ 
Changeability 

Impact 

O4.2 Schedule Feature Delivery 
 Features are 

prioritized 
Negotiable Moderate impact 

on the schedule 
T2.1 Domain-specific Hardware Probe Hardware 
 Hardware to 

detect and 
process signals 

Upgraded every 
three years as 
technology 
improves 

Large impact on 
image acquisition 
and processing 
components 

P1.1 Features Acquisition Types 
 Acquire raw 

signal data and 
convert into 
images 

New types of 
acquisitions may 
be added every 
three years 

Affects UI, 
acquisition 
performance, and 
image processing 

  
The organizational factor (O4.2) shows there is 

flexibility in delivering features according to their priority. 
For other systems these kinds of factors may not affect the 
architecture, but in this system they will have a significant 
impact. The technological feature (T2.1) shows that 
change to the probe hardware is likely and will have a 
large impact on the imaging components. The product 
factor (P1.1) shows new types of acquisition algorithms 
may be added during the lifetime of the system. 

The results of the second phase are documented in an 
issue card.  We illustrate an issue card from IS2000. 

 
 
Issue: Easy Addition and Removal of Acquisition Procedures 
There are many acquisition procedures.  Implementation of each 
feature is quite complex and time consuming.  There is a need to 
reduce complexity and effort in implementing such features. 
 

Influencing Factors 
O4.1: Time to market is short 
O4.2: Delivery of features is negotiable 
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P1.1: New acquisition procedures can be added every three 
         years. 
P1.2: New image-processing algorithms can be added on a 
         regular basis.  
   … 
 
Solution 
Define domain-specific abstractions to facilitate the task of 
implementing acquisition and processing applications. 
Strategy: Use a flexible pipeline model for image processing. 
Develop a flexible pipeline model for implementing image 
processing.  Use processing components as stages in the 
pipeline.  This allows the ability to introduce new acquisition 
procedures quickly by constructing pipelines using both old and 
new components.  
Strategy: Introduce components for acquisition and image 
processing. 
   … 
Strategy: Encapsulate domain-specific data. 
   … 
 
Related Strategies 
See also Encapsulate domain-specific hardware. 

 
We performed a retrospective analysis on four systems 

with the aid of the architects who designed the systems 
[4][9].  We interviewed the architects to understand the 
process they used to go from requirements to design.  We 
solicited feedback on the approach to ensure that the 
artifacts captured the design rationale of their systems.   

These systems come from domains such as 
instrumentation and control, signal processing, central 
monitoring, and communication.  They vary in size, 
complexity, and have different system characteristics that 
influenced the architecture design such as fault tolerance, 
multiprocessing, safety critical, real-time performance, 
interoperability, distribution, heterogeneity.   

The following table lists typical categories of 
influencing factors based on our observations.  Within 
each category there will be a number of factors.  For 
example, the schedule (O4) will record the time to market 
and how features are to be delivered; performance (P3) 
will record latency and bandwidth considerations. 

 
 
Organizational 

 
Technological 

 
Product 

 
O1: Management 
 
 

 
T1: General-
purpose Hardware 

 
P1: Features 

O2: Staff Skills 
 
 

T2: Domain-
specific Hardware 

P2: User Interface 

O3: Development 
Environment 
 

T3: Software 
Technology 

P3: Performance 

O4: Schedule 
 
 

T4: Architecture 
Technology 

P4: Recovery 

O5: Budget T5: Standards P5: Diagnostics 

The following table gives an indication of the kinds of 
strategies we found in the systems we examined. 

 
 
Organizational 

 
Technological 

 
Product 

Reuse existing 
components 
 

Encapsulate 
hardware 

Use feature-based 
components 

Build rather than 
buy 
 
 

Separate 
processing, 
control, and data 

Separate the user 
interaction model 

Make it easy to add 
or remove features 

Use vendor-
independent 
interfaces 

Separate time-
critical components 

 
5. Experience with Using the Method 

 
We have taught the global analysis method in courses 

and have observed its use as it has been applied to four 
additional systems as part of a forward-engineering 
software development process. 

 
 A B C D 
Application data 

mgt. 
image 
mgt. 

business 
mgt. 

automation 
mgt. 

Factors     
   Org. 14   9 28 28 
   Tech.   8   7 22 14 
   Product   7 11 28 25 
Issues 11   3 19 23 
Strategies 24 21 100 64 

 
System A is representative of the way global analysis 

was applied.  System A is a software system for acquiring 
and processing meter data from electrical, gas, and water 
meters [10].  System A performs calculations on the meter 
data and the results are sent to a utility’s billing system.  A 
global analysis specification was produced. 

Factor tables were adopted as is.  They are recorded in 
tables in a global analysis specification document.  
Columns record the factor name, description, flexibility 
and changeability, and impact.  

Experience with System A provided evidence of the 
generality of the original collection of factors and 
categories. The author of the global analysis document 
was able to cut and paste many of the factors from the 
IS2000 system and make minor modifications to adapt the 
analysis to his situation.  An example of such a 
technological factor was the database system.  Although 
marketing specified Oracle 8 be used it was known that it 
would change over time.  New database versions would 
become available and some customers would prefer 
databases from other vendors.  The strategy for dealing 
with this factor was to design a layer in the architecture to 
isolate and encapsulate the database so that the effect of 
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changes could be localized and accommodated in the 
future. 

Experience with System A reinforced the importance 
of considering organizational factors in addition to 
traditional requirements and enhanced the collection of 
project management strategies.  An example of such an 
organizational factor was that company management 
wanted to get the product to market as quickly as possible.  
Since the market was changing rapidly, it was important to 
provide users with a subset of features so that they can 
provide feedback.  The strategy employed to address this 
factor was to develop products incrementally so that 
scheduled release dates could be met.  

Experience with System A suggested improved support 
for additional topics such as product lines.  An example of 
such a product factor was to support a product line in the 
market place.  The graphical user interface must 
accommodate many types of users for different 
applications.  A web-based GUI was employed so that 
additional flexibility could be achieved as new 
applications are added and location independence 
achieved for the various user populations.  The 
performance of the system must scale for higher-end 
applications so a scalable distributed platform was 
necessary to meet these more stringent calculation time 
requirements. 

A summary of issues and strategies was documented.  
The summary provided a listing of the issue name with a 
short description, factor cross-reference by number, and 
strategy name. Issue cards were not documented. 

The strategies have implications for the project 
management. Strategies were analyzed and consolidated 
to develop project strategy conclusions about how the 
system should be designed and developed.  This short list 
of major project strategies served as guiding principles for 
all the development team members.  These project 
strategies helped define the project goals and risks that 
must be mitigated for success.   

System B is similar in scope to System A and yielded 
similar conclusions.  Systems C and D continued to 
expand our repertoire of factors and strategies; but the 
large number of factors and strategies that needed to be 
considered challenged us to think about new ways of 
managing and ordering this information.  We address this 
in the following section where we discuss lessons learned. 
 

6. Lessons Learned 
 
What value did global analysis add that wasn’t present 

before global analysis was used?   
Introducing global analysis into the software 

development process of new projects resulted in a global 
analysis specification document that helped bridge the gap 
between requirements and architecture design and 

provided a place to explicitly record design rationale.  The 
process of global analysis also can be used to build 
stakeholder consensus.  In one case, a global analysis 
workshop was held to elicit feedback from stakeholders, 
discuss conflicting stakeholder requests and possible 
tradeoffs, and prioritize the factors. 

Global analysis strategies advocated the adoption of an 
architectural pattern or style, provided design guidelines 
(encapsulation, separation of concerns), placed constraints 
on elements of the systems, or introduced additional 
structure. In essence, the strategies yielded a set of 
constraints on the architecture design in terms of 
prescribing a collection of component types and their 
patterns of interaction.  These building blocks were 
developed from software engineering principles and the 
experience of building previous products.  Component 
types, their relationships, properties, and constraints 
define an architectural pattern or style.  As experience 
grows these patterns may be codified and the architect 
could select common patterns from a repository.  The 
patterns embody a set of predefined design decisions. 
Constraints that emerge during global analysis could be 
used to select the appropriate ones. 

Another benefit is improved documentation of the 
system.  Design decisions between and within views of the 
architecture and the supporting rationale are recorded.  
The strategies are linked backward to requirements and 
forward to design decisions to provide traceability and 
validation [2]. 

 In addition to guiding architecture design, it was not 
surprising to see the outputs of global analysis used by 
project management, since architecture plays a central role 
in software development activities.  Issues and strategies 
provide input for project strategies that are used in release 
planning and scheduling in the software development 
plan.  Issues also capture risks that the project manager is 
interested in tracking.  Global analysis helps identify 
project and technical risks and suggest strategies for 
mitigating them. 

What should be changed as a result of using global 
analysis in practice?   

Many of the systems we examined had characteristics 
of product lines.  Global analysis takes on an even more 
prominent role in product line design. The architect must 
characterize how the influencing factors vary among the 
products within a product line. The architect develops and 
selects strategies in response to these factors to make 
global decisions about the architecture that allows the 
developers of the products to make uniform decisions 
locally. Guiding the developers in this way ensures the 
integrity of the architecture. This is an iterative process. 
During the design, certain decisions feed back into the 
global analysis, resulting in new strategies. 

Since product lines focus on variations among 
products, it would be advantageous to have separate 

38



columns for flexibility, changeability, and variation so that 
more guidance can be offered and the characterization and 
its type of impact can be more precisely captured. 

Strategies suggest solutions for addressing a problem 
highlighted by an issue.  As the architect selects a strategy, 
it is being evaluated in a continuous activity that we call 
global evaluation.  Later on, these decisions could be 
evaluated during an architecture evaluation exercise.  It 
would be beneficial while the issue is being articulated to 
also link it to an evaluation technique such as scenarios 
that would provide criteria for successfully meeting the 
requirement.  It makes sense to do so as the issue is being 
formed and input gathered from the architect and relevant 
stakeholders rather than being captured after the fact 
during an evaluation exercise. 

What wasn’t used from global analysis and needs 
better elaboration?   

Issue cards were not explicitly documented.  The 
information they were meant to capture is therefore 
missing: text describing the problem and explaining 
tradeoffs and the degree of difficulty, text describing the 
factors in relation to the problem, and the solution 
statement. 

Instead of the issue cards, a summary of issues and 
strategies table was used.  This could be because the first 
time global analysis was used the document was written 
by the project manager.  This experience showed the need 
for two views of the global analysis information.  Using 
the summary of strategies served the project management 
view well, but trying to use it for the architecture view in 
lieu of the issue cards resulted in a number of problems.  
This was seen in a subsequent project where an architect 
used the global analysis document of the first as a 
template. 

A problem with not using issue cards is that the 
summary table is not easy to read, especially the factor 
numbers.  Instead of using numbers, it would be more 
readable to include the factor name with a link to the 
factor description and analysis.  Issue cards help cross-
reference information among the factors relevant to 
particular issues.  Without their use, the factor table is 
used to pick up the slack.  But because it was not designed 
for this purpose, the global tradeoffs and issues are more 
difficult to discern.  For example, factor tables are used to 
address tradeoffs, such as schedule vs. quality and 
function.  The impact column is used to address analysis 
and the solution.  Issues tend to get grouped into factor 
categories instead of being cross-cutting across factors. 

What needs further study for improving the global 
analysis method? 

Issue cards were inspired by design patterns [7].  
Further study and codification of the artifacts is needed to 
see them effectively adopted in practice.   

A catalog of common factors, issues, and strategies is 
emerging.  The original list of factors and categories was 

not meant to be exhaustive but illustrative.  These factors 
were inspired by standards such as ISO/IEC 9126, the SEI 
taxonomy on software development risks, and our 
experience with numerous case study systems. Some of 
the additional factors we have seen include: legacy 
systems, global development, project engineering (for 
product lines), internet architecture technology (e.g., 
middleware, clients, and servers), scalability, and 
usability.   

Similarly the list of issues and strategies were meant to 
be illustrative.  Strategies are drawn from software 
engineering principles (loose coupling and high cohesion, 
separation of concerns, encapsulation), heuristics, 
patterns, and styles. As experience grows these strategies 
may be codified [1]. 

It would be useful to identify a core set of factors, 
issues, and strategies applicable to all systems.  They 
could be used to derive a global analysis checklist used in 
conjunction with a template that the architect would use as 
an integral part of design and not be viewed as an extra 
documentation obligation. 

A better articulation of the solution field in the issue 
card is needed, explaining the dependencies and tradeoffs 
among the strategies and how they might be used 
separately or in conjunction with one another. 

There is value in creating a global analysis document at 
the beginning of architecture design to support 
management functions.  However, global analysis is not 
meant to be a static document but one that evolves as the 
architecture is designed.  The architect needs better 
support in this iterative process. 

The global analysis data needs to be presented in 
different ways to different stakeholders.  For example, we 
saw examples of how strategies were grouped by issues, 
by project recommendations and by architecture structure 
that they influence. 

 

7. Conclusions 
 

This paper has presented our experiences with a 
practical approach for analyzing the factors that influence 
software architecture.  Approaches we have observed tend 
to focus on the functional requirements.  But it is the 
quality attributes and constraints from the organization 
and the underlying technology that most strongly shape 
the architecture.  These organizational, technological, and 
product factors are analyzed in global analysis.  We have 
presented examples of factors based on experience and 
see a role for a catalog of such factors. 

Global analysis helps the architect make the conceptual 
leap from the requirements to architecture design.  Global 
analysis identifies factors that influence the architecture 
and yields a set of constraints on a collection of 
architecture design element types and their patterns of 
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interaction.  Global analysis also helps the architect record 
design decisions made between and within views of the 
architecture and the supporting rationale. 

These factors are constantly changing.  We found that 
successful architects analyze factors that have a global 
influence to produce an architecture that localizes the 
effects of change.  Global analysis aids the architect in 
designing for change and building flexibility into the 
software. 

To help the architect in this process, we have provided 
a two-phase approach for analyzing factors and 
developing strategies.  The process is iterative and may 
start with either phase.  We have provided factor tables 
and issue cards to capture the information. 

We have validated and gained experience with this 
approach in three ways.  First we developed the approach 
informally while designing the architecture for an image 
acquisition and processing system.  Second, we did a 
retrospective analysis of four existing systems, 
interviewing the architects to understand the process they 
used to go from requirements to design, and getting their 
feedback on the resulting global analysis approach and the 
artifacts captured for their systems.  Third, global analysis 
is being taught in courses and used in new software 
development projects.  The result is the production of 
global analysis documents that are used by the architect, 
project manager, and other stakeholders.  The benefits 
they have realized include: documented factors and design 
strategies that guide the architecture design; inputs for 
developing project strategy conclusions, goals, and risks; 
and improved documentation of the architecture.  These 
applications give us confidence that the approach is 
practical and helpful.  
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Abstract 
 

Architectural considerations play a key role in the 
success of any software-based development project. 
Architecture evaluation is an early risk reduction method 
for identifying risks that prevent a system or product line 
meeting the organization’s business goals and customer 
needs. This paper introduces a tool that supports 
architecture evaluation. It gives an overview on its 
information management capabilities and discusses 
development issues as well as the underlying data model. 
 
1. Introduction 
 

Architectural considerations play a key role in the 
success of any software-based development project. 
Architecture evaluation is an early risk reduction method 
for determining whether the system or product line will 
satisfy the desired business and quality requirements. An 
important prerequisite to achieve this is getting an 
understanding of the consequences of architectural 
decisions with respect to those requirements. 

Unfortunately, requirements specifications are often 
not definitive enough in practice, neither for architectural 
design nor for evaluation. As a consequence, 
requirements must be made explicit in order to be useful 
for development. Scenarios are practical in this respect 
since they allow to describe concrete interactions between 
the stakeholders and the system. They are, for example, 
useful in understanding run-time qualities such as 
performance and reliability. This is because scenarios 
specify the kinds of operations over which the qualities 
need to be measured, and the kinds of failures the system 
will have to withstand. Therefore, scenario-based 
methods have been proven useful in practice for 
evaluating architectures during a review [1, 3].  

This paper describes a tool that supports scenario-
based architecture evaluation. In Chapter 2, we sketch 

basic steps performed during an evaluation. Chapter 3 
introduces AET, a tool developed by the authors that 
supports the evaluation team during a review. In Chapter 
4 development issues of the tool are discussed. Finally, 
Chapter 5 concludes with a short summary and gives an 
outlook on further development activities. 
 
2. Architecture Evaluation 
 

The goal of an architecture evaluation is to identify 
risks that prevent the system or product line to be 
successful. Successful systems meet the organization’s 
business goals and satisfy the customer needs. 

The Software Technology department of Robert Bosch 
Corporate Research and Development performs 
architecture evaluations for business units [2, 3]. Some of 
these evaluations are based on [1]. Typical activities of 
[1] are the following: 

 
Step Description 
Presentation 

1 Present method: The evaluation team describes 
the evaluation method to the assembled 
stakeholders (typically, architects, managers, 
marketing, integrators, testers etc.). 

2 Present business drivers: The marketing 
representative describes what business goals are 
motivating the development effort and hence 
what will be the primary architectural drivers 
(e.g., high availability or high security or time-
to-market). 

3 Present architecture: The architect describes 
the proposed architecture, focussing on how it 
addresses the business drivers. 

Investigation and Analysis 
4 Identify architectural solutions: Determine the 

central mechanisms (e.g., architectural styles or 
patterns) used in the architecture. 
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5 Brainstorm and prioritize scenarios: The 
stakeholders elicit scenarios to make business 
drivers and important requirements more 
concrete. The scenarios are then prioritized 
according to a ranking scheme (e.g., market 
importance and effort/cost). 

6 Analyze architecture: Evaluate the architectural 
decisions made to achieve the high-priority-
scenarios. This is supported by examining the 
architectural solutions from step 4 and by 
identifying those design elements that are 
affected by the scenarios. 

Reporting 
7 Present results: Present the findings (e.g., risks) 

to the audience and summarize them in a written 
report. 

 
In the past, the results of an evaluation have been 

documented in prose. As a consequence, the access on the 
results of those evaluations was quite inefficient and 
unsatisfactory. This motivated us to start the development 
of a database application. One goal was to create an 
experience repository of architecture evaluations, another 
to speed up information access and report generation. In 
the next chapter we describe the current status of the tool. 

 
3. Architecture Evaluation Tool 
 

The Architecture Evaluation Tool (AET) is a research 
tool developed by the authors at the Software Technology 
department of Robert Bosch. It supports a review team in 
documenting results and managing information during an 
architecture evaluation. AET makes reporting more 
convenient and allows exploring the content of an 
evaluation. 

AET uses two different databases to store information: 
one for general data and one for project data. The general 
database contains static data – this means, data that does 
not depend on a specific system context. General data 
such as general analysis questions or scenarios can then 
be used to support the evaluation of a particular system. 

The project database contains project-specific 
information obtained during an evaluation (dynamic 
data). It includes data such as qualities, scenarios, 
architectural approaches, and risks that have been 
identified and examined during evaluation. 

In the following we describe how AET can be applied 
in practice during an architecture evaluation. 

 
3.1. Requirements and Qualities 

 
During the presentation of business drivers and the 

architecture (step 2 and 3), a lot of information about 
requirements and quality attributes is usually obtained 

from stakeholders. This information can be recorded in 
AET for later exploration and reference. Business goals, 
functional requirements, and design constraints can be put 
into a requirements list. Quality attributes can be 
documented in a quality tree. A sample quality tree for a 
fictitious Embedded Vehicle Control System (EVCS) is 
shown in Figure 1. 
 

 
Figure 1. Quality Attribute Tree 

 
Optionally, a starter set of typical quality requirements 

and scenarios for the type of systems under evaluation 
(e.g., embedded automotive systems) can be generated 
from the general database. 

Each quality attribute may contain one or more sub-
factors, as shown in Figure 1. Sub-factors describe 
specific stakeholder concerns of the quality. For example, 
in Figure 1 “personal data protection” is of specific 
concern for security. Note that each item in the quality 
tree can be moved easily. This allows quick modifications 
during an architecture evaluation. 
 
3.2. Scenarios and Prioritization 
 

AET allows to record the scenarios gathered in step 5 
in a scenario list, as illustrated in Figure 2. Scenarios can 
also be described in more detail. For example, you can 
document potential stimuli and responses in order to 
make the expected behavior more concrete. In addition, 
you can link scenarios to a particular quality attribute or 
business goal in order to document that it contributes to 
that attribute or goal. In Figure 2, the selected scenario 
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contributes to “quick start up” which is a sub-factor of 
performance. 

Furthermore, you can assign stakeholder priorities to 
each scenario, as defined in step 5. The scenario priorities 
then drive the further analysis. In the example of Figure 
2, we use two dimensions (business importance and 
architectural difficulty) and three values (High, Medium, 
Low) for prioritization. 

However, AET allows to adapt the dimensions and 
priority scale to fit individual needs of the evaluation, as 
shown in the lower right of Figure 2. Scenarios can easily 
be sorted according their priority such that the most 
important ones (high importance, high difficulty) appear 
at the top of the list. 
 
3.3. Scenario Analysis 
 

Each scenario can be analyzed in AET. Usually, you 
start with the most critical scenarios. There is room for a 
detailed description of the analysis results, including text 
and pictures. For example, you can describe the 

architectural elements that contribute to a particular 
scenario. You may also like to document how the 
architecture would need to be changed to accommodate a 
scenario. The description is stored in HTML-format in the 
database for post-processing. 

Furthermore, AET allows to classify important 
findings of the analysis. Important finding are, for 
example, risks or tradeoff points. Risks arise from 
architecturally important decisions that have not been 
made, yet. A tradeoff point occurs when multiple quality 
attributes are differently affected when changing one 
architectural parameter. For example, improving 
throughput may result in reduced reliability. 

When recording a finding, AET directly links the 
finding to the scenario under analysis. This is very useful 
since it allows you to easily trace back risks, tradeoffs, 
issues etc. to its source – the scenario. You may follow 
the trace to obtain a more detailed description of the 
analysis. Storing traces also supports statistics, for 
example, about which scenarios are most critical for the 
success of the system. 

 

 
Figure 2. Classification of Scenarios in AET 
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3.4. Analysis Results 
 

Since the number of risks identified during an 
evaluation can be high, AET allows to classify them in 
risk themes [1]. Risk themes summarize key architectural 
issues that pose potential future problems for the success 
of the system. For each risk theme, AET allows to assign 
one or more findings. In addition there is room for a 
detailed discussion of the risk theme. Risks and risk 
themes can be clearly arranged in a “result tree,” as 
shown in the lower part of Figure 3. This tree is 
automatically generated by AET based on the 
relationships between findings and risk themes. 

AET can also generate a “utility tree,” as illustrated in 
the upper part of Figure 3. This tree represents a summary 
of the elicited scenarios and priorities together with the 
respective sub-factors and quality attributes. As shown in 
Figure 3, four scenarios have been documented to address 
the modifiability concern of supporting “multiple 
customers.” 

Finally, the results documented in the AET project 
database can be included in a written report. The different 
tree views visualize the results of the evaluation in a 
concise form. This supports clarity and understandability 
of the documentation. 

4. AET Development and Database Model 
 

AET is an easy-to-use application. It is implemented in 
C++ and runs on Microsoft® Windows operating 
systems. It uses a commercial database system for storing 
and retrieving data which has reduced the development 
effort drastically. Furthermore, AET deals efficiently with 
its resources. It is thus a suitable companion for a mobile 
application at the customer site. 

From the architectural perspective, AET is organized 
in three layers: presentation, application, and data 
management. The presentation layer is responsible for 
user interaction and data presentation. Data post-
processing such as scenario sorting or combining data 
from different database tables is done in the application 
layer. The data management layer provides low-level 
services to access and maintain the database.  

Figure 4 shows a simplified model of the project 
database. For each evaluation project you can record 
individual requirements, scenarios, architectural 
decisions, findings, and risk themes. Priority dimensions 
and scales are global to a project. Each scenario can have 
a ranking. The ranking must conform to the global 
scheme defined for the project. 
 

 

 
Figure 3. Tree View of Qualities, Scenarios, and Analysis Results  
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Figure 4. AET Data Model 
 
Scenarios have a stimulus and a response. They are 

explored in order to identify architectural decisions. 
These decisions can further be analyzed to identify 
particular findings. A finding can be a risk, sensitivity 
point, tradeoff, or issue. Risk themes classify and 
summarize findings. Each risk theme has an impact on 
one or more requirements – this means, some of the 
business drivers or qualities cannot completely be met. 
The risk themes document the problem areas associated 
with the system under evaluation. They indicate how 
close an organization is to fielding a successful system.  

 
5. Summary and Outlook 
 

In this paper we have introduced AET, a tool that 
supports scenario-based architecture evaluation. We first 
discussed typical steps of an architecture evaluation. 
Next, we gave an overview of AET, and, finally, we 
sketched development issues and the AET data model. 

AET is still under development. We plan to improve 
the export interface for report generation and to include 
functionality for querying the project database and for 
performing evaluation statistics. 
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Abstract
A good software architecture is becoming recognized as a
major factor for successful products. There has been
much research on the technical aspects of software archi-
tecture and it is recognized that the driving requirements
for architectures are "non-functional", but few have stud-
ied how organizations decide on architectural changes. In
this paper we study the topic through several case studies.
The changes to the architecture are in all cases changes
to the "non-functional" requirements on the system. Issues
that we want to evaluate are: when and how is the need
for an architectural change discovered; what is the under-
lying non-functional requirement; who drives the change;
how is it prepared and evaluated; and finally, who makes
the decision and how is it implemented.

Through interviews with people that have experience
from architectural changes we compare the decision
process for architectural changes to the ordinary func-
tional requirement change process and the organizational
change process. We find that architectural changes have
aspects of both functional and organizational changes. An
architectural change does not only need to be technically
sound, it also needs to be anchored firmly in the organiza-
tion. This report gives both architects and managers
guidelines to balance short-term project goals and long-
term organizational goals with respect to architecture.

1. Introduction
Software architecture is becoming a well-established field
in technical terms, i.e. the different types of architectures
have been characterized [1]; different useful views of the
architecture have been described [2, 3]; as well as books
covering the whole area, e.g. [4, 5, 6]. However, little
research has been done on how decisions on architectural
changes are made in organizations.

Architectural changes are often different in nature
from other functional changes. They can impact larger
parts of the product, they can imply new ways of working,
they are often not clearly connected to one customer re-
quirement, and they are often expensive to implement.
Functional changes often originate from a customer de-
mand and are the responsibility of a defined role in a
company, i.e. product management. Architectural
changes, on the other hand, often emerge from various
sources, and roles are seldom defined to drive such

changes. All these factors imply that they differ from pure
functional changes.

The process for taking decisions regarding functional
changes and features has received attention in recent years
[7, 8]. Software development processes generally support
this rather well. When it comes to decisions regarding the
software architecture, the architect is often not so well
supported, neither for the analysis of the technical impacts
nor the organizational aspects of the change.

Since architectural changes have impact on organiza-
tions they might be best compared to the organizational
change process, as defined by Kotter [9]. Kotter’s eight-
stage process describes how to prepare an organization for
major change, and how to anchor the change in the or-
ganization:

1. Establishing a sense of urgency
2. Creating the guiding coalition
3. Developing a vision and strategy
4. Communicating the change vision
5. Empowering employees for broad-based action
6. Generating short-term wins
7. Consolidating gains and producing more change
8. Anchoring new approaches in the culture
These steps will be referred to in the overview of the

suggested process for architectural change in Section 3.
This paper examines how several changes to the

software architecture have been handled at three software
development organizations, and what internal or external
forces that drive the need for changes and control which
solutions are decided upon. Concretely we have looked at
the following questions for each architectural change:

1. What is the architectural change?
2. Why was the architectural change needed?
3. Who initiated it?
4. How was the associated decision made?
Based on the analysis of these questions, the ordinary

process for deciding on functional changes, and theories
for organizational change, we propose a process for han-
dling architectural changes, which provides guidelines to
consider in each step.

The three companies involved in this study are indus-
trial partners of the Center for Applied Software Engi-
neering at Lund University (LUCAS). Part of LUCAS is
the LUCAS Architecture Academy that is a one-year part
time software architecture education program for the
LUCAS partners. This research is done based on issues
that came up in the context of the architecture academy.
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2. Method
In this study we have studied seven architectural changes
initiated at three Swedish software-developing companies.
The project has included a number of sessions where the
companies present their architectural work for each other,
and issues in the area have been raised and elaborated.

The approach taken in this research can be described
as flexible [7]. This type of research is characterized by
less pre-specification than in, for example, controlled ex-
periments. In a flexible design the major research ques-
tions can be specified in advance, although they must be
allowed to evolve during the course of the research.

Qualitative data has been collected in two sets of in-
terviews. The first set was held with architects and system
designers at the three companies to collect information
about the companies, their products, and their architec-
ture. Recent architectural changes were identified. Key
persons in those changes were interviewed in a second set
of interviews. These interviews were guided by the four
questions mentioned in the introduction. The data was
then analyzed according to the following factors:
�� Architectural change
�� Phase of change process
�� Topics that were considered important in changes

The collected data was categorized and tabulated ac-
cording to these factors, and analysis was carried out
through discussion and pattern searching.

3. Process Overview
This section describes our suggested process for making
technical decisions. The process is illustrated in Figure 1
and has been derived from the case studies, Section 4. The
relation between the process and the case studies is shown
in Section 5. The purpose of this process is to enable or-
ganizations to make the right decisions by the right people
at the right time. From an employee viewpoint the process
shall give guidance in the decision process, both for
change initiators and decision-makers. Note that one as-
pect that differentiates the architectural change from the
functional change is that the functional change usually is
initiated by a customer request, and there is usually some-
one in the organization dedicated to handling these, e.g.
product management. Architectural changes can be initi-
ated by many roles in the organization.

The general process for functional changes involves
requirements elicitation, pre-studies, implementation, and
related decision-points. It focuses on how an organization

shall make decisions. Kotter’s [9] process for large-scale
organizational change instead focuses on how to make
changes happen. In the following process the two features
are combined. This has basically been done by mapping
Kotter’s change process onto the functional change
framework, which is considered to be fairly established in
software industry. In practice the process therefore has to
be adapted to the present functional change framework.

1. A need emerges: The process is superceded by a
chain of events where need for change emerges or is
created, and someone, the change initiator, sees this
need and considers it his or her responsibility. This
can to some extent be compared to Kotter’s Estab-
lishing a sense of urgency, and to requirements elici-
tation in a functional change process.

2. Initial decision preparation: In this phase the
change initiator does preparations with the goal of
getting resources to analyze and implement the
change.

��Document background: To increase the chance of
having an impact on the resolution of the need, the
change initiator should document the background
of the need, i.e. what products, components or or-
ganizational entities are involved, the history be-
hind the need, how it manifests itself, what effects
it might have not to satisfy the need etc.

��Identify stakeholders/decision makers: While
documenting the background, stakeholders are sure
to emerge. In order to have optimal impact, the
change initiator should pay special attention to
these and especially to the decision makers that
will be involved in the following process. This is
related to Kotter’s Creating the guiding coalition.

3. Decision: Go/no-go: An initial decision must be
made whether the issue at hand is adequate and feasi-
ble to treat. Probably, there has not been spent very
much effort before this decision point, e.g. one per-
son’s work for hours or days. Work done in the rest
of this process, but before a decision on any particu-
lar solution or implementation of change, probably
requires resources that must be budgeted, e.g. a hand-
ful of persons or more, which work for days or
weeks. Therefore a person responsible for resources
must make a decision whether to go on with this
process or not. The formality of this decision-point is
controlled by the organization at hand. If the change

Figure 1. The process of architectural change
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can be viewed as a normal product requirement or
change proposal, it can be treated as such through the
ordinary channels: implementation proposal and re-
lated decision points. If the change however is more
of a change in the way people work, or a change in an
internal quality attribute not leading up to completion
of a specific project, the process steps that follow are
of a different complexity. The risks of facing opposi-
tion are higher and the decision process and prepara-
tions must be more thorough.

4. Decision preparation: This phase is akin to perform-
ing a pre-study or developing an implementation pro-
posal in technical change management. In terms of
Kotter’s process, it resembles Developing a vision
and strategy.

��Analyze technical alternatives: When technical al-
ternatives have been proposed, these can be ana-
lyzed from an architectural viewpoint in a number
of ways [11], i.e. ATAM [12].

��Analyze process and organization impact: When
making a technical analysis, the organizational im-
plications are often forgotten. This might lead to
unexpected resistance to a change. An organiza-
tional analysis is therefore made, based on the ini-
tial analysis of stakeholders, in order to assess the
impact of the change and prepare the organization
for the change. The activity therefore contains parts
of Kotter’s Communicating the change vision.

��Return on investment: The need that the change
satisfies has to have a financial side. A return on
investment analysis will simplify getting support
for the change from top management and manage-
ment of any project that might implement the
change. This activity will support Kotter’s Gener-
ating short-term wins.

5. Decision: Rollout: Software projects generally have
a tollgate or decision point where it is decided which
implementation proposals will be include in the re-
sulting product. The same decision is made in this
phase, regarding technical aspects of the architectural
change. Organizational changes are however not suit-
able to implement in a product oriented project, and
will therefore need another form of implementation
and associated decision.

6. Rollout: This activity involves the implementation of
the change. The objective of this process is that the
rollout of the technical part of the change shall be
carried out within an ordinary project, i.e. where gen-
erally most organizational resources are allocated.
This has to be synchronized with the rollout of the
organizational change, which must be managed by,
and given resources from, the line organization. This
activity is related to the late phases of Kotter’s proc-
ess: Consolidating gains and producing more
changes, and Anchoring new approaches in the cul-
ture.

When comparing to Kotter’s process it is important to
keep the proper context in mind. Kotter presents a process
for long-term organizational changes, which means some
phases are of a different scale. Kotter’s process also fo-
cuses on engaging employees and preparing an organiza-
tion for a change, and not so much on how to perform the
actual change. Since this paper focuses on changes to
software architectures, we can use the decision framework
common in software projects as a basis for a change proc-
ess with features of both perspectives.

4. Case Descriptions
This section describes architectural changes at three com-
panies, located in southern Sweden. All companies de-
velop products to a mass-market, and their products have
long lifetimes. This implies that their architectures need to
support several simultaneous versions of their products,
with several releases over an extended period of time.

4.1 Company A
Company A develops control system environments for
industrial automation, e.g. chemical plants, dairies, oil
platforms, etc. The control system environment consists
of both a development view, called control builder, and a
deployment view, i.e. the controller itself. Within the con-
trol builder, controllers can be designed by specifying
hardware sensors and actuators, constructing control
loops, and connecting variables in those control loops to
the hardware devices. A fully specified system can then
be compiled and deployed onto a controller in a control
system.

Company A typically carries out one large project at
a time, involving the entire organization. Each project
evolves the same product further by adding features to the
control builder, e.g. new editor facilities, and the control-
ler, e.g. new hardware interfaces. Implementation propos-
als are developed during a feasibility study. Accepted
implementation proposals pass a tollgate, where after im-
plementation begins. Development is organized in teams,
each working on a number of implementation proposals.
Work is feature-focused and the organization has no mod-
ule-responsible and no architects, but instead relies on
senior developers to take responsibility for long-term ar-
chitectural goals. Two changes were studied at the com-
pany:

Protocol Framework: Company A recently acquired
companies within their domain in order to increase their
market share. The controller developed by Company A
was intended to replace those companies’ products. To
support the same customers, the controller therefore had
to support a number of legacy protocols from those prod-
ucts. This was realized as a problem using the present
architecture, as the protocols were intertwined with the
rest of the code, and could only be developed at one site,
the one studied here. This site only had capacity to de-
velop 1-2 new protocols per project. To be able to develop
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several protocols a year, Company A decided to develop a
generic IO and communication protocol framework. The
solution was developed through a pre-study and an im-
plementation proposal, which resulted in a solution that
enabled frequent releases of the product with many new
or legacy protocols in each release. This would be accom-
plished by letting other departments of the company de-
velop the protocols they were responsible for, using the
protocol framework.

Real-Time Operating System: Company A had for a
number of years had discussions about cutting licensing
costs on Real-Time Operating Systems (RTOS). A sug-
gestion from local product management at the studied site
to develop their own RTOS was rejected by local devel-
opment management. In parallel, high-level management
decided to reduce the number of RTOSs to only one. This
would not only lower licensing costs but also provide fo-
cus on a common competency regarding RTOSs and tool
support, which would standardize and simplify distributed
development. Top-level development management initi-
ated a pre-study across all departments of the company.
Participants were interviewed regarding their use of, and
competencies in RTOSs. The site studied here used one
RTOS, but the pre-study led to a recommendation for all
departments to switch to another. Eventually the recom-
mendation became a requirement for a project at the stud-
ied site. This requirement was postponed by the local or-
ganization, while an OS expert prepared a solution with a
Virtual Operating System (VOS) layer, which was intro-
duced in a later project.

4.2 Company B
Company B develops platforms for consumer electronic
devices. These platforms are sold to external customers
who configure the services within the platform to create
complete products. The software platform consists of a
number of modules, and a middleware layer hides the
internal architecture from the customers.

Projects are organized in: a project management
group, with product management responsibility; a system-
engineering group, with expert groups and function
groups responsible for major features within market re-
quirements; and a system realization group, which re-
ceives specifications from the system engineering group
and develops the platform. The system realization group
is divided into a hardware- and a software branch, which
are subdivided into development teams responsible for a
set of modules. The organization has module responsible
that work with function groups during specification and
development teams during implementation. The company
also has a dedicated architecture group that performs most
of its work within projects, especially supporting and in-
fluencing the system-engineering group. Three changes
were studied at the company:

Data Router: During routine reviews the system-
engineering group discovered several modules handling
data streams in similar ways. These modules could instead

use a common data router and thereby save memory. The
architecture group developed a design proposal that was
approved, but no resources were provided from the pro-
ject. Project management did not consider the memory
savings to be large enough. Therefore the solution was
implemented by the software architecture group, and inte-
grated with a small-scale system on an isolated branch of
the code. After inspection this branch was merged with
the main track, and the software architecture group initi-
ated documentation and education on the new architec-
tural mechanism. The solution was still not widely ac-
cepted, as most modules already had their own implemen-
tations of the same functionality.

Hardware Abstraction Layer (HAL) Split: The bottom
layer of the architecture had existed in previous versions
of the product, but had not been formally defined, and
therefore there had been no clear rules as to how to access
the hardware. The hardware was also not encapsulated
well enough from the majority of the software, leading to
unnecessary impacts in the software when the hardware
changed. The developers working in the lower layers of
the product realized the need for a clearer definition of
these layers. They proposed a solution that meant clearing
the HAL interface from hardware dependencies, i.e. creat-
ing a logical layer on top of the previous HAL. One driv-
ing force for introducing this logical layer is that the cost
for a product developed from the platform is very depend-
ent on the hardware components used, and therefore these
are often changed to provide cheaper solutions. The pur-
pose of the logical layer is to allow such changes without
expending effort in the higher layers of the software.

The solution was presented for the system-
engineering group and brought to the software architec-
ture group. When the proposed solution was established
within the system-engineering group and the software
architecture group, project management decided to assign
resources to the change. The software architecture group
introduced new coding rules according to the suggestion
and made changes to the architecture descriptions. At the
same time, the developers in the HAL prepared by plan-
ning the change, before doing the actual implementation
when resources were assigned and the architecture was
updated.

Include-file Reorganization: The software architecture
group had created a flexible structure for the source- and
include-files. The design rules that enforced this structure
required several files for each component, and when the
number of modules grew to around 100, unexpected ef-
fects on the development tools emerged. Compilation
times increased, the configuration management system
behaved sluggishly and the globally distributed CM serv-
ers started to crash more frequently. The persons respon-
sible for tool support within Company B were in contact
with support personnel from the tool supplier, who identi-
fied the problem as having too many files in the system.
The software architecture group was assigned to create a
new structure.
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The flexibility provided by the original structure was
only needed by a few of the about 100 modules, and these
could continue to use the previous structure. The rest of
the modules were given a new structure, which basically
involved merging three or four source files into one file.
This resulted in a three-to-one reduction of source files.

4.3 Company C
Company C develops software engineering tools. One of
their main products is a design tool that consists of a
front-end with editors for various types of diagrams and
source code, and a back-end for compiling the diagrams
into code. Other utilities such as a simulation tool are also
part of the design tool.

Company C releases a new version of their product
every six months, and successive release cycles overlap.
Features are implemented by development teams in an
assembly-line fashion, described in [13, 14]. The organi-
zation has architects per project but no establisehd line
organization for architecture, and module responsibility is
assigned to senior experts. Two changes were studied at
the company

Communication Mechanism: New requirements, espe-
cially related to new language standards, have meant that
the old architecture could not support further develop-
ment. Therefore top-level management decided to create a
new product generation. Company C had recently ac-
quired other companies, which developed software engi-
neering tools that were to be integrated into the new prod-
uct. One of the problems with the new requirements was
an increase in the number of diagram editors. The old
communication mechanism did not support this increase,
but one of the acquired companies had recently solved
that problem, using a common object model. A technical
discussion led to a consensus of using the new solution,
although it meant major architectural changes.

Editor Framework: The editor framework used to de-
velop graphical editors was also changed using a more
generic solution, a decision also taken by consensus in the
development project. The drivers for this change were
increased reuse of common editor elements, and outsourc-
ing of development throughout the organization. Several
other decisions in this change process had to be enforced
by the responsible architect, as consensus could not be
reached. Both these changes were introduced in the same
project.

5. Analysis of Process versus Cases
This section compares the process suggested in Section 3
to the architectural changes described in Section 4.

5.1 A Need Emerges
Before the suggested process is initiated a need for a
change somehow appears. The reasons for changes in this
report has included business decisions to increase market
share, lower costs and lead time, but also more technical

reasons where the architecture has not been able to sup-
port increased complexity and new features.

In Company A the need for the protocol framework
was initiated when top management decided to increase
the market-share by acquiring other actors in the same
domain. Mid-level managers and experts then saw the
need for support of legacy protocols found in the newly
acquired companies’ products. The need for a change of
RTOS on local level came from a higher-level need to
save licensing costs and focus competencies by reducing
the number of RTOSs. The process was initiated by
higher-level management and supported by developers at
other sites of the organization.

In Company B the introduction of a data router was
driven by memory size being an important quality attrib-
ute. The opportunity to save memory was discovered by
system engineers during routine code-reviews. The need
for a HAL split emerged as the company wanted to be
able to change hardware components frequently in order
to save costs. The hardware-related developers themselves
initiated the change in order to simplify the frequent
changes. The need for an include-file restructuring be-
came apparent, as the configuration management tool did
not support the existing structure. The architecture group
initiated this change since they were responsible for the
include-file structure.

The product generation shift performed in Company
C contained two major changes. A new mechanism,
which allowed different editors to work against the same
system representation, was introduced in order to increase
the number of possible editors. A framework for editor
development was introduced in order to increase reuse of
common editor components and enable outsourcing of
editor development. Local experts initiated these changes
and the technology came from the newly acquired compa-
nies.

Change initiators have been identified from all levels
of the companies, i.e. managers, experts appointed when
the issue came up or as part of their ordinary role, where a
special case is the architects themselves, and down to the
developers. This can be compared to functional changes
where needs often emerge from customers and are taken
care of by marketing or product management.

5.2 Initial Decision Preparation
A decision process that can be initiated by non-decision
makers will eventually have to be brought before a deci-
sion maker. In this phase the change initiator documents
the background of the issue, and identifies stakeholders
and decision makers.

When the need for legacy protocol support had
emerged in Company A, local experts and managers ana-
lyzed the protocol framework solution in a pre-study.
Limited attention was however paid to other departments
that were supposed to implement protocols on this frame-
work. Regarding the change of RTOS, the pre-study had
been carried out by higher-level management. This re-
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sulted in recommendations to change to a single and
specified RTOS. The pre-study involved interviews on all
company sites.

The introduction of a data router in Company B was
initially prepared by the system-engineering group by
marking the places were similar functionality had been
found. Stakeholders such as current users of such func-
tionality and future clients to the data router were loosely
identified but not further analyzed. The only stakeholder
that was approached was the architecture group, who
would be responsible for developing an implementation
proposal. Regarding the HAL split, the developers in that
layer prepared a solution themselves, and set up a meeting
with the appropriate decision-makers, in this case the sys-
tem-engineering group. In the case of the include-file re-
structuring, the initial preparation was made by the tool-
vendor’s support organization. They concluded that the
projects contained too many files. The architecture group
was identified as a stakeholder, since they had developed
the previous structure. Apart from that, stakeholder identi-
fication was not done actively, since the frequent tool
failures meant that stakeholders presented themselves.

In Company C the first steps of the product genera-
tion shift were taken on many levels, both within the
original organization and by developers and managers in
newly acquired organizations. Technical discussions were
held which lead to the realization that the whole architec-
ture had to be changed. Solutions were gathered from all
parts of the organization, and the new architecture was
adapted to enable distributed development. Stakeholders
and decision-makers were therefore covered.

In the case studies we have seen examples of less
successful changes, where too little has been known about
the impact of the change. Effects of functional changes
are often more limited and customer-oriented. As opposed
to architectural changes, functional changes often have
resources allocated to this phase, such as product man-
agement performing requirements elicitation.

5.3 Decision Point: Go/No-Go
In this activity the first decision to commit resources is
made. The right decision maker shall have been defined
previously, and process and organizational issues must not
be forgotten in this decision.

In Company A, local level management decided that
an implementation proposal of the protocol framework
should be developed, since the solution would allow for
more protocols and more frequent releases of the product.
The organizational impact was not given much focus in
this decision. Regarding the RTOS switch, top manage-
ment decided to turn the recommendation into a require-
ment for the following projects. This requirement was
later postponed by the local organization.

In Company B, the system-engineering group decided
that the architecture group should develop an implementa-
tion proposal of a data router. Regarding the HAL split,
the solution was so well prepared by developers that nei-

ther the system-engineering group, nor the architecture
group had to invest large resources in preparation, and
therefore the related decision was of little significance.
Regarding the include-file structure the architecture group
themselves decided that they should develop a solution.
Resources spent by the architecture group were consid-
ered insignificant in comparison to the resources wasted
during tool problems. Organizational impact related to
difficulties in rolling out the new structure was considered
at this stage.

In Company C, the decision to apply resources to the
change process was at a higher level, since it involved
starting a whole new line of product-oriented projects. A
decision was therefore made by top management to pre-
pare and plan for a first project, which should result in a
prototype for the product.

A forum for architecture issues could be helpful when
making this decision. Considering functional changes,
organizations sometimes have product management fora,
making similar decisions. The problem for the architect is
that the decision is one of resources, for which the archi-
tect seldom has responsibility. Getting project resources
has a benefit since the change can be more easily em-
braced by that project. It is however not trivial to receive
resources from a project manager.

5.4 Decision Preparation
In the decision preparation phase a small group of people
will analyze technical alternatives, process and organiza-
tional impact, and return on investment. From a company
viewpoint this is done to make the right decision, and
from an architect or change initiator viewpoint this will
help convincing people of the need for change. This phase
is similar to developing an implementation proposal when
making a functional change, and should therefore be
adapted to how implementation proposals are handled
within the organization. The analysis of technical alterna-
tives can be done in parallel with the analysis of process
and organizational impact.

At Company A, the protocol framework was prepared
by developing an implementation proposal, in the same
way as a normal requirement. The technical solution was
based on expert opinions. The process and organizational
impact was considered, and a pilot study was made which
involved developing a protocol at another site in the same
company. However, there are many developers in the ac-
quired companies that are impacted by this change but
have not been involved in the first phase. The change of
RTOS was postponed to a later project, and in the mean-
time an OS expert prepared a solution involving a VOS
layer to allow for several operating systems. One organ-
izational impact was overlooked, as the change meant that
new RTOS support contacts had to be established. Re-
garding return on investment, the change of RTOS lead to
no short-term wins for the local organization.

In Company B, the architecture group developed the
data router solution in a pre-study. It was based on already
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implemented solutions, but the group failed to realize op-
position from project management and developers. A re-
turn on investment was calculated late in the process. The
developers had already prepared the HAL split so the ar-
chitecture group only had to prepare changes to architec-
ture documentation and design rules. No quantitative re-
turn on investment was made but the ability to change
components was considered an obvious benefit. Regard-
ing the include-file restructuring, the architecture group
found that the flexibility provided by the original structure
was only needed in a few modules, and a simpler structure
was created for other modules. Return on investment
calculations were made regarding the rollout, since rollout
was expensive and did not contribute directly to any
product.

In Company C the first project of the new product
generation was planned. When making technical decisions
many parts of the organization were involved, and con-
sensus in joint forums was the goal. When this could not
be reached, the architect responsible for that type of func-
tionality had to make the decision. Organizational impact
was not only considered when selecting solutions, but also
when distributing development of various modules. This
distribution could at least in one case have been better
planned, as they ended up with developing a module at
one site, which was highly dependent on two other mod-
ules at another site, leading to unnecessary problems.

5.5 Decision Point: Rollout
When a feature-oriented implementation proposal is com-
pleted, it is generally passed through a tollgate in the pro-
ject. In this tollgate the project decides which features or
implementation proposals shall be included in the upcom-
ing release. The activity described here is similar, but the
changes we have studied have had organizational impact.
Such changes, and their related decisions, are hard to
make in a product-oriented project, i.e. a project that will
result in a product aimed at the market.

In Company A, the implementation proposal for the
protocol framework involved two different types of proto-
cols, and a set of services for these protocols. The deci-
sion to implement was made according to the standard
project model. Both protocol types were to be imple-
mented in the upcoming project, but a part of the services
were postponed to later projects. Regarding the change of
RTOS, the expert’s VOS solution was chosen, and local
development management decided to roll it out onto a
current project. This project had to start implementation
before the VOS was ready, and therefore local develop-
ment management decided that the VOS team would
make relevant modifications of the project’s code when
the VOS was ready.

In Company B the system-engineering group ap-
proved the implementation proposal for the data router,
but the architecture group did not receive project re-
sources to implement the proposal. They then decided to
implement the data router with their own resources. The

HAL split was however granted resources by project
management, because it had backing from developers,
system engineering, and the architecture group. The in-
clude-file restructuring was urgent, but difficult to roll
out. First a script was developed that would automate
rollout. This script depended on that the design rules had
been followed, which was not the case. A second strategy
was to halt development over a number of days, and per-
form the changes manually. This solution was too costly
and eventually appropriate line management decided to
roll the new structure out onto newly started projects, let-
ting old projects use the old structure.

Company C decided to launch the series of projects
for the new generation of products. Top management took
this decision, and the content of each project has slowly
been decided throughout the first projects by top man-
agement, product management and project management.

One conclusion from this activity is that it might be
beneficial to restrict functional content of a new product
when introducing major architectural changes. This was
adequately done when introducing the IO and communi-
cation framework in Company A, as the number of ser-
vices available to the protocols was restricted in the first
release. Company C has however had problems deciding
on the final content of the first product to be released on
the market. Restriction of functional content is a tradeoff
since customers will not accept lower functional content,
and the new architecture must be able to support future
functional content. Another tradeoff regarding how many
future features an architecture should enable concerns the
debate of programming for the future or, as XP [15] advo-
cates, programming only for the present.

5.6 Rollout
Implementation of technical aspects of changes is made
successfully within product-oriented projects. Implement-
ing technical aspects elsewhere is more problematic, since
such implementations are not so easily embraced by de-
velopers in projects. The problem is that the process and
organizational aspects are often forgotten in product-
oriented projects, and there seldom exists a standard rou-
tine for carrying out such changes, as opposed to carrying
out a product-oriented project.

In Company A the protocol framework was imple-
mented as part of a product-oriented project, but many
departments that were intended to develop protocols have
not yet had opportunity to give feedback on the frame-
work. There is therefore still a risk that some departments
will object to the framework. The VOS was developed in
parallel with a product-oriented project. When the VOS
was ready the two projects were merged, and the VOS
team had to make remaining modifications.

In Company B the architecture group developed the
data router on an isolated branch, which was later merged
with the main branch. The problem was that most of the
clients to the new data router already had implemented
their own solutions, and usage of the router was only rec-
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ommended, not required. It has therefore not provided the
anticipated memory savings. The HAL split had been well
prepared by both developers and architects before deci-
sions were made, and it was rolled out as part of a project.
The new include-file structure was rolled out onto one
project at a time across the whole organization. The roll-
out coincided with an architectural change, which lead to
little overhead when the key module responsible checked
in the new file structure into the tool at project startup.

Company C has implemented their architectural
changes in a prototype project, and a product for the mar-
ket is under development. The main problems have been
to settle on feature content, and as previously mentioned,
the distribution of work.

In the case studies we have seen several examples of
changes where the technical part has been assigned to a
certain project as a requirement, but postponed to later
projects. We have also seen examples where the changes
have been performed outside of product-oriented projects,
further decreasing the chance of embracing the change.
One of the cases made a satisfactory tradeoff, where the
change of operating system was postponed to a later pro-
ject, but prepared by an expert ahead of the project start.

6. Conclusions
In the case studies we have seen that need for architectural
changes can emerge from various sources, and that vari-
ous roles, such as managers, architects and developers,
may take responsibility for initiating the change. The de-
cisions regarding architectural changes are often carried
out in the same way as companies make decisions regard-
ing functional changes, while the implementation of archi-
tectural changes may take many forms, such as part of
ordinary projects, parallel but separate projects, independ-
ent smaller projects or as new full-scale projects.

We have discovered three major differences between
functional changes and architectural changes. First of all,
architectural changes are often more complex than func-
tional changes and affect large parts of the product with-
out showing a clear connection to a customer need. Sec-
ondly, architectural changes do not only have impact
across large parts of the product, but often across the
whole organization, and changes of processes and organi-
zation are often overlooked and hard to implement in
product-oriented projects. Finally, while companies often
have mechanisms and resources in place to treat func-
tional changes, such mechanisms are seldom established
for architectural changes, and it is also hard to commit
resources to activities without clear customer value.

We believe the process presented here helps putting
focus on organizational issues in an architectural change,
while taking advantage of the decision support found in
the ordinary functional change process. This will lead to
that the technical part of the architectural change is im-
plemented according to company standard, hopefully
within a product-oriented project.

In further studies, the process presented here could be
optimized by running it in pilot studies. A goal of such
studies could be to find a framework for implementing the
organizational part of the change.
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Abstract

RequirementsEngineering(RE) deals with the early
phasesof software engineeringnamelyrequirementelici-
tation,modeling, specificationandvalidation. Architecture
of a software systememphasizesthe structural constraints
imposedon the application. Potential reusein the form of
software patternsare available for software designers to
structure their applications. This paper proposesa pat-
tern orientedmethodology for software development.Us-
ing this approach, the skeletonof the application can be
perceivedup-front by usingknowledge of previously iden-
tified patterns.Functionalrequirementsof the application
cansubsequentlybemadeevolvingaroundthisbasicstruc-
ture. The methodology thus bridges the gap betweenre-
quirementsspecificationand the architecture of the appli-
cation. Thisapproach not only leadsto highly flexible and
reusabledesignsolutions,but alsoprovidestraceabilityof
requirementsin designsolutionsmakingmaintenanceless
tedious.

Keywords: RequirementsEngineering(RE),Software
Architecture, DesignPatterns,Architectural Patterns

1. Intr oduction

Architecturegainedimportancein softwaredevelopment
processas a powerful meansof software abstraction. To
a greatextent,architectureis distancedaway from the de-
tails of the system.Potentialreusein the form of interac-
tion modelingis capturedin patternsat varying levels of
granularity. Patternsenabledesignersto capturethesein-
teractionsasreusableartifactsin softwaredesignprocess.
Theseinteractionsin turn provide a structurefor theentire
application. In other words, patternsdeal with the archi-
tecturalaspectsof asoftwaresystem.Commonlyoccurring

patternsin softwaresystemshave beencategorized.Archi-
tecturalpatternexpressesa fundamentalstructuralorgani-
zation for the software systemby providing a set of pre-
definedsubsystemsand their responsibilities. It also in-
cludesrulesandguidelinesfor organizingtherelationships
betweenthesesubsystems[8]. Objectorientationfacilitates
reuseof classeswithin and acrossapplications. General-
izationandaggregationhierarchiesenablethis. Designpat-
terns[7] are basedon theseprinciples. The fundamental
structureof the entiresoftware is not governedby design
patterns.But they do influencethearchitectureof a subsys-
tem.

Software developmentmethodologiespracticedtoday,
fail to addressthe synergy betweenthe requirementengi-
neeringprocessandarchitecturaldesign. Traditional sys-
tem developmentmethodologieslike waterfall model fol-
low a sequentialstep. The requirementsarecapturedfirst
andonly uponcompletionof this step,designandsubse-
quentstagesin thedevelopmentprocessareaddressed.Re-
quirementelicitationmainly concentrateson thefunctional
aspectsof thesystem.Unlessthecollaborationsamongthe
entitiesdirectly contribute to the functional aspects,they
arenot adequatelycapturedduringthis phase.We propose
a developmentmethodologywhereinthesystemsstructure
in termsof the collaborations,is capturedat the require-
mentsphaseitself by intuitively understandingthe interac-
tionsamongtheparticipantsandrelatingthemwith thepre-
viously known patterns.This givesa skeletonfor the ap-
plication’s solutionat a higher level, which canfurther be
refinedto lower level patterns.

Patternsareavailableat varyinglevelsof granularityfor
theabove mentionedapproach[5, 7, 8]. Architecturalpat-
ternsguideus in giving a structurefor thesoftware.Gang-
of-Four (GoF) patternsaddressissuescloseto code. The
sameprincipleswhichform thebasisof thesepatternscould
aswell beappliedat anabstractlevel in thedesignprocess.
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Choosingan appropriatestructurefor the applicationup-
front, constrainsandboundsthedesignspace.Also, choice
of a patternconveys the semanticsof the application.The
characterizationof applicationin termsof patternsdo not
stick to any formal definition of that pattern,but they do
convey muchmoreaboutthestructureaswell ascomputing
model.

Creatinganexhaustivesetof patternsfor theentiresoft-
waredomainis aneverendingprocess.Also, it is notpossi-
bleto haveacompletepatternlanguageto designasoftware
system.In suchcases,thedesignshouldbebasedonthere-
lationshipbetweentheentitiesidentifiedduringtherequire-
mentsphase.Dependingontheproblemdomaininvolved,a
hierarchyof patternsandarelationshipbetweenthemcould
be figured out. As this processattainsmaturity, it could
leadtowardsvaluabledesignguidancein theform of a de-
signhandbookfor theorganizationfor specificdomainsand
specificconcerns[4] similar to theonesavailablein mature
engineeringdisciplines.

Thepaperis organizedasfollows. Section2 detailsthe
importantactivities in requirementsengineering. Section
3 introducesthepatternorientedsoftwaredevelopmentlife
cyclemodel.Section4 explainssoftwaredesignasapattern
compositionproblem.Theapproachproposedin Section3
is explainedin Section5 usingasmallcasestudy. Section6
providesa comparative accountof relatedwork. Section7
concludesthepaperwith adiscussionona few ideaswhich
includesoutstandingissuesfor furtherwork.

2. Requirementsengineering

Requirementsengineeringdealswith theearlyphasesof
softwareengineeringnamelyrequirementselicitation,mod-
eling, specificationandvalidation[6]. We couldemploy a
varietyof techniquesfor thissuchasinterviewing,use-case
modeling,essentialprototyping,ClassResponsibilityCol-
laborator(CRC) modelingetc. Irrespective of the model-
ing techniquesused,thebasisof theactivity remainssame.
Requirementsanalysisresultsin domainclasses.Domain
classesalongwith framework classesleadto classmodels.

Extractinginformationout of problemspaceitself may
not beeasyin somecases.Conceptsin problemspacemay
not necessarilybetranslatedto concreteobjects.This may
be dueto the fact that realizationof requirementsmay re-
quiremultiple classes.Ambiguity in problemspaceneeds
to beresolvedbeforemoving on to solutions.

Requirementspecificationsshouldnot only aim at so-
lution end from implementationpoint of view, but should
also focus on the long life of designs. Suchdesignswill
beresilientto evolving requirements.RE is concernedwith
theservicesprovidedby andtheconstraintson a largeand
complex softwaresystem[9]. Apart from this, RE is also
concernedwith the relationshipof thesefactorsto precise

specificationsof systemsbehavior andtheir evolution over
time andacrosssystemfamilies.ThusRE becomesa chal-
lengingactivity whichhaseffectontheforthcomingphases
andthe quality of the design. For an applicationwhich is
intendedto be usedonce,the traceabilityof requirements
is importantonly duringthemaintenancephase.However,
for thederivationof architectureslike productlines,this ac-
tivity is morecrucial. HereRE encompassesactivities like
planningthebaselinearchitecture,analyzingcommonality-
variabilityetc.A patternorientedapproachfor thedesignof
frameworksfor softwareproductlinesis explainedin [17].

3. Pattern oriented software development life
cyclemodel

We proposea patternorientedlife cycle modelfor soft-
ware development. Figure 1 gives an outline of this ap-
proach.Thekey ideahereis to have a globalstructurefor
the applicationbasedon its overall computationandcom-
municationmodel, guidedby the knowledgeavailable in
theform of patterncatalogsandpatternlanguages.An intu-
itiveunderstandingof theapplicationin termsof theglobal
dataflows would suffice for this step. This is an elegant
approachsincethe global concernsof the applicationare
addressedhereandit is possibleto apply this approachto
the systemat varying levels of granularity. Architectural
patterns[8] can be usedas fundamentaldesigndecisions
for the software system,imposinga structuralframework
for theapplicationduring this step.For example,a system
whereinformationflows in a sequentialfashioncanbeper-
ceived asa pipe andfilter architecturalpattern. Database
applicationsandnetwork protocolscouldbestructuredasa
layerspattern[8]. Thestructuralframework thusperceived,
in turn formsa context for subsequentanalysisandrealiza-
tion of requirements.

in design
Patterns 

Refinement 
to design

Communication model
Global data flow

Pattern languages
Pattern catalogs

Architecture

Cyclic progress of requirements and design activities

Concepts

Problem Domain 
Towards solution

Require−
ments

Figure 1. Pattern Oriented Lif e Cycle Model

Next stepin thelife cycle is therefinementof this archi-
tectureto design. During this phase,requirementscould
further be analyzedin detail, to identify lower level pat-
ternsin the systemsandsubsystems.By lower level pat-
terns,wemeandesignpatternswhichcouldbeproductspe-
cific like J2EEpatternsor generalsolutionslike GoF pat-
terns.Choiceof productspecificpatternsagaincouldbea
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requirementdriven factor. This is a cyclic activity during
which, requirementsaswell asstructureof theapplication
getevolvedsimultaneously, eachactivity forming the con-
text for theother.

3.1. Processimpr ovementby patterns

The applicationof a well-managed,iterative andincre-
mentaldevelopmentlife-cycle hasbeenpointedout asone
of five characteristicsof successfulobject-orientedprojects
[10]. Usually in systemdevelopmentprocess,the require-
mentmodelsdevelopedearly in thedevelopmentcycle un-
dergo several working compromisesduring the develop-
mentcycle. So it is naturalthat the initially perceivedand
documentedmodelsare not available when the develop-
mentis complete.Patternbasedrequirementmodelssolve
this problemconsiderablybecausethe basicdesigntrade-
offs encounteredby softwaredesignersarewell capturedin
thepatternschosento fit in thedesign.Considerablevaria-
tion from thisstructureis unlikelywhenthedesignelements
arefilled up in this structure.Thesemodelsact aspower-
ful communicationmechanismsduringdesignandredesign
process.

Softwaredesignis primarily dictatedby the context in
which the designactivity takesplace,andis influencedby
enablingtechniqueslike modularization,encapsulationin-
formationhiding, separationof interfaceandimplementa-
tion etc. Softwarepatternsaresolutions,which arebased
on theseenablingtechniques.Patternsaddresstheissuesin
designto agreatextent.Requirementmodelscanrightly be
transformedto designmodelsby meansof thesepatterns.
Thedomainfunctionalitycouldthenbeprovidedin thede-
sign. Sincethe induction of a patternis for addressinga
specificconcernin thesystem,traceabilityof requirements
in solutionsbecomeseasy.

3.2. Requirementsengineeringfr om anewperspec-
tive

Requirementsengineeringshould adequatelyaddress
functionalandnon-functionalrequirementsof thesoftware.
In fact, if functional requirementsaffect only that part of
the software that determinesthem,they typically have lo-
calizedeffects. On theotherhand,requirementswhich cut
acrossvariouspartsof thesystem,canbecapturedfrom the
interactionsamongtheseparts. Theseinteractionsgovern
thestructureof thesystem.

While analyzingthe requirementsin a systemit is a
good idea to classify the requirements. Certain require-
mentscouldbecurrentlyexisting in thesystem.Theanal-
ysis processcould stretchitself to foreseecertainrequire-
mentswhich thesystemis likely to accommodatein thefu-
tureatthesametimemakingprovisionfor incorporatingthe

requirements.Certainrequirementsmaynecessitatepoten-
tial changesin systemsdesign.Theremaybesome,which
thesystemwill neverbeableto handle.Thiscategorization
helpsthesystemsdesignerto comeupwith anoptimumar-
chitecturefor the system. The designercould also make
judgementaboutthecapabilityof thesystemthathasbeen
designedbasedon this classification.

Architecture concernswith the structure and is like
”load-bearingwalls” [13] of thesoftware. This meansthat
within a particulararchitecturalframework, it is possible
for the applicationto undergo changes,without affecting
thisstructure.Thesystemfunctionalityshouldbeevolvable
within this architecture.Patternorientedapproachthatwe
suggestbecomesmeaningfulin thiscontext. Sincethereare
infinite waysof realizingthesedesignsolutionsin code,it
will bepossibleto addor removerequirementswhich have
localizedeffectsin the future unlessthey areprecludedin
advanceby thechoiceof aspecificpattern.

3.3. Novel approachfor requirementscapturing

To ensurelonglife for designs,they shouldbeadaptable.
Software in generaland OO systemsin particularshould
be realizedasan implementationof anabstraction.At the
sametime, theseabstractionsshouldhave theability to ac-
commodaterequirementchanges.The modulardecompo-
sition of a systemshouldbebothopenandclosed[1]. The
designsthushave a stablecoreon which the resultingap-
plicationscanrely on, at thesametime have openportions
whichcanaccommodatecontext dependentvariationsor re-
quirementchanges.Mostof thedesignpatternsaddressthis
issue.

Portionsof anapplicationthatshouldbekeptresilientto
changesandextensionareoftenreferredto ashotspots[21].
Organizationof anapplicationaroundsuchhot spotsdeter-
mineshow well it is closedfor modificationsat the same
timeopenfor adaptation.Knowledgeaboutthehotspotsin
adesignandhow they areaccessedby theclientsoftwareis
importantfor all phasesof softwaredevelopmentandmain-
tenance,whetherit is construction,comprehensionor evo-
lution. The”open-closed”principleandhot spotdrivende-
signshouldbeconceivedveryearlyin thedevelopmentlife
cycle;preciselyat requirementcapturestagesitself. Pattern
basedmodelsthatwesuggestessentiallydo this.

3.4. Patterns in requirementsengineering

Any softwaredevelopmentmethodologyhasanunderly-
ing modelsupportingthedevelopmentprocess.Modelsand
abstractionsconstitutethebasicframework for thedevelop-
mentprocessin a domain.Fromtherequirementspoint of
view, architecturalabstractionsmaketrade-off analysissim-
pler, andprovidesa modelthat is easilyrefinableto code.
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Themodelgetsitself evolvedasthedevelopmentproceeds.
For example,the domainprocessesat a coarselevel could
be expressedby usingsubsystemor componentsandtheir
interactions.Furtheranalysiscould be aidedby usecases
for requirementmodeling. Usecasesleadto a conceptual
model whereconceptsare realizedusing objects. Subse-
quently, the collaborationbetweenobjectsare addressed.
Subsysteminteractionsand relation betweenvarious use
casescould be seenasrequirementpatterns,which canbe
documented.Oncetheserequirementpatternsaremapped
to correspondingarchitecturalor designpatterns,themap-
pingcouldaswell beusedasareusableartifact.

Interactiondiagramsareoneof themostimportantarti-
factscreatedduringRE.Skillful assignmentof responsibil-
ities for the participantsin the interactiondiagramsis also
importantirrespectiveof thegranularityof theparticipants,
whetherthey besubsystemsor objects.Proactive andpre-
scriptiveuseof patternsassistthedesignerto a greatextent
in this step. Patternscanaid the RE processin two ways.
They canresultin singlesolutions.Secondly, they canaid
in thedevelopmentof reusableframeworkswhich arecus-
tomizabledesignsolutions.Patternsplay animportantrole
in customizinganddesigningapplicationframeworks.This
hasbeenemphasizedin [15].

It is generallyobserved that successfulprojectsspend
considerableamountof timeandresourcesin theREphase.
It would be useful if, this phasecanaswell comeup with
requirementspatternsandtheir correspondingmappingfor
relatedproblems. Requirementspatternscould be docu-
mentedin the form of usecases,combinationof usecases
or sequenceof occurrenceof events.

3.5. Patterns assolution to non-functional require-
mentsof software

In softwaredesignprocess,choiceof an architectureis
moreof an activity of giving a structureto the whole ap-
plication. The realizationof the rest of the functionality
of the softwaresucceedsthis stepandideally the software
functionality shouldbe evolvablewithin this architecture,
withoutcompromisingits constraints.

Patternsmostly addressnonfunctionalrequirementsof
software.Bystructuringadatabaseapplicationusingamul-
tiple layeredpattern [8], we make the changesisolated.
Problemssuchas lack of flexibility in most OO systems
canbesolvedby reorganizingthedesignby makinguseof
a strategy pattern[7]. Theimplicationof this is thatthede-
sign is addressinga non functionalrequirementof thesys-
temcalledflexibility . Anotherinterestingpoint is that this
reorganizationwill resultin thedegradationof systemper-
formancebecausetheinstanceof oneclassneedsto invoke
aninstanceof a strategy class.Thus,patternbasedrequire-
mentmodelssincethey abstractout details,serve the ideal

solutionsfor requirementmodels. Also, thesemodelsen-
ablethe point at which certainquality attributesareinhib-
ited. As a result,selectingdesiredsolutionsfrom a setof
alternatesolutionsbecomeseasier.

In order to make surethat a systemis well structured
andorganized,in addition to exposingglobal structureof
the system,designshouldobey certainbasicdesignprin-
ciples which are to be well documented.Well structured
requirementsanddesigndecisionsat several layersof ab-
stractionarecrucial for understandinga detailedspecifica-
tion document[20]. Thepatternorientedsoftwaredevelop-
mentmethodproposed,assistsin systematicunfolding of
requirementsat varying levels of abstractionandprovides
sounddesigndocumentation.

4. Software design as pattern composition
problem

Applicationof patternsin softwaredevelopmentis to be
seenasa patterncompositionproblem. Herewe provide
a designsolution,ratherthana programmingsolutionthat
is tunableonly at the implementationlevel. Understand-
ing of how the abstractionsin softwareareto be adapted,
extendedcomposedandmaintainedis equallyimportantas
providing knowledgeaboutthelocatingof thekey abstrac-
tions in it.Advantagesof usingpatternsasbuilding blocks
of architectureandtherelatedissuesareexplainedin [12].

The combinationof collective behavior of components
needto be exploredat the designandarchitecturallevels.
This issueis addressedby designpatterns.Ifweusepatterns
asbuilding blocksof architecture,not only thatwe address
a specificfunctionalaspect,but alsothe interactionamong
thevariousrequirements.Theobjectivesmetby designele-
mentscouldbeaddressedusingtherolesplayedby different
objectsin that pattern. Requirementsmodelingaddresses
dynamicnatureof therequirementsin this case.

When patternscombineto generatesolution architec-
tures,thestructuralandbehavioral compositionneedto be
addressed.Behavior compositionaddressesconcernslike
therolesplayedby variousobjectsaselementsin patterns.
This kind of designis referredto as responsibility-driven
designor interactionorienteddesignin OO literature[16].
Assignmentof responsibilitiesto objectsanddesignof ob-
jectcollaborationsis very important.Neglectingtheimpor-
tanceof the creationof interactiondiagramsandresponsi-
bility assignmenthasbeenpointedout asa commonprob-
lem in object technologyprojects[2]. We believe that re-
quirementsanalysisemphasizingthesestepsand patterns
as designsolutions,will alleviate this problemto a large
extent. Whenpatternsareusedascompositionalunits of
an architecture,an elegant mechanismfor addressingthe
collaborationsamongthe patternparticipantsis discussed
in [3].
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5. Casestudy

This Sectionillustratesthe methodologywe have pro-
posedusing an example of componentinteractionsin a
feedbackcontrol system. The systemusesfeedbackfrom
the output to control a processlike any feedbackcontrol
systemavailablein control literature. Feedbackunit takes
theoutputdatafrom theprocessbeingcontrolledandthen
makesnecessaryadjustmentto be fed to the feedforward
unit after comparingthe feedbackvalue derived from the
output, with a referencevalue. Then, feedforward unit
sendsthe modifiedoutputto the controlledprocess.Con-
sideringtheglobaldataflow in theapplication,theadjustor
readsfeedbackdataandreferencedata,thecontrolledpro-
cessreadsthemodifiedoutputandthe feedbackunit reads
theoutputdatafrom thecontrolledprocess.

Adjustor

Feedforward 

Controlled

Process

Feedback 
unit

Feedback value

unit

M
odified output

O
utput data

Adjustment

Reference value

Figure 2. Component Interactions in a Feed-
back Contr ol System

Even though the global data flows in the application,
look like a pipe-and-filterarchitecturalpattern [8], this ar-
chitecturedoesnot fit in heresincepipe-and-filterdoesnot
allow any feedbackloops.On theotherhand,it fits into the
blackboardpattern[8], in whichseveralspecializedsubsys-
temsassembletheirknowledgeto build apossiblypartialor
approximatesolution.

Figure3 givesonepossibledesignfor thisproblem.An-
alyzing the requirementsfurther, it can be seenthat con-
trolled processactsasa mediatorbetweenfeedforwardand
feedbackunits thusthe interactionsamongthemresemble
thatof a mediatorpattern[7]. Controlledprocesscanalso

be realizedasa singletonpattern. Now, having identified
thesepatterns,requirementscould further be analyzedin
detailto assignresponsibilitiesto theclassesin thepatterns.

Adjustor

Feedforward 

Controlled

Process

Feedback 
unit

Feedback value

unit

M
odified output

O
utput data

Adjustment

Reference value

Mediator 

Singleton

Figure 3. Design 1 for the Feedbac k Contr ol
system

It is naturalthatmorethanonedesignis possiblefor the
sameproblem. In this context we give an alternative de-
signfor thesameproblem.Thisdesignis givenin Figure4.
The functionality provided by the feedforward unit to the
restof theunitsshouldbethesame,irrespective of thedif-
ferentcontrol strategiesusedby it. A strategy pattern[7]
couldbeusedfor this. Thesameinterpretationholdswith
feedbackunit also.To reducethedependency betweencon-
trolled processandthe feedbackunit, observer patterncan
beused.

When alternatedesignsexist for the same problem,
basedon sometrade-off analysis,thedesignermayhave to
choosethe bestdesign. In suchsituations,a methodology
proposedin [4] aidsthe designerto comparethe alternate
designsin termsof somemetricslikestaticadaptability, dy-
namicadaptability, extendibility etc. Detailsregardingthis
methodologyis availablein [4].

Fromthecasestudy, it is evidentthatpatternorientedlife
cycle model allows the developerto systematicallyarrive
at thedesign,by concentratingon the interactionsexisting
in the domain. It is to be emphasizedthat trade-off analy-
sis for alternatedesignsis alsopossible.Therequirements
aremappedto correspondingpatternsasthedesignevolves.
This makes traceabilityof requirementsin solutionseasy.
Designsolutionsthusobtainedarereusablesincethey are
composedof patternswhich are implementationindepen-
dent,abstractentities.
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6. Relatedwork

Softwareengineeringis definedas the applicationof a
systematic,disciplined,quantifiableapproachto thedevel-
opment,operation,andmaintenanceof software;thatis, the
applicationof engineeringto software[11]. Stepsavailable
in softwaredevelopmentlife cyclemodelsexplainedin [14]
do not seemto be addressingall theseaspects.Sincepat-
ternsareidentifiedasdistilled experienceof expertdesign-
ers,patternorienteddevelopmentlife cyclemodelturnsout
to bea systematicanddisciplinedapproach.

[19] proposesa mechanismthat utilizes UML model-
ing capabilitiesto composedesignpatternsat variouslev-
els of abstractions. The approachgives emphasisto the
traceabilityof patternsin designs.A systematicapproach
whichtakesinto accounttheglobalstructureof theapplica-
tion andsubsequentlyrefining this structureto lower level
patternsdoesnotseemto beaddressedby researchcommu-
nity yet. Our approachalsoopensup issuesthatarisewhen
patternsareusedasfundamentalbuilding blocksof archi-
tecture,mostimportantissuebeingthe interactionsamong
patterns.

Patterncompositionis addressedby usingrole diagrams
in [18]. Thefocushereis on deriving a compositepattern,
whichisacombinationof individualpatterns.Thiscompos-
ite patternsolvesabiggerproblemin thesensethatthesyn-
ergy of participatingpatternsmakesthe compositionmore
thanits parts.However, a generalizedapplicationdevelop-
mentusingpatternsis not addressedhere.

Patternssolving independentproblemsaredocumented
in [8, 5, 7]. Theseserve only asindependentpatterndocu-
mentations,explainingthecontext, forcesandsolution.Our
approachis towardsrefiningandcombiningthesesolutions
to build reusableapplicationsolutions.

7. Conclusionsand futur e work

We have proposeda life cycle modelusingpatternori-
entedapproachfor the developmentof software. The ap-
proachrelieson the applicationof previously known solu-
tionsto designproblemsin theform of patterns.Thestruc-
tureof theapplicationis perceivedin thebeginningandde-
tailedrequirementselicitationfollows this step.As thepat-
ternsarerefinedto lower level patterns,requirementsalso
get refined. Throughthis approach,RE, aidsarchitectural
designby mappingtheconstraintsimposedby therequire-
mentsto known solutionsandfacilitatesfasttrade-off anal-
ysis. Architecturalmodelingis supportedby not only the
functionalandnonfunctionalrequirements,but alsothera-
tionalebehindthe formationof the pattern. The method-
ology proposedenablesrequirementscapturein the con-
text of formal architectures.We believe that when com-
plex systemsarecomposedfrom pre-existing components,
thecontractualobligationsof theparticipatingcomponents
alsoneedto be capturedasrequirements.Thesecontracts
may leadto compositionpatterns,asnecessitatedby com-
positioncontext andsemantics.As partof our futurework,
we plan to addresstheseissues.We foreseethis asan im-
portantproblemworth addressingin the context of design
reusein the form of patternsandcodereusein theform of
components.
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ABSTRACT

Ideally, a software project commences with requirements gath-
ering and specification, reaches its major milestone with sys-
tem implementation and delivery, and then continues, possibly
indefinitely, into an operation and maintenance phase. The
software system’s architecture is in many ways the linchpin of
this process: it is supposed to be an effective reification of the
system’s requirements and to be faithfully reflected in the sys-
tem’s implementation. Furthermore, the architecture is meant
to guide system evolution, while also being updated in the pro-
cess. However, in reality developers frequently deviate from
the architecture, causing architectural erosion, a phenomenon
in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold.
In this paper, we present an approach intended to address the
problem of architectural erosion by combining three comple-
mentary activities. Our approach assumes that a given system’s
requirements and implementation are available, while the
architecturally-relevant information either does not exist, is
incomplete, or is unreliable. We combine techniques for archi-
tectural discovery from system requirements and architectural
recovery from system implementations; we then leverage
architectural styles to identify and reconcile any mismatches
between the discovered and recovered architectural models.
While promising, the approach presented in the paper is a work
in progress and we discuss a number of remaining research
challenges.

1  INTRODUCTION

Ideally, software systems are developed via a progression
starting from requirements through architecture to implemen-
tation, regardless of the lifecycle model employed. Any
changes to those systems during their, possibly indefinite,
lifespans should then follow the same progression: a change in
the requirements is reified in the architecture and, subse-
quently, the implementation. However, frequently neither the
initial development process nor the system’s evolution and
maintenance follow such a path for reasons that include devel-
oper sloppiness; requirements that are immediately imple-
mented due to (the perception of) short deadlines; architectural
decisions that are violated to achieve non-functional qualities
(e.g., improve performance, satisfy real-time constraints,
reduce application memory footprint); off-the-shelf (OTS)
functionality that is directly incorporated into the system’s
implementation; and the existence of legacy code that is per-
ceived to prevent careful system architecting. 

For these reasons, architectural artifacts are often out of
sync with the system’s requirements and its implementation,
and we say that the architecture is eroded [27]. There are many

potential problems associated with architectural erosion: diffi-
culties in assessing how well the current implementation satis-
fies the current requirements; inability to trace a specific
requirement to implementation artifacts; lack of understanding
the complex effects of changing a requirement; and inadequate
system maintainability and evolvability. The incorrect percep-
tion of the architecture may lead to incorrect architecture-level
and, subsequently, implementation-level decisions in response
to new or changing requirements.

To deal with the problem of architectural erosion, research-
ers and practitioners have typically engaged in architectural
recovery [2,10,14,15,18,22,28,31,32], where the system’s
architecture is extracted from its source code. However, exist-
ing architectural recovery approaches fail to account for sev-
eral pertinent issues. They rely primarily on implementation
information, leveraging requirements in a limited fashion, if at
all. Since the implementation may have violated certain system
requirements, they will, in effect, recover incorrect architec-
tures in such cases. In addition, architecturally-relevant deci-
sions are frequently obscured by the implementation. This may
be the result of justified implementation-level decisions, such
as eliminating processing bottlenecks, removing duplicate
modules for efficiency, OTS reuse, and so on. Architectural
decisions might also be ignored without justification, due to a
missing system-wide view, developer sloppiness, misguided
“creativity” in implementing the desired functionality, and so
on. Another problem with existing approaches to architectural
recovery is their relative heavy weight, a by-product of the lack
of reliance on information already present in the system’s
requirements. Perhaps most importantly, the existing architec-
tural recovery approaches exhibit no understanding of the
importance and role of architectural styles in developing large-
scale, complex software systems. An architectural style is a
key design idiom that implicitly captures a large number of
design decisions, the rationale behind them, effective composi-
tions of architectural elements, and system qualities that will
likely result from the style’s use [8,22,29]. Without this knowl-
edge, a system’s architecture will present only a partial picture
regardless of how faithfully its structural, compositional,
behavioral, and/or interaction details are recovered.

Our research goal is to combine software requirements,
implementations, and architectural styles in a light-weight and
scalable manner to stem architectural erosion. Requirements
serve as the basis for discovering a software system’s architec-
ture. Implementations serve as the basis for recovering the sys-
tem’s architecture. Because of their different inputs, discovery
and recovery are likely to reveal different and possibly incom-
plete architectural models. Architectural styles can be used to
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reconcile the two models and combine them into a coherent
and more complete model of the software system’s archi-
tecture. Our approach therefore consists of three interre-
lated activities as depicted in Figure 1:
1. a technique supporting the discovery of an architecture

from system requirements; 
2. a technique for recovering an architecture from system

implementations; and
3. an architectural style characterization technique to

identify and reconcile any mismatches between the
discovered and recovered architectural models.
We assume that the existing information about an archi-

tecture either does not exist or is unreliable. We also
assume that the system’s requirements are known and that
an inspectable implementation exists. We acknowledge that
many modern software systems depend heavily on off-the-
shelf libraries (e.g., GUI libraries) or middleware platforms
(e.g., CORBA, DCOM). However, deriving architectural
properties from such technologies is a challenging task and
is thus outside the current scope of our work.

2  BACKGROUND

This work builds on three related areas: software archi-
tectures and architectural styles; software requirements,
and specifically approaches for mapping requirements to
architectural decisions; and architectural recovery.

2.1  Software Architectures and Styles
Software architecture is a level of design that “involves

the description of elements from which systems are built,
interactions among those elements, patterns that guide their
composition, and constraints on these patterns” [29]. A
goal of software architectures is to facilitate development
of large-scale systems, preferably by integrating pre-exist-
ing building blocks of varying granularity, typically speci-
fied by different designers, implemented by different
developers (possibly in different programming languages),
with varying operating system requirements, and support-
ing different interaction protocols.

An architectural style [8,16,29] is a set of design rules

that identify the kinds of building blocks that may be used
to compose a system, together with the local or global con-
straints on the way the composition is done [29]. Styles
codify the best design practices and successful system
organizations [1,20]. Several architectural styles have been
in use for a number of years, including client-server, pipe
and filter, blackboard [29], C2 [30], and REST [9]. 

2.2  Architectural Discovery
Software requirements describe aspects of the problem

to be solved and constraints on the solution. Requirements
deal with stakeholder goals, options, agreements, issues,
and conditions to capture the desired system features and
properties. Requirements may be simple or complex, pre-
cise or ambiguous, stated concisely or elaborated carefully.
Although informal requirements described in natural lan-
guage often lead to ambiguities and inconsistency, they are
frequently used in practice and are thus of special interest
in our research.

The relationship between the requirements and architec-
ture for a desired system is not readily obvious. Several
existing techniques provide suggestions for addressing the
problem. For example, the QUASAR approach [4] relates
desired system features (e.g., “The system must be
secure.”) to solution fragments that effect those features
(e.g., “Employ an encryption scheme.”). The objective of
QUASAR is to allow reuse and compose solution frag-
ments across systems with similar desired features. How-
ever, this work has only recently begun addressing the
relationship of desired features and software architectures.
ATAM [17], a technique that supports the evaluation of
architectural decision alternatives in light of non-functional
requirements, has a similar limitation. Twin Peaks [25]
attempts to overcome the separation of requirements speci-
fication and design activities by intertwining them. How-
ever, unlike our approach, Twin Peaks does not take into
account the implementation. Brandozzi and Perry [3] have
recently coined the term “architecture prescription lan-
guage” for their extension of the KAOS goal specification
language [19] to include architectural dimensions. Their
approach has the same limitations as our architectural dis-
covery technique: they are unable to suggest a complete
architectural configuration based on the information
extracted from the requirements, and they currently make
no use of non-functional requirements in modeling the dis-
covered architecture. This is why we have decided to cou-
ple architectural discovery, recovery, and styles.

Finally, a key issue in transforming requirements into
architecture and other software models is traceability.
Researchers have recognized the difficulties in capturing
development decisions across software models [11]. In
response to this, Gotel and Finkelstein [12] suggest a for-
mal approach for ensuring the traceability of requirements
during development. 

2.3  Architectural Recovery
A number of existing approaches focus on recovering a

software architecture from source code. ARM [14] is an
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approach to architectural reconstruction distinguishing
between the conceptual architecture and the actual architec-
ture derived from source code. ARM applies design pat-
terns and pattern recognition to compare the two
architectures. Unlike our architectural recovery approach,
ARM assumes the availability of system designers to for-
mulate the conceptual architecture. Similarly to our recov-
ery approach, software reflexion models [24] treat a
system’s architecture from two perspectives: the idealized,
high-level view and the low-level view derived from source
code. Reflexion models support incremental architectural
recovery to analyze whether varying sets of relationships
hold between the idealized and actual architectures. How-
ever, reflexion models do not make direct use of architec-
tural concepts such as styles and connectors.

MORALE [28] is an approach for evolving legacy soft-
ware systems developed with procedural languages.
COREM [10] is an approach that converts procedural into
object-oriented systems via four steps: design recovery,
application modeling, object mapping, and source code
adaptation. Neither of these approaches provides a means
for determining whether the implemented systems com-
pletely and correctly satisfy their original requirements, or
whether the requirements themselves are complete and
consistent. 

Recently, a series of studies has been undertaken to
recover the architectures of several open-source applica-
tions [2,15]. The approach taken in these studies has been
to come up with a conceptual architecture from a system’s
documentation and use it as the basis for understanding the
system’s implementation. The system documentation is
assumed to be correct when, in fact, both the documenta-
tion (e.g., requirements) and implementation may be par-
tially incorrect, incomplete, or internally inconsistent. As
with all of the above approaches, architectural style infor-
mation is not leveraged during recovery.

3  EXAMPLE APPLICATION

To illustrate the discussed concepts we use ShareDraw,
an application implemented in Visual C++. ShareDraw is
an extension to the DrawCli application, which is provided
as part of the Microsoft Foundation Classes (MFC) release.
DrawCli allows users to manipulate 2-D graphical objects
(lines, ovals, polygons). ShareDraw extends DrawCli into a

distributed application that adds collaborative drawing and
chatting facilities, as depicted in Figure 2.

The architecture of ShareDraw was not available to us.
Similarly, DrawCli’s requirements were not available.
However, given the highly interactive nature of the applica-
tion, we can easily extract many of the functional require-
ments from the application’s observed behavior. The
requirements for the extension of DrawCli into ShareDraw
were available. Several informally stated requirements
describing some commonly performed operations are as
follows:

Reqt1: ShareDraw should allow the user to save
drawings for later retrieval.

Reqt2: ShareDraw should make object manipulation
operations easily accessible to the user.

Reqt3: ShareDraw should allow the user to group and
simultaneously manipulate multiple drawing objects.

Reqt4: ShareDraw should allow the user to instantly
view the actions of all other users.

4  THE APPROACH

The goal of our research is to develop a generally appli-
cable, style-centered approach for integrating architectural
discovery and recovery techniques, and reconciling the
identified differences. Our approach will comprise three
separate, but complementary techniques, as depicted in
Figure 1:
1. an architectural style-based technique for architectural

discovery from software requirements,
2. an architectural style-based technique for architectural

recovery from software implementations, and
3. a technique that leverages styles to reconcile the results

of discovery and recovery.

4.1  Architectural Discovery
Elaborating system requirements into a viable software

architecture satisfying those requirements is often based on
intuition [25]. Software engineers face some critical chal-
lenges in performing this task [13]:
• Requirements are frequently captured informally in a

natural language, while software architectures are usu-
ally specified formally [21].

• Non-functional system requirements are hard to capture
in an architectural model [21].

• Mapping requirements into architectures and maintain-
ing their inter-consistency is complicated since a single
requirement may address multiple architectural concerns
and vice versa. 

• Large-scale systems have to satisfy hundreds, possibly
thousands of requirements, making it difficult to identify
and refine the architecturally relevant information con-
tained in the requirements.
To address these challenges we developed CBSP [13], a

light-weight technique to distill from the system require-
ments the key architectural elements and the dependencies
among them. The result of the technique is an intermediate
model between the requirements and architecture that con-

Figure 2. Screenshot of
ShareDraw with two
clients shown.
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tains the essence of architectural information embedded in
the requirements. This model is referred to as the discov-
ered architectural model, or DAM. The CBSP approach
creates DAM in a structured process using conflict resolu-
tion to address ambiguities in the requirements. The pro-
cess consists of three main activities, detailed in [13]:
1. classify architecturally relevant requirements,
2. identify and resolve classification inconsistencies, and
3. refine/restate architecturally relevant requirements.
In this section we detail the DAM model itself. 

4.1.1  Discovered Architectural Model
The basic idea behind our approach to architectural dis-

covery is that any software requirement may explicitly or
implicitly contain information relevant to the software sys-
tem’s architecture. It is frequently very hard to surface this
information, as different stakeholders will perceive the
same requirement in very different ways. CBSP captures
this information in the intermediate DAM model. DAM is
structured around a simple set of general architectural con-
cerns derived from existing software architecture research
[21,27,29]:
• Components provide application-specific functionality.

They may be data or processing components [27].
• Connectors facilitate and govern all interactions among

the components.
• Configuration of a system or a particular subsystem

describes the relationships and organization among mul-
tiple (possibly all) components in the system.

• Properties describe the non-functional characteristics of
individual components and connectors, or the entire con-
figuration.
Thus, each derived DAM element explicates an archi-

tectural concern and represents an early architectural deci-
sion for the system. For example, a requirement such as 

Reqt: The system should provide an interface to a Web
browser.

can be recast into a DAM processing component element
and a DAM connector element

Compp: A Web browser should be used as a component
in the system.

Conn: A connector should be provided to ensure
interoperability with third-party components.

Because of the complexity of the relationship between
requirements and architecture, DAM gives a software
architect leeway in selecting the most appropriate refine-
ment or, at times, generalization of one or more require-
ments. Examples of both refinement and generalization are
given below.

There are seven possible DAM dimensions discussed
below and illustrated with simple examples from the Share-
Draw application. The seven dimensions involve the basic
architectural constructs and, at the same time, reflect the
simplicity of our approach.
(1-2) Compp and Compd are model elements that describe
or involve an individual processing or data component in
an architecture, respectively. For example

Reqt: The system should allow the user to directly
manipulate graphical objects.

may be refined into DAM elements describing both pro-
cessing components and data components

Compp: Graphical object manipulation component.
Compd: Data for abstract depiction of graphical object.

(3) Conn are model elements that describe or imply a con-
nector. For example

Reqt: Manipulated graphical objects must be stored on
the file system.

 may be refined into 
Conn: Connector enabling interaction between UI and

file system components.
(4) Conf are model elements that describe system-wide
features or features pertinent to a large subset of the sys-
tem’s components and connectors. For example

Reqt:Allow independent customization of application
look-and-feel and graphical object manipulation tools.

may be refined into
Conf: Strict separation of graphical object manipulation,

visualization, and storage components.
(5) PropComp are model elements that describe or imply
data or processing component properties, such as reliabil-
ity, portability, incrementality, scalability, adaptability, and
evolvability. For example

Reqt: The user should be able to view the effects of his
actions with minimal perceived latency.

may be refined into
PropComp: Graphical object manipulation component

should be efficient, supporting incremental updates. 
(6) PropConn are model elements that describe or imply
connector properties. For example

Reqt: The system should support loading of graphical
manipulation tools at runtime.

may be refined into
PropConn: Robust connectors should be provided to

facilitate runtime component addition and removal.
(7) PropConf are model elements that describe or imply
system (or subsystem) properties. For example

Reqt:The system must support collaborative editing of
graphical objects.

may be transformed into
PropConf: The system should be distributable. 

Note that, e.g., the PropConn example (5) involved refin-
ing a general requirement into a more specific DAM ele-
ment. On the other hand, the PropConf example (6)
involved the generalization of a specific requirement into a
more general DAM artifact. In fact, in both cases multiple
DAM artifacts may be produced as part of a single require-
ment. We are currently studying this issue with the goal of
providing practical guidelines to architects engaging in this
task.

4.1.2  Summary and Open Issues
At this point, we have an intermediate model, DAM.

DAM classifies the key architectural concerns into seven
categories: data components, processing components, con-
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nectors, configurations, component properties, connector
properties, and (sub)system properties. DAM is still stated
in a requirements-like notation, such that it can be verified
against the intentions of the system’s non-architect stake-
holders (e.g., customers). DAM reinterprets architecturally
relevant requirements; no requirements are actually
changed aside from clarifications that arise during the dis-
covery process. Finally, DAM classifies and describes the
system’s architecturally relevant information in a way that
makes it much easier to derive an architecture, and, subse-
quently, implementation from it would be from “raw”
requirements.

However, a remaining problem is that the DAM ele-
ments provide a very low-level view of the architecturally
relevant system requirements (recall the above examples).
It may not be straightforward to map some aspects of DAM
(e.g., configuration information, properties) into an effec-
tive architecture that will realize them. For example, in our
experience architectural discovery is often unable to infer
all interdependencies between architectural elements. This
directly motivates the need to introduce additional informa-
tion into the picture, as further discussed below.

4.2  Architectural Recovery

Architectural recovery complements architectural dis-
covery by highlighting the major structural characteristics
of the implemented system: data and processing compo-
nents, connectors, and configuration. The result of archi-
tectural recovery is a recovered architectural model, or
RAM. In this section we discuss the process of generating
RAM. Later we will show how this information can be
coupled with DAM to arrive at a more complete architec-
tural model. We use UML to represent the recovered archi-
tecture. 

4.2.1  Recovered Architectural Model
Our proposed architectural recovery technique will consist
of the following four simple activities. 

Generate class diagrams. Numerous tools are available
to infer class diagrams from source code automatically; the
engineer need not even look at the system’s source code to
accomplish this step. Figure 3a shows the class diagram of
ShareDraw’s client subsystem, automatically generated by
Rational Rose®. 
Group related classes.  Typically, a large number of
implementation classes are required to implement individ-
ual architectural components and connectors. Classes can
be grouped based on different criteria and/or architectural
concerns. Multiple architects may participate in this pro-
cess and, consequently, disagreements and mismatches
may arise. The diagrams in Figure 3b-e show one possible
such grouping of ShareDraw’s classes, obtained by apply-
ing the three simple rules adopted from our Focus tech-
nique [6]:
• Classes isolated from the rest of the diagram comprise

one grouping (Figure 3b).
• Classes that are related by generalization (i.e., inherit-

ance) comprise additional groupings, as do classes
related by aggregation and composition (Figure 3c). 

• Finally, classes with two-way associations are grouped
together since they denote tight coupling (Figure 3d). 

Package groups of classes into architectural elements. 
Clusters of classes identified in the previous stage are pack-
aged together into processing components, connectors, or
their relationships (links). These elements can be further
aggregated into even larger elements. Using this process,
ShareDraw’s client implementation is abstracted into seven
components and three inter-component links (Figure 3e), as
well as two remote procedure call (RPC) connectors. The
connectors are not shown in Figure 3 since UML and
Rational Rose® provide no mechanisms for distinguishing
connectors from components. Figure 3 also does not show
data components as introduced by Perry and Wolf [27] and
discussed in Section 4.1. Data components may be
extracted from the processing components’ states and inter-
faces based on varying desired criteria (e.g., all class vari-
ables, all public method parameters, or both).
Determine partial system configuration. The relation-
ships among the components identified in the preceding
steps reflect the system’s configuration. The configuration
information may be incomplete in cases where the compo-
nents do not interact in easily detectable ways (e.g., access
to shared implementation substrate classes, implicit invo-
cation, distributed interaction, and so on). Figure 3e shows
only a partial configuration of ShareDraw’s client: the
topological relationship of the FrameWindows_Mgr,
Dialog_Mgr, and View_Mgr components with the remain-
ing components has not been identified in this process; in
addition, the diagram does not identify the connectors for
reasons discussed above.

4.2.2  Summary and Open Issues
The described architectural recovery technique is very

simple and scalable, relying only on structural manipula-
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Figure 3. Identifying components from a UML class diagram. At
this magnification, the top three diagrams are shown only for
illustration, to convey the scope of the task. 
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tion of the system’s implementation. The outcome of the
technique is the RAM model, i.e., the collection of existing
system’s major processing and data components, its con-
nectors, as well as a partial architectural configuration.
RAM is intended to map to the structural aspects of DAM
proposed in Section 4.1.

The result of the recovery step is not a complete “as is”
architecture of the system. Several pieces of information
are still missing. As discussed above, the architectural con-
figuration information will likely be incomplete. In addi-
tion, similarly to a great majority of the existing recovery
techniques (e.g., [2,10,14,15,18,28,31,32]), our proposed
approach does not take into account non-functional proper-
ties. This shortcoming suggests the next step of our
approach: by coupling the information represented in RAM
and DAM with architectural style information, we can mit-
igate this problem and present a more complete picture of
the architecture, as discussed below. 

4.3  Reconciling Discovery and Recovery

The above two techniques provide related, though dis-
connected models of the system’s architecture, as depicted
in Figure 1. The requirements are refined and rephrased
into DAM elements along the seven dimensions represent-
ing the key architectural concerns: data and processing
components, connectors, configurations, component prop-
erties, connector properties, and (sub)system properties.
The implementation is abstracted into four types of RAM
elements: data and processing components, connectors, and
(partial) configurations. This section discusses how the two

models can be “matched up” to derive a more complete
architecture based on their combined information.

4.3.1  Determining Appropriate Architectural Styles
As discussed earlier, architectural styles [8,16,29] pro-

vide rules that exploit recurring structural and interaction
patterns across a class of applications. Styles constrain
architectural models syntactically and semantically. In
order to select the appropriate style(s) for the given appli-
cation, we propose to classify existing architectural styles
across a set of commonly recurring dimensions. Our goal is
to provide the foundation of a classification that is rich
enough to allow us to effectively represent and select styles
based on the given DAM and RAM models. 

Our preliminary study of architectural styles [22] has
identified the following seven dimensions as a good candi-
date set for effectively describing styles. 
1. the types of data exchanged between style elements;
2. the structure of the elements allowed in a style;
3. the allowed topologies of architectural elements;
4. the allowed behavior of a style element;
5. the types of supported interactions between style

elements and their allowed specializations;
6. the key non-functional properties especially enabled by

the style; and.
7. the style’s domain of applicability.

Table 1 depicts the result of an exercise in which we
mapped four commonly occurring styles using this frame-
work. This experience has indicated several challenges that

Table 1: Characterization of Four Architectural Styles
Data Structure Topology Behavior Interaction Properties Domain

C2

Discrete events
Separable compo-

nents
Limited component 

dependencies
Exposed via named ser-

vices only Asynchronous coordination Distributability

GUI
Systems

Data queueing and buffer-
ing by connectors Heterogeneity

Explicit connectors

Partially ordered con-
nectivity-based “top” 

and “bottom” relations

Implicit invocation

Data tuples
Event-based interaction

Multi-tasking mechanisms 
such as threads

Composability

Dynamic creation of 
connections

Direction-oriented events 
propagated to topology-

based recipients
Dynamicity

Client-
server

Parameterized 
request

Independent servers Many-to-many connec-
tions among clients and 

servers

Listening server Server location
Distributability

Distrib-
uted Sys-

tems

Connections setup and 
teardown

Remote connection and 
communication protocol

Buffering and queueing of 
requests

Security
Specialized clients

Implicit server invocation

Typed response

Data marshalling and 
unmarshalling

Dynamic creation of 
connections

Evolvability
Multi-tasking mechanisms 

such as threads HeterogeneityDistributed protocol 
stacks

Client call synchronization
Exposed via named ser-

vices only Request-response protocol

Pipe-
and-fil-

ter
Streams of typed 

records

Explicit pipes and 
filters

Stream between a pipe 
and a filter Stream transformation state 

machine

Synchronization between 
filter reads and writes

Heterogeneity

Dataflow 
systems

ReusabilityInput and output 
ports on filters No two sources or sinks 

connected to the same 
port instance

Propagation of stream con-
tents to sinksSources and sinks on 

pipes Data buffering by pipes Composability

Push-
based

Channel notifi-
cation

Independent produc-
ers Producers connected 

only to distributors

Content filtering in distrib-
utors Distributor location Distributability

Distrib-
uted sys-

tems

Buffering and queueing by 
distributors

ScalabilityExplicit distributors Remote connection and 
communication protocol

RobustnessSubscription setupChannel access/sub-
scribersSubscription 

request

Many-to-many channels 
among receivers and dis-

tributors

Data marshalling and 
unmarshalling

Receiver user inter-
face Content storage/expiration SecurityDistribution policy

Implicit invocation
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we will need to address. First, we will need to carefully
specify a large, representative if not complete, set of exist-
ing architectural styles. This process will help us test our
hypothesis that the seven dimensions are sufficient to
uniquely and richly describe a style. Second, we will need
to characterize each style in a manner that will simplify the
task of relating the information contained in DAM and
RAM models to the information contained in Table 1.
Third, we will need to address situations in which multiple
styles are highlighted in this process as plausible candi-
dates. A related issue is dealing with situations in which
multiple styles are most appropriate to use in tandem for a
given problem.

In fact, we indeed selected two styles in our ShareDraw
example application: client-server to handle the distributed,
coarse-grained aspects of the application, and C2 for its
ability to compose the GUI-intensive application compo-
nents within each client and server. This choice was aided
by several factors, including our familiarity with these two
styles, the fact that we had used them together in the past,
the relatively small number of styles we had considered
(e.g., Table 1 only includes four styles), and some domain
properties (distribution and GUI aspects) that clearly
mapped to these two styles. We envision this to be a much
greater challenge in a more general setting. Our future
work will include identifying conditions and situations
under which specific combinations of styles are
(dis)allowed. This is a non-trivial problem that deserves
particular attention. 

4.3.2  Integrating DAM and RAM

Once we have determined the suitable architectural
style(s), we can integrate the, still separate, DAM and
RAM models into a single integrated model. There are
three possible approaches to accomplishing this step:

1. Apply the style information to DAM to derive an “as
intended” architecture, and then “map” the information
from RAM onto this architecture.

2. Apply the style information to RAM to derive an “as
implemented” architecture, and then “map” the
information from DAM onto this architecture.

3. Integrate DAM and RAM into an “as extracted”
architecture, and then apply the style information to the
integrated model.

4.

We are currently investigating the respective benefits and
drawbacks of the three approaches. 

The “as intended” architecture of the ShareDraw appli-
cation, obtained by integrating DAM and architectural style
information as discussed above, is given in Figure 4a. The
complete architecture, obtained by mapping the informa-
tion contained in RAM to the “as intended” architecture, is
shown in Figure 4b. As mentioned above, the final Share-
Draw architecture combines the client-server and C2 styles.

Irrespective of the chosen integration approach, inte-
grating DAM and RAM requires knowledge about how
their elements interrelate. Although both DAM and RAM
present architectural perspectives, they may be inconsis-
tent, e.g., in the element names or level of architectural
detail. The two models will thus need to be reconciled. Var-
ious interesting reconciliation scenarios can be envisioned.
For example, a single RAM element may map to multiple
DAM elements, and vice versa. It is also possible that no
obvious relationship can be established between an element
in one of the models and the other model’s elements. We
will carefully study these scenarios.

5  CONCLUSION

This work described in this paper is motivated by the
observation that architecturally-relevant information is
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readily available in a system’s requirements and its imple-
mentation, although not always in an obvious form. This
information can then be uncovered and used to help stem
architectural erosion. The information captured in a sys-
tem’s requirements is high-level, possibly imprecise, but
rich in human stakeholders’ insights and rationale; this
information often suggests the suitable architectural
style(s) for the system. On the other hand, the information
contained in a system’s implementation is low-level, pre-
cise, and rich in detail; this information reflects the style(s)
applied in the system’s construction. We postulate that nei-
ther of the two sources of information should be considered
complete or correct by itself. Instead, we propose that they
be combined using the three presented techniques: archi-
tectural discovery, recovery, and reconciliation.

The work described in this paper is on-going. We have
already identified several open issues that will frame our
future research. In addition, we envision that the combina-
tion of the three techniques will likely result in a self-
adjusting process in which the architecture is already
known to be incorrect and/or incomplete, but, in addition,
neither the requirements nor the implementation need be
assumed correct or complete. Furthermore, the proposed
approach will result in clearly specified and maintainable
traceability links across the requirements, architecture, and
implementation. We plan to adopt existing techniques (e.g.,
[7,26]) to capture and manage the traceability links. 
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Abstract 

Requirements engineering and software architecting are 
two key activities in software life cycle. Researchers have 
paid much attention to mapping and transformation from 
requirements to software architecture, but there’s still lack 
of effective solutions. In this paper, the inadequacy of 
traditional mapping approaches (such as approaches in 
structured method and OO method) for this challenge is 
analyzed, and further a feature-oriented mapping 
approach is introduced. The rationale, process and 
guidelines for this approach are specified, and the 
approach is illustrated by an example of bank account and 
transaction (BAT) system.  

1. Introduction 

Requirements engineering and software architecting are 
two important activities in software life cycle. 
Requirements engineering is concerned with purposes and 
responsibilities of a system. It aims for a correct, consistent 
and unambiguous requirements specification, which will 
become the baseline for subsequent development, 
validation and system evolution. In contrast, software 
architecting is concerned with the shape of the solution 
space. It aims at making the architecture of a system 
explicit and provides a blueprint for the succeeding 
development activities. It is obvious that there exist quite 

different perspectives in user (or customer) requirements 
and software architecture (SA). Mapping from 
requirements to SA is by no means trivial work. In 
traditional software development methods, the mapping 
relationship between requirements and SA is indirect and 
not straightforward, and existing mapping solutions are 
inadequate for mapping user (or customer) requirements to 
SA. In order to adapt to iterative, incremental and 
evolutionary development paradigm, it is necessary to 
make the mapping relationship between user (or customer) 
requirements and SA direct and straightforward, so as to 
support the traceability between requirements and SA more 
effectively.  

As we have noticed, today more and more researchers 
pay their attentions to the research of feature-oriented 
software development methods. There have been efforts to 
apply feature to software development. In 1982, Davis [1] 
identified features as an important organization mechanism 
for requirements specification. In 1990 Kyo C. Kang [2] 
etc. proposed feature-oriented domain analysis (FODA) 
method. In this method, the concept of using feature model 
for requirements engineering was introduced. As a main 
activity in domain modeling, feature analysis is intended to 
capture the end-user’s (and customer’s) understanding of 
the general capabilities of applications in a domain. Later, 
FORM method [3] extends FODA to the software design 
and implementation phases and prescribes how the feature 
model is used to develop domain architectures and 
components for reuse. FORM method is quite fit for 
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software development in mature domain where standard 
terminology, domain experts and up-to-date documents are 
available. C. Reid Turner [4] puts forward a conceptual 
framework for feature engineering in 1999. Turner prefers 
to look feature as an important organizing concept within 
the problem domain and proposes carrying a feature 
orientation from the problem domain into the solution 
domain. Turner’s framework comes from software 
development experience in telecommunication domain, 
and is still conceptual and incomplete. It does not provide 
particular solution for mapping requirements to SA from 
software engineering perspective. But above researches 
and practice show that it is feasible and effective to make 
features explicit in software development and to take 
feature orientation as a paradigm during the software life 
cycle. 

In this paper, we will explore how to apply feature 
orientation as a solution for the mapping problem between 
requirements and SA from general software engineering 
perspectives, focusing on the mapping and transformation 
process. Our solution is to organize requirements in 
problem domain into a feature model, and then base our 
architectural modeling on the feature model, with the goal 
maintaining direct and natural mapping between 
requirements model and architecture models. Further, we 
will address functional features and nonfunctional features 
separately in different architectural models. Our approach 
is not a replacement of but an improvement on traditional 
methods. Our approach can integrate closely with OO 
method. The modeling concepts and notation adopted in 
this paper are based on UML, but have appropriate 
extension. 

The rest of this paper is organized as follows. Section 2 
analyzes the relationship between requirements 
engineering and software architecting, and specifies the 
necessity for supporting traceability between requirements 
and SA. Section 3 analyzes the inadequacy of mapping 
approaches in traditional methods. Section 4 proposes a 
feature-oriented mapping solution, and specifies the 
rationale, process and guidelines for this approach. Section 
5 concludes the paper and further research effort is 

envisioned. Application of our mapping approach to the 
bank accounts and transactions system (BAT) has been 
used in this paper as an illustrative example. 

2. Requirements Engineering and Software 
Architecting 

The IEEE standard [5] defines “requirement” as 
“(1) A condition or capability needed by a user to solve 

a problem or achieve an objective. 
(2) A condition or capability that must be met or 

possessed by a system or system component to satisfy a 
contract, standard, specification or other formally imposed 
document. 

(3) A documented representation of a condition or 
capability as in (1) or (2).”  

This definition is not so clear. In practice, requirements 
for a software system may exist in multiple different 
abstract levels, varying from organization’s business 
requirements, through user’s task requirements, to eventual 
software requirements specification (SRS).  

Requirements engineering aims at reaching a good 
understanding of the problem domain and user’s (or 
customer’s) needs through effective problem analysis 
techniques, and producing a correct, unambiguous, 
complete and consistent requirements specification which 
serves as a baseline for developers to implement the 
software system. Requirements engineering only focuses 
on problem domain and system responsibilities, but not 
design and implementation details. 

SA has become an important research field for software 
engineering community. There exists a consensus that for 
any large software system, its gross structure-that is, its 
high-level organization of computational elements and 
interactions between those elements-is a critical aspect of 
design [6][7]. It is widely accepted that SA is a very 
important product and software architecting is a necessary 
phase in software life cycle. As an important design 
concept, SA “can serve as the key milestone in the entire 
software life cycle process”. SA’s “support of the needs of 
system engineers, customers, developers, users, and 
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maintainers, also implies that is involved in all phases of 
the software and system life cycle”[8]. 

Until now software engineering researchers don’t reach 
an agreement about the relationship between requirements 
engineering and software architecting. Following waterfall 
development model, software architects should not begin 
software architecting until a complete, correct and 
consistent requirements specification is reached. But some 
researchers[10] have pointed out that this model is 
discredited. In “multilevel life cycle chart” model, 
proposed by Merlin Dorfman [10], requirements 
engineering is involved throughout the software 
architecting process, that is, the steps of requirements 
analysis and design alternate. Rational Software 
Corporation [9] proposes the Unified Process, which is a 
use case driven, architecture-centric, and iterative and 
incremental process framework. In spite of existing 
different perspectives, now iterative, incremental, 
evolutionary and concurrent development paradigms are 
gaining more and more wide-spread acceptance. In 
development following such paradigms, it is more 
important to maintain direct and natural mapping and 
traceability between requirements specification and SA. 

3. Traditional mapping approaches 

Looking back on the development of software 
development methodology, it is not difficult to find that 
keeping the traceability and the consistency in concepts 
between requirements and designs always are the goals 
that we pursue. Two main software development methods, 
structured method and object-oriented method, both 
provide solutions for mapping analysis model to design 
model. 

In structured method, software requirements are 
captured in Data Flow Diagram (DFD), and design is 
described in Module Structure Chart (MSC). Because there 
exists evident difference between the basic concepts and 
principles of DFD and MSC, mapping DFD to MSC is 
difficult and just by heuristic rules. Object-oriented 
approach cured the symptom that the structured paradigm 

did not. Because Object-Oriented Analysis (OOA) and 
Object-Oriented Design (OOD) use the uniform basic 
concepts and principle, the mapping between OOA model 
and OOD model is natural and direct. Also, keeping 
traceability is easy and transformation could be done 
mechanically. 

But both structured method and OO method don’t 
provide complete solution for mapping requirements to SA 
indeed. On one hand, in both methods, SA and components 
are not paid enough attention to; On the other hand, both 
DFD and OOA model describe internal structure of the 
system from developer’s view and not external behavior 
from end users’ view. They contain some information that 
is not of interest to end-users (or customers). So there is 
still a gap between analysis model (DFD or OOA model) 
and user requirements description. Based on above 
analysis, we can conclude that, the mapping approaches in 
traditional methods are inadequate for mapping from 
requirements to SA. 

4. Feature-oriented mapping 

In this section we will explore how to apply feature 
orientation as a solution for mapping and transformation 
from requirements to SA aiming at improving traditional 
methods.  

Feature has been defined in various ways, some 
important definitions are as follows: A feature is “a 
coherent and identifiable bundle of system functionality 
that helps characterize the system from the user 
perspective”[4]; A feature is “a prominent or distinctive 
user-visible aspect, quality, or characteristic of a software 
system or systems”[2]; A feature is “an externally desired 
service by the system that may require a sequence of 
inputs to effect the desired result” [11]; A feature is “a 
service that the system provides to fulfill one or more 
stakeholder needs”[12]. We think that a feature is a 
higher-level abstraction of a set of relevant detailed 
software requirements, and is perceivable by users (or 
customers). So it is reasonable to identify features as 
“first-class entities” in requirements modeling, and 
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combine feature modeling and traditional requirements 
modeling together to describe requirements in different 
levels. Further, in architectural modeling we will take 
feature orientation as a goal, and try to maintain direct and 
natural mapping between feature model and architectural 
models at higher levels. By feature-orientation, we aim at 
making the mapping relationship between requirements 
and SA straightforward, which is impossible by traditional 
approaches.  
  We also have recognized the different effect of 
functional features and nonfunctional features on software 
architecture and address them separately. First, we get an 
initial partition of the proposed system into components 
based on functional features. Then, further optimization 
and transformation can be imposed on the partition, 
iteratively and incrementally, considering nonfunctional 
features.  
  The feature-oriented mapping process consists of two 
stages: feature-oriented requirements modeling and 
feature-oriented architectural modeling. 

4.1 Feature-oriented requirements modeling 

Feature-oriented requirements modeling is intended to 
capture users’ (or customers’) high-level expressions of 
desired system behavior in terms of application features, 
analyze the relationship between features, and then 
organize and refine the features into a feature-oriented 
requirements specification. Feature-oriented requirements 
modeling can be divided into three activities: feature 
elicitation, feature organization and analysis and feature 
refinement.  

Feature elicitation 
Features elicitation focuses on eliciting user 

requirements in terms of features. Keeping elicitation at 
abstract feature levels, we can avoid plunging into detailed 
functional requirements too early. Also, as the user often 
has expertise in the domain and knows the value of the 
features, problem analysis effort can be concentrated on 
user-desired features and unnecessary work can be reduced. 

Users’ (or customers’) knowledge about problem domain 
is main source of features. Books, user manuals, etc. are 
also sources of features. Main feature elicitation 
techniques include interview, questionnaire, requirements 
workshop, and so on. In mature domains, analyzing the 
terminology of the domain language is also an effective 
and efficient way to identify features. 

Feature analysis and organization 
As potential features are identified and elicited, they are 

analyzed and organized into a feature hierarchy in a tree 
form. The features collected can be divided into functional 
features and nonfunctional features. All features reflect 
stakeholders’ need to solve their problems. According Karl 
E. Weigers’ view [13], stakeholders’ requirements may 
exist in multiple levels, including business requirements, 
user requirements and functional requirements. As 
abstraction of functionality, features may exist at either 
business level or user level. A feature at business level 
describes the high-level desire of an organization or a 
customer for future system. Features at user level describe 
services which future system should provide for user tasks 
and constraints on the services. We first partition the 
features into the two levels, and we then further organize 
the features based on following criteria: 
� The features to support a specific business process 

can be grouped and abstracted as a higher-level 
feature 

� The features to support a specific user class can be 
grouped and abstracted as a higher-level feature 

� A nonfunctional feature that is a constraint on a 
functional feature becomes a sub-feature of the 
functional feature. 

� If a feature at user level is used to realize a feature at 
business level, then the former becomes a sub-feature 
of the latter. For instance, in the bank account and 
transaction system (BAT) example (see Figure 1), 
“identify client” feature is a realization of the 
nonfunctional feature “security”, so “identify client” 
feature becomes a sub-feature of “security” feature.  

There exist various relationships among the features. We 
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have identified several kinds of relationships: 
“composed-of”, “generalization/specialization”, 
“derived-from”, “constrained-by” and “dependent-on”, etc. 
As shown in Figure 1, “identify client” is derived from 
“security”, “withdraw money” is constrained by “response 
time <= 1min”, all customer services is dependent on 
“identify client”.  

Features themselves may be “mandatory” or “optional”. 
A mandatory feature is necessary for general users, and an 
optional feature is necessary for partial users. For example, 

“withdraw money” is a “mandatory” feature, but “transfer 
money” is an “optional” feature. 

Feature refinement 
Now we have a feature hierarchy, but it is not specific 

enough for implementation. The next task is to refine the 
features into detailed functional requirements. Here use 
case technique can be used to elaborate a feature into a set 
of functionality. 

Figure1 presents the resulting requirements model 
through feature-oriented modeling. 

functionMandatory
feature

Optional
feature

withdraw moneydeposit money transfer moneyidentify client

Response
time <= 1 min

User
level

various UI

Check
funds

Debit
account

Dispense
money

Identify
client

function
level

BAT services

security
Account

managementfail-safe customer
services

Business
level

Remote
client

Figure 1. The feature model of BAT system 

4.2 Feature-oriented architecture modeling 

After we have got requirements specification organized 
by features, we can take it as an input to architecture 
modeling and derive SA from it. We will take feature 
prominence as a goal and try to maintain direct and natural 
mapping between feature model and architecture models. 

Also, we have recognized that functional features and 
nonfunctional features have each different contribution to 
SA. A functional feature can be mapped to a subsystem or 
a component. Nonfunctional features can generally not be 
pinpointed to a particular component, but have impacts on 
the system structure and behavior as a whole. So we can 
address them separately in different models. We define SA 
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from three different viewpoints: conceptual architecture, 
logical architecture, and deployment architecture. As 
shown in figure 2, conceptual architecture focuses on the 
system’s partition based on functional features, not 
considering nonfunctional features. Logical architecture 
focuses on logic design for addressing nonfunctional 
features, considering the implementation environment. 
Deployment architecture focuses on physical distribution 
of the system, addressing related nonfunctional features. 

Conceptual architecture  
The conceptual architecture identifies the system 

components, the responsibilities of each component, and 
relationships between components in terms of application 
domain concepts. It tries to preserve the structure of 
problem domain by partitioning system based on 
functional features and problem domain structure. Each 
functional feature is mapped to a conceptual subsystem in 
the conceptual architecture, and each function at the 
function level can be mapped to an operation of a class in 
the class diagram. Figure3, Figure4 and Figure5 illustrate 
the three views of conceptual architecture in different 
levels of details, among which the lower-level view is a 
refinement of the higher-level view.  

Conceptual
architecture

Requirements
model

Functional
features

nonFunctional
features

nonFunctional
features

logical
architecture

*
*

*
*

Deployment
architecture

Figure 2. Mapping feature model to architecture models

 
 

<<conceptual
subsystem>>

Customer
Services

<<conceptual
subsystem>>

Account
management

BAT
System

 
Figure 3. Business view of BAT conceptual architecture 

<<conceptual
subsystem>>

Account
management

<<conceptual
subsystem>>

Withdraw money

<<conceptual
subsystem>>

Deposit money

<<conceptual
subsystem>>

Transfer moeney

<<conceptual
subsystem>>

Identify client

 
Figure 4. User view of BAT conceptual architecture 
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ATM interface

Withdrawal money Account

Dispense money

customer

1: identify

client

2: withdrawmoney 3: validation
and

withdrawal

4: dispense

money

Figure 5. “Withdraw money” conceptual subsystem specification

Logical architecture 
Logical architecture is the detailed architecture 

specification that defines the system components and 
interactions between components. Comparing with 
conceptual architecture, the logical architecture introduces 
more logical structures or mechanisms considering the 
implementation context and nonfunctional features. The 
form of the conceptual architecture may be adapted or 

even transformed. As shown in figure 6, considering 
nonfunctional feature “various UI”, we apply “separation 
of concerns” strategy to the conceptual architecture. We 
separate responsibility for user interface from 
responsibility for transaction management. So we got a 
new system partition: “ATM interface” subsystem, 
“Transaction management” subsystem and “Account 
management” subsystem.  

<<subsystem>>
ATM interface

<<subsystem>>
Transaction
Management

withdrawal

dispensing

transferral deposits

<<subsystem>>
Account

Management

transfers

Figure 6. Logical architecture of BAT system 

Deployment architecture 
The deployment architecture focuses on how 

functionality is distributed among computational nodes 
and how computational nodes interact, to meet related 
nonfunctional features. As shown in figure 7, considering 
“remote client” and “fail-safe” features, a Three-Tier 

architecture style is selected, and the CHAP 
acknowledgement protocol is adopted to ensure connection 
safety. Some components identified in conceptual 
architecture and logical architecture, such as “withdraw 
money” subsystem, is distributed to the three nodes in this 
view. 

ATM

Cash
card

Transaction

Transaction
management

Transaction Transaction

Account
management

ATM
client

ATM
application

server

ATM
data server

Intranet

<<chap>>

Internet

<<chap>>

Figure 7. Deployment architecture of BAT system 
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5. Conclusion 

In this paper, we analyze the gap between requirements 
and SA and the inadequacy of mapping approaches in 
traditional structured method and OO method. Based on 
this analysis, we propose a feature-oriented mapping and 
transformation approach. Our solution is to take 
feature-oriented as a paradigm both in requirements 
engineering and software architecting, so as to maintain 
direct and natural mapping between requirements 
specification and SA. Further, considering the different 
effect of functional features and nonfunctional features on 
SA, we address them separately in different models, 
iteratively and incrementally. So our approach can fit into 
iterative, incremental or evolutionary development 
paradigm. 

We believe that feature-oriented development paradigm 
will gain more and more wide-spread acceptance. Further 
work will be to integrate our approach with existing CBSD 
development paradigm in order to support components 
reuse at different stages in software life cycle. 
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Abstract  
   Functional requirements contain, and systems exhibit, 
the behavior  summarized below. 

 
   Despite the advances in software engineering since 1968, 
how to go from a set of functional requirements to an 
architecture that accommodates those requirements 
remains a challenging problem. Progress with this 
fundamental problem is possible once we recognize (1) 
that individual functional requirements represent fragments 
of behaviour, (2) a design that satisfies a set of functional 
requirements represents integrated behaviour, and (3) an 
architecture must accommodate the integrated behaviour 
expressed in a set of functional requirements.  This 
perspective admits the prospect of constructing a design 
out of its requirements. A formal representation for 
individual functional requirements, called behavior trees 
makes this possible.  Behaviour trees of individual 
functional requirements may be composed, one at a time, 
to create an integrated design behaviour tree. From this 
problem domain representation it is then possible to 
transition directly and systematically to a solution domain 
representation of the component architecture of the system 
and the behaviour designs of the individual components 
that make up the system – both are emergent properties.  

 
• Components realise states 
• Components change states 
• Components have sets of attributes that are assigned values 
• Components, by changing states, can cause other 

components to change their states 
• Supplementing these component-state primitives are 

conditions/decisions, and events involving component-states.  
• Interactions between components also play a key role in 

describing behaviour. They involve control-flow and/or data-
flow between components. 
 

   Notations like sequence diagrams, class and activity 
diagrams from UML[1], data-flow diagrams, Petri 
Nets[2], state-charts and Message Sequence Charts 
(MSCs) [3,4], accommodate the behaviour we find 
expressed in functional requirements and designs.  
Individually however, none of these notations provide the 
level of constructive support we need. This forces us to 
contemplate another representation for functional 
requirements and designs. Such ventures are generally not 
enthusiastically received – a consensus is that new 
notations just muddy the waters. Our justification for 
ignoring this advice is that the Behavior Tree Notation 
solves a fundamental problem – it provides a clear, simple, 
constructive path for going first from a set of functional 
requirements to an  integrated behaviour representation 
that will satisfy those requirements and then to an 
architecture and the set of accompanying component 
behaviour designs [5].  

 
“Finding deep simplicities in a complex logical task 
leads to work reduction”- Harlan Mills. 

 
1. Introduction 
    
   A great challenge that continues to confront software 
engineering is how to go in a systematic way from a set of 
functional requirements to a design that will satisfy those 
requirements and an architecture that will support the 
implied integrated behavior. In practice, these two tasks 
are further complicated by defects in the original 
requirements and, subsequent changes to the requirements. 

 
2. Behavior Trees 
 
   The Behavior Tree Notation captures in a simple tree-
like form of composed component-states what usually 
needs to be expressed in a mix of other notations. 
Behavior is expressed in terms of components realizing 
states, augmented by the logic and graphic forms of 
conventions found in programming languages to support 
composition, events, control-flow data-flow, threads, and

 
   A first step towards taking up this challenge is to ask – 
what are functional requirements? Study of diverse sets of 
functional requirements suggests it is safe to conclude that 
individual requirements express constrained behaviour.  
By comparison, a system that satisfies a set of functional 
requirements exhibits integrated constrained behaviour. 
The latter  behaviour of systems is not inherently different.   
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constraints. Behavior trees are equally suited to capture 
behavior expressed in natural language functional 
requirements as to provide an abstract graphical 
representation of  behavior expressed in a  program. We 
may therefore ask can the same formal representation of 
behaviour be used for requirements and for a design? If it 
could it may clarify the requirements-design-architecture 
relationship. 
 
Definition: A Behavior Tree is a formal, composable,  
tree-like graphical form that  represents  behaviour of  
individual or networks of entities which realize or change 
states, make decisions, respond-to/cause events, and 
interact by exchanging information and/or passing 
control.  
 
Behavior trees provide a direct and clearly traceable 
relationship between what is expressed in the natural 
language representation and its formal specification. 
Translation is carried out on a sentence-by-sentence basis,  
e.g., the sentence “when the door is opened the light 
should go on” is translated to the behaviour tree below: 

DOOR
?? Open  ??

LIGHT
[ On ]

 

   The principal conventions of the notation for 
component-states are the graphical forms for associating 

with a component a [State], ??Event??, ?Decision?, [Sub-
cpt[State] or relation, or [Attribute := expression | State ]. 
Exactly what can be an event, a decision, a state, etc are 
built on the formal foundations of expressions, Boolean 
expressions and quantifier-free formulae (qff). To assist 
with traceability to original requirements a simple 
convention is followed. Tags (e.g. R1 and R2, etc, see 
below) are used to refer to the original requirement in the 
document that is being translated. System states, are used 
to model high-level (abstract) behaviour and some 
preconditions/postconditions. Key elements of the 
notation are given in Figure 1, above (see EBNF,  
semantics, web-site http://www.sqi.gu.edu.au/gse/papers). 
 
   In practice, when translating functional requirements 
into behavior trees we often find that there is a lot of 
behavior that is either missing or is only implied by a 
requirement. We mark implied behavior with a “+” in the 
tag (and/or the colour yellow if colour can be shown). 
Behavior that is missing is marked with a “-“ in the tag 
(and/or the colour red). Explicit behavior in the original 
requirement that is translated and captured in the behavior 
tree has no “+/-“ marking, and the colour green is used - 
see Fig. 4 below. These conventions maximize traceability 
to original requirements.  
 
3. Genetic Software Engineering Method 
 
   Conventional software engineering applies the 
underlying design strategy of constructing a design that 
will satisfy its set of functional requirements. In contrast to 
this, a clear advantage of the behavior tree notation is that 
it allows us to construct a design out of its set of functional 
requirements, by integrating the behavior trees for 
individual functional requirements (RBTs), one-at-a-time, 
into an evolving design behavior tree (DBT). This very 
significantly reduces the complexity of the design process 
and any subsequent change process [5].  

Component-State  Label          Semantics

tag COMPONENT
[ State ]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
w hen state is realized

tag COMPONENT
[ Sub-cpt [ State ] ]

Container - State
Indicates that a container
component w ill have a sub-
component realize a state

tag COMPONENT
[Attribute := Value]

Attribute - State
Indicates that the component
w ill assign a value to one of
its attributes.

tag COMPONENT
?? WHEN-State ??

WHEN  - State
Indicates that the component
will  only pass control when and
if the event WHEN-state happens

tag COMPONENT
< Dataflow-State >

Data-out State Indicates that when the
component has realized the
state it wi l l  pass the data to
the component that receives
the flow

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
will  only pass control i f If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to i ts output

tag System-Name
[ State ]

Figure 1. Behavior Tree Notation, key elements

 
   What we are suggesting is that a set of functional 
requirements, represented as behavior trees, in principal at 
least (when they form a complete and consistent set), 
contains enough information to allow their composition.    
This property is the exact same property that a set of 
pieces for a jigsaw puzzle possess. And,  interestingly, it is 
the same property which a set of genes that create a living 
entity possess. Witness the remark by geneticist Adrian 
Woolfson: in his recent book ([6], p.12), Living Without 
Genes, “we may thus imagine a gene kit as a cardboard 
box filled with genes. On the front and sides of the box is a 
brightly coloured picture of the creature that might in 
principle be constructed if the information in the kit is 
used to instruct a biological manufacturing process” 
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 The obvious question that follows is: “what information is 
possessed by a set of functional requirements that might 
allow their composition or integration?” The answer 
follows from the observation that the behaviour expressed 
in functional requirements does not “just happen”. There 
is always a precondition that must be satisfied in order for 
the behaviour encapsulated in a functional requirement to 
be accessible or applicable or executable.  In practice, this 
precondition may be embodied in the behaviour tree 
representation of a functional requirement (as a 
component-state or as a composed set of component 
states) or it may be missing - the latter situation represents 
a defect that needs rectification. The point to be made here 
is that this precondition is needed, in each case, in order to 
integrate the requirement with at least one other member 
of the set of functional requirements for a system. (In 
practice, the root node of a behaviour tree often embodies 
the precondition we are seeking). We call this 
foundational requirement of the genetic software 
engineering method, the precondition axiom. 

BT-y

BT-x

Py

Px

Px

Matching
Precondition

Interaction Axiom

Figure 2. Interaction Axiom - graphic form

 Integrating the root of BT-x
 with a matching node in BT-y

Integration

   The precondition axiom and the interaction axiom play a 
central role in defining the relationship between a set of 
functional requirements for a system and the 
corresponding design.  What they tell us is that the first 
stage of the design process, in the problem domain, can 
proceed by first translating each individual natural 
language representation of a functional requirement into 
one or more behavior trees. We may then proceed to 
integrate those behavior trees just as we would with a set 
of jigsaw puzzle pieces. What we find when we pursue 
this whole approach to software design is that the process 
can reduced to the following four overarching steps: 

 
Precondition Axiom 
Every constructive, implementable individual functional 
requirement of a system, expressed as a behavior tree, has 
associated with it a precondition that needs to be satisfied 
in order for the behavior encapsulated in the functional 
requirement to be applicable. 
 
   A second building block is needed to facilitate the 
composition of functional requirements expressed as 
behavior trees. Jigsaw puzzles, together with the 
precondition axiom, give us the clues as to what additional 
information is needed to achieve integration. With a 
jigsaw puzzle, what is key, is not the order in which we 
put the pieces together, but rather the position where we 
put each piece. If we are to integrate behavior trees in any 
order, one at a time, an analogous requirement is needed.  
We have already said that a functional requirement’s 
precondition needs to be satisfied in order for its 
behaviour to be applicable. It follows that some other 
requirement, as part of its behavior tree, must establish the 
precondition. This requirement for composing/integrating 
functional requirements expressed as behaviour trees is 
more formally expressed by the following axiom. 

• Requirements translation – (problem domain) 
• Requirements integration – (problem domain) 
• Component architecture transformation 
• Component behaviour projection 

 
   Each overarching step, needs to be augmented with a 
validation and refinement step designed specifically to 
isolate and correct the class of defects that show up in the 
different work products generated by the process.  
. 
   Comprehensive description, formalization, and 
justification of a software development method and 
notation, like the one here, requires significantly more 
than a conference paper length treatment To maximize 
communication we will only introduce the main ideas of 
the method informally and show how the architecture and 
component designs are obtained. The process is best 
understood in the first instance by observing its 
application to a simple example. For our purposes, and for 
the purposes of comparison, we will use a design example 
for a Microwave Oven that has already been published in 
the literature [7]. The seven stated functional requirements 
for the Microwave Oven problem [7, p.36] are given in 
Table I below.  Shlaer, and Mellor have applied their 
state-based Object-Oriented Analysis method to this set of 
functional requirements.  

 
Interaction Axiom 
For each individual functional requirement of a system, 
expressed as a behavior tree, the precondition it needs to 
have satisfied in order to exhibit its encapsulated 
behavior, must be established by the behavior tree of at 
least one other functional requirement that belongs to the 
set of functional requirements of the system. (The 
functional requirement that forms the root of the design 
behavior tree, is excluded from this requirement. The 
external environment makes its precondition applicable ).  
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Table 1. Functional Requirements for Microwave Oven  

 
3.1 Requirements Translation 
   After preliminary glossary/vocabulary processing and 
removal of aliases, etc, requirements translation is the first 
major step in the Genetic Software Engineering (GSE) 
design process. Its purpose is to translate each natural 
language functional requirement, one at a time, into one or 
more behavior trees.  Translation identifies the 
components (including actors and users), the states they 
realise (including attribute assignments), the events and 
decisions/constraints that they are associated with, the 
data components exchange, and the causal, logical and 
temporal dependencies associated with component 
interactions.   
 
Example Translation 
The translations for the first six functional requirements 
for the Microwave Oven given in Table 1 are shown in 
figure 4. Translation of R7 from Table 1 will now be 
considered in slightly more detail. For this requirement we 
have underlined the states/actions and made the 
components bold, i.e., “If the oven times out the light and 
the power-tube are turned off and a beeper emits a sound 
to indicate that cooking has finished”. Figure 3. (see 
below) gives a translation of this requirement R7, to a 
corresponding requirements behavior tree (RBT). In this 
translation we have followed the convention of trying 
wherever possible to associate higher level system states 
(here OVEN states) with each functional requirement, to 
act as preconditions/postconditions.  

What we see from this translation process is that even for 
a very simple example, it can identify problems that, on 
the surface, may not otherwise be apparent (e.g. the 
original requirement, as stated, leaves out the precondition 
that the oven needs to be cooking in order to subsequently 
time-out). In addition, the behavior tree representation 
tags (here R7) are able to provide very direct traceability 
back to the original statement of requirements. Our claim 
is that the translation process has good repeatability if 

translators forego the temptation to interpret, design, and 
introduce new things as they do an initial translation. 
 R1.  There is a single control button available for the user of the oven. 

If the oven is idle with the door is closed and you push the button, the 
oven will start cooking (that is, energize the power-tube for one 
minute).  
R2.  If the button is pushed while the oven is cooking it will cause the 
oven to cook for an extra minute. 
R3.  Pushing the button when the door is open has no effect (because it 
is disabled). 
R4.  Whenever the oven is cooking or the door is open the light in the 
oven will be on. 
R5.  Opening the door stops the cooking. 
R6. Closing the door turns off the light. This is the normal idle state, 
prior to cooking when the user has placed food in the oven. 
R7.  If the oven times-out the light and the power-tube are turned off 
and then a beeper emits a sound to indicate that the cooking is finished.
 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 OVEN
?? Timed-Out ??

Requirement-7
If  the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 3. Behavior Tree for Requirement R7   

  
3.2 Requirements Integration 
   When requirements translation is completed each 
individual functional requirement has been translated to 
one or more corresponding requirements behavior tree(s) 
(RBT). We can then systematically and incrementally 
construct a design behavior tree (DBT) that will satisfy all 
its requirements  by integrating the requirements’ 
behavior trees (RBT).  Integrating two behavior trees 
turns out to be a relatively simple process that is guided by 
the precondition and interaction axioms referred to above. 
In practice, it most often involves locating where, (if at all) 
the component/state root node of one behavior tree occurs 
in the other tree and grafting the two trees together at that 
point.  This process generalises when we need to integrate 
N behavior trees. We only ever attempt to integrate two 
behavior trees at a time – either two RBTs, an RBT with a 
DBT  or two partial DBTs. In some cases, because the 
precondition for executing the behavior in an RBT has not 
been included, or important behaviour has been left out of 
a requirement, it is not clear where a requirement 
integrates into the design. This immediately points to a 
problem with the requirements. In other cases, there may 
be requirements/behavior missing from the set which 
prevents integration of a requirement. Attempts at 
integration uncover such problems with requirements at 
the earliest possible time. 
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Requirement-2
If  the button is pushed w hile the oven is
cooking it w ill cause the oven to cook for an
extra-minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

Requirement-3
Pushing the button w hen the door is open has
no effect  (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[ Open ]

R3
C+

BUTTON
[ Disabled ]

Requirement-4
Whenever the oven is cooking or the door is
open the light in the oven w ill be on.

R4
C

DOOR
[Open ]

R4
C

LIGHT
[On  ]

R4
C

OVEN
[Cooking ]

R4
C

LIGHT
[On  ]

Requirement-5
Opening the door stops the cooking

R5
+

USER
??Door-Opened??

R5
+

OVEN
[Cooking]

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Requirement-1
If  the oven idle w ith the door closed  and you
push the button the oven w ill start  cooking
(that is, energize the pow er-tube for one
 minute)

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

NOTE: I t is actually pressing the button
that causes the light to go on.

Figure 4. Behavior trees for Microwave Oven
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Example Integration 

R1
@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ^
[Open]

R3
C+

BUTTON
[Enabled ]

R3
C

BUTTON
[Disabled ]

Figure 6. Integration of all functional  requirements

R4
C

LIGHT
[ On ]

R8
-

LIGHT
[ On ]

   To illustrate the process of requirements integration we 
will integrate requirement R6, with part of the constraint 
Requirement R3C to form a partial design behaviour tree 
(DBT). This is straightforward because the root node (and 
precondition) of R3C, DOOR[Closed] occurs in R6. We 
integrate R3C into R6 at this node. Because R3C is a 
constraint it should be integrated into  every requirement 
that has a door closed state (in this case there is only one 
such node). The result of the integration is shown below. 

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@)

      Figure 5. Result of Integrating R6 and R3C 
 
When R6 and R3C have been integrated we have a 
“partial design” (the evolving design behavior tree) whose 
behavior will satisfy R6, and the R3C constraint. In this 
DBT it is clear and traceable where and how each of the 
original functional requirements contribute to the design.  
    Once the design behavior tree (DBT) has been 

constructed the next jobs are to transform it into its 
corresponding software or component architecture (or 
component interaction network - CIN) and then project 
from the design behavior tree the component behavior 
trees (CBTs) for each of the components mentioned in the 
original functional requirements.  

   Using this same behavior-tree grafting process, a 
complete design is constructed (it evolves) incrementally 
by integrating RBTs and/or DBTs  pairwise until we are 
left with a single final DBT (see Figure 6 below). This is 
the ideal for design construction that is realizable when all 
requirements are consistent, complete, composable and do 
not contain redundancies.  When it is not possible to 
integrate an RBT or DBT with any other it points to an 
integration problem with the specified requirements that 
needs to be resolved. Being able to construct a design 
incrementally, significantly reduces the complexity of this 
critical phase of the design process. And importantly, it 
provides direct traceability to the original natural language 
statement of the functional requirements. From a careful 
inspection of the integrated DBT (Fig. 6) we see that there 
is a missing requirement associated with opening the oven 
when it is idle. This has been added as requirement R8. 
Note with constraint R4 we have used the causal 
relationship for the light turning on rather than the literal 
translation of the requirement. 

 
3. 4 Architecture Transformation  
   A design behavior-tree is the problem domain view of 
the “shell of a design” that shows all the states and all the 
flows of control (and data), modelled as component-state 
interactions without any of the functionality needed to 
realize the various states that individual components may 
assume.  It has the genetic property of embodying within 
its form two key emergent properties of a design: (1) the 
component-architecture of a system and, (2) the behaviors 
of each of the components in the system. In the DBT 
representation, a given component may appear in different 
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R4
C

LIGHT
[On]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@

OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8 DOOR
[Open]

R4
C

LIGHT
[On]

R3
C

BUTTON
[Disabled]

R3
C+

BUTTON
[Enabled]

Traversed Design Behavior Tree Evolving Component
Interaction Network

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

R6
+

OVEN
[Open ]

Figure 7. A step in the Tree-to-Network Transformation

 Level 8 of Design Behavior Tree

STEP 8

 
parts of the tree in different states (e.g., the OVEN 
component may appear in the Open-state in one part of the 

 

tree and in the Cooking-state in another part of the tree). 
Interpreting what we said earlier in a different way, we 
need to convert a design behavior-tree to a component-
based design in which each distinct component is 
represented only once.  This amounts to shifting from a 
representation where functional requirements are 
integrated to a representation, which is part of the solution 
domain, where the components mentioned in the 
functional requirements are themselves integrated. A 
simple algorithmic process may be employed to 
accomplish this transformation from a tree into a network. 
Informally, the process starts at the root of the design 
behavior tree and moves systematically down the tree 
towards the leaf nodes including each component and 
each component interaction (e.g. arrow) that is not 
already present.  When this is done systematically the tree 
is transformed into a component-based design in which 
each distinct component is represented only once. We call 
this a Component Interaction Network (CIN) 
representation.  Above, we show the eighth step of this 
transformation, involving the components on the eighth 
level of the DBT. Here the POWER-TUBE gets included 
into the CIN network and the link between the BUTTON 
and the LIGHT is added to the network. 
 
   The complete Component  Interaction Network derived 
from the Microwave Oven design behavior tree is shown 
below in Figure 8.  It defines the component-component 

interactions and therefore the interfaces for each 
component. It also captures the “business model” or 
“conceptual design” for the system and represents the first 
cut at the software architecture for a system. The next 
important task is to isolate the behaviors of the individual 
components present in the architecture from the DBT 
using projection. 

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 8. Component Interaction Network - ( CIN ) 
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3.4 Component Behavior Projection 
   In the design behavior tree, the behavior of individual 
components tends to be dispersed throughout the tree (for 
example, see the OVEN component-states in the 
Microwave Oven System DBT). To implement 
components that can be embedded in, and operate within, 
the derived component interaction network, it is necessary 
to “concentrate” each component’s behavior. We can 
achieve this by systematically projecting each 
component’s behavior tree (CBT) from the design 
behavior tree. We do this by essentially ignoring the 
component-states of all components other than the one we 
are currently projecting. The resulting connected 
“skeleton” behavior tree for a particular component 
defines the behavior of the component that we will need to 
implement and encapsulate in the final component-based 
implementation. 
 
 Example – Component Behavior Projection 
To illustrate the effect and significance of component 
behavior projection we show the projection of the OVEN 
SYSTEM component from the DBT for the Microwave 
Oven.  

OVEN COMPONENT - Projected Behav ior

1 OVEN
[Idle]

1 OVEN
{ Cooking} 6 OVEN ^

{ Open }

7 OVEN
{ Timed-Out }

1 OVEN
[Cooking-Finished2 OVEN ^

[Cooking]

2 OVEN
{ Extra-Minute} 5 OVEN

{Cooking-Stopped}

5 OVEN ^
[ Open ]

5 OVEN ^
[ Idle ]

6 OVEN
[Open]

Missing

Missing  
Component behavior projection is a key design step in the 
solution domain that needs to be done for each component 
in the design behavior tree.  When this process has been 
carried out for ALL the components in the DBT, that is, 
USER, BUTTON, etc, all the behavior in the DBT has 
been projected into the components that are intended to 
implement the system. That is, the complete set of 
component behavior projections conserve the behavior 
that was originally present in the DBT.  What this set of 
component projections allows us to achieve is a 
metamorphosis from an integrated set of functional 
requirements to an integrated component based design. To 
complete the component-based design, we embed the 
behaviors of each component into the architectural design 
provided by the component interaction network (CIN) – 

see, for example figure 8 above. The tasks that then 
remain are to rationalize the component interfaces and to 
implement the component interaction network which 
supports the component interactions that, in turn, 
implement the system behaviors.  And finally, we must 
provide implementations to support the behaviors 
exhibited by each of the components. Component 
integration can be done using either the facilities of a 
component framework [1] or by using a standard code 
implementation that maps the graphic network into code.  
 
In a number of reports and presentations at  
http://www.sqi.gu.edu.au/gse/papers we provide a more 
detailed account of the GSE method, the notation and its 
application to a diverse set of problems including contract 
automation and much larger applications. We also provide 
examples that show how to translate the designs that the 
method produces into object-oriented and component-
based implementations in Java.  
 
Conclusion 
What we have presented is an intuitive, stepwise process 
for going from a set of functional requirements to a design 
and a supporting architecture. The method is attractive for 
its simplicity, its traceability, its ability to detect defects, 
its control of complexity, and its accommodation of 
change. Derivation of the software component architecture 
from the design behavior tree and projection of the set of 
component behavior trees from a design behavior tree are 
both repeatable, algorithmic processes, that can be 
automated if we choose to do so.  The greatest chance for 
variation with work products comes in the translation of 
natural language descriptions of functional requirements 
to requirements behavior trees (RBTs) 
 
References 
[1]  G.Booch, J. Rumbaugh, I Jacobson, The Unified Modelling 
Language User Guide, Addison-Wesley, Reading, Mass. (1999). 
 
[2]  A.M.Davis, A Comparison of Techniques for the 
Specification of External System Behavior, Comm. ACM, vol. 
31 (9), 1098-1115, (1988). 
 
[3]  D. Harel., W. Damm,  LSCs: Breathing Life into Message 
Sequence Charts, 3rs IFIP Conf. On Formal Methods for Open 
Objected-based Distributed Systems, New York, 1999, Kluwer 
 
[4] S.Uchitel, J.Kramer, A Workbench for Synthesizing 
Behavior Models from Scenarios, 23rd International Conference 
on Software Engineering (ICSE’01), Toronto, Canada, 2001. 
  
[5] R.G.Dromey, Genetic Software Engineering - Simplifying 
Design Using Requirements Integration, IEEE Working 
Conference on Complex and Dynamic Systems Architecture, 
S4, pp. 1-16, Brisbane, Dec 2001. 
 
[6]  A. Woolfson,  Living Without Genes, Flamingo, (2000). 
 

[7]  S. Shlaer,  S.J. Mellor,  Object Lifecycles, Yourdon Press, 
New Jersey, 1992.  

 

84

http://www.sqi.gu.edu.au/gse/papers


 

Detailing Architectural Design in the Tropos Methodology 
 
 

  Carla T. L.  L. Silva 1, Jaelson F. B. Castro 1, John Mylopoulos 2 

1 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N, Recife PE, Brazil 50732-970, +1 5581 
{ctlls,jbc}@cin.ufpe.br 

2 Dept. of Computer Science University of Toronto, 10 King’s College Road Toronto M5S3G4,  Canada, +1 416 978 5180 
jm@cs.toronto.edu 

 
 

Abstract 
 

Software systems development happens within a 
context which organizational processes are well-
established. Hence, software needs to be built with 
flexible architectures based in social and intentional 
concepts to enable software to evolve consistently with 
its operational environment. In this sense, the Tropos 
requirements oriented development methodology, has 
defined a number of organizational architectural styles 
which are suitable to agent, cooperative, dynamic and 
distributed applications. In this paper, we use an 
extended version of UML to describe these novel 
architectural styles in order to provide a detailed 
representation of both the structure and behaviour of the 
architectural design using these styles. This proposal has 
been applied to an e-commerce software system.  
 
1. Introduction 

 
Companies are continually changing and turning their 

attention to improve their business strategies. 
Stakeholders are demanding more flexible and complex 
systems. Hence, software has to be based on 
architectures that can evolve and change continually to 
accommodate new components and meet new 
requirements. A flexible architecture with loosely coupled 
components is much more likely to accommodate new 
feature requirements than one that has been highly 
optimized for just its initial set of requirements. Tropos [1], 
a requirements-driven development methodology, has 
defined organizational architectural styles [6],[7],[8] based 
on concepts and design alternatives coming from research 
in organization management, used to model coordination 
of business stakeholders – individuals, physical or social 
systems. Tropos relies on the i* notation [4] to describe 
both requirements and organizational architectural styles. 
Unfortunately, this notation is not widely accepted by 
software practitioners nor able to represent some detailed 

information which sometimes is required in architectural 
design such as set of signals that are exchanged between 
architectural components, as well as the valid sequence of 
these signals (protocol).  On the other hand, the Unified 
Modeling Language – UML [3] has been extended and 
used to represent the architecture of simple and complex 
systems. Such an architecture description language is 
based on UML for Real-Time systems (UML-RT), an UML 
extension tuned for real time software systems. 

In an effort to provide detailed representation in 
architectural phase of Tropos methodology, as well as to 
represent the organizational architectural styles into a 
mainstream industrial notation, in this work we propose to 
accommodate within UML-RT the concepts and features 
used for representing organizational architectures into 
Tropos. In order to validate this proposal, we applied it to 
an e-commerce software system extracted from [1]. This 
work is an improvement of another attempt for 
representing the Tropos concepts in UML [2]. 

The rest of this paper is organized as follows:  Section 
2 presents the Tropos methodology. Section 3 describes 
how software architecture can be modeled using UML. In 
Section 4, we define how organizational architectures can 
be modeled using UML-RT. Section 5 depicts the 
application of the proposal to a case study. Section 6 
points to some future work and discusses the contribution 
of this proposal. 
 

2. The Tropos Methodology 
 

Tropos proposes a software development 
methodology and a development framework which are 
founded on concepts used to model early requirements 
and complements proposals for agent-oriented 
programming platforms. This methodology is based on the 
premise that in order to build software that operates within 
a dynamic environment, one needs to analyze and model 
explicitly that environment in terms of “actors”, their goals 
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and dependencies on other actors. Tropos supports five 
phases of software development:  

 
- Early requirements, concerned with the understanding 

of a problem by studying an organizational setting; the 
output is an organizational model which includes relevant 
actors, their goals and dependencies. 

- Late requirements, in which the system-to-be is 
described within its operational environment, along with 
relevant functions and qualities. 

- Architectural design, in which the system's global 
architecture is defined in terms of subsystems, 
interconnected through data, control and dependencies. 

- Detailed design, in which behaviour of each 
architectural component is defined in further detail. 

 
In this work, our focus in on architectural design 

phase. Software architecture is more than just structure, it 
includes rules on how system functionality is achieved 
across the structure. Unfortunately, traditional 
architectural styles for e-business applications [12],[13] 
focus on web concepts, protocols and underlying 
technologies but not on business processes nor non 
functional requirements of the application. As a result, the 
organizational architecture styles are not described nor 
the conceptual high-level perspective of the e-business 
application. 

Tropos has defined organizational architectural styles 
[6],[7],[8] for agent, cooperative, dynamic and distributed 
applications to guide the design of the system 
architecture. These architectural styles (pyramid, joint 
venture (Fig. 1), structure in 5, takeover, arm’s length, 
vertical integration, co-optation, bidding, …) are based 
on concepts and design alternatives coming from research 
on organization management. From this perspective, 
software system is like a social organization of 
coordinated autonomous components that interact in 
order to achieve specific and possibly common goals. The 
purpose to reduce as much as possible the impedance 
mismatch between the system and its environment. 

For example, the joint venture architectural style 
(Figure 1) allows a decentralized architecture. The main 
feature of this style is that it involves an agreement 
between two or more principal partners/components in 
order to obtain the benefits derived from operating at a 
large scale, such as partial investment and lower 
maintenance costs, as well as reusing the experience and 
knowledge of the partners/components, since they pursue 
joint objectives. 

To support modeling and analysis during the initial 
phases, Tropos adopts the concepts offered by i* [4], a 
modeling framework offering concepts such as actor 
(actors can be agents, positions or roles), as well as social 
dependencies among actors, including goal, softgoal, task 

and resource dependencies. This means that both the 
system’s environment and the system itself are seen as 
organizations of actors, each having goals to be fulfilled 
and each relying on other actors to help them with goal 
fulfillment. 

 
 

Figure 1. Joint Venture 
 
As shown in Figure 1, actors are represented as circles; 

dependums -- goals, softgoals, tasks and resources -- are 
respectively represented as ovals, clouds, hexagons and 
rectangles; and dependencies have the form 
depender⇒dependum⇒dependee. Hence, in Tropos we 
have the following concepts: 

 
- Actor: An actor is an active entity that carries out 

actions to achieve goals by exercising its know-how.  
- Dependency: A dependency describes an intentional 

relationship between two actors, i.e., an “agreement” 
(called dependum) between two actors: the depender and 
the dependee, where one actor (depender) depends on 
another actor (dependee) on something (dependum). 

- Depender: The depender is the depending actor. 
- Dependee: The dependee is the actor who is 

depended upon. 
- Dependum: The dependum is the type of the 

dependency and describes the nature of the agreement.  
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- Goal: A goal is a condition or state of affairs in the 
world that the stakeholders would like to achieve. How the 
goal is to be achieved is not specified, allowing 
alternatives to be considered. 

- Softgoal: A softgoal is a condition or state of affairs 
in the world that the actor would like to achieve, but unlike 
in the concept of (hard) goal, there are no clear-cut criteria 
for whether the condition is achieved, and it is up to 
subjective judgment and interpretation of the developer to 
judge whether a particular state of affairs in fact achieves 
sufficiently the stated softgoal. 

- Resource: A resource is an (physical or informational) 
entity, with which the main concern is whether it is 
available. 

- Task: A task specifies a particular way of doing 
something. Tasks can also be seen as the solutions in the 
target system, which will satisfy the softgoals 
(operationalizations). These solutions provide operations, 
processes, data representations, structuring, constraints 
and agents in the target system to meet the needs stated 
in the goals and softgoals. 

 
The first task during architectural design is to select 

among alternative architectural styles using as criteria the 
desired qualities identified in the previous phase (Late 
Requirements). To this end, the NFR framework [5] can be 
used to conduct the selection of the most suitable 
organizational architectural style. More details about the 
selection and non-functional requirements decomposition 
process can be found in [6],[7].  

In the next section, we show how architectural design 
can be represented by using an extension of UML. We 
expose our proposal for representing architectural design 
in the Tropos methodology using this extension of UML. 

 
3. Architectural Representation in UML 
 

The UMLRT [9],[10] is using UML as an architectural 
modeling language. Some specific architectural modeling 
concepts are defined as specializations of generic UML 
concepts. These specializations, usually expressed as 
stereotypes, conform to the generic semantics of the 
corresponding UML concepts, but provide additional 
semantics specified by constraints [9]: 

 
- Capsules: A capsule is a stereotype of the UML class 

concept with some specific features. A capsule uses its 
ports for all interactions with its environment. The 
communication with others capsule is done by one or 
more ports. The interconnection with other capsules is via 
connectors using signals. A capsule is a specialized active 
class and is used for modeling a self contained component 

of a system.  For instance, a capsule may be used to 
capture an entire subsystem, or even a complete system.  

- Ports: A port represents an interaction point between 
a capsule and its environment. They convey signals 
between the environment and the capsule. The type of 
signals and the order in which they may appear is defined 
by the protocol associated with the port. The port 
notation is shown as a small hollow square symbol. If the 
port symbol is placed overlapping the boundary of the 
rectangle symbol denotes a public visibility. If the port is 
shown inside the rectangle symbol, then the port is 
hidden and its visibility is private. When viewed from 
within the capsule, ports can be of two kinds: relay ports 
and end ports. Relay ports are ports that simply pass all 
signals through and end ports are the ultimate sources 
and sinks of all signals sent by capsules. These signals 
are generated by the state machines of capsules (Figure 
8). 

- Protocols: A protocol specifies a set of valid 
behaviors (signal exchanges) between two or more 
collaborating capsules. However, to make such a dynamic 
pattern reusable, protocols are decoupled from a particular 
context of collaborating capsules and are defined instead 
in terms of abstract entities called protocol roles 
(stereotype of Classifier Role in UML) (Figure 9). 

- Connectors: A connector is an abstraction of a 
message-passing channel that connects two or more 
ports. Each connector is typed by a protocol that defines 
the possible interactions that can take place across that 
connector (Figure 8). 

 
4. Organizational Architectural Styles In UML 
 

The organizational styles are generic structures defined 
at a metalevel that can be instantiated to design a specific 
application architecture. They support non-functional 
requirements, represented in Tropos methodology such as 
softgoals, during architectural design phase. Unlike 
functional requirements which define what a software is 
expected to do, non-functional requirements specify 
global constraints on how the software operates or how 
the functionality is exhibited. NFRs are as important as the 
functional ones. They are not simply desired quality 
properties, but critical aspects of dynamic systems 
without which the applications cannot work and evolve 
properly. The need to treat non-functional properties 
explicitly is a critical issue when software architecture is 
built. Organizational architectures integrate NFR with 
architectural project, since NFRs are composing part of 
these styles. 

Tropos relies on the i* notation [4] to describe both 
requirements and represent organizational architectural 
styles. Unfortunately, this notation is not widely accepted 
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by software practitioners, since it is just beginning to be 
recognized as a suitable notation for representing 
requirements and its tool support is  also limited. On the 
other hand, the Unified Modeling Language [3] has been 
used to represent the architecture of simple and complex 
systems. Using UML as an Architecture Design Language 
in the Tropos methodology allow us for representing 
detailed information which sometimes is required in 
architectural design, such as set of signals that are 
exchanged between architectural components, which are 
not supported by the i* notation. In the sequel we explain 
how the concepts of Tropos can be accommodated within 
UML-RT, in order to represent organizational 
architectures in UML. 

As explained in section 2.1, in Tropos actors are active 
entities that carries out actions to achieve goals by 
exercising their know-how. In section 3.1, we explained 
that in UML-RT, capsules are specialized active classes 
used for modeling self contained components of a system. 
Hence, an actor in Tropos is mapped to a capsule in UML-
RT (Figure 2). Note that ports are physical parts of the 
implementation of a capsule that mediate the interaction of 
the capsule with the outside world. 

 

 
 
Figure 2. Mapping a dependency between actors to UML 

 
In Tropos a dependency describes an “agreement” 

(called dependum) between two actors playing the roles of 
depender and dependee, respectively. The depender is 
the depending actor, and the dependee, the actor who is 
depended upon. Dependencies have the form 
depender⇒dependum⇒dependee. In UML-RT, a 
protocol is an explicit specification of the contractual 
agreement between its participants, which plays specific 
roles in the protocol. In other words, a protocol captures 
the contractual obligations that exist between capsules. 
Hence, a dependum is mapped to a protocol and the roles 
of depender  and dependee are mapped to protocol roles 
that are comprised by the protocol (Figure 2). 

The type of the dependency between two actors 
(called dependum) describes the nature of the agreement. 
Tropos defines four types of dependums: goals, softgoals, 

tasks and resources. Each type of dependum will define 
different features in the protocol and therefore in ports 
that realizes its protocol roles. As noted earlier, protocols 
are defined in terms of entities called protocol roles. Since 
protocol roles are abstract classes and ports play a 
specific role in some protocol, a protocol role defines the 
type of a port, which simply means that the port 
implements the behavior specified by that protocol role. 
As defined earlier, capsules are complex, physical, 
possibly distributed architectural objects that interact with 
their surroundings through ports. Note that a port is both 
a composite part of the structure of the capsule and a 
constraint on its behavior. 

Goal type will be mapped to an attribute with boolean 
type present into the port that realizes the protocolRole 
dependee (Figure 3). It represents a goal that a capsule is 
responsible for fulfill by exchanging the signals defined in 
the protocolRole dependee. 

 

 
 

Figure 3. Mapping a goal dependency to UML 
 
Softgoal type is mapped to an attribute with 

enumerated type present into the port that realizes the 
protocolRole dependee (Figure 4). It represents a quality 
goal that a capsule is responsible for fulfill to a given 
extent by exchanging the signals defined in the 
protocolRole dependee.  

 

 
 

Figure 4. Mapping a softgoal dependency to UML 
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Resource type is mapped to the return type of an 
abstract method placed on protocolRole dependee that 
will be realized by a port of a capsule (Figure 5). This 
return type represents a resource that a capsule is 
required to provide by exchanging signals defined in the 
protocolRole dependee. 

 

 
 
Figure 5. Mapping a resource dependency to UML 

 
Task type is mapped to an abstract method placed on 

protocolRole dependee that will be realized by a port of a 
capsule (Figure 6). It represents an activity that a capsule 
is required to perform by exchanging signals defined in 
the protocolRole dependee. 

 

 
 

Figure 6. Mapping a task dependency to UML 
 

A more compact form for describing capsules is 
illustrated in Figure 7, where the ports of a capsule are 
listed in a special labeled list. The protocol role (type) of a 
port is normally identified by a pathname since protocol 
role names are unique only within the scope of a given 
protocol. However, ports are also depicted in the 
collaboration diagrams (Figure 8) that describe the internal 
decomposition of a capsule. In these diagrams, ports are 
represented by the appropriate classifier roles, i.e., the 
port roles. To reduce visual clutter, port roles are 
generally shown in iconified form. For the case of binary 
protocols , an additional stereotype icon can be used: the 
port playing the conjugate role (depender  role) is 

indicated by a white-filled (versus black-filled) square. In 
that case, the protocol name and the tilde suffix are 
sufficient to identify the protocol role as the conjugate 
role; the protocol role name is redundant and should be 
omitted. Similarly, the use of the protocol name alone on a 
black square indicates the base role (dependee role) of the 
protocol. In Figure 8, we can see the details of (inside) the 
capsule and the end port/relay port distinction is indicated 
graphically. 

 

 
 

Figure 7. A capsule class diagram 
 
In UML-RT, each connector is typed by a protocol that 

specifies the desired behavior that can take place over 
that connector. A key feature of connectors is that they 
can only interconnect ports that play complementary roles 
in the protocol associated with the connector. In a class 
diagram, a connector is modeled by an association while 
in a capsule collaboration diagram it is declared through 
an association role. Hence, a dependency (depender⇒ 
dependum⇒dependee) in Tropos is mapped to a 
connector in UML-RT (Figure 7 and Figure 8). In the 
sequel we show how the Joint Venture organizational 
architectural style (Figure 1) is modeled using UML-RT. 

 

4.1. Joint Venture In UML 
 

The UML-RT notation of capsules, ports and 
connectors is used to model the architectural actors and 
their dependencies. In Figure 8, each capsule is 
representing an actor of the joint venture architecture. 
When an actor is a dependee of some dependency, its 
corresponding capsule has an implementation port (end 
port) for each dependency (ex. Port1), which is used to 
provide services for others capsules. When an actor is a 
depender of some dependency, its corresponding capsule 
has an implementation port (relay port) to exchange 
messages (ex. Port3).  

The Joint Venture architectural style presents six 
capsules disposed according to Figure 8. The capsule 
Joint Management is responsible for ensuring the 
strategic operation and coordination of such a system and 
its partner capsules on a global dimension. Through the 
delegation of authority it coordinates tasks and manages 
sharing of knowledge and resources. The two secondary 
partners are capsules responsible for supplying services 
or for supporting tasks for the organization core. The 
three principal partners are capsules responsible for 
managing and controlling themselves on a local 
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dimension. They can interact directly with other principal 
partners to exchange, provide and receive services, data 
and knowledge. 

From Figure 1 you can recall the goal dependency 
Authority Delegation between Principal Partner_n and  
Joint Management actors. Each actor present in Figure 1 
is mapped to a capsule in Figure 8. Each dependum, i.e., 
the “agreement” between these two actors is mapped to 
the protocol (see Figure 9). A protocol is an explicit 
specification of the contractual agreement between the 
participants in the protocol. In our study these 
participants are the two actors previously mapped to 
capsules . Each dependency is mapped to a connector in 
Figure 8. Each connector is typed by the protocol that 
represents the dependum of its corresponding 
dependency. The type of the dependency describes the 
nature of the agreement, i.e.,  the connector type describes 
the nature of the protocol. The four types of dependums 
(Goal, Softgoal, Task and Resource) are mapped to four 
types of protocols (Figures 9, 10, 11 and 12). 

 

 
 
Figure 8. Joint Venture Style in UML-RT’s capsule 

collaboration diagram 
  
For example, in the Goal type, the protocol Authority 

Delegation (Figure 9) assures that this goal will be 
fulfilled by using the signals described in the protocolRole 
dependee. The goal will be mapped to a boolean attribute 
present in the port that implements the protocolRole 
dependee. This attribute will be true if the goal has been 
fulfilled and false otherwise. Hence, in the dependency 
between Principal Partner_n  and  Joint Management 
capsules depicted in the second doted area of Figure 8, 
the goal dependency will be mapped to a boolean attribute 

located in the port which composes the capsule Principal 
Partner_n and implements the protocolRole dependee  of 
the protocol that assures the fulfillment of this goal 
(Figure 9). 

Now examine the softgoal dependency Added Value 
between Principal Partner_2 and  Joint Management 
actors depicted in Figure 1. In this case, the protocol 
Added Value  (Figure 10) assures that this softgoal will be 
satisfied in some extent by using the signals described in 
the protocolRole dependee. The softgoal will be mapped 
to a enumerated attribute present in the port that 
implements the protocolRole dependee. This attribute will 
represent different degrees of softgoal fulfillment. 

 

 
 
Figure 9. Protocols and Ports representing the Joint 

Venture’s goal dependency Authority Delegation 
 
Hence, in the dependency between Principal 

Partner_2 and  Joint Management capsules depicted in 
the third doted area of Figure 8, the softgoal dependency 
will be mapped to a enumerated attribute located in the 
port which composes the Joint Management capsule and 
implements the protocolRole dependee of the protocol 
that assures some degree of fulfillment of this softgoal 
(Figure 10). 

 

 
 

Figure 10. Protocols and Ports representing the Joint 
Venture’s softgoal dependency Added Value 

 
In the sequence, look at the task dependency 

Coordination  between Principal Partner_1 and  Joint 
Management  actors depicted in the Figure 1. Here, the 
protocol Coordination (Figure 11) assures that this task 
will be performed by using the signals described in the 
protocolRole dependee. The task itself will be mapped to a 
<<incoming>> signal in the protocolRole dependee and 
the port that implements that protocolRole will be 
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committed to realize their signals. Hence, in the 
dependency between Principal Partner_1 and  Joint 
Management capsules depicted in the first doted area of 
Figure 8, the task dependency will be mapped to a 
<<incoming>> signal placed in the protocolRole dependee 
of the protocol that assures the performing of this task. 
The Joint Management capsule is composed by a port 
which implements this protocolRole dependee (Figure 11). 

 

 
 

Figure 11. Protocols and Ports representing the Joint 
Venture’s task dependency Coordination 

 
Finally we have the resource dependency Resource 

Exchange between Principal Partner_2  and Principal 
Partner_n depicted in the Figure 1. Again, the protocol 
Resource Exchange (Figure 12) assures that this resource 
will be provided by using the signals described as 
<<incoming>> signals in the protocolRole dependee. The 
resource will be mapped to a <<incoming>> signal that 
returns an information of type resource in the 
protocolRole dependee and the port that implements that 
protocolRole will be committed to realize their signals.  

 

 
 

Figure 12. Protocols and Ports representing the Joint 
Venture’s resource dependency Resource Exchange 
 
Hence, in the dependency between Principal 

Partner_2 and  Principal Partner_n capsules depicted in 
the fourth doted area of Figure 8, the resource  
dependency will be mapped to an <<incoming>> signal 
that returns an information of type resource and is placed 
in the protocolRole dependee  of the protocol that assures 
the providing of this resource. The Principal Partner_2 

capsule is composed by a port which implements this 
protocolRole dependee (Figure 12). 

Although we have only detailed the mapping of four 
dependencies in the Joint Venture Style to their respective 
representation in UML-RT, the remaining ones are 
mapped analogously, according to their types. 
 
6. Case Study 
 

We extracted a case study from [1] that describes a 
business organization selling media items (books, 
newspapers, CDs, etc.) that has decided to open up a B2C 
retail sales front on the internet named Medi@. 

 

 
 

Figure 13 – Media@  system architecture 
 
Based on the joint venture architectural style, Figure 13 

suggests a possible assignment of system 
responsibilities. Front Store primarily interacts with 
Customer and provides her with a usable front-end web 
application. Moreover, it is responsible for catalogue 
browsing, items search in database and supplying  on-line 
customers with information about media items. Back Store 
keeps track of all web information about customers, 
products, sales, bills and other data of strategic 
importance to Media Shop. Billing Processor is in charge 
of the secure management of orders and bills, and other 
financial data; also of interactions to Bank Cpy .  Joint 
Manager manages all of the controlling security gaps, 
availability bottlenecks and adaptability issues, in order to 
ensure the software non-functional requirements. All four 
capsules need communicate and collaborate each other in 
the running system.  
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Observe that the message exchange between capsules 
happens in the context defined by protocol implemented 
b y  ports that compose each capsule involved in the 
interaction. For example, the communication protocol in 
Figure 15 shows a request from Back Store to Front Store  
for producing the Customer Profile. 

 

Profile

<<incoming>> request custome profile() : customer profile

<<protocol>>

 
 

Figure 15. Profile Communication protocol between 
Front Store and Back Store capsules  

 
Moreover, we can use sequence diagrams to depict the 

interaction between the capsules which compose the 
system when realizing a particular scenario: the request for 
ordering a media item. 

 

 
 

Figure 14. Sequence diagram for Ordering Media Item 
context 

 
Using UML-RT capsules enable us to refine the system 

architecture to lower-level components (sub-capsules) 
which depend on each other to realize the whole system 
responsibilities. Sequence diagrams insert details in 
architectural behaviour, since it shows the exchanged 

signals in the interactions, as well as the valid sequence of 
these signals (communication protocol between capsules). 

 
7. Conclusions and Future Work 

 
In this work, we have been proposed using UML Real-

Time to accommodate the concepts and features used for 
representing organizational architectures in Tropos, 
nowadays. This proposal has been applied to multi-agent 
software system development for an e-commerce 
application. In this paper, we outline an organizational 
architecture in UML. Our approach is appropriate for: 

 
- Obtaining an architectural model closer to 

organizational environment where the system will 
eventually operate, mitigating the existent semantic gap 
between the software system and its running 
environment. 

- Modeling more detailed architectures both in 
structural and behavioural aspects.  

- Building a flexible architecture with loosely coupled 
components, which can evolve and change continually to 
accommodate new components and meet new 
requirements, as well as support non-functional 
requirements. Hence, it enables to realize stakeholders’ 
demand for more flexible and complex systems.  

- Being able to use UML elements to represent non-
UML artifacts enables us to use existing UML toolsets to 
create those views. 

- Making organizational architectures styles widely 
used in industry, namely by other agent-oriented 
methodologies or those tuned to open, cooperative, 
dynamic and distributed systems. 

 
In Tropos, UML is used only in detailed design phase. 

However using UML-RT for modeling architecture can 
help Tropos in the following issues: 

 
- Common Representation Model: Modeling 

information of different types of views (UML and non-
UML) can be physically stored in the same repository. 

- Unified Way of Cross-Referencing Model 
Information: Having modeling information stored at one 
physical location further enables us to cross-reference 
that information. Cross-referencing is useful for 
maintaining the traceability among artifacts from 
architectural design and detailed design phases in Tropos. 

 
To improve this proposal, future work is required to 

provide systematic guidelines. Currently this processes 
happens in a ad hoc way based on software engineer 
experience. Proper guidance will enable us to create 
instances fro m architectural metamodels, defined by 
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Tropos, from requirement models represented in i* 
notation. Also we intend to model internal behaviour of 
capsules with state diagram. Moreover, we aim at 
proposing UML extensions for representing social 
patterns involving agents, as well as both the structural 
and  behavioural aspects and features defining such a 
software agents, in the context of Tropos Methodology.  
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Abstract

Making architectural decisions based on requirements,
analyzing cost-benefit trade-offs, and keeping design op-
tions open is a difficult task. Existing work on classification
of architectural styles and features of reusable components,
and derivation of relevant architectural styles provides use-
ful heuristics to the task, but it remains to be largely a labor-
intensive activity.

In this paper, we propose a rule-based framework with
automated reasoning for eliciting architectural decisions
from requirements. Our goal is to gain a deeper under-
standing of the relationships between requirements and ar-
chitectural decisions, define generic mappings based on
these relationships, and use these mappings to guide archi-
tectural design with a higher degree of automation.

Keywords

Architecture, requirements, mapping, decision elicita-
tion, design guidance, rule-base

1 Introduction

It has been recognized by the research community that
building a systematic bridge between requirements and soft-
ware architecture plays an important role in software engi-
neering [1]. In particular, making architectural decisions
based on requirements, analyzing cost-benefit trade-offs,
and keeping design options open remains to be a labor-
intensive task. A number of approaches have made progress
towards providing assistance to software architects.

Early works include Shaw and Clements’ classification
of architectural styles that had appeared in the published lit-
erature [8]. Each style is categorized according to its char-
acteristics with respect to constituent parts (components and

connectors), control issues, data issues, control and data
interaction issues, and reasoning. Moreover, intuition and
rules of thumb on choosing styles to fit the problem are dis-
cussed as a preliminary step to design guidance.

Around the same time, Kazman, Clements, and Bass
provided a classification on architectural elements in terms
of features, which can be used to identify reusable elements
that match required feature criteria [5]. In their approach,
temporal and static features are defined for classifying ar-
chitectural elements and describing the matching criteria of
requirements.

More recently, Egyed et al. addressed this problem us-
ing the CBSP (Component-Bus-System, and Properties) ap-
proach [4]. In this work, the WinWin negotiation model [2]
is adapted to classify the requirements according to the
CBSP properties in the architectural context. Based on
these properties, a CBSP model can be built to derive and
validate architectural styles.

There are five characteristics in common in these ap-
proaches:

1. classification of requirements and architectural proper-
ties

2. definition of a partial mapping from requirements
properties to architectural elements or decisions using
a common language

3. provision of design alternatives and trade-off analysis

4. abstraction of information

5. reuse through styles by condition matching

Despite these advances, a number of key issues in bridg-
ing the gap between requirements and software architecture
are not well addressed to date.
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Unified description language In order to bridge the gap
between requirements and architecture, we need to define
mappings between them. To establish these mappings, re-
quirement specifications and architectural descriptions must
be formulated in a common language. This motivates the
development of a unified language. We have seen that this
is done implicitly in the above approaches. But we do not
yet know the following.

• How feasible is it to use a unified language?

• How to express requirements and architectural descrip-
tions effectively using a unified language?

• What are the key properties of such a language?

Relationship between requirements and architectural
decisions

• What kind of architectural decisions are frequently
made in building large systems?

• Clearly, the architectural decisions made are related to
the benefits and risks that are induced. Are we able
to define relationships between them in assisting the
trade-off analysis?

• How do architectural decisions relate to the system’s
requirements?

• Are we able to classify relations between require-
ments and architectural decisions that are generic and
reusable?

• How do we abstract key architectural decisions made
in existing systems?

Studying decision making processes in existing systems
may provide insight into general relationship between re-
quirements and architectural decisions.

Architectural decisions deferral and trade-off In prac-
tice, it is often necessary to defer an architectural deci-
sion until further information is acquired and to keep de-
sign options open. Therefore, it is undesirable to make
every decision up front and have little flexibility in mak-
ing changes. However, having too many open ends will
make decision making difficult and prevent the development
progress. This leads to the questions below. Answers to
these questions can help analyzing the trade-offs between
different architectural decisions, and project architectural
evolutions with changing requirements.

• At what stage must these decisions be made before
proceeding further? How much can they be deferred?

• To what extent does architectural evaluation help in
choosing the best solutions for deferred decisions?

• To what extent do architectural decisions precede and
shape identification of requirements?

• Are there any common factors for deferring decisions?
Do they relate to specific classes of requirements?

The earlier work has provided insights to the questions
posed above, but answers to many of them remain unknown.
In particular, answers to the question of what are the generic
and reusable mappings between requirements, architectural
properties, and decisions can lead to significant progress.
Our research is mostly motivated by these questions. In
answering these questions, we could gain a deeper under-
standing of the relationships between requirements and ar-
chitectural properties, define generic mappings based on the
relationships, and use the mappings to guide the architec-
tural design with a higher degree of automation.

In this paper, we propose a framework that can be used
to elicit architectural decisions from requirements, and de-
scribe a potential rule-based implementation with auto-
mated reasoning capability. Although user interaction is
required in this framework, we believe it is a worthwhile ex-
periment. Our reasons are the following. Firstly, the frame-
work can be customized for any application domain, and
the rule-base can be easily updated as new mappings are
required. Secondly, existing architectural decision making
knowledge can be evaluated using this framework. Thirdly,
the evaluation of knowledge can help us define the relation-
ships between requirements and architectural properties.
Lastly, this framework can be extended with higher degree
of automation once the reasoning system covers enough de-
cision making strategies.

We plan to build a rule-based tool to capture the map-
pings, and in the process of doing so, to study how deci-
sions are made, what is the essential knowledge required,
and the structure of the knowledge. Our prior experience
[6, 7] shows that attempting to develop a rule-based (or pro-
duction) system raises useful questions about what knowl-
edge and heuristics to apply and how they interrelate.

In section 2, we describe our proposal of a general design
guidance framework for eliciting architectural decisions. In
section 3, we outline a rule-based implementation of the
framework. In section 4, we present concluding remarks.

2 Architectural Decision Elicitation Frame-
work

Requirements need to be obtained from stakeholders.
Likewise, architectural decisions need to be elicited from
requirements. Even though a large body of research results
and practical heuristics is available for making architectural
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Figure 1. The Architectural Decision Elicitation Framework

decisions, architects still need to carefully go through their
knowledge-base (usually their experience) to identify rel-
evant information, and analyze cost-benefit trade-offs, be-
fore making a decision. We propose an architectural de-
cision elicitation framework (ADEF) that encapsulates the
knowledge required of making architectural decisions, and
provides automated mapping from architecturally signifi-
cant properties to architectural decisions. This framework
adapts a general Waterfall model.

There are two main modules,ReasoningandPresenta-
tion in ADEF, as shown in figure 1.

The Reasoningmodule encapsulates the decision mak-
ing knowledge, and reasons about the requirements to elicit
relevant architectural decisions. This module consists three
parts:mapping, conversion, andanalysis.

TheMappingsubmodule uses built-in decision trees (di-
rected acyclic graphs) to provide guidance to the user in
manually mapping each requirement specification to one
or more architecturally significant properties. Figure 2 il-
lustrates an example of a partial decision tree with only
the properties that are significant in choosing architectural
styles (the ideas in this example are adapted from [4, 8]).
We usedecision nodeto refer to both interior node and leaf
node in the decision tree, andproperty nodeto refer to leaf
node only.

Here is how the mapping is achieved. For each require-
ment specified, starting at the root of the decision tree,
present the user with the choices represented by the decision
nodes associated (i.e. immediately below and connected) to
the root, and ask the user to decide whether each choice is
relevant to the current requirement. For each relevant deci-
sion node chosen by the user, its associated decision nodes
are then presented to the user in a depth-first fashion until
no more nodes are available as a choice. The descriptions
of the property nodeschosen by the user are the architec-
turally significant properties. Such a property and its deci-

sion making history, including the nodes along the branch
and the source requirement, are described as adecision unit
and sent to the conversion submodule.

A future extension to this module is the automated map-
ping from requirements to architecturally significant prop-
erties shown as the dotted box in figure 1. This extension
dictates that the requirements be stated in a formal lan-
guage.

TheConvert to Analyzable Representation(conversion)
submodule converts thedecision unitscreated in the map-
ping module to a form that can be interpreted by the anal-
ysis module. The converted decision units are then sent to
the analysis module as new facts.

The Analysis submodule provides ongoing automated
reasoning of the following types using a predefined
knowledge-base:

1. making architectural decisions: based on change in the
fact base (either a newly converted decision unit, or a
newly made decision), make appropriate architectural
decisions using heuristics defined in the knowledge-
base, then store the decisions as new facts

2. resolve conflicting decisions: provide resolution and
explanation when multiple conflicting decisions are
made for the same part of the system

The Presentation module presents the resulting archi-
tectural decisions to the user and updates changes made to
previous results. The process then is repeated for another
requirement specification.

Next, we describe a rule-based implementation proposal
for this framework.
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3 A Rule-based Implementation

In section 2, we have seen that the knowledge-base for
the mapping submoduleis implemented in a decision tree.
In this section, we describe a rule-based approach to achieve
the automated reasoning capability provided by theanalysis
submoduleusing a production system.

A production system keeps the fact knowledge-base (or
fact base) separate from the rule base. Rules can be de-
fined a priori and maintained independently in the rule base.
The fact base is updated during the system execution. Not
only can new facts be added, but also the results made by
each reasoning cycle are fed back to the fact base as up-
dates. Ongoing reasoning is performed whenever updates
to the fact base are received. These characteristics of pro-
duction system help to achieve dynamic analysis required of
the framework. In addition, our prior experience has shown
positive results in applying the rule-based approach for au-
tomated reasoning [6, 7]. Thus, we believe it is viable to use
a rule-based implementation for theanalysis submodule.

We first give a brief overview of production systems,
then discuss the rule-based implementation for theanaly-
sis submodule.

3.1 Production System Overview

A production systemis a reasoning system that uses
forward-chaining derivation techniques. It uses rules, called
production rulesor productionsin short, to represent its
general knowledge, and keeps an active memory, known as
the working memory(WM), of facts (or assertions) which
are calledworking memory elements(WMEs) [3].

A production ruleis usually written as:
IF conditions THEN actions

The conditions, also known aspatterns, are partial de-
scriptions of working memory elements, which will be

tested against the current state of the working memory. For
example, the following rule debits a bank account.

IF (transaction
(type debit)
(amt ?x )
(account ?a))

(account
(id ?a)
(balance ?y ∧{≥?x }))

THEN REMOVE1
MODIFY 2 (balance [ ?y - ?x ])

where ?a, ?x and ?y are variables;{≥?x } is a test for
balance ≥x; REMOVE 1deletes the first (i.e.transaction )
WME from the working memory; andMODIFY 2selects the
second WME and assigns the value ofy-x to balance .

Each condition can be either positive or negative. A neg-
ative condition is of the form- cond , wherecond represents
a positive condition. A rule is applicable if all of the vari-
ables can be evaluated using the WMEs in the current WM
such that the conditions are met. A positive condition is sat-
isfied if there is a matching WME in the WM; a negative
condition is satisfied if there is no matching WME in the
WM.

A working memory elementhas the following form,
(type (attribute 1 value 1) ... (attribute n value n))

wheretype andattribute i are atoms, i.e. a string, a word,
or a numeral; andvalue i is an atom or a list.

The basic operation of a production system is a cyclic
application of three steps until no more rules can be applied:

1. recognize: identify applicable rules whose conditions
are satisfied by the WM;

2. resolve conflict: among all applicable rules (orconflict
set), choose one to execute;

3. act: apply the action given in the consequent of the
executed rule.

97



3.2 Rule-based Analysis

In the analysis submodule, there are two goals to
achieve: architectural decision making, and conflicting de-
cision resolution. We use production rules to capture the
knowledge and strategies for these goals. The challenges
here are to identify commonly used architectural decisions
and the architectural properties required for making these
decisions, choose an effective and concise representation
scheme for facts, identify conflict conditions and resolu-
tions, and design rules ro reflect these properties.

To illustrate how a decision making rule is defined and
executed, we use the example decision tree shown in figure
2. In this decision tree, the property nodes are closely re-
lated to some well known architectural styles. We use this
information to design the rules. For example, taking the
first property node from the left, we can characterize it with
a rule of the following form:

IF (there exists consumer and producer
relation)

THEN ADD (use client/server style)

However, this rule does not capture key decision nodes
along the branch and the source requirement. In addition,
the representation used in the rule is not concise. We refine
the rule to be the following:

IF (property
(uid ?id )
(relation consumer-producer)
(source ?reqID )
(concern ?part ))

THEN ADD (style
(name client-server)
(property (uid ?id )))

where the variable?id is matched to the unique identifier of
the decision unit (denoted asproperty ); ?reqID is matched
to the unique source requirement identifier; and?part is
matched to the part that the decision unit is concerned about
at the top level of the decision tree:component, system, bus,
or property.

When this rule matches a WME and is executed by
the production system, the client-server style WME is then
added to the fact base as a recommended architectural style
to use for the part concerned.

Note that this rule is defined in close relation to what is
in the sample decision tree. This is indeed the case when
designing rules. They must provide means to match the de-
cision units to architectural decisions.

When two decisions made by the rules are associated
with the same part of concern, and cannot be used together
in the architecture consistently, a conflict is identified. The
conflicting decision resolution rules are designed to capture
such conditions and provide solutions thereto.

4 Conclusions

In this paper, we have posed many open questions for
bridging the gap between requirements and software archi-
tecture. Our research is motivated by these questions. In
particular, we are interested in exploring the applicability
of a unified description language for requirement specifica-
tions and architecturally significant properties, classifying
architectural knowledge for building decision trees and pro-
duction rules for requirement mapping and analysis, identi-
fying the relationships between requirements, architectural
decisions and properties.

We have proposed a framework to provide design guid-
ance in eliciting architectural decisions from requirements,
and a rule-based implementation. Although human interac-
tion is required to map requirements to architecturally sig-
nificant properties in the framework, we believe that using
a tool implementing the framework can help us evaluate ex-
isting architectural decision-making knowledge, and define
the relationships between requirements, architectural deci-
sions and properties. Understanding of such relationships
can help us to provide higher degree of automation and min-
imize human involvement.
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Abstract

There is wide agreement that architecture plays a
prominent role in large, complex software systems.
Selection of an appropriate architecture – one that
matches the system requirements and implementation
resources – is a critically important development step.

We advocate the use of risk-based reasoning to help
make good architectural decisions. In this paper, we
explore the adaptation of a risk management process and
tool to this purpose.

1. Introduction

Software design for complex software systems is
difficult.  The past decade has seen a convergence of
opinion about the importance of using established
architectures and design patterns.  At the system level,
styles of software architecture [1, 11] like pipes-and-
filters or event-driven provide a starting point for design
of complex software systems.  At the more detailed level,
architectural treatments capture well-reasoned decisions
whose strengths and weakness are understood, e.g.,
software design patterns like wrapper or builder. [7]  This
paper will focus on the system level use of architecture,
although the approach should also be applicable to the
finer grained use of design patterns.

Choosing a good architecture is a critically important
step in the design of a system.  A poor choice at this level
is difficult to repair at a more detailed design level. We
define the adjective good with respect to architecture to
mean an architecture that matches system requirements
and can be implemented within the resources allocated to
it. The implementation itself is a non-trivial task, and
induces a further set of critical decisions.

The primary thesis of this paper is that risk can be used
to guide these decisions.  Use of risk-based reasoning
enables software engineers and managers to make choices
of software architecture and architecture implementation
that satisfy both criteria – meeting system requirements
and adhering to resource limitations.

This paper is organized as follows: section 2 describes
the current risk-based design process and the tool that has

been developed to support this process; section 3
discusses some shortcomings in this process that are
caused by the failure to capture of explicit design and, in
particular, architectural aspects; section 4 describes ways
in which we are incorporating software architectural
decisions into this process and tool.

2. Basis for the approach - risk-based design

The approach advocated herein begins from an
existing risk-based design process and its accompanying
tool support. This is the “Defect Detection and Prevention
(DDP)” process [4], developed and used at JPL to help
engineers manage the trade space of choices in designing
spacecraft and associated technology.

DDP has three primary sets of issues that it captures
and tracks: requirements, risks, and mitigations. The DDP
tool is typically used to collect and maintain decisions and
information discussed in several meetings with a group of
experienced engineers and domain experts.  The process
used in these DDP sessions is diagrammatically explained
in figure 1.  The first step is the collection and weighting
of requirements.  Given the requirements, the domain
experts determine the risks that these system requirements
entail.  Each of these risks is then scored as to its impact
on each of the requirements.  After risks are determined in
step 2, the activities that can mitigate these risks are then
listed.  Each of these mitigations is scored as to its
effectiveness at reducing each risk.

DDP is unique in bringing a quantitative risk-based
approach to bear at early stages of decision-making. The
scoring of the links between risks and requirements, and
between mitigations and risks, are given a quantitative,
probabilistic interpretation. This allows DDP to add up
the cumulative impact of all risks, compare an individual
risk’s cumulative impact, compute how much of
requirements are being attained, compute how much net
benefit the use of a mitigation conveys, etc. [5]

This information is used together with budget
information on the cost of mitigations to make choices
about which mitigations to select. The goal is to reduce
the risks to sufficient levels (and so adequately attain
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requirements) while remaining within resource
limitations.

In this process, risk is used as the intermediary through
which link requirements are indirectly linked to
mitigations.  Our experience is that this indirection is
particularly useful. For example, the phenomenon of
“diminishing returns” as more and more mitigations are
applied to the same risks falls out naturally from this
approach. In contrast, attempts to link requirements
directly to solutions (development plans) often fail to
capture the multiplicity of problems and solutions.

3. Shortcomings in the current process

The standard DDP process depicted in figure 1
involves the gathering and linking of three major
concepts: system requirements (weighted to reflect their
relative importance), risks that threaten to detract from
attainment of those requirements, and mitigations to help
quell those risks (and so lead to improved attainment of
requirements).  We have found this risk-centric approach
to be quite effective in guiding experts to make their
choices of mitigations.  (The reader may wonder why
choices have to be made among mitigations.  The answer
is one of resource limitation.  Choosing to do all

mitigations is typically not possible from a budget and
time perspective.)

We have observed that in use of the DDP tool and
process on JPL applications, there is some additional
structure to the concepts involved that the current process
is not adequately capturing. We describe how these
observations lead us to now propose to include
architecture as a first-class concept within the DDP
process.

  Our first step in this direction stemmed from the
observation that some mitigations induce and/or
exacerbate risks.  For example, a vibration test may be
used to check that a piece of hardware will operate
correctly when subject to vibration, thus decreasing the
risk of launching a spacecraft that is unable to operate
under mission conditions. However, there is some risk
that the test itself will cause problems (e.g., break
something). The risk of those problems we term induced
risk. Another example is of a protective coating applied to
a piece of circuitry, say. Its purpose is to protect the
circuitry from future damage, i.e., decrease those kinds of
risks. However, should there be need to modify the
circuit, that protective coating will make it harder,
perhaps even impossible, to effect the modification. We
describe the risks that would lead to the need for
modification as exacerbated by the protective coating
(i.e., while their likelihoods remain the same, their
impact, should they occur, is increased). Software
analogies of these phenomena are well known – fixing
one bug may introduce new ones; introducing monitoring
code may aid testing, but decrease performance (or lead to
changed timing behavior when that test-time code is
dropped from the final delivered code).

The standard DDP process (and its tool support) was
evolved to accommodate these phenomena by extending
the allowable range of the values attached to the links
between mitigations and risks. Initially all such values
were restricted to being positive proportions (i.e., in the
range (0, 1]), indicating the proportion by which
application of the mitigation would eliminate risk. Lack
of a link between a risk and a mitigation indicated that the
mitigation would have no effect whatsoever on that risk.
The extension was to allow the expression of negative
values as measures of effectiveness, where a negative
value in the range [-1, 0) indicated induced risk (the more
negative, the more the likelihood of the risk being
induced), and a negative value in the range [-1000000,
–1) indicated exacerbated risk (any existing risks’ impacts
would be multiplied by the abs(value)). For example, a
value of –3 means triple the impact of risks.

These extensions served their intended purpose to
allow DDP studies to take into account mitigation
induced/exacerbated risks. However, they opened the
door to (mis?)use as a way to represent design
alternatives.

Determine and
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Requirements

List Potential
Risks

Score Risks
against

Requirements

List & Cost
Relevant

Mitigations

Score
Mitigations

against Risks

Development Plan

Select
Cost-Effective

Mitigations

Determine
Resources

(Budget, etc)

Descope/
Reprioritize
Requirements

Revise
Budget, etc.

Figure 1:  Standard DDP Process
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To illustrate this we will first give a hypothetical and
simplistic system design example.  Suppose that one of
the requirements for a planetary rover is to gather science
data on planetary formation, using a drill to extract a core
sample from rocks. Use of the drill demands a large
amount of power, so lack of available power is a
particularly serious risk against that science requirement.

One possible mitigation to that risk is to deploy large
solar panels, capable of generating sufficient power. (An
alternative could be to drill more slowly but for a longer
duration).  The large-solar-panel mitigation has its own
risks (rover is now prone to tipping; higher overall power
levels lead to the risk of electrical shorts; etc.).

A comparable software-domain example is the design
of a software subsystem with the requirement that the
software be able to respond to the position of the cursor
by displaying context-sensitive information that the user
needs.  One risk to this requirement is that this
information will be displayed after an unreasonably long
delay. One possible mitigation is to design this system as
an event-driven system with an event loop that is
designed to catch and respond to mouse movements that
affect cursor position.

Our first inclination was to use mitigation-induced risk
as the means to represent these design options. For
example, the large solar panels mitigation for the risk of
lack of power we encoded as a DDP mitigation that
induces the rover tipping risk, the electrical shorts risk,
etc. Each of these induced risks were added into the same
list of potential risks, but with the unusual characteristic
that their a-priori likelihoods were set at zero (i.e., the
only way those risks could occur is through being induced
when the solar panel mitigation is selected). This enabled
us to avoid the need for further extension to the DDP tool.

From these latter examples, it is clear that the activities
that we have encoded as mitigations are, in fact, design
choices.  In the software arena, these choices are software
architectural decisions. We are dissatisfied with
encoding of these as just more “mitigation” choices, albeit
with some unusual characteristics. At the very least, we
should call these out as architectural decisions, and so be
poised to take advantage of detailed methods for
architectural evaluation. We would also like to avoid the
need to start DDP from a “blank slate”, where all the
information must be supplied anew. Clearly, the body of
knowledge that pertains to architectures should be used to
pre-populate DDP. Finally, and most importantly, we
observe many of the risks and mitigations that derive
from an architectural choice affect how well that
architecture mitigates the original risks it was selected to
address. For example, suppose a pipes-and-filters
architecture was selected to mitigate the risk of system
ossification (inability to easily make system
modifications). The more the development of the system
strays from strict adherence to that architecture, the more
it diminishes the effectiveness of that architecture at
mitigating the ossification risk. In DDP-speak, the
architecture itself can be attained in whole or only in part
(the latter due to the cumulative impact of risks on the
realization of that architecture). Its effectiveness at
mitigating risks is determined by how successfully its
own risks are mitigated. We will see further examples of
this in the next section.
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Figure 2:  Revised DDP Process
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With this observation, we propose the capture of
architecture decisions explicitly in the DDP tool.

Before explaining this idea further, it is important to
remind the reader that not all mitigations are design
decisions.  For example, one risk that may pertain to a
piece of software is that requirements are inconsistent.
One mitigation to this risk is a formal inspection process,
a form of analysis. The use of formal inspections is
clearly not a design decision. Indeed, in typical DDP
applications, a significant proportion of mitigations fall
into this testing/analysis category.

4. Incorporating software architectures

To incorporate software architectures into the DDP
tool without radically changing the tool, we have

proposed a two-phase process as depicted in figure 2.
First we go through the original DDP process with

requirements-risks-architecture rather than requirements-
risks-mitigations.  Thus, we are explicitly capturing
alternative design architectures that will reduce or
eliminate certain risks.  Note that there may be a choice
among several architectures that reduce a particular risk to
acceptable levels.

To make this step easier, we propose seeding the DDP
tool with possible classic software architectures. [1, 11]
These architecture styles, e.g. pipes-and-filters,

repository, object-oriented, serve as a starting point for
the architecture-selection process.   Designers may, of
course, add their own hybrid designs.

The architectures that result from this first step become
the starting point for another iteration of the original
process, one that deals with archi tectures- r isks-
mitigations.  Thus, the architecture serves both as a
mitigation of risks in the first phase, and as an induced
requirement in the second phase.  Note that the selection
of architecture is an important outcome of the DDP
process.  Although we argued that risks themselves are
merely intermediaries, we do not make the argument that
architectures have a similarly nebulous status.

4.1 Examples
As a small but illustrative example, consider the

classic key word in context problem [10] proposed by
Parnas in 1972 (and discussed by many other researchers
since.)

The KWIC [Key Word in Context] index
system accepts an ordered set of lines; each
line is an ordered set of words, and each word
is an ordered set of characters.  Any line may
be “circularly shifted” by repeatedly removing
the first word and appending it at the end of
the line.  The KWIC index system outputs a
listing of all circular shifts of all lines in
alphabetical order.

We will treat this paragraph as a first-order
approximation to a set of requirements.  In the DDP
process and tool, this set is represented in a structured
form, and the importance of each is evaluated and scored.
For example, we might prioritize the generation of the list
of all circular shifts as the most important, with the
alphabetizing of this list as being important, but having a
lower priority.

Now, let us consider some of the risks that might be
associated with these requirements.  Parnas suggests two
potential risks (although he labels these as potential
design changes rather than risks.)

1. Changes to the processing algorithm
2. Changes in data representation

Garlan, et al [8] add three other risks to those of
Parnas.

1. Enhancement to system function
2. Performance
3. Reuse

(A nice discussion of this example and possible
architectures is provided by Shaw and Garlan. [11])

These risks are scored against requirements to see, if
they occur, how they would affect each requirement.

Now, we consider possible architectures for a
solution to this problem.  First, consider two architectures
suggested by Parnas. [10]  Figure 3 illustrates shared
memory architecture.  Figure 4 gives an abstract data type

Master Control

Input Circular
Shift

Alpha-
betizer

Output

Characters Index Alphabetized
index

Input medium Output
medium

Subprogram call

Direct memory access

System I/O

Figure 3: Shared data architecture
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solution.  Another possible architecture is the pipes-and-
filters style as inspired by the Unix index utility and
described by Shaw and Garlan. [11]  This is depicted in
figure 5.

The mechanism that we use to evaluate the strengths
and weaknesses of each potential architecture is to score
each architecture against risks that we have identified.
For example, we may determine that a pipes-and-filters
architecture may have performance (i.e. speed) issues
although the other two possibilities are likely to perform
more adequately.  Conversely, the shared data and the
abstract data type architectures are likely to have trouble
if the algorithm for generating the index is changed.  The
pipes-and-filters can more easily adapt its algorithm (by

merely changing or adding a filter.)  However, the
abstract data type obviously can change its data
representation more easily; the other two would find this

type of change much more difficult.  (This analysis is that
of Shaw and Garlan.[11])

In the DDP process we would push the software
engineers to quantitatively value these linkages between

risks and architec-
tures.  For example,
suppose that the
engineers estimate
the abstract data
type design has a
very small like-
lihood of being
impacted by the risk
of a change in data
representation, while
they estimate that
performance risk of
a pipes-and-filters
architecture is rela-
tively problematic.
Table 1 illustrates
the linkage data that
engineers might
produce in analyzing
these architectures
in light of particular
risks. The numeric

entries are in the range 0 to 1, where 0 means no effect,
and 1 means that the architecture choice in that column
completely eliminates the risk in that row.  The DDP tool
provides support for much larger matrices, and provides
other views of this linkage data in addition to the tabular
format.

In a realistic design, the number of requirements and
potential risks can be large. In DDP applications at the
component level (e.g., a memory device), it is typical to
deal with 50 – 100 each of requirements, risks and
mitigations, with hundreds of links between them.  Even
if the number of viable architecture choices is relatively
small, the relationships between architecture and risks,
and risk and requirements can make the choice of the
preferred architecture quite complex.  Addressing this
complexity is a strength of DDP.

With the assistance of DDP, the design team can now
select a tentative architecture.  (This is a tentative
architecture because the entire process is iterative.  For
example, the phenomena of requirements volatility and
requirement creep are well known.)  This begins the
second phase of the DDP process.  The starting point for
this phase is this tentative architecture.  We list potential
risks inherent in this architecture.  The risks enumerated
in the previous phase were those associated with
requirements regardless of architecture choice.  Here we
are looking for design and implementation risks.  What
things stand in the way of successfully implementing this
system with this architecture?   If the system is highly
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Figure 4: Abstract data type architecture
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interactive, a pipes-and-filters architecture style is quite
risky.  However, an event-driven style would have much
lower risks in this area.  Because of the paradigm shift
needed in object-oriented design (OOD) from traditional
procedural design, OOD may have a high dependency on
having a trained staff.

Table 1: Risk – Architecture matrix

Architectures
Shared

data
store

Abstract
data type

Pipes and
filters

Algorithm
change

0.9 0.7 0.1

Data
representation
change

0.7 0.1 0.9R
isk

s

Performance
issues

0.1 0.1 0.7

The process of listing risks and evaluating the impact
of each against the tentative architecture can be a tedious
one.  It is clear that many software risks are common
across projects.  We have preloaded DDP with a set of
common software risks.  (We have used the risk
taxonomy identified by researchers at the Software
Engineering Institute. [2])  Furthermore, we have entered
linkages between these risks and a set of common
architecture styles. [11]  Thus, a choice of architecture
obtains an associated set of risks and impacts.  The design
team can use this as a starting point, adding additional or
more specific risks, and modifying or adding linkages.

Having identified software risks associated with this
architecture, we now identify those activities, i.e.
mitigations, that we can perform to eliminate, avoid, or
reduce the impact of risks.  For example, if there is the
risk that our staff is not experienced in OOD, we could
give them additional training or hire some experienced
OO designers. Each such mitigation has a cost – the cost
of training materials and time, or salaries and benefits for
experienced designers.

We evaluate each mitigation against each risk to
score its effect at reducing that risk.  The effect of
experience designers is likely to be greater against the risk
of inexperienced staff than is training.  (A new design
method is often not fully understood until a certain level
of experience is reached that cannot be provided by even
the best training.)

Table 2 illustrates this matrix.  Again, the numeric
entries are in the range 0 to 1, where 0 means no effect
and 1 means that the mitigation in that column completely
eliminates the risk in that row.

Finally, this collection of information (risks x
architecture, risks x mitigations) is combined with

budgeting information to make decisions about which set
of mitigations will achieve the system requirements using
the tentative architecture and within budget and resource
constraints. This is typically a complex decision given the
enormous number of interactions among requirements
(with their relative weights), risks (with their likelihoods),
the tentative architecture, mitigations (with their costs),
and linkages among these.  DDP provides graphical
displays of this information that helps the design team
explore this complex trade space.  An optimizer is
available that uses simulated annealing to find near
optimal choices of mitigations within a specified cost
bound.

Table 2: Risk – Mitigation matrix

Mitigations
Provide
OOD

training

Hire
experienced
OOD staff

Perform
formal

inspections
Inexperienced
staff

0.7 0.9 0.0

Inconsistent
requirements

0.0 0.1 0.9
R

isk
s

As mentioned previously, this is an iterative process.
In these activities, it is common for the design team to
discover additional requirements or learn of the
infeasibility of certain requirements (resulting in the need
for descoping  [6]).  Additional risks of a particular
architecture choice may not be apparent until very late in
the process.  Thus, the entire DDP process may be iterated
to capture these changes.  However, note that subsequent
iterations are likely to be more efficient because of the
leverage of information derived during previous
iterations.

The reader may be struck by the length and
complexity of this process.  We assert that this is the
nature of the task, not a side effect of our process.  Design
of a complex software system is difficult.

5. Conclusions, Status, and Related Work

The argument set forth in this paper is that risk can
and should be used to guide architectural decisions. These
include both the choice of architecture itself, and the
decisions that flow from that choice. We have shown how
we arrived at this position through our observations of a
risk-based decision process in use in real-world design
activities. The gradual evolution of that process has led to
the point where we believe that architecture deserves a
place as a first-class object within the process itself. These
points have been illustrated using a small but familiar
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example, the key word in context problem introduced by
Parnas.

The status of this work is that all the aspects of DDP
described in section 3 exist and have seen use in actual
spacecraft technology risk studies. Instances of the
phenomena we described in that section, of mitigation
induced or exacerbated risks, and of design decisions
encoded via this mechanism, have arisen in these same
actual studies. The extensions needed of the DDP tool to
support the two-phase approach, with mitigations leading
to derived requirements, have been incorporated in an, as
yet, unreleased version. We have used this within our own
experimentation, but it has not yet seen field use in real
project applications. Likewise, our encoding of
architectural considerations is also at the stage of internal
experiments that have yet to see actual customer
application. Additional information DDP can be found at
the Defect Detection and Prevention website,
http://ddptool.jpl.nasa.gov

A full comparison with related work is beyond the
scope of this workshop paper. We do draw attention to a
distinguishing characteristic of DDP, namely that it is
able to accommodate both architectural design decision
concerns, and other elements of project planning
(analysis, testing and process, represented as mitigations
in the DDP framework). Furthermore, DDP does so in a
quantitative manner. The combination of these aspects
sets DDP apart from many of the other approaches to
architectural decision making, e.g., the influence diagrams
of [3] (shown in use in [9]), or the goal graphs of [12]. A
key common thread that we have with those referenced
bodies of work is the reliance on computer support for
decision-making. Real-world problems involve a myriad
of concerns, whose number and complex interconnections
warrant support.
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Abstract 
 

The step from the requirements for a software system 
to an Architecture for the system has traditionally been 
the most complex one in the software development 
process.  This step goes from what the system has to 
achieve, to how it achieves it.  In order to make this step 
easier, we propose the use of Preskriptor, a prescriptive 
architectural specification language, and of its associated 
process, the Preskriptor process.  Architectural 
prescriptions consist in the specification of the system’s 
basic topology and of the constraints associated with it 
and its components and interactions.  The Preskriptor 
process provides a systematic way to satisfy both the 
functional and non functional requirements from the 
problem domain, as well to integrate architectural 
structures from solution domains. 
 
1. Introduction 
 

The most difficult transition in the development 
process for a non-trivial software system is likely the one 
from the requirements for the system to the system’s 
architecture.  This step involves going from the problem’s 
domain to the domain of its solution [1].  One of the 
factors that makes the design of software systems so 
challenging is that they have to satisfy many different 
requirements (problems) at the same time, and there is 
often more than a single solution to a particular 
requirement.   

Requirements specifications can be viewed as a 
contract between the customer and the software 
developers.  Hence, they should be not only easy to 
understand by the software architects and engineers but 
also by the domain experts and users. 

We propose the use of architectural prescriptions [2] to 
perform the step from requirements to architecture.  An 
architectural prescription is the architecture of the system 
in terms of its components, the constraints on them and 
the interrelationships among the component (i.e., the 
constraints on their interactions).  At least initially, the 

constraints are only those coming from the problem 
domain.  While architectural descriptions provide more or 
less complete details to the designers, prescriptions make 
the step from requirements to architecture easier to model 
and to perform.  Prescriptions may also provide a means 
of deeper understanding about the architecture.  We will 
show how we can perform this step from goal-oriented 
requirements.  Another advantage of prescriptions is that, 
being at a higher level of abstraction, they can be reused 
more easily, and they enable more creative designs. 

The same prescription could be used for an entire 
software family [3] of applications that differ only in 
deployment requirements.  If the applications differ also 
in some requirements coming from the problem domain, 
like the interaction with different types of users, we can 
first develop the prescription for an ancestor system that 
has all and only the requirements common to the whole 
family and then get, by extending this prescription, the 
prescriptions for all the descendent applications.   

Because Architectural Prescription Languages APLs, 
which we introduced in [4], are written in an elementary 
ontology, they enable new, innovative designs.  Let’s 
consider, for example, a distributed system.  An 
architecture description language may include elements 
such as clients and servers.  It may be that the architect 
writing a specification in such an architecture description 
language uses client and server components also when, 
for example, a multi-peer architecture might be a better 
solution.  The designer will then be constrained by such 
architecture to a low-level design that adopts a client-
server solution.  By describing the system at a higher 
level of abstraction, a specification in an architectural 
prescription language would instead permit the designer 
to choose the best solution at the design level and even let 
him/her take different choices for different members of 
the family. 

The paper is structured as follows:  we first give an 
overview of KAOS, the requirements specification 
language our process uses as a starting point; then we 
introduce the Preskriptor architectural prescription 
language and process illustrating them with a practical 
example; we conclude by summarizing the fundamental 
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results of the paper, and by discussing the future 
directions of our research. 

 
2. Overview of the KAOS Specification 
Language 
 

KAOS is a goal oriented requirements specification 
language [5].  Its ontology is composed of objects, 
operations and goals.  Objects can be agents (active 
objects), entities (passive objects), events (instantaneous 
objects), or relationships (objects depending on other 
objects).  Operations are performed by an agent, and 
change the state of one or more objects. They are 
characterized by pre-, post- and trigger- conditions.    

Goals are the objectives that the system has to achieve.  
In general, a goal can be AND/OR refined till we obtain a 
set of achievable sub-goals.  The goal refinement process 
generates a goal refinement tree.  All the nodes of the tree 
represent goals. The leaves may also be called requisites.  
The requisites that are assigned to the software system are 
called requirements; those assigned to the interacting 
environment are called assumptions.   

Let’s briefly see how obtain a requirements 
specification in KAOS. The high-level goals are gathered 
from the users, domain experts and existing 
documentation.  These goals are then AND/OR refined 
till we derive goals that are achievable by some agents.  
For each goal the objects and operations associated with it 
have to be identified.  Of course, more than one 
refinement for a goal may be possible, and there may be 
conflicts between refinements of different goals that can 
be resolved as proposed in [6].  It’s up to the 
requirements engineer to generate a “good” refinement 
tree.  By “good” refinement tree we mean one that does 
not contain conflicts among refinements of different goals 
and from which it is possible to derive an architecture that 
achieves those goals.  In addition to iterations with the 
requirements specification process, there may also be 
iterations between the requirements specification process 
and the architecture prescription process. 

In figure 1., there is an example of a goal specified in 
KAOS, taken from the example we’ll use in next section. 

 
Goal Maintain[ConfidentialityOfSubmissions] 
InstanceOf SecurityGoal 
Concerns DocumentCopy, Knows, People 
ReducedTo  

ConfidentialityOfSubmissionDocument 
ConfidentialityOfIndirectSubmission 

InformalDef A submission must remain  
confidential.  A paper that has to  
be submitted has to remain  
confidential. 

 
Figure 1. Example of a goal specification in 
KAOS 

The keyword Goal denotes the name of the goal; 
InstanceOf declares the type of the goal; Concerns 
indicates the objects involved in the achievement of the 
goal; ReducedTo contains the names of the sub-goals into 
which the goal is resolved.  InformalDef is the informal 
definition of the goal. Then there could be FormalDef, n 
optional attribute; it contains a formal definition of the 
goal (which can be expressed in any formal notation such 
as first order logic). 
 
3. The Preskriptor Process 

 
We will illustrate our technique with an example.  In 

the example, we shall obtain an architectural prescription 
for a system that automates some of the functions in the 
paper selection process for a scientific magazine (or a 
conference).  Our starting point is a specification of this 
software system in KAOS.  The fundamental goal of the 
paper selection system is to keep high the quality of the 
magazine. 

We have to determine the fundamental goal (root goal) 
that the system has to achieve; this goal is the only 
unavoidable constraint coming from the problem domain.  
By using a KAOS specification as a starting point, we can 
gradually increase the degree of constraint of the solution 
by considering the goals that refine the root goal.  We can 
keep on refining goals to an appropriate level.  The 
Preskriptor process can take as input goals in any level of 
the resulting goal refinement tree.   

If we take the root of the tree, although the resulting 
prescription will enable new, innovative solutions to the 
problem, it will generally provide too little guidance to 
the system’s designers.   

On the other hand, taking the leaves of the goal 
refinement tree (or even a further refining of the 
prescription to achieve qualities as performance, 
reusability, etc.) may produce a specification that 
constraints too much the lower level designs.  As Parnas 
once noted, if in order to design washing machines we 
used all the requirements coming from how we wash the 
clothes by hand, we wouldn’t have got the very effective 
rotary washing machines of nowadays. 

Our approach leaves the software architect free to 
choose the degree of constraint desired on the 
architecture.  Also, he or she could change the degree of 
constraint during the architecture process according to 
necessity.  In the example that follows we use a high 
degree of constraint (i.e. we consider goals deep in the 
goal refinement tree) only for demonstration purposes. 

The process of deriving the prescription is composed 
of three steps that can be followed by an optional one, 
and which may be iterated.  In the first step we derive the 
basic prescription from the root goal for the system.  This 
root goal is either already given or it can be obtained by 
abstracting its sub-goals.  In the second step we get the 
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components that are potential sub-components of the 
basic architecture considering the objects that are in the 
KAOS specification.  In the third step we choose a level 
of refinement of the goal refinement tree that we consider 
appropriate, we decide which of the sub-goals at this level 
are achieved or co-achieved by the software system, and 
we assign them to the sub-components which we derived 
at step 2.  As a last step, the architectural prescription 
may be further refined to achieve additional non-
functional properties. 

Our example considers the KAOS specification for the 
paper selection process developed in the thesis [7].  We 
shall transform this KAOS specification into a 
prescription for a Software System that is to assist in the 
paper selection process.  Figure 2. illustrates the first 
three steps of the process. 

 
 

 
Figure 2: The fundamental steps of the 
Preskriptor process 
 
3.1  The First Step of the Methodology 

 
The software system, that we hereafter denote as 

“SelectionManager”, is co-responsible for the root goal 
“Maintain[QualityOfTheScientificMagazine]” together 
with the system composed of the people involved.  The 
software system performs different functions that can be 
automated and it interacts with the human system.  Its 
purpose is to speed up the paper selection process and to 
improve its confidentiality. 

The Preskriptor language is an implementation of the 
APL introduced in [4].   

 
Preskriptor Specification: ScientificPaperManager 
KAOS Specification: PaperSelectionProcess 
Components: 
 
Component SelectionManager [1,1] 
Type Processing 
Constraints  

Maintain[QualityOfTheScientificMagazine] 
Composed of … 
Uses PeopleConnect to interact with (AutorAgent,  

ChiefEditorAgent,  
AssociatedEditorAgent, EvaluatorAgent) 

 
Figure 3: Example of a specification in 
Preskriptor 

 
At the beginning of a Preskriptor specification is the 

declaration of its name. It’s followed by the declaration of 
the KAOS specification from which the prescription is 
derived.  A prescription may derive from only one KAOS 
specification, and if the prescription derives from several 
different KAOS specifications, it’s better to merge the 
specifications first and then to architect the system.  By 
doing so, if there are conflicts between goals in different 
specifications they will be solved early at the 
requirements phase.  So, all the components of a 
prescription derive from the same KAOS specification, 
which may be the union of several KAOS specifications. 
Following are the definitions of the components. 

 from  requirements  
   specification phase 

The field Component specifies the name of the 
component.  Type denotes the type of the component.  
Constraints is the most important attribute of a 
component.  It denotes which are the requirements that 
the component is responsible for.  We use here the term 
constraint to denote both functional and non-functional 
constraints (both corresponding to requirements on the 
system).  Composed of identifies the subcomponents that 
implement the component.  The last attribute, Uses, 
indicates which are the components used by the 
component. Since interactions can only happen through a 
connector, the Uses attribute has the additional keyword 
to interact with denoting which components the 
component interacts with using a particular connector.  

At the highest layer of abstraction, to which the first 
step of the specification corresponds, we have to write 
next to the name of a component its possible number of 
instances in the system.  At the other layers this 
information is optional because it will be contained 
anyway in the Composed of field of the super-component 
of the component considered.  For example, [1,n] means 
that the component can have any number of instances 
from 1 to an arbitrary number n. 

We will fill in the Composed of field after we decide 
how to refine the system at the third step.  The software 

 
Step 1 

 
Step 2 

Root Goal(s) 

KAOS Objects 

Root Component(s) 

 
Step 3 KAOS Goals 

Potential Sub- 
component(s) 

Architectural 

 feedback to 
requirements 
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system has to interact with the people involved in the 
process.  To do so, it uses the (fairly complex) connector 
“PeopleConnect”.  To distinguish the people involved in 
the process (agents) from the data components that may 
be used in the software system to represent them, we 
added the Agent suffix to their names.  PeopleConnect is 
specified as follows: 

 
Component PeopleConnect [1,n] 
Type Connector 
Constraints  

Maintain[QualityOfTheScientificMagazine] 
Composed of  … 
Uses / 

 
Figure 4. Example of a connector specification 

 
The symbol “/” means none and, for now, we will omit 

the fields whose value is none.  The formal specification 
of the Preskriptor language is in the Appendix. 

 
3.2 The Second Step 
 

From the objects in the KAOS specification we derive 
potential data, processing and connector components that 
can implement SelectionManager.  If in the third step we 
don’t attribute any constraint to these potential 
components, they won’t be part of the prescription.  In 
that case, in fact, they won’t be necessary to achieve the 
goals of the KAOS specification.  In figure 5. is a sample 
this set for the paper selection process. 

 
Component Document 
Type Data 
Constraints … 

 
Component Paper 
Type Data 
Constraints … 

 
Component People 
Type Data 
Constraints … 

 
Component Knows 
Type Data 
Constraints … 
Composed of People[0,m], Document[0,n] 

 
Figure 5. Sample of potential components for the 
paper selection system 

 
The notation, used in the Composed of field of the last 

component, means that the component is composed of 0 
or more “People” sub-components and by 0 or more 
“Document” sub-components.  Obviously, the number of 
instances assigned to different sub-components doesn’t 
have to be the same. 

“SelectionManager” could be composed also of the 
following processing component, and the following 
connectors, which connect the processing component to 
the data ones. 

 
Component SelectionManagerEngine 
Type Processing 
Constraints  

Maintain[QualityOfTheScientificMagazine] 
Composed of … 
Uses  

PeopleConnect to interact with  
  (AuthorAgent, ChiefEditorAgent,    
   AssociatedEditorAgent, EvaluatorAgent), 
Conn1 to interact with Document,  
Conn2 to interact with Paper,  

… 
 

Component Conn1 
Type Connector 
Constraints … 

 
… 

 
Figure 6. SelectionManagerEnging and 
associated connectors 

 
3.3 The Third Step 
 

Now we will complete the architectural prescription by 
taking into account the goals that are at the goal 
refinement tree level that we selected.  We show how to 
put constraints on the architectural components we got at 
step 2. 

Let’s first refine our root goal.  After a first 
refinement, the subgoals of the root that the software 
system needs to achieve are: 

 
Maintain[OriginalityOfSubmission], 
Maintain[QualityOfPublishedArticles], 
Maintain[QualityOfPrint], 
Achieve[EnoughQuantityOfPublishedArticles]. 

 
By refining the first of these goals, we obtain the 

following sub-goals: 
 

Maintain[QualityOfEditorialDecisions], 
Maintain[PertinenceOfPublishedArticles]. 

 
After two more refinements we obtain: 
 

Avoid[ConflictOfInterestsWithAssociatedEditor] 
 
This goal can translate directly into a constraint on the 

“SelectionManagerEngine” and “People” subcomponents. 
“SelectionManagerEngine” will somehow keep track of 
the different ways the various people represented by the 
People data component may know each other.  The two 
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constrained components are able to achieve this 
requirement and the existence of this requirement is a 
sufficient condition for the existence of the two 
components given our architectural rationale.  By this we 
mean that these components ought to exist even if they 
have no other goals to achieve.  On the other hand, if we 
don’t care anymore about this requirement and there are 
no further constraints assigned to these components, there 
is no point in keeping them.  By proceeding in a similar 
fashion with the rest of the goal refinements, we obtain 
the first version of a complete Preskriptor specification: 

 
Preskriptor Specification: ScientificPaperSelector 

KAOS Specification: PaperSelectionProcess 
Components: 
 
Component SelectionManagerEngine [1,1] 
Type Processing 
Constraints  

Avoid[ConflictOfInterestsWithAssociatedEditor] 
Avoid[SurchargeAssociatedEditor],  
Achieve[ListOfPotentialEvaluators], 
Avoid[ConflictsWithEvaluator],  
Maintain[CommittedEvaluator],  
Avoid[SurchargeEvaluator],  
Maintain[FeedbackOnPaper],  
Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission],  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

Composed of  … 
Uses  

PeopleConnect to interact with (AutorAgent,  
ChiefEditorAgent, 
AssociatedEditorAgent,  
EvaluatorAgent), 

Conn1 to interact with Document,  
Conn2 to interact with Paper,  
… 

 
Component Document [0,n] 
Type Data 
Constraints  

Maintain[FeedbackOnPaper], 
Maintain[IntegrityOfEvaluation] 

 
Component Paper [0,n] 
Type Data 
Constraints Maintain[IntegrityOfPapers], 

 
Component Conn1 [1,n] 
Type Connector [1,n] 
Constraints  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

 
… 
 

Figure 7. A prescription for the paper selection 
process after step 3 

 

We omitted the complete specification, but if we 
included it, it would be possible to notice that the 
components: ChiefEditor, Author, Knows, Holds, 
IsAuthorOf, Supervise, InChargeOf and Evaluates, which 
were potential sub-components at step 2, were removed 
from the prescription because they are not necessary to 
achieve the sub-goals for the system.  This is due to the 
rationale that we took in prescribing the system.  
Different architects may use different rationales and 
produce different prescriptions.   

At the third step (and at the optional fourth) we first 
consider the functional goals and than the non-functional 
ones.  The goals of the latter type have a more complex 
effect on the system to achieve.  In the most general case, 
apart from further constraining already existing 
components, they introduce new components and they 
transform the system’s topology (i.e. they change the 
relationships among the system’s components).  Details 
on how the Preskriptor process manages non-functional 
requirements can be found in [8]. 
 
3.4 The fourth step 
 

At this step of the prescription design process, the 
architectural prescription is further refined to make the 
system achieve goals that are not from the problem 
domain.  These additional goals are typically introduced 
for a variety of reasons (for example architectural, 
economic, etc.).   

These goals can be classified as follows: useful 
architectural properties, even though not required by the 
problem (such as reusability, evolvability, etc.), 
conformance to a particular architectural style, and 
compatibility goals (such as compatibility with a given 
platform or industry standard, or platform independency). 

Examples of architectural goals are reusability, 
location transparency and dynamic reconfiguration.  
These goals can modify the prescription at the component 
level, at the sub-system level, or affect the whole system.  

As practical experience has shown [8], architectural 
styles can be chosen as a particular solution to achieve 
some goals or to refine some components.  For example, 
we can achieve the architectural goal of dynamic 
reconfiguration by making all the components adhere to 
the reconfigurable architectural style.  By dynamic 
reconfiguration we mean that the application can evolve 
after it has been already deployed as demands change for 
new and different kinds of configuration.  A 
reconfigurable architectural style is the following set of 
constraints: provide location independence; initialization 
must provide facilities for start, restart, rebuilding 
dynamic data, allocating resources, and initializing the 
component; finalization must provide facilities for 
preserving dynamic data, releasing resources, and 
terminating the component. 
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The last kind of goals that don’t come from the 
problem domain are compatibility goals. They further 
constrain a prescription to take into account, already at 
this architectural design level, the need to assure the 
compatibility of the system with one or more industry 
standard(s) and/or platform(s).  For example we may 
want to make a system CORBA or Linux compatible.  
This may be motivated by the need to assure 
compatibility with legacy systems, other vendors systems, 
available machines, or just for some marketing strategies.   

Fig. 11 shows how step 4 interacts with the previous 
steps of the Preskriptor process.   
 
 

 
  
Figure 8: Step 4 of the Preskriptor process  
 

As we can see, in general, the fourth step is iterated till 
we have achieved all of the non-domain goals.  This step 
may also be iterated with step three.  In that case, 
alternative problem domain goal refinements and/or 
components may be chosen to make the later prescription 
design steps possible or easier to perform.   

It’s important to distinguish between the artifact of the 
third step and the one of the fourth.  The third step 
produces an artifact whose only constraints come from 
the problem domain, which can be reused with similar 
systems without over-constraining them.  On the other 
hand after the fourth step we obtain a prescription that 
takes into account also constraints that we introduced for 
the particular product we are developing, such as the use 
of a particular architectural style or the compatibility with 
a certain industry standard.  While the artifact of step four 
may be reused with other systems that we want to develop 
in a similar manner, we also want to be able to easily 
reuse a prescription in systems that are to be implemented 
with different non domain constraints, like with different 
architectural styles.  For this reason we distinguish 
between the specification of the prescription after step 3., 

which we call Problem Oriented Prescription (POP), from 
the one after step 4, which we call Solution Oriented 
Prescription (SOP).   

Given the Problem Oriented Prescription for the 
system and the non-domain driven goals, step 4 proceeds 
similarly to step 3.  It takes as inputs a POP and  the non 
problem domain goals, and gives a SOP as a result.  In 
this step the non-domain goals are assigned as constraints 
to some POP components and/or the topology of the POP 
may be modified in order to achieve them (in this step we 
may reintroduce some of the KAOS components that we 
discarded at step three).   

A Solution Oriented Prescription specification is 
similar to a POP specification, but it includes one or more 
of the following additional attributes: Architectural Goals, 
Architectural Styles and Compatibility Goals 
Specification.  These new attributes are needed to keep 
track of the specifications of the goals, which don’t come 
from the problem domain.   

 From  Non Problem 
Domain specifications

 From  Step 3 

Architectural Goals 
Architectural Styles 
Compatibility Goals Problem Oriented Prescription 

 
4. Conclusion  

Step 4  
This paper presents an introduction to Preskriptor a 

method for transforming a requirements specification into 
an architectural prescription.  Architectural prescriptions 
are a higher-level form of architectural specifications that 
interface more easily with requirements specifications and 
that do not include implementation oriented entities such 
as client-server which are often default components in 
architectural descriptions.  We illustrated how to derive a 
prescription with a practical example.  The key steps in 
the prescription specification process are: the selection of 
the right level of goal refinement, the choice of the 
potential components for the architecture, the assignment 
of the constraints to the potential components for the 
architecture and, often in the case of non-functional 
requirements, the modification of the architecture’s 
topology. 

 feedback to Step 3 
Solution Oriented Prescription 

Preskriptor is a systematic and rigorous process to 
make sure that none of the requirements are neglected, 
that no useless requirements and/or components are 
introduced and that the means for easily modifying the 
architecture are provided.  The generality of our approach 
will allow the architects to choose their favorite ADL, or 
design specification, to describe at a lower level an 
architecture prescribed in Preskriptor. 

The objectives for the future of our research are the 
extension of the methodology to take into account the 
most common non-functional requirements, the test of the 
methodology with case studies and empirical studies, and 
the development of a supporting tool.   
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6. Appendix 
 
Preskriptor Specification: [Prescription’s name] 
(KAOS Specification: [Requirements specification’s 
name])? 

Components:  
( 
Component [Component’s name] ([num1, num2])& 
Type {Processing | Data | Connector} 
Constraints ([Constraint’s name], )+ 

(Composed of ([Component’s name] [num1, num2], )* )? 
(Extends [Component’s name])? 

(Generalizes ([Component’s name], )+)? 

(Uses [Connector’s name] to interact with ([Component’s 
name], )+)* 

)+ 
 
The terms between brackets denote the meaning of the 
identifier that will be at their place.  “*” means that the 
preceding expression can be present 0 to an arbitrary 
number of times.  “+” is the same except that it has to be 
present at least once.  “?” means the expression can be 
present 0 or 1 time only.  The new symbol “&” means that 
the expression is required only for the specification of the 
components at the first level of the components 
refinement tree. 
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                       Abstract 
 
Software systems of today are characterized by in-
creasing size, complexity, distribution, heterogeneity, 
and lifespan. Understanding and supporting the 
interaction between software requirements and 
architectures remains one of the challenging 
problems in software engineering research. To 
address these challenges we are proposing an 
integration framework developed within the context 
of the Tropos project. The proposal aims at 
identifying the key architectural elements and the 
dependencies among those elements, based on the 
stated system requirements.  
 

1. Introduction 
 

Requirements Engineering and Software 
Architecture have become established areas of 
research, education and practice within the software 
engineering community. 

Evolving and elaborating system requirements into 
a viable software architecture satisfying those 
requirements is still a difficult task, mainly based on 
intuition. It also remains a challenge to show that a 
given software architecture satisfies a set of functional 
and non-functional requirements. This is somewhat 
surprising, as software architecture has long been 
recognised to have a profound impact on the 
achievement of non-functional goals ("ilities") such as 
availability, reliability, maintainability, safety, 
confidentiality, evolvability, and so forth. 

In this work we show an approach for this 
integration of systems requirements and software 
architectures within the context of the Tropos project, 
an information system development framework which 

is requirements-driven in the sense that it adopts 
concepts used during early requirements  analysis. To 
model and understand issues of the application 
domain (the enterprise) we use the i* technique [2],[3], 
which allows a better description of the organizational 
relationships among the various agents of a system as 
well as an understanding of the rationale of the 
decisions taken. In the architectural design we use a 
catalogue of socio-intentional structures adopting a 
set of architectural styles for multi-agent systems 
motivated in organization theory and strategic 
alliances [4], [5], [6].  

The paper is structured as follows. Section 2 
presents the Tropos ontology, including a modeling 
framework for requirements analysis namely the i* 
technique, and the organizational-inspired 
architectural styles.  Section 3 emphasize the existence 
of conceptual differences between requirements and 
architecture. Section 4 introduces the baseline of our 
proposal to integrating organizational requirements 
and socio-intentional styles. Finally, Section 5 
summarizes the related work, concludes the papers 
with contributions and points to further work. 

 

2. The Tropos Methodology 
 

The Tropos methodology adopts the view of 
information systems as social structures. By social 
structures, we mean a collection of social actors, 
human or software, which act as agents, positions, or 
roles and have social dependencies among them. 
Tropos is intended as a seamless methodology 
tailored to describe both the organizational 
environment of a system and the system itself in terms 
of the same concepts. 
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The Tropos ontology is described at three levels of 
granularity [1]. At the lowest (finest granularity) level, 
Tropos adopts concepts offered by the i*  
organizational modeling framework [2], [3], [4], such as 
actor, agent, position, role, and social dependency.  

At a second, coarser-grain level the ontology 
includes possible social patterns, such as mediator, 
broker and embassy. At a third, more macroscopic 
level the ontology offers a set of organizational styles 
inspired by organization theory and strategic alliances 
literature. All three levels are defined in terms of the i* 
concepts. 

Tropos methodology spans four phases: 
• Early requirements - concerned with the 

understanding of a problem by studying an 
organizational setting; the output is an 
organizational model that includes relevant 
actors, their goals and dependencies. 

• Late requirements - the system-to-be is 
described within its operational environment, 
along with relevant functions and qualities. 

• Architectural design - the system’s global 
architecture is defined in terms of subsystems, 
interconnected through data, control and 
dependencies. 

• Detailed design - behavior of each architectural 
component is defined in further detail. 

 
More details about Tropos Methodology can be 

found in [1].  
 

2.1 Requirements in the I* framework 
 

This section will review the main concepts of the i* 
technique [2], [4]. It is a framework, which focuses on 
the modeling of strategic actor relationships of a richer 
conceptual model of business processes in their 
organizational settings. The ontology of the i* 
technique [4] caters to some of these advanced 
concepts. It can be used for: (i) obtaining a better 
understanding of the Organizational relationships 
among the various system agents; (ii) understanding 
the rationale of the decisions taken; and (iii) 
illustrating the various characteristics found in the 
early phases of requirements specification. According 
to this technique, the participants of the organizational 
setting are actors with intentional properties, such as, 
goals, beliefs, abilities and compromises. These actors 
depend upon each other in order to fulfill their 
objectives and have their tasks performed.  

The i* technique consists of two models: The 
Strategic Dependency Model (SD) and the Strategic 
Rationale Model (SR).  

The Strategic Dependency Model (SD) consists of 
a set of nodes and links connecting them, where nodes 
represent actors and each link indicates a dependency 
between two actors. Hence, a model is described in 

terms of network of dependency relationships among 
various actors, capturing the motivation and why of 
activities. We can distinguish, four types of 
dependencies, three of them related to existing 
intentions – goal dependency, resource dependency 
and task dependency – while the fourth is associated 
with the notion of non-functional requirements, the so 
called soft-goal dependency. In the goal dependency, 
an agent depends on another one to provide the 
desired condition, and it does not worry about how 
this condition is achieved. In the resource 
dependency, the agent depends on the availability of 
physical resource or information. In the task 
dependency, the agent informs the other what (and 
how) should be done. The soft-goal dependency is 
similar to the goal dependency, except that the 
condition is not precisely defined at the start  of the 
process, i.e., the goals in a sense involves subjective 
aspects, that gradually are clarified during the 
development process. This type of dependency 
provides an important link connecting two important 
aspects in software engineering: (i) the technical and 
(ii) managerial side. We still can identify different 
degrees of dependencies: open, committed and critical 
[5]. We can distinguish actors as agents, roles and 
positions. An agent is an actor with concrete physical 
manifestations. It is a person or artificial agents 
(hardware/software). A role is an abstract 
characterization of the behavior of a social actor within 
some specialized context, domain or endeavor. A 
position is a set of roles typically played by one agent. 
Moreover we can analyze opportunities and 
vulnerabilities of the chain dependency [3]. 
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Figure 1 – SD model for Media Shop 

 
In the Figure 1, we have the Strategic Dependency 

(SD) model of the e-commerce example. The Media 
Shop is a store selling and shipping different kinds of 
media items such as books, newspapers, magazines, 
audio CDs, videotapes, and the like [1]. To increase 
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market share, Media Shop has decided to open up a 
B2C retail sales front on the internet. With the new 
setup, a customer can order Media Shop items in 
person, by phone, or through the internet.  The system 
has been named Medi@ and is available on the world-
wide-web using communication facilities provided by  
Telecom Cpy. It also uses financial services supplied 
by Bank Cpy, which specializes on on-line 
transactions. Medi@ system is introduced as an actor 
in this strategic dependency model depicted. 
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Figure 2 – SR model for Medi@  

 
The second model of the technique i* is the 

Strategic Rationale Model (SR). It is used to: (i)  
describe the interests, concerns and motivations of 
participants process; (ii) enable the assessment of the 
possible alternatives in the definition of the process; 
and (iii) research in more detail the existing reasons 
behind the dependencies between the various actors. 
Nodes and links also are part of this model. It includes 
the previous four types of nodes (present in the SD 
model): goal, task, resource and soft-goal. There are 
two new types of relationship, means-end that 
suggests that there may be other means of achieving 
the objective (alternatives) and task-decomposition 
that describes what should be done in order to perform 
a certain task. 

The analysis in Figure 2 focuses on the software 
(Media), instead of an external stakeholder. The figure 
postulates a root task Internet Shop Managed 
providing sufficient support (++) [13] to the softgoal  

Increase Market Share. That task is firstly refined 
into goals Internet Order Handled and Item Searching 
Handled, softgoals Attract New Customer, Secure and 
Usable and tasks Produce Statistics and 
Maintenance. Internet Order Handled is achieved 
through the task Shopping Cart, which is 
decomposed into subtasks : Select Item, Add Item, 
Check Out, and Get Identification Detail. These are 
the main process activities required to design an 
operational on-line shopping cart. More details can be 
founded in [1]. 

In next section we will detail the organizational-
inspired architectural styles  Tropos, which consider 
information systems as social structures all along the 
development life cycle.  

 

2.2. Socio-Intentional Architectural Styles 
 

A system architecture constitutes a relatively small, 
intellectually manageable model of system structure, 
which describes how system components work 
together. Unfortunately, traditional architectural styles 
for e-business applications [12],[13] focus on web 
concepts, protocols and underlying technologies but 
not on business processes nor non functional 
requirements of the application. As a result, the 
organizational architecture styles are not described nor 
the conceptual high-level perspective of the e-
business application. 

Figure 3 – The joint venture pattern 
 
Tropos has defined organizational architectural 

styles [1],[5],[6],[7] for agent, cooperative, dynamic 
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and distributed applications to guide the design of the 
system architecture. These architectural styles 
(pyramid, joint venture (Figure 3), structure in 5, 
takeover, arm’s length, vertical integration, co-
optation, bidding) are based on concepts and design 
alternatives coming from research on organization 
management. The proposal is to use human 
organizations as a metaphor to suggest a set of 
generic styles for agent systems, with a preference for 
organizational design theories over social emergence 
theories.  

For example, the joint venture architectural style in 
Figure 3. The joint venture style is a more 
decentralized style based on an agreement between 
two or more principal partners who benefit from 
operating at a larger scale and reuse the experience 
and knowledge of their partners. Each principal partner 
is autonomous on a local dimension and interacts 
directly with other principal partners to exchange 
services, data and knowledge. However, the strategic 
operation and coordination of the joint venture is 
delegated to a Joint Management actor, who 
coordinates tasks and manages the sharing of 
knowledge and resources. Outside the joint venture, 
secondary partners supply services or support tasks 
for the organization core. 

The organizational architectural styles have been 
described in UML, in order to provide detailed 
representation in architectural phase of Tropos 
Methodology, as well as to represent the 
organizational styles into a industrial notation [16]. 

 

3. The Gap Between Requirements and 
Architectural Description 
 

The inter-dependencies and constraints between 
requirements elements and architectural elements are 
thus not well-understood and subsequently only little 
guidance is available in bridging requirements and 
architecture. The semantic gap between requirements 
and software design is substantial [12].   

Requirements Engineering is concerned with 
identifying the purpose of a software system, and the 
contexts in which it will be used. Software architecture 
is related to the principled study of large grained 
software components, including their properties, 
relationships, and pattern of combination [9].  In 
addition to specifying the structure and topology of 
the system, the architecture should show the intended 
correspondence between the system requirements and 
elements of the constructed system. It can additionally 
address system-level properties such as capacity, 
throughput, consistency, and component 
compatibility [14].  

The existence of conceptual differences between 
what to do (requirements) versus how to do it 

(architecture, design and code) constitutes a semantic 
gap. Filling this gap requires better models and 
notations for the intermediate step. There are some 
critical challenges when trying to reconcile 
requirements and architectures [8]: 

 
− Requirements are frequently captured informally in 

a natural language. On the other hand, entities in a 
software architecture specification are usually 
specified in a formal manner [11]. 

− System properties described in non-functional 
requirements are commonly hard to specify in an 
architectural model [11]. 

− Iterative, concurrent evolution of requirements and 
architectures demands that the development of an 
architecture be based on incomplete requirements. 
Also, certain requirements can only be understood 
after modeling and even partially implementing the 
system architecture [12]. 

− Mapping requirements into architectures and 
maintaining the consistency and traceability 
between the two is complicated since a single 
requirement may address multiple  architectural 
concerns and a single architectural element may 
have numerous non-trivial relations to various 
requirements. 

− Real-world, large-scale systems have to satisfy 
hundreds, possibly thousands of requirements. It is 
difficult to identify and refine the architecturally 
relevant information contained in the requirements 
due to this scale. 

− Requirements and the software architecture emerge 
in a process involving heterogeneous stakeholders 
with conflicting goals,  expectations, and 
terminology. Supporting the different stakeholders 
demands finding the right balance across these 
divergent interests. 
 
The following section outlines the basis of our 

approach. 
 

4. The Integrating Framework Proposal 
 
This section describes an informal four-steps 

process to address the transition between 
requirements and architectural design. This proposal is 
a framework to identifying and mapping the 
architectural decision from a requirements 
specifications. 

 

4.1. Mapping Architectural Elements from i* 
 
This proposal focuses on finding a systematic 

process to support the transition from requirements 
specification to architectural design.  

As showed in Figure 4 the proposal are composed 
by two modules: i* Architectural Extension and 
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Integration Process.  Our approach for integration 
process takes as input a goal oriented requirements 
specifications in i* technique and returns as output an 
architectural model. The main concerns are related to 
the identification, classification and support a variety 
of architectural elements from system requirements. 

 

Figure 4 – i* Architectural extension 
 
This extension includes: 

− Templates – To extend and refine the properties 
from i* architectural elements  (possibly actors, 
goals, softgoals resource, task, dependency and 
links). The identified architectural elements from i* 
framework are:  
1. Components - The computational elements 

(possibly systems actors) of the architecture 
bound together by connectors; 

2. Connections - The relations between 
components (possibly dependencies between 
actors or relationships to archive goals, like 
means-end or task decompositions);  

3. Constraints – assertions and constraints that 
apply to the entire system or components 
(possibly extracted from the non-functional 
requirements, goals, dependency sequences or 
architectural patterns);  

 
− Guidelines – To support the mapping from SR 

description into organizational architectural styles 
elements.    

− Architectural Patterns – Compositions or styles in 
which architectural elements are connected in a 
particular way. In this work we are using the 
architectural styles of the socio intentional 
catalogue (e.g., Joint Venture style).    
Figure 5 shows the four-steps Integration Process 

to mapping and relating i* systems requirements and 
organizational architectural elements:  
− Step 1: Capturing the architectural requirements. 

This step covers an analysis using as input the i* 
requirements model and architectural guidelines to 
identifying architectural elements and capture 
additional architecture-relevant information. As 
output we have some templates for architectural 
elements;  

− Step 2: Applying the NFR Framework to select 
among the socio-intentional architectural style 
using the non-functional requirements; 

− Step 3: Relating i* architectural requirements with 
the architectural elements from the socio-intentional 
catalogue applying the guidelines;  

− Step 4: Generating the i* architectural model. 
 

Figure 5 – Integration process 
 
Capture Architectural Requirements  - The 
primary activity is to identify an i* architectural 
elements composed by requirements elements, 
showing in Table 1, with complementary architectural 
definitions.   
 

Table 1 – Mapping the i* architectural elements 
I* Elements  Architectural Elements  
Actor System component  

Task Responsibility 

Goal Responsibility/ constraint  

Soft -goal Constraint 

Dependency Connection/Relationship/constraints 

Resource System entity 

Link Connection 

 
In the sequence we show an architectural template 

example for the component Medi@ system showed in 
Figure 2.   

The Table 2 shows the partial template definition of 
a component. The Name attribute is the i* 
specification from which the element (actor) is derived. 
In our example “Medi@” it is a system component. 
The Responsibilities attribute is a list of assignment of 
system responsibilities (tasks and goals), the sub-
components that implement the component. The 
Interface attribute denotes the connectors 
(dependencies) between others components or sub 
components.  The Constraints attribute denotes which 

   i * Architectural Extension  
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 i * Framework   
Templates   

Integration Process   Patterns   
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Architectural  
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goals the sub-components satisfy, the soft-goals list 
and architectural style selected. 

 
Table 2 – Architectural templates 

   
 Type: System Component   
 Name: Medi@ 
 Responsibilities: {list of task and goal}  
 Interface:  {list of dependencies) 
 Constraints: {Assertions in use, relationship};  
   ………. 
Architectural Pattern:  {organizational style} 
Composed of: {components}   
                       {responsibilities} 
  …….. 

 
The organizational architectures offer a set of 

design parameters (such direct supervision, 
standardization of skills, outputs and work processes) 
that can influence the division of labor and the 
coordination mechanisms. This design parameters, 
include, among others task assignments. Tasks are 
partially ordered sequences of steps intended to 
accomplish some goal. Tasks can be decomposed into 
goals and/or subtasks, whose collective fulfillment 
completes the task. These decompositions also allow 
to identify actors that can accomplish a goal, carry out 
a task, or deliver some resource needed by another 
actor. Fulfillment of an actor’s obligations can be 
accomplished through delegation and through 
decomposition of the actor into components actors.  

To define the roles in the organizational 
architectures we propose an initial classification of the 
responsibilities (tasks and goals) as show in Table 3.   

 

Table 3 – Task type 
Basic  The input, processing and output 

associated with the running the 
organization 

Manager The coordination and managerial 
activities  

Controller Standardization of work process 

Support The non-operational services that are 
outside the basic flow of operational 
tasks. 

   

Applying NFR Framework - An important 
task during architectural design is to select among 
alternative architectural styles using as criteria the 
desired qualities identified in the previous phase (Late 
Requirements). They will guide the selection process 
of the appropriate architectural style. The analysis 
involves refining these qualities, represented as 
softgoals, to sub-goals that are more specific and more 
precise and then evaluating alternative architectural 
styles against them, as showed in Figure 6.  

The analysis resulting in a softgoal dependency 
graph is intended to make explicit the space of 
alternatives for fulfilling a top-level attribute. The 
organizational patterns are represented as 
operationalized attributes (saying, roughly, “fulfilled 
by the pattern structure-in-5/joint-venture”) [7].  

The evaluation results in contribution relationships 
from the social structures to the quality attributes, 
labeled “+”, “++”, “-”, “--” that mean respectively 
partiallysatisfied, satisfied, partially denied and 
denied. Design rationale is represented by claims 
drawn as dashed clouds. They make it possible for 
domain characteristics such as priorities to be 
considered and properly reflected into the decision 
making process. Exclamation marks are used to mark 
priority attributes while a check-mark “ ��  ” indicates 
an accepted attribute and a cross “ÕÕ” labels a denied 
attribute. 

 
Figure 6 – Partial evaluation for selecting architectural 

styles 
 

More details about the selection and non-
functional requirements decomposition process can be 
found in [6],[7]. 

 

Relating the i* architectural elements and 
Socio Intentional elements  - The architectural 
level of design requires a different form of abstraction 
to reveal high-level structure. In particular, should be 
possible to represent as first class abstractions new 
architectural patterns and new forms of interaction 
between architectural requirements elements, so that 
the distinct roles of each requirement elements in the 
structure are clearer.  

 The organizational pattern adopts the abstractions 
offered by organizational theory. The structure of an 
organization defines the roles of various intentional 
components (actor), their responsibilities, defined      in  
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Figure 7 – Medi@ system as joint venture architecture 

 
terms of tasks and goals they have assigned and 
resources they have been allocated.   

A role is an abstract characterization of the 
behaviour of an actor within some specialized context, 
domain or endeavour. Its characteristics are easily 
transferable to other actors. Dependencies are 
associated with a role when these dependencies apply 
regardless of who plays the role. In order to describing 
this relationship it is necessary to analyse the 
responsibilities and roles in the system requirements. 

Our work consists of extending the i* with 
guidelines to support the mapping of i* requirements 
elements to i* architectural elements.  

 
Guideline 1.1 : The i* systems (or i* roles) can be 
mapped to a system component in architectural 
model.  

For instance, the Figure 7 suggest a possible 
assignment of system responsibilities for the 
business-to-consumer (B2C) part of Media System. 
Following the joint venture style, the architecture is 
decomposed into three principal partner actor (Store 
Front, Billing Processor and Back Store) . 
 
Guideline 1.2: The i* relationship between systems 
(or roles) can be mapped as interface in architectural 
model. 

The partners control themselves on a local 
dimension for exchanging, providing and receiving 
services, data and resources with each other.  For 

instance, the Store Front interacts primarily with the 
customers and provides them with a usable front-end 
web application for consulting and shopping media 
items. See Figure 7.  
 
Guideline 1.3: The i* task (or goal decomposition 
into task) can be mapped as responsibility in 
architectural model.  

For instance, some of the responsibilities (see table 
1) in Medi@ system are  “Internet Shop Managed”, 
“Secure Form Order”, “Internet Orders Handled”, 
“Maintenance”, as seen in Figure 2. 

 
Guideline 1.4: The i* tasks-type (or goal-type) 
defines the roles of various intentional architectural 
components (actor) . 

For instance, Billing Processor is in charge for the 
secure management of orders and bills, and other 
financial data. And the Joint Manager  manages the 
system on a global dimension. See Figure 7. 

Further guidelines are required to describe a 
complete mapping between requirements and 
architecture. Of course not all concepts captured in the 
requirements phase will correspond to architectural 
system models. The models do not have a one-one 
relationship; many elements of the organizational 
requirements model are not part of the architectural 
model, since not all of the organizational tasks require 
a software system. Many tasks contain activities that 
are performed outside the software system, and so do 
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not become part of the architectural system model. 
Likewise, many elements in the architectural model 
comprise detailed technical software solutions and 
constructs that are not part of the organizational 
model.  

 

5. Conclusion 
 
The relationship between requirements and 

architectures has received increased attention recently 
[15]. A number of goal-based requirements 
approaches, most notably KAOS [9] [10] and the NFR 
framework [13], have proposed the explicit use of the 
notion of ‘goals’ to structure system requirements and 
architecture. A proposal KAOS/APL presented in  [15] 
has suggested the use of intermediate descriptions 
between requirements and architecture that they call 
‘architectural prescriptions’, which describe the 
mappings relationship between requirements and 
architectures. The CBSP approach [8] explores the 
relationships between software requirements and 
architectures, and proposes a technique to reconciling 
mismatches between requirements terminology and 
concepts with those of architectures.  

The purpose of this paper is to present our  work 
on the development of a framework to  complement the 
specification of architectural elements and mapping 
the relationship between requirements and 
architectural elements using a set of organizational 
styles.   

Future research directions will extend the 
architectural catalogue with classical software pattern 
proposed in the literature (piper-and-filters, layers, 
event-based) .   
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Abstract 
 

Quality attribute models are proposed as the linkage 
between a specification of a quality attribute requirement 
and a design fragment that is focused on achieving that 
requirement. Each quality attribute model has a 
collection of parameters that must be specified in order to 
determine from the model whether a requirement will be 
met. These parameters can be bound through design 
decisions, through values given from a quality 
requirement, or through knowledge of the designer. 
Architectural tactics are designed to relate design 
decisions to control of a quality attribute model 
parameter in order to achieve particular responses. 

In this paper, we present a series of steps that enable 
moving from a single quality attribute requirement to a 
design fragment focused on achieving that requirement. 
We demonstrate these steps through application to an 
embedded system.  
 

1. Introduction 
 

It is well accepted that the satisfaction of quality 
attribute requirements for a software system depends 
heavily on the design of the software architecture for that 
system. From this a plausible design approach is to use the 
quality attribute requirements as primary when designing 
the software architecture. In order for this approach to be 
successful, four pieces must be in place: precise 
specification of quality attribute requirements, 
enumeration of fundamental design approaches to achieve 
various quality attributes, a linkage between the 
specification of the requirements and the appropriate 
design approaches that yields a design fragment focused 
on achieving the requirement, and a method for 
composing the design fragments into an actual design. 

In this paper, we focus on the third of these pieces: the 
linkage between a specification of quality attribute 

requirements and a design fragment focused on achieving 
that requirement. We build on our prior work on quality 
attribute scenarios and architectural tactics and propose 
the use of quality attribute models as the linkage 
mechanism. We demonstrate the linkage through deriving 
a design fragment based on a performance requirement. 
An application of these steps to an additional modifiability 
scenario is precluded by space limitations but is available 
in [2]. 

We begin by briefly summarizing our prior work in 
quality attribute scenarios and architectural tactics. We 
then discuss why quality attribute models are the missing 
link and how they can be exploited to derive design 
fragments from quality attribute requirements. We 
illustrate the linkage through an example of a garage door 
opener. 
 

2. Quality attribute scenarios 
 

Quality attributes as defined in standards such as ISO 
9126 [7] are not adequate for design. This is because the 
definitions do not reflect the context in which they are 
applied. For example, all systems are modifiable for some 
set of changes and not modifiable for others. The key for 
design is characterizing the set of changes that a particular 
system will be subjected to. Similar comments hold for 
other attributes. 

We characterize quality attributes through quality 
attribute scenarios and have used this characterization in 
the ATAMsm [5] evaluation method as well as in other 
methods.  Our current definition of a quality attribute 
scenario has 6 parts – stimulus, source of stimulus, 
environment, artifact being stimulated, response, and 
response measure. Quality requirements for a particular 
system can be cast in terms of these six parts. 

In Chapter 4 of [3], we present scenario generation 
tables for the quality attributes of availability, 
modifiability, performance, security, testability, and 
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usability. Table 1 gives the scenario generation tables for 
performance – the attribute we use for our illustration. 
The scenarios generated by the tables in [3] cover most of 
the common meanings of these attributes [4]. 

The scenarios generated by these tables are “general” 
in that they are system independent. In order to make them 
act as requirements for a particular system, they must be 
instantiated for that system and made “concrete”. 

 

Portion of 
scenario 

Possible Values 

Source − one of a number of 
independent sources 

− possibly from within the 
system 

Stimulus − periodic events arrive 
− sporadic events arrive 
− stochastic events arrive 

Environment − normal conditions 
− overload conditions 

Artifact − System 
− Process 

Response − processes stimuli 
− changes level of service 

Response 
measure 

− latency 
− deadline 
− throughput 
− jitter 
− miss rate 
− data loss 

Table 1: performance scenario generation table 

3. Architectural tactics 
 

Experienced architects have a collection of techniques 
that they use to improve a system response with respect to 
a particular quality attribute. Some of these techniques are 
captured in patterns of various sorts but others, such as 
“reduce computational overhead” or “limit options the 
system will support”, are not.  

We have coined the term “architectural tactic” to 
describe these techniques and define an architectural tactic 
as a means of controlling a quality attribute measure by 
manipulating some aspect of a quality attribute model 
through architectural design decisions. In Chapter 5 of [3], 
we provide an enumeration of architectural tactics, albeit 
with a different definition.  

  Observe that an architectural tactic is concerned with 
the relationship between design decisions and a quality-
attribute response. This response is usually something that 
would be specified as a requirement (e.g., an average 

latency requirement). Therefore architectural tactics (by 
definition) are points of leverage for achieving quality-
attribute requirements even though, as yet, no guidance is 
provided as to how to choose appropriate tactics in 
particular situations. 

Table 2 enumerates the architectural tactics used to 
achieve performance. See [2] for a description of the 
meaning of each tactic. 

 

Category of 
tactic 

Architectural tactic name 

Manage 
Demand 

− manage event rate 
− control frequency of 

sampling external events 
− reduce computational 

overhead 
− bound execution times 
− bound queue sizes 
− increase computational 

efficiency of algorithms 
Arbitrate 
Demand 

− increase logical 
concurrency 

− determine appropriate 
scheduling policy 

− use synchronization 
protocols 

Manage 
Multiple 
Resources 

− increase physical 
concurrency 

− balance resource 
allocation 

− increase locality of data 
Table 2: performance architectural tactics 

 

4. Quality attribute models 
 

Associated with every quality attribute are one or more 
“reasoning frameworks” that allow prediction of the 
response of a system with respect to particular attributes. 
Performance frameworks such as queuing theory or 
scheduling theory are the best known and studied and they 
are very quantitative in nature. Frameworks for 
modifiability include those based on coupling and 
cohesion [6] and those based on dependency analysis [1]. 
These are much more qualitative but still allow prediction 
of the difficulty of a modification. Other frameworks exist 
for other attributes. Each framework has uncertainty in 
terms of the accuracy of its predictions but these 
frameworks have proven useful in assisting designers. 

It is these quality attribute reasoning frameworks and 
their associated models that we exploit to link quality 
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attribute requirements (specified as concrete quality 
scenarios) and architectural design decisions (as embodied 
in architectural tactics). 

Every quality attribute reasoning framework has a 
collection of types of entities that are included in the 
framework. Performance models, for example, have units 
of concurrency such as threads or processes, dependency 
among these units of concurrency, and resources. There is 
some collection of inputs (arrival rates, resource 
requirements) that drives the model. We call all of these 
“parameters” of the models. These are the items that a 
designer may potentially control to enable the 
achievement of a desired response. 
 

5. Linking concrete scenarios to architectural 
tactics 

Our goal in this section is to describe how to derive a 
set of tactics that are relevant for achieving a particular  
concrete scenario and then use this to derive candidate 
design fragments.  This carried out using the following set 
of steps. We assume that input to the set of steps is a 
concrete scenario and some set of already made design 
decisions exists. 
1. Identify candidate modeling frameworks. It may be 

that some of the information from the concrete 
scenarios will eliminate possible modeling 
frameworks. For example, if we know that arrivals 
are periodic then the queuing modeling framework is 
eliminated from considerations. Each reasoning 
framework has a collection of parameters that must be 
set before the reasoning framework can be applied. 

2. Determine bound and free parameters. The candidate 
modeling framework has a number of parameters. 
Some of these may be given by the concrete scenarios 
and some may be given by elements of the existing 
design that are not changeable. For example, a 
concrete scenario may specify “events arrive 
periodically”. This may require a specific scheduling 
model. Another element of the existing design might 
be that a particular operating system is to be used. 
This determines the execution time associated with 
processing one event. This is a parameter of the 
model that is bound. All parameters not bound are 
considered free.  

3. Enumerate tactics associated with the free 
parameters. Because a tactic controls one of the 
parameters of a model in the reasoning framework, 
we can list the tactics associated with the free 
parameters, which we use as candidate tactics for the 
next steps.  

4. Assign free parameters an initial set of values. The 
designer makes an estimate for each free parameter 
based on intuition or knowledge. If the designer has 
no intuition or knowledge for a particular parameter 

then an arbitrary value might be chosen. If this 
parameter is important to the system, an 
implementation of a prototype might be appropriate 
to get an estimate. 

5. Use tactics to develop satisfactory bindings for all 
free parameters. This step has two degrees of 
freedom – the list of candidate tactics and the set of 
free parameters. We begin our description by 
considering the situation where there is only one free 
parameter. 
Each of the candidate tactics for this free parameter 
controls its value – that is, it allows the adjustment of 
the free parameter. For each candidate tactic, 
determine whether it can adjust the value of the free 
parameter to a new value where the solution of the 
resulting model satisfies the response measure of the 
concrete parameter. If it can, then it becomes a 
relevant tactic. If it cannot, then it is discarded. 
Now consider multiple free parameters. In this 
situation, we need to consider simultaneously 
adjusting all free parameters. That is, if tactic one 
controls parameter 1 and tactic two controls 
parameter two, we need to determine whether we can 
move the value for parameter 1 through tactic 1 and 
the value for parameter 2 through tactic 2 until the 
dependent variable for a resulting model satisfies the 
response measure given by the concrete scenario. If 
we can then we add both tactics to our list of relevant 
tactics, if we cannot then we discard both tactics. If 
we have more than one tactic for each parameter, we 
need to consider all possible combinations of tactics 
for the parameters. 

6. Allocate responsibilities to architectural elements. 
Every tactic enumerated in table 2 has a design 
fragment assigned, if appropriate. For example one 
performance tactic suggests using a certain type of 
scheduler, or a modifiability tactic recommends the 
use of an intermediary. Applying those fragments to 
an existing design moves the architecture to a state 
that supports the scenario, as demonstrated by the 
modeling framework. 

Design fragments come with their own 
responsibilities and a set of rules that help to: 

•  Create/delete/refine design elements 
•  Add responsibilities to existing design 

elements 
•  Reallocate responsibilities of already 

existing design elements  
•  Refine responsibilities and allocate them to 

design elements 
For example using the tactic semantic-importance-
based scheduling includes applying the following 
rules: 

•  Create a design element “scheduler” 
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•  Allocate the responsibilities with higher 
importance to units of concurrency with 
higher priority 

or using the tactic break the dependency chain  
includes applying the following rules: 

•  Create a design element “intermediary” 
•  Add responsibilities to the intermediary that 

translate from the more abstract interface 
provided to the secondary modules to the 
concrete interface provided by the primary 
module 

•  Refine the responsibilities of the secondary 
modules to use the services of the 
intermediary 

6. Garage door example 
Our sample design problem is that of a garage door 

opener. The controller for a garage door opener is an 
embedded real-time system that reacts to open and close 
commands from several buttons installed in the house and 
from a remote control unit, usually located in a car. The 
controller then controls the speed and direction of the 
motor, which opens and closes the garage door. The 
controller also reacts to signals from several sensors 
attached to the garage door. One of the sensors detects 
resistance to the movement of the door. If the amount of 
resistance measured by this sensor is above a certain limit, 
then the controller interprets this as an obstacle between 
the garage door and the floor. As a reaction, the motor 
closing the garage door is stopped. 

There are many scenarios that specify the requirements 
for the controller software. In [2] we present both a 
performance and a modifiability scenario. Here space 
limits us to just discussing the performance scenario. 

If an obstacle (person or object) is detected by the 
garage door during descent, it must halt within 0.1 
seconds. 
We now exemplify our steps for this scenario. 

1. Identify candidate reasoning frameworks 

There are two performance reasoning frameworks that 
might be applicable to a performance scenario: queuing 
theory and scheduling theory. We know from looking at 
our concrete scenario that we have sporadic event arrivals 
and a hard deadline requirement. The hard deadline 
requirement suggests that the applicable reasoning 
framework is scheduling theory. Sporadic arrivals are 
arrivals that cannot occur arbitrarily often. This is an 
indicator that there is a bound on the arrival rate 
variability, again indicating that scheduling theory is 
relevant. The other relevant parameters are: execution 
time, number of units of concurrency, and number of 
processors. 

2. Determine bound and free parameters 

In this step the scenario is recast in terms of the bound 
and free parameters of the applicable reasoning 
frameworks. Scheduling theory is concerned with 
calculating worst case latency associated with carrying out 
each scenario, given the execution time, arrival period 
associated with each unit of concurrency, the number of 
units of concurrency and how each unit is allocated to one 
or more processors. Worst-case latency can then be 
compared with the hard deadline to determine if the 
requirement is satisfied or not. 

For these parameters we first determine which ones our 
concrete scenario binds. One parameter is the arrival 
distribution. In this case the arrival distribution describes 
how often an obstacle is detected. We assume this 
happens infrequently and there is a bound on how 
frequently it occurs (known as a sporadic arrival 
distribution). We assume from the business context of the 
garage door opener that a single processor will always be 
adequate. 

Since this is the one performance scenario considered 
in this example we do not yet have any bound parameters 
in the selected reasoning framework from previously 
made decisions.  

To summarize: 

•  Bound parameters: arrival distribution and 
number of processors 

•  Free parameters: number of units of concurrency 
and execution time of responsibilities 

3. Enumerate tactics associated with the free parameters 

This is where we start to employ our “decision 
procedures”, which are really a loosely structured set of 
rules for which tactics to try (see Table 3). In this step the 
decisions are based strictly on what parameters are 
considered fixed and which are considered free. 

1) Which parameters are fixed?  

•  Arrival distribution – arrivals are infrequent.  

•  Number of processors – we will assume that our 
platform constrains us to a single processor 

From the first rule in Table 3 we conclude that the 
fixed arrival distribution rules out the following tactics: 
Manage event rate and Control the frequency of sampling 
external events 

The architect constrains the solution to a single 
processor because of the business context and this rules 
out the following tactics: Increase physical concurrency, 
balance resource allocation. 
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2) Which parameters are free? 

•  Execution time – The responsibilities will 
suggest a likely range, but this is not yet fixed. 

•  Number of units of concurrency – This is free 
and will be determined later in design 

The following tactics are concerned with manipulating 
execution time: Reduce computational overhead, Increase 
computation efficiency, Control the demand for resources 
and Bound execution time 

Some of rules of our performance decision procedure 
that are applicable for this step are shown in Table 3. 

Table3 Example rules of our 
performance decision procedure 

•  If the arrival distribution is fixed then Manage 
event rate and Control the frequency of sampling 
external events are not tactics that can be used to 
control worst-case latency. 

•  If execution time is a free parameter then 
consider using the following tactics: Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time 

•  If the number of processors is bound then 
eliminate the following tactics as candidates: Increase 
physical concurrency and balance resource 
allocation. 

4. Assign free parameters an initial set of values 

Two things occur at this step. First, the architect offers 
his/her best guess for values for the free parameters. The 
list of applicable tactics suggests factors that impact the 
setting of these values. Secondly, rules of the decision 
procedure call attention to possibly problematic situations. 

From the previous steps we know that two of the tactics 
are relevant to estimating execution time: Reduce 
computational overhead and Bound execution time. The 
architect might guess that the sum of the execution time of 
the 3 responsibilities is about 5 msec. Bound execution 
time calls our attention to the effects of execution time 
variability, however the architect predicts that these 
responsibilities have very little variability.  Reduce 
computational overhead calls attention to various sources 
of overhead that represent extra execution time. It is 
conceivable that each one of the responsibilities involved 
in obstacle detecting -  “detect obstacle”, “determine that 
garage door is descending”, and “halt garage door “ - 
incur some OS overhead for some pre-selected real-time 
operating system. Consequently the architect estimates 

that the operating system adds an addition 1 msec of 
overhead. The architect also assumes that all of this 
scenario’s responsibilities are allocated to a single unit of 
concurrency. This last assumption is possible because this 
is the sole scenario considered. We discuss some of the 
issues involved in multiple scenarios in a further section. 

While the architect does not yet know all of the details 
of the other responsibilities in the system, he or she does 
know that there will be other responsibilities with 
associated execution times and these other responsibilities 
hold potential for adversely affecting the ability of this 
scenario to be realized. The architect is not yet ready to 
assign values to the execution times associated with these 
other responsibilities. 

The second consideration at this stage is to examine the 
scenario to determine if it is unreasonable or problematic. 
For example, if execution times or arrival rates vary 
considerably, but deadlines can never be missed, this 
might be problematic. Examples of rules that call attention 
such potentially problematic situations are in the table 
below. However, for the current scenario none of these 
situations apply. 

Some of rules of our performance decision procedure 
that are applicable for this step are shown in Table 4. 

Table 4  More example rules of our 
performance decision procedure 

•  If the scenario has a hard deadline response 
requirement that cannot be and if arrivals can occur 
arbitrarily close to one another then use one of the 
following tactics to ensure a lower bound for the 
inter-arrival interval: Manage event rate and Control 
sampling frequency. 

•  If the scenario has a hard deadline response 
requirement that cannot be relaxed and if execution 
times vary considerably to the point that they can 
approach or exceed the hard deadline then consider 
applying the following tactic: Bound execution time. 

•  If either of the above “unbounded” conditions 
apply, but arrival rate and execution time are bound 
parameters then declare the requirement untenable 

5. Use tactics to develop satisfactory bindings for all free 
parameters  

At this point all of the parameters have values and 
there is a candidate list of applicable tactics. The first 
thing is to look at one or more of the applicable tactics 
and apply the reasoning framework (in this case 
scheduling theory) to determine if the current concrete 
scenario is satisfied without “violating” any of the 
scenarios that have already been satisfied. 
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The relevant tactics entering into this step are: 

•  Controlling resource demand through Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time have a bearing on how 
execution time affects worst case latency. 

•  Increase logical concurrency and determine 
scheduling policy both  have a bearing on 
understanding how this scenario’s responsibilities 
affect and/or are affected by the other responsibilities 
in the system 

Without considering the effects of other 
responsibilities, the model is fairly simple. The only 
contributors to latency are execution time and overhead, 5 
msec and 1 msec respectively. Their sum is well under the 
deadline of 100 msec (that is, .1seconds), leaving 94 msec 
to spare. 

On the other hand it is very conceivable that the other 
responsibilities in the system take more than 94 msec. 
Using the last rule in the table below suggests that the 
design decisions made in the next step be consistent with 
our simple model, that is, they ensure that the latency 
associated with this scenario’s responsibilities is not 
affected by any of the other responsibilities. 

Some of rules of our performance decision procedure 
that are applicable so far for this step are shown in Table 
5. 

Table 5 More example rules of our 
performance decision procedure 

•  If the execution time associated with the arrival 
is close to the deadline consider reducing execution 
time by using the following tactics: Reduce overhead, 
Bound execution time, and/or Increase computation 
efficiency. 

•  If the difference between the worst and best case 
is significant then review the following tactics and 
apply their modeling techniques to assess miss rates 
and average latency respectively: Bound execution 
times and/or Bound queue sizes 

•  If the response requirement for all scenarios can 
be achieved even with the worst-case delay due to all 
of the other responsibilities of all of the other 
scenarios, then use any the following tactics: 

− Allocate responsibilities to one of the 
existing units of concurrency 

•  Offline scheduling 

− Or allocate responsibilities to a new unit 

of concurrency  
•  Increase logical concurrency 
•  Time-based scheduling 

If the current scenario cannot suffer the worst-case 
delay due to some or all of the other responsibilities then 
consider them to be time-sensitive and use the following 
tactics to create an appropriate scheduling policy: Offline 
scheduling, Time-based scheduling (such as deadline 
monotonic scheduling), and/or Increase logical 
concurrency. 

Up to now in this step tactics have been used to set 
and/or adjust model parameters to satisfy the current 
concrete scenario’s response measure. However, it might 
be the case that either the scenario poses an untenable 
requirement or the collection of scenarios considered up 
to this point are untenable in aggregate. If this is the case, 
tactics should offer some ideas for how to relax 
requirements or design constraints. 

Some of rules of our performance decision procedure 
that are useful for identify and relaxing requirements 
and/or design constraints are shown in Table 6. 

Table 6 Some of rules for relaxing 
requirements and/or design constraints 

•  If the response requirement is specified as a hard 
but limited misses can actually be tolerated then re-
characterize deadlines as follows: 

− Firm deadlines: Completing before the 
deadline is very important. Missing occasionally 
can be tolerated. A specific bound on miss rate 
needs to be specified. 

− Soft deadlines: In this case the term 
“deadline” is a misnomer. A specification of an 
average latency requirement is what is needed. 

•  If the time-sensitive set of responsibilities is not 
schedulable then incorporate a notion of importance-
based scheduling to handle overload situations using 
Semantic-importance-based scheduling or add more 
resource using Increase physical concurrency. 

6. Allocate responsibilities to architectural elements 

Each tactic will suggest associated design fragments. 
The tactics of primary concern so far in this example are: 

•  Controlling resource demand through Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time have a bearing on how 
execution time affects worst case latency. 

•  Increase logical concurrency and determine 
scheduling policy both  have a bearing on 

127



understanding how this scenario’s responsibilities 
affect and/or are affected by the other responsibilities 
in the system 

Reducing computational overhead can map to many 
design decisions such as:  

•  choice of operating system 

•  choice of operating system services used in 
implementing responsibilities 

•  choice of communication mechanisms, … 

We have accounted for OS responsibilities by 
assuming 1 msec overhead. We have also assumed that all 
of the scenario’s responsibilities have been allocated to a 
single unit of concurrency that we will assume is a thread.   

The responsibilities for this scenario are pretty 
straightforward;  

Tactics of Increase computation efficiency, Control the 
demand for resources and Bound execution time are likely 
not relevant whereas tactics of Increase logical 
concurrency and determine scheduling policy are 
relevant. They suggest allocating the obstacle detection 
responsibilities to a particular module under one thread of 
control and assigning this thread a suitably high 
scheduling priority. This results in an design fragment 
with two threads: the one containing the obstacle detection 
responsibilities and the one containing other 
responsibilities. We do not show the scheduler (which is 
part of the OS) although that also is a portion of the 
design fragment. We show a component and connector 
view of this fragment in Figure 1.  

 

Figure 1: Design fragment 

 

 

 

 

 

 

 

 

 

 

In an ideal world obstacle detection will take only as 
long as it takes to execute the obstacle detection 

responsibilities plus a little overhead. However, the 
possibility exists that properties of the Other 
responsibilities, such as non-preemptability or execution 
within an interrupt handler might not have been accounted 
for. Therefore these potentially problematic properties 
need to be discovered and/or ruled out. We expect that 
rules in the time-based scheduling tactics would cause us 
to look for and/or ensure against such properties 

Observe the relationship between the design fragment 
and the associated analysis model. The model states that 
obstacle detection responsibilities must be scheduled with 
a priority high than other responsibilities. The design 
fragment captures this by placing these responsibilities 
into separate threads and showing the priority 
relationships of those threads. 
7. Composition 

We have shown how to use the tactics to link one 
quality attribute performance requirement to a design 
fragment with active assistance from an architect. The 
gaping open issue is what happens with multiple scenarios 
involving multiple quality requirements, especially for 
other attributes. How to compose the design fragments 
into a design is the fourth step of moving from quality 
requirements to design and it must clearly be solved for 
this approach to be successful. 

Some of the problems that must be solved to achieve 
the composition of design fragments into designs are: 

•  How to consider the impact of design 
decisions already made. 

•  How to choose among the myriad of 
possibilities of composing design fragments. 
In [2] we identified a design fragment for 
modifiability as well as one for performance 
and there were multiple composition 
possibilities 

•  How to maintain view consistency. Each 
quality attribute framework has a vocabulary 
that maps into one or more software 
architecture views. Maintaining consistency 
between fragments that come from one 
reasoning framework with those that come 
from another is a problem that must be 
solved.  

8. Other open issues and conclusions 
In addition to the composition problems there are two 

other problems that must be overcome. 
1. What is the availability and utility of the various 

reasoning frameworks for other quality 
attributes? Involving the architect, as we did, in 
the design process allows judgment to be used in 
application of the reasoning frameworks. We can 
predict that, over time, reasoning frameworks for 
various quality attributes will improve. 

Is higher 
priority than 

 Obstacle detection 
responsibilities 

 

Other application 
responsibilities 

 

Key 

Thread 

Relation 
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2. How do the steps we have presented here become 
embedded into a design method? Once quality 
requirements become recognized as important to 
design they will begin to be specified in the 
1000s as are functional requirements. This leads 
to over specification of the requirements. A 
design method must be sensitive to this over 
specification. 

 
Regardless of the problems, focusing on quality 

attribute requirements and using them to drive towards an 
appropriate architectural design must be a useful 
approach. The utilization of quality attribute models and 
tactics in this process is our attempt to move design 
toward a more scientific basis. 
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Abstract 

Certain classes of problems amenable to description 
using Problem Frames, in particular ones intended to be 
implemented using a distributed architecture, can benefit 
by the addition of a cardinality specification on the 
domain interfaces. This paper presents an example of 
such a problem, demonstrates the need for relationship 
cardinality, and proposes a notation to represent 
cardinality on domain interfaces. 

 

1. Introduction 

In a Problem Frames analysis [3, 4], domains share 
phenomena at their interfaces. One of the domains in the 
analysis is the machine domain, which represents the 
software to be constructed by the developer. Phenomena 
are the externally visible characteristics of the domains. 
The phenomena visible at the machine domain’s 
interfaces drive much of the analysis process.  

The existence of certain phenomena can be 
predetermined by purchased products to be used in the 
system [1] or by considering architectural implications 
early in the requirements cycle [6, 7]. Hall et al [2] argued 
for extending Problem Frames to take architectural 
considerations within the machine domain into account, 
thus incorporating domain knowledge into the analysis. 
This paper takes the argument one step further, arguing 
that there are architectural considerations that affect the 
propagation of phenomena between domains, and that it is 
helpful to explicitly note these considerations in the 
diagrams. 

In a ‘standard’ Problem Frames analysis, phenomena 
are considered shared and instantaneous. All domains that 
participate in a given interface share the phenomena; 
participation is a relationship. The question of cardinality 
of the relationship does not arise, because the phenomena 
are always shared by all. However, a class of problems 
exists wherein it is convenient to define more precisely 

how phenomena are shared over an interface. The case 
comes up when the implementation of a system is to 
contain redundancy or be partitioned into semi-
autonomous units, such as what occurs when using a 
distributed architecture. The originating domains may 
need to know about how phenomena are propagated, 
either for correctness or for efficiency. Using explicit 
connection domains can resolve the problem, but they 
introduce complexity. The author argues that by noting 
cardinality on the interfaces, appropriate information can 
be included in the analysis without a significant increase 
in complexity. 

Section 2 of this paper describe a small lighting 
control system using Problem Frames. Section 3 presents 
one possible implementation, showing a case where the 
current shared phenomena notions do not expose certain 
difficulties. Section 4 proposes an extension to Problem 
Frames notation to correct the problem, and Section 5 
presents conclusions. 

2. The Lighting System 

2.1. The Problem Statement 

A lighting control system is to be built that conforms 
to the following problem statement, provided by the firm 
constructing the building. 

The architect wishes to have a lighting control system 
for a building. From the user’s perspective, the system 
consists of switches and lighting units (lights) associated 
with a room. When a user actuates a switch, the 
associated light or lights in the room are turned on or off. 

The architect requires the use of up/down momentary 
contact switches. A momentary contact switch must cause 
its lighting units to change to the state indicated by the 
switch’s motion, if needed: up turns the lights on if they 
are not already on and down turns the lights off if they 
are not already off. 

The system is to be built using networked components 
and to include redundancy where appropriate. 
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Discussions with the architect and the vendors of the 
lighting equipment establish the following facts: 
1. Switches and lighting units are connected by a 

network. They are not able to converse directly with 
each other. 

2. A room is a logical concept, covering from part of a 
‘real room’ to multiple floors of a building. 

2.2. The Problem Diagrams 

The following is the context diagram for the 
environment. It appears to describe a straightforward 
commanded behavior problem. 

Lighting 
Units Switches   Machine 

 
The problem decomposes into two commanded 

behavior subproblems1. The first maps switch events to 
the rooms that they control, using a lexical domain as a 
Switches  Rooms map. The second maps room events to 
the lighting units in that room, using a Rooms  Lights 
map.  

The first subproblem, Control Room Lights, is: 

  Switch 
Machine 

Control 
Room 
Lights 

Lights in 
Room C 

Switch 
C 

Switches  
Rooms  

X 

When a switch is 
activated 

and the switch 
is associated 
with a room 

then the state of 
all the lights in 

that room is 
changed as needed 

satisfying the 
requirement 

 

                                                 
1 The simple workpiece problems needed to maintain the lexical 

domains are not discussed in this paper. 

The second subproblem, Control Lighting Units, is: 

  Lights 
Machine 

Control 
Lighting 

Units 

Lighting 
units C 

Control 
Room Lights 

 C 

Rooms  
Lights  

X 

When a switch 
for a room is 

lifted or lowered  

and lights are 
associated with 

the room 

then the state of 
the lights in that 

room are changed 
as needed 

satisfying the 
requirement 

 
Looking at the diagrams, we see that lifting or 

lowering a switch causes an event that is a phenomenon 
shared with the Switch Machine. The machine determines 
which logical room is to have its lights changed, and is 
the source of a phenomenon shared with the Lights 
Machine, as shown in the second diagram. The second 
machine determines which lighting units are involved, 
and then is the source of phenomena shared with the 
appropriate lighting units. 

3. A Possible Implementation 

One can imagine constructing this system using a Jini-
like distributed architecture [5]. In a Jini-based system, 
when a switch is actuated it uses a name service to find an 
appropriate service to process the event. Maintaining 
correspondence with the problem diagrams, the switch 
will next find the switch machine. The switch machine 
will use its map to determine which rooms need to know 
about the switch actuation, and then use the name service 
to find the lights machine to contact. A diagram of a 
simple implementation would be: 

Network 

Switches 

Name 
Service 

Lights 

Switch 
Machine 

Lights 
Machine 

 
If we consider the name service to be part of the 

network, then the above implementation corresponds very 
closely to the subproblem diagrams. 
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However, one might choose a different implementation 
for a larger building. If the building has multiple floors, 
then for performance we might put switches and lights 
machines on each floor. To improve reliability, we might 
put multiple machines of the same type on each floor, 
where any instance of a machine type can substitute for 
any other (i.e. introduce redundancy). Such an 
implementation might look like: 

2nd floor 
vestibule 

Offices 

1st floor 
vestibule 

ground 
floor 

Offices 

Offices 

Offices 

Offices 

Offices 

S: Switch Machine L: Lights Machine 

N: Name Server Network      

S S 

L 

N 

L L 

N 

N 

S S 

S S 

L L 

L 

 
To complicate things a bit more, assume the existence 

of a logical room consisting of lights in all three of the 
vestibules. 

Assume that the architect specifies the following two 
rules: 
1. A switch on a given floor can select either of the 

switch machines on its floor, choosing at random. If 
that machine does not answer, another machine is 
tried. 

2. Either of the lights servers on a floor can control the 
lights on that floor. The server to use is chosen at 
random. If that machine does not answer, another 
server is tried. 
 

Therefore, when a user lifts a vestibule switch on the 
ground floor, the switch chooses either of the switch 
servers on the ground floor. That switch server 
subsequently must contact either one of the two light 
servers on each floor, requesting that the lights be turned 
on. 

The problem diagrams shown in Section 2.2 do not 
express the added complexity of the multiple servers, and 
thus it is difficult to reason about the system’s behavior 
under certain conditions. For example, analyzing the 
effects of particular concerns such as initialization, fault 
recovery, and component maintenance pose problems. 
Adding explicit connection domain subproblems to the 

problem can show the missing behavior, but the domains 
also add significant additional complexity. 

4. Extension of Problem Frames Notation 

The deficiency in Problem Frames notation exposed by 
the above example is the inability to accurately specify a 
limited many relationship on an interface. In the example, 
from the point of view of the switch there are many 
candidates for the switch machine, but only one of them is 
to be used. From the point of view of the switch machine, 
there are many candidate lights machines, where 
potentially many of them are to be used. These 
relationships have a form of cardinality.  

Relationships on an interface are directed. All 
phenomena have a source domain and some number of 
destination domains. From the point of view of a source 
or a destination, there can be from one to N domains on 
the other side of the relation. Thus, the cardinality of a 
relationship can be described as follows: 

N(b)  M(c): there are N sources of phenomena on 
an interface where b sources are to be considered 
interchangeable, and M destinations for the 
phenomena where c destinations participate. 

For convenience, if the parenthesized portion is 
omitted, it is assumed to be identical to the number that 
would be in front of it. Thus 1  N is the same as 1(1)  
N(N). 

Referring to the more complicated example above, the 
cardinality of the switch to switch machine interface is 
N(1)  2(1). The left side is N(1) because only one of the 
N switches participates in a given switch actuation. 
However, the example specifies that there are two 
interchangeable switch machines available to the switch, 
and the switch must choose which one to use. Thus, the 
cardinality of the switch machine is 2(1). 

Still referring to the example, the cardinality of the 
switch machine to lights machine interface is 6(1)  6(3). 
There are six switch machines on three floors, but only 
one of them can be the source of a phenomenon on the 
interface. There are three groups of two identical light 
machines, thus three of them participate as destinations of 
a phenomenon. 

Finishing the example, we see that the cardinality of 
the lights machine to lighting units interface is 2(1)  
M(M) (or 2(1)  M). Two lights machines can share 
phenomena with any given lighting unit, but only one at a 
time. Each lighting unit is an individual, meaning that all 
M lighting units must share phenomena with the given 
lights machine. 

Clearly one would not use such specific notations on a 
problem diagram unless the numbers are fixed in the 
problem statement, which is not the case in this example. 
The switches to switch machine cardinality is better 

132



written as N(1)  M(1). The switch machine to lights 
machine cardinality is N(1)  M(c s.t. c≤M) and the 
lights machine to lighting units is N(1)  M. 

Applying these cardinality notes to the subproblem 
diagrams, we arrive at: 

  Switch 
Machine 

Control 
Room 
Lights 

Lights in 
Room C 

Switch 
C 

Switches  
Rooms  

X 

When a switch is 
activated 

and the switch 
is associated 
with a room 

then the state of 
all the lights in 

that room is 
changed as needed 

satisfying the 
requirement 

N(1) 

M(1) 

N(1) 

M(c) 

 
and 

  Lights 
Machine 

Control 
Lighting 

Units 

Lighting 
units C 

Control Room 
Lights C 

Rooms  
Lights  

X 

When a switch in 
a room is lifted or 

lowered  

and lights are 
associated with 

the room 

then the state of 
the lights in that 

room are changed 
as needed 

satisfying the 
requirement 

N(1) 

M(c) 

N(1) 

M 

 

5. Conclusions 

Adding cardinality notations to Problem Frames 
diagrams conveys information about how phenomena are 
to propagate. The engineers responsible for implementing 
the system would use this information to ensure that the 
system behaves as desired and to verify correctness in the 
face of errors, such as partial loss of power and machine 
failure. Using cardinality avoids the complexity of adding 
connection domains to provide equivalent information. 
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Abstract
This paper reports the results of exploratory research
to develop a pilot pattern language for systems
engineers at BAE SYSTEMS. The pattern language
was designed to encapsulate knowledge about possible
trade-offs made by systems engineers about
architecture designs that satisfied different system
requirements for submarine manoeuvring systems.
Our intention is that this knowledge can be reused in
future systems engineering processes using our ART-
SCENE environment. Knowledge about requirements,
design alternatives and the complex trade-off space
was elicited from systems engineers. To model this
knowledge we applied the i* formalism to represent
the design space and design trade-offs, and to
communicate the resulting patterns back to the
engineers for validation and improvement. The
research was a success, in that we produced a pattern
language of 4 key patterns and their interactions for a
submarine manoeuvring system, all using the i*
formalism. The paper ends with a review of this
research and how we plan to exploit the language to
inform scenario-driven trade-offs between
requirements satisfaction and architecture choice
using the ART-SCENE environment.

1. Patterns of Patterns – Linking
Requirements and Architectures

There is increasing recognition of the need for
systems engineers to link system requirements and
architecture designs. Considerable research is being
undertaken into a range of topics – from tracing
architectural decisions to requirements to relating
architectural patterns to requirements patterns (Jackson
1995) and formal foundations of the requirements-
architecture relationship (Hall et al. 2002). However
this research tends not to investigate the systems
engineering processes that its results are intended to
support. Rather we argue that requirements-
architecture research must be based on sound process
models of concurrent requirements-architecture
engineering. Using one such process model, this paper
presents a novel pattern-based approach for exploring

requirements-architecture trade-offs, and introduces an
innovative pattern language that underpins such trade-
offs.

Our ART-SCENE (     A     nalysing      R     equirements      T     rade-
offs –      Scen    ario      E     valuations) approach advocates a
process in which systems engineers and stakeholders
concurrently:
1. Generate and walk through system-level scenarios

using our established CREWS-SAVRE process
and software tools (Sutcliffe et al. 1998);

2. Acquire stakeholder requirements using the ACRE
framework (Maiden & Rugg 1996) and model
them using the i* formalism (Chung et al. 2000)
with our REDEPEND tool (Maiden et al. 2002);

3. Model candidate system architectures using object-
oriented modelling techniques supported by the
AUTOFOCUS software tool (Huber et al. 1998);

4. Trade-off the satisfaction of different requirements
by different architecture designs using scenarios to
link requirements and architectures, then to
simulate system and agent behaviours to compute
their outcomes (Zhu et al. 2003).

A simple overview of the process is shown in
Figure 1. Systematic scenario walkthroughs lead to the
acquisition of more complete stakeholder requirements
(Maiden et al. 2003). Candidate system architectures
lead to the rejection of stakeholder requirements that
are not viable. Simulations of models of candidate
system architectures using the scenarios compute the
emergent properties of the system that can then be
tested for compliance with the measurable fit criteria
of stakeholder requirements (Robertson & Robertson
1999). Based on these processes we are developing a
suite of integrated software tools that, we hope, will
provide systems engineers with an effective plug-and-
play environment for exploring requirements-
architecture trade-offs in the presence of system
scenarios. The ART-SCENE software tools and
techniques developed to implement these processes are
described elsewhere (Zhu et al. 2003, Maiden et al.
2002).

Towards a Systems Engineering Pattern Language:
Applying i* to Model Requirements-Architecture Patterns

P. Pavan, N.A.M. Maiden & X. Zhu

Centre for HCI Design, City University
Northampton Square, London UK
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time
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Tested
against

Figure 1. Simplified ART-SCENE process from
slide

In this paper we report research that led to one of
ART-SCENE’s features to support this process – the
use of systems engineering patterns to explore
requirement-architecture trade-offs in the presence of
scenarios. The paper describes how we overcame 3
challenges to produce a simple pattern language
produced in collaboration with system engineers at
BAE SYSTEMS as part of the UK EPSRC-funded
SIMP project:
1. How to elicit a pattern language that could be

applied to inform the essential task of making
requirement-architecture trade-offs;

2. How to model the patterns using a formalism that
was sufficiently expressive and computational;

3. How to implement the resulting pattern language
in the ART-SCENE environment to inform
requirement-architecture trade-offs.

The remainder of this paper is in 4 sections. Section
2 reports previous research in systems patterns
undertaken by the authors which shapes the direction
of the reported research. Section 3 describes how we
elicited the patterns and applied the i* formalism to
model them. Section 4 present a pattern in detail and
reviews the success of the elicitation exercise. The last
section reports planned future use of such pattern
languages in the ART-SCENE environment, as well as
implications for future such pattern modeling in
system and software engineering.

2. Researching Requirements
Engineering Patterns: Lessons from
the Trenches

There has been considerable recent interest in
relating classes of problem domains (i.e. requirements)
to classes of software solutions (i.e. architectures and
designs). Jackson (1995), for example, advocates
problem frames, a generalisation of a class of problem
consisting of the principal problem parts and a solution
task. Hall et al. (2002) extend these problem frames by
linking them to simple system functions. Elsewhere
Konrad & Cheng (2002) present system specification
patterns using an object-oriented specification. Earlier
work on requirements clichés (Reubenstein & Waters
1991), patterns (Coad et al. 1995, Buschmann et al.

1996) and generalised application frames
(Constantopoulos 1991) are all examples of the
research undertaken previously in this area. However,
our experience in research area suggests major pitfalls
await researchers who fail to learn from these past
experiences.

The ESPRIT III 6353 ‘NATURE’ basic research
action, in which the authors were partners, undertook
between 1992 and 1995 one of most comprehensive
classifications of problem domains and software
architecture styles to date (Sutcliffe & Maiden 1998).
The NATURE approach argued that most
requirements engineering problem domains are
instances of a tractable set of object system models.
Each model contains general features shared by all
instances of that problem domain. For instance, one
model contains general features of all resource hiring
problem domains, examples of which are lending
libraries, car rental and video hiring. Another contains
general features of all object sensing problem
domains. NATURE produced the first extensive
categorisation of requirements engineering problem
domains and derived a set of over 200 object system
models (Sutcliffe & Maiden 1998) from domain
analysis, case studies and textbooks.

Object system models were defined in a hierarchical
class structure. The 13 highest-level object system
models define the fundamental state transitions,
sequences of transitions, states and objects in
categories of problem domains, and indicate the
breadth of the models specified. These models (with a
prototypical example of each) are resource returning
(e.g. car rental), resource supplying (e.g. order
purchasing), resource usage (e.g. sales orders), item
composition (e.g. goods manufacturing), item
decomposition (e.g. unpacking deliveries), resource
allocation (e.g. production planning), logistics (e.g.
complex production scheduling), object sensing (e.g.
aircraft detection), object messaging (e.g. electronic
mail), agent-object control (e.g. air traffic control),
domain simulation (e.g. cockpit simulation), workpiece
manipulation (e.g. text processing) and object reading
(e.g. a town's computerised information point).

Specialisation of these high-level object system
models is achieved by adding different dimensions, in
the form of fact types, at different levels in the
hierarchies. For example, the specialisation of the
object system model for object sensing generates a
large number of lower-level, more detailed hierarchical
object system models. The top-level model, which
describes the sensing of an object by a sensor agent, is
specialised at level-1 according to whether the sensor
is sensing the physical location (e.g. position) or
internal state (e.g. temperature) of the object, and
whether there are one or numerous objects to sense.
NATURE specialises each level-1 model further using:
• Different goal states (detect forbidden state, warn if

forbidden state arises, forbid state to arise, etc);

135



Page 3 of 8

• Different events and stative conditions on state
transitions (e.g. a monitoring agent blocks an
object from changing to a forbidden state);

• Different object and agent types (e.g. physical,
conceptual and financial).

Such specialisation gave rise to over 30 level-4
models that are sub-classes of the original object
sensing model alone.

We validated NATURE's object system models
against natural mental categories elicited using card
sorts with experienced software engineers. Results of
this empirical validation led to some revision of the
structure and contents of several models and how these
models might be retrieved and used (Maiden & Hare
1998). Furthermore, to relate these classes of problem
domain to software solutions, we developed an
orthogonal classification of information system models
that we linked to object system models to represent
candidate information system solutions for different
problem domain classes (Sutcliffe & Maiden 1998).
To exploit the library of object system models we
developed computational models of analogical
reasoning (Maiden & Sutcliffe 1996a, 1996b) to
retrieve object and information system models that
matched a new application to enable reuse of
knowledge about the problem domain and possible
information system solutions to it. This reuse-driven
approach to requirements engineering and high-level
design was validated using several application case
studies .

So, what conclusions did we draw from this
extensive 5-year programme of research? Although the
results of the basic research provides important
insights into the nature of abstraction and
classifications of problem domains, the more direct
benefits to systems engineering were limited. Lessons
learned included:
1. The object system models encapsulate problem

domain knowledge that is often already known
and accessible to systems engineers;

2. NATURE’s classification of problem domains
was too fine-grain for cost-effective reuse – most
applications were an aggregation of instances of a
large number of object system model classes,
which made model retrieval and instantiation
difficult;

3. Systems engineers gained little from directly
reusing small fragments of knowledge from the
object and information system models – indeed the
emergence of large business reference models
implemented in successful ERP solutions such as
SAP R/3 (Curran & Ladd 1998) suggests that reuse
of large, domain-specific models tend to be more
effective;

4. Linking the object and information system models
did not provide systems engineers with useful
knowledge with which to make requirements-
driven architectural decisions. The information

system models, by their definition, described
functions, classes and structures rather than the
non-functional requirements and quality attributes
essential to such decision-making (e.g. Franch &
Carvallo 2003). The models did not capture the
required richness and context or different design
alternatives and their comparison.

These experiences directed us to a different
approach to modeling patterns in systems engineering
– one that captures the essence of architecture design
alternatives in terms of how they satisfy a number of
related system requirements. As an input to the ART-
SCENE environment we sought to develop a pilot
pattern language to do just that to inform
requirements-architecture trade-offs. The remainder of
this paper reports the results of research motivated to
determine such patterns.

3. Eliciting Systems Engineering Patterns
in ART-SCENE

Our research uses Alexander’s (1979) original
definition of a pattern as a solution to a problem in a
context of use. Alexander defines a pattern as a three-
part construct:
1. The context - conditions under which the pattern

holds;
2. A system of forces - the 'problem' or 'goal' that the

solution solves;
3. The solution – a configuration that balances the

system of forces and solves the problem.
This definition contrasts markedly with the nature

of most software and systems engineering patterns
reported earlier. The patterns, from requirements
cliches to problem frames, all use a weaker definition
of the problem or goal without an explicit description
of a system of forces that describes it. Likewise most
patterns describe a single reusable solution without
explaining how the configuration implemented in the
solution satisfies the goal or solves the problem. One
exception is reported in Gross & Yu (2001) who
highlighted the need for a modeling approach that
supports how business goals relate to the architectural
decision-making process, and how changing business
goals give rise to alternative architectural choices and
solution structures. They also showed how the need to
describe organisational stakeholders, their goals and
how these are affected by alternative choices during
the design process using agents and goals. Agents
were used to describe architectural distribution of
capabilities, while goals were used as a focal point for
expressing where within architectural structures
further design choices needed to be made.

So how can we apply Alexander’s pattern definition
to a modern systems engineering process? First of all
we need to map Alexander’s 3 parts of the pattern to
systems engineering models and artefacts. We assert
that:
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• The system of forces represents a set of
interconnected system requirements that a designed
architecture configuration must satisfy:

• The solution represents the architecture design and
to what degree that design alternative satisfies each
system requirement;

• The context represents the conditions under which
the pattern holds – that is the project or problem
environment in which the solution applies. In
ART-SCENE we equate the problem environment
to one or more scenarios in which the architecture
design must satisfy the system requirements.

Therefore the systems engineering patterns in ART-
SCENE encapsulate knowledge about important
design decisions that sought to balance the satisfaction
of competing requirements in different scenarios for a
previous but relevant system. To elicit and model these
patterns we designed and applied a rigorous method
described in the next section.

3.1. Pattern Elicitation and Modeling Method

We developed the pilot pattern language with BAE
SYSTEMS, one of our partners in the EPSRC-funded
SIMP project. Our objectives were to model patterns
in a domain that was complex but could be understood
by the academic researchers, did not require high-level
security access, and could be scoped in order to
provide results within the time frame of the exercise.
The result was a decision to develop a pattern
language for submarine manoeuvring systems – that is
the systems that enable a naval submarine to steer
when under water.

We elicited pattern knowledge from BAE
SYSTEMS engineers in 3 phases:
1. Discover and elaborate key design decisions made

on previous projects;
2. Model and validate the context, solution and

system of forces for each pattern;
3. Elicit, model and validate the key relationships

between the patterns established in the first 3
phases to produce the first-cut pattern language.

Each elicitation session took place with 2 systems
engineers with shared engineering experience of the
submarine manoeuvring system. Throughout each
session we encouraged the systems engineers to
converse with each other. This technique, known as
constructive interaction (Miyake 1986), overcomes the
unnatural aspects other elicitation techniques and
provided supplementary data about the patterns at each
phase.

In the first phase we combined brainstorming with
semi-structured interviews to discover and prioritise
previous design decisions made about manoeuvring
systems. We used the interview structure to elicit data
about different candidate architecture designs, why
each was chosen or rejected, and conditions for its use.

All data was recorded on flipchart sheets as informal
sketches and written notes.

In the second phase we used the data to describe
each pattern with the following attributes:
Name: A unique and meaningful pattern name;
Authors: The main contributors to the pattern;
Problem: The main trade-offs to be made and the

different forces to be balanced to achieve an
acceptable solution;

Principle: The principle behind the pattern;
Context: The pre-conditions under which the problem

and its solution seem to recur, and for which the
solution is desirable;

Forces: A definition of the relevant forces;
Solution: Descriptions of architecture solution that can

be reused;
Rationale: A justification of the solution and the

pattern as a whole in terms of how it resolves its
forces to be in line with the desired outcome;

Known Uses: Known occurrences of the pattern and
its application within existing systems;

Models: The i* models that describe the pattern;
Further questions: Questions that need answering in

order to further refine the pattern.
One innovation was to produce i* models (Chung et

al. 2000) for each pattern. Inspired by the earlier use of
i* to model requirement-architecture patterns (Gross &
Yu 2001), we chose the i* formalism to model our
pattern language for 3 reasons:
1. i* SD (Strategic Dependency) models allowed us

to model each pattern as a network of dependency
relationships among actors characteristic of large
socio-technical systems – the types of system
found in submarine design;

2. i* SR (Strategic Rationale) models allowed us to
model how different candidate solutions,
represented as tasks in i*, satisfied different actor
goals and soft goals using i* means-ends links –
Alexander’s systems of forces;

3. i* contributes-to soft goal links in the SR models
allowed us to represent complex trade-offs
between requirements that occur when making
choices about one solution over another – the
systems of forces again.

Our aim was to produce one SD model and one SR
model to represent each pattern. Other researchers
have recogised the potential benefits of providing
graphical representations of pattern solution spaces.
Thomas (2001) claims that  “providing people with a
variety of potential representations and some process
to encourage the exploration of alternatives… could
probably improve performance significantly”. The use
of i* models in our pattern language enabled us to
explore whether such benefits accrue empirically.

In the third phase we combined semi-structured
interviews with direct SD and SR modeling to model
dependencies between actors identified in the 4
modeled patterns and contributes-to soft goal links
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between important soft goals in these patterns. Such
modeling provided the associations between the
patterns to form a first-cut pattern language.

4. The Submarine Manoeuvring Pattern
Language

The resulting submarine manoeuvring pattern
language was elicited from 3 BAE SYSTEMS
engineers working as pairs during 5 sessions over a
two-and-a-half month period. Each session lasted
approximately 2 hours and took place at BAE
SYSTEMS premises.

The pattern language consisted of 4 principal
patterns linked using additional i* SD and SR models.
The patterns were:
1. The Manoeuvring-Noise-Accuracy (MNA) pattern,

describing trade-offs between accurate and quiet
steering of the submarine;

2. The Manoeuvring-Weight-Distribution (MWD)
pattern, describing, describing trade-offs between
accurate manoeuvring and maintaining the stability
of the submarine;

3. The Manoeuvring-Console-Manning (MCM)
pattern, describing trade-offs about the number of
operators who control the manoeuvring of the
submarine;

4. The Manouevring-Hydroplane-Configuration
(MHC) pattern, that describes trade-offs associated
with possible configurations of the hydroplanes
that steer the submarine.

The full pattern language is described in Maiden &
Pavan (2001). In this paper we describe one of these
patterns – the Manoeuvring-Noise-Accuracy (MNA)
pattern – and the models that link the individual
patterns to provide the pattern language. Each is
described using it important attributes.

4.1. The Manoeuvring-Noise-Accuracy
(MNA) Pattern

Problem: A submarine is required to be both quiet
and accurate when manoeuvring. However to be more
accurate it must activite the hydroplanes, which leads
to more noise.

Context: When manoeuvring, especially in
advanced underwater warfare, the submarine needs to
avoid detection by alien systems and to navigate with a
high level of accuracy. It avoids detection by
controlling and regulating the radiated noise.
However, there is a trade off between the quietness
(low hydroplane activity) and accuracy (high
hydroplane activity). This trade off holds true for
accurate navigation as high hydroplane activity
implies more accurate navigation and low hydroplane
activity leads to less accurate navigation as the
hydroplane activity is necessary to change the
submarine’s direction. Similarly, high hydroplane

activity implies a high level of accuracy as well as a
high level of noise.

Forces: Performance, quietness, accuracy,
reliability, safety, technologies and cost.

Solution: Designers are given noise, manoeuvring
and performance targets for the manoeuvring system
to attain. They do this by exploring dependencies
between the key agents involved in the noise-accuracy
domain in order to achieve acceptable trade-offs.
Historical data about the effectiveness of this design in
different scenarios is available for reuse.

SD Model: We modeled 3 actors that influence
manoeuvring – submarine, manoeuvring system and
hydroplanes. Modeled actor dependencies were:
• The submarine depends on the manoeuvring

system for the soft goal of manoeuvre submarine
quietly;

• The submarine depends on the manoeuvring
system for the soft goal of manoeuvre submarine
accurately;

• The submarine depends on the manoeuvring
system for the task of manoeuvre submarine;

• The submarine depends on the manoeuvring
system for the goal of navigate the submarine;

• The manoeuvring system depends on the
hydroplanes for the soft goal of manoeuvre system
is quiet;

• The manoeuvring system depends on the
hydroplanes for the soft goal of manoeuvre system
is accurate.

The resulting SD model is shown in Figure 2.

Figure 2. The SD model for the MNA pattern

SR Model: The SR model models the goal structure
of each actor in the SD model. The submarine has two
high-level soft goals. The first is avoid detection by
alien systems , which is achieved by attaining the goal
of control radiated noise and undertaking the task
regulate radiated noise. Successfully undertaking the
task of regulate radiated noise depends on
successfully achieving the soft goal manoeuvre system
is accurate  by the manoeuvring system actor. The SR
model is shown in Figure 3.
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Figure 3. The SD model for the MNA pattern

Another soft goal of the submarine is to navigate
successfully, achieved in part by achieving the goal
navigate submarine, which in turn also depends on the
soft goal manoeuvre system is accurate of the
manoeuvring system actor. The manoeuvring system
actor undertakes the task manoeuvre submarine. This
task is decomposed into the two soft goals of
manoeuvre system is accurate and manoeuvre system
is quiet . Satisfying the soft goal manoeuvring system is
accurate contributes negatively to the satisfaction of
the soft goal of manoeuvre system is quiet. Likewise
satisfying the soft goal manoeuvre system quietly
contributes negatively to the soft goal manoeuvre
system is accurate.

The third actor, hydroplanes, undertakes the task
change hydroplane position which can be achieved by
either low frequency of hydroplane movement or high
frequency of hydroplane movement. Low frequency of
hydroplane movement contributes positively to the soft
goal of low surface noise while high frequency of
hydroplane movement  contributes negatively to the
soft goal of low surface noise. In addition the soft goal
of low surface noise has a positive contribution on the
soft goal of manoeuvre system is accurate (in agent
manoeuvring system). Finally, low frequency of
hydroplane movement  has a negative contribution on
the soft goal of manoeuvre system is accurate and high
frequency of hydroplane movement has a positive
contribution on the soft goal of manoeuvre system is
accurate of the manoeuvring system actor.

4.2. Additional Models forming the Language

To link the 4 patterns in the language we elicited 2
additional models from the systems engineers:
• An agent model, showing the logical associations

between the principal actors in the manoeuvring
domain;

• A model that shows the important contributes-to
soft goals links that hold for all patterns in the
language.

The models extend the i* semantics and syntax. The
agent model includes additional semantic associations
between agents to describe their logical structure
during manoeuvring. Each is described in turn.

The manoeuvring actor model is shown in Figure 4.
It describes the aggregation of strategic dependencies
between all of the actors from the 4 SD models of the
4 patterns. As such it summarises the dependencies in
the pattern language, and adds to them through the
definition of other semantic associations between
agents stating which actors interact with each other to
undertake tasks.

Figure 4. The pattern language actor model

One of the most striking features of the model is the
existence of 2 key structures of manoeuvring. The first
feature is a structure that states that:
• The manoeuvring system is part of the submarine;
• The auto pilot, hydroplanes and rudders, and trim

and compensation tanks are part of the
manoeuvring system;

• The console system controls the auto pilot,
hydroplanes and trim and compensation tanks.

The second structure is the command-and-control
structure within the submarine. The operator interacts
with the console system. The operator reports to the
supervisor who reports to the commander to
manoeuvre the submarine. This structure reveals that

139



Page 7 of 8

failure of one actor to achieve a goal or undertake a
task can lead to serious difficulties to manoeuvre the
submarine. The model calls into question the
robustness of the design that this implies by this actor
structure.

The 4 patterns also identified recurring structures of
contributes-to soft goal links. A separate elicitation
session was undertaken to determine these structures
and to extract them from the specific patterns. The
resulting model is shown in Figure 5.

Figure 5. Recurring contributes-to soft goal
links in the patterns

5. Conclusions and Future Work

This paper reports results from research to produce
a pilot pattern language in systems engineering. We
worked with BAE SYSTEMS engineers to elicit,
model and validate a pattern language of issues to
consider when designing the manoeuvring systems of
naval submarines. We adopted a formal knowledge
elicitation approach with the systems engineers. The
resulting knowledge was modelled using the i*
formalism to show the allocation of capabilities in
terms of goals, soft goals and tasks to different actors
in the architecture, and the dependencies between the
actors and the trade-offs to be made between the
satisfaction of competing soft goals. The pattern
language was accepted by the engineers as an accurate
and useful representation of design alternatives for
manoeuvring system. Although developed for a
systems engineering problem, the definition of a
pattern that we adopted for this research and the
elicitation and modelling approach that was
successfully applied has important consequences about

linking software system requirements and
architectures.

One important finding was the usefulness of the i*
formalism for representing patterns about complex
requirements and design decisions. The use of
contribute-to soft goal links in the SR model enabled
us to go beyond existing pattern-approaches in
software engineering and model not just one solution
to a pattern but all of the design alternatives. In our
language we chose to use the i* concept of a task to
model each candidate solution. Whilst an effective
representation of solutions in business and information
system applications, the use of tasks (e.g. steer with
low hydroplane movement) is not an ideal
representation for complex system architectures, and
suggests the need to extend the i* semantics and
syntax in the future. Such an extension will need to
take into account the differences in discrete and
continuous solution spaces. Whereas some patterns,
such as the Manoeuvring-Console-Manning (MCM)
pattern had discrete solutions such as manoeuvre with
1 operator and manoeuvre with 2 operators, others
such the reported Manoeuvring-Noise-Accuracy
(MNA) pattern has a large space of possible solutions
that are modelled mathematically in BAE SYSTEMS.

During the sessions with BAE SYSTEMS engineers
we found that the patterns provided the common
shared point of reference that was needed to address
the issues relating to requirements trade-offs. The text
attributes of each pattern provided the necessary
background and contextual information while the i*
models provided the engineers with powerful visual
depiction of the trade-off envelope. This representation
also enabled the researchers and other BAE
SYSTEMS participants not as familiar with
manoeuvring systems still to participate in the
sessions. We believe that this was in part because the
i* semantics provided homogeneity through its
powerful, but easy-to-understand processes, semantics
and syntax which participants used when referring to
the different attributes of the system. This went some
way towards creating a more egalitarian discussion
arena among the diverse participants.

Furthermore, in the latter sessions, the BAE
SYSTEMS engineers became sufficiently adept with
the i* formalism that they would arrive at the
elicitation or validation session with SD and SR model
sketches already produced, thus saving time and
improving communication. This last result was a
surprise to us as we had anticipated a large learning
curve with the i* approach. This finding supports other
experiences with the i* approach that it can be learned
quickly and applied successfully with stakeholders
with some engineering experience. Our decision to use
i* models to express the pattern language itself, that is
the associations between individual patterns, also
enabled us to explore the claim that pattern languages
provide a lingua franca or common language that is
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accessible to all the participants in a design process
(Erickson, 2000). One possible role for this and other
pattern languages in BAE SYSTEMS is to aid
collaboration through communication between
different stakeholders in order to provide a coherent
but flexible framework for problem solving, rather
than forcing systems engineers to implement the
specified pattern solutions for future designs.

Another interesting side effect from developing the
pattern language was that it provided the systems
engineers with an opportunity to reflect on their
designs and design practice often denied them due to
project deadline pressures. Once reflection was
recognised as a characteristic of the sessions, engineers
were more motivated to participate and share their
knowledge with others.
The next stage of this research is to integrate this and
other pattern languages within the ART-SCENE
environment described at the beginning of this paper.
ART-SCENE is designed to trade-off satisfaction of
different requirements by different architecture designs
using scenarios to link requirements and architectures,
then to simulate system and agent behaviours to
compute their outcomes (Zhu et al. 2003). The
correctness of scenario outcomes upon which we
determine an architecture’s compliance with system
requirements depends upon the accuracy of the model
and the simulation. We seek to make ART-SCENE’s
simulations more dependable by diversifying the
sources of information, and in particular by reusing
historical data about the performance of a design in
previous similar contexts based on pattern languages.
We will extend the pattern language to represent
architectural designs using object-oriented constructs.
We will then evolve NATURE’s original
computational analogical reasoning mechanisms
(Maiden & Sutcliffe 1996) to match candidate
patterns’ requirements and architecture models to the
models of the system under specification to retrieve
historical data about that design’s performance in
previous scenarios, and input this data into scenario
simulations within ART-SCENE. We look forward to
reporting this next challenge in the next future.
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Abstract 
 

Deriving requirements and architecture in concert 
implies the joint elicitation and specification of the 
problem and the structure of the solution. In this paper 
we argue that such an integrated process should be 
fundamentally based on experience. We sketch an 
approach developed in the context of the EMPRESS 
project that shows how different kinds of experience-
based artifacts, such as questionnaires, checklists, 
architectural patterns, and rationale, can beneficially be 
applied. 

 
 

1. Introduction 
The last few years have seen a growing awareness of 

the requirements engineering community for architectural 
issues and vice versa. Several authors have argued 
convincingly for the tight interdependencies between 
functional requirements (FRs), non-functional 
requirements (NFRs) and architectural options (AOs) that 
need to be made explicit early, e.g., [1], [2].  

The design of an architecture aims at creating a 
software solution for the problem given in the 
requirements specification. In the requirements 
specification, the problem is elicited and documented 
using concepts from the problem domain. An architecture 
sketches the solution at a high level of abstraction. This 
means that the problem must be expressed in terms of 
concepts from the solution domain (i.e., the programming 
domain). This is a creative activity that is not well 
supported by current software development approaches.  

In this paper, we propose an approach that supports 
the elicitation, specification and design activity by 
providing experience in terms of questionnaires, 
checklists, architectural patterns and rationale that have 
been collected in earlier successful projects and that are 
presented to developers to support them in their task. 

The approach uses a refinement graph, checklists and 
questionnaires to capture important NFRs more precisely. 
In addition, it uses architectural patterns for reusing AOs 
and for evaluating them against a specific set of 
requirements. Furthermore, it uses traceability and 
rationale management to make explicit the decision 
making involved in a joint specification and design of 
FRs, NFRs and AOs. 
The paper is structured as follows: First, we sketch the 
fundamental issues to be solved in integrating RE and 
architecture development, and how these are covered by 
related work. Second, we discuss the foundation of our 
approach in terms of a metamodel that describes the basic 
concepts we are dealing with, such as quality attributes, 
metrics, and NFRs. Third, the integrated process with 
input and output documents is described. We conclude 
with a discussion of how well our approach deals with the 
fundamental issues identified. 

 

Figure 1: General process of integrating architecture and 
requirements 

2. Fundamental Issues 
Figure 1 shows the general process of integrating the 
architectural decision process into the requirements 
engineering process.  

It comprises the relevant activities of the software 
engineering process, namely an iteration of requirements 
elicitation, specification, and design that produces FRs, 
NFRs and AOs. These are subsequently implemented.  

#The research for this paper has been partly funded
by the EUREKA-ITEA projects “EMPRESS”
(ITEA 01003) and “CAFÉ” (ITEA 00004) 
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Figure 2: The metamodel 
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As exemplified by the approaches presented at  
STRAW 2001, there are many different ways to support 
these activities. They mainly solve the following 
fundamental issues: 

• Issue 1 – Views of different stakeholders in the 
elicitation of NFRs, FRs, and AOs: How to 
identify the essential NFRs, FRs, and AOs and 
different views of different stakeholders? How to 
negotiate conflicts? What is a sufficient level of 
abstraction for these discussions? One possible 
support for negotiation is given by the WinWin 
approach [2][3][4]. 

• Issue 2 – Identification of dependencies among 
FRs, NFRs, and AOs: How to describe NFRs, FRs, 
and AOs such that dependencies can easily be 
identified? In several approaches, goal graphs are 
used for specifying NFRs and FRs and their 
dependencies. There is much less agreement on 
describing AOs, e.g., Use Case Maps [5], agent-
oriented goal graphs [6], the CBSP approach [4], or 
social organizations [7]. 

• Issue 3 – Assessment of how well different AOs 
address a specific set of FRs and NFRs: How to 
capture and support the decision making involved 
in specifying FRs, NFRs and AOs? Typically, 
concepts from rationale management [8] are used 
to make explicit questions to be solved, options for 
their solutions, criteria to evaluate the options and 
assessments of the options against these criteria.  
For example, goal graphs are used to capture 
criteria  (business goals) and issues (NFRs and 
FRs), AOs and their assessments [5]. Another 
example is the Concordance Matrix to capture 
assessments of the architectural relevance of FRs 
and NFRs [4]. Also, SEIs Architecture Tradeoff 
Analysis Method (ATAM) captures criteria (quality 
attributes, business goals), issues (risks), options 
(architectural views), and assessments (utility tree). 
The Cost Benefit Analysis Method (CBAM) is used 
to refine the ATAM results with cost, benefit 
(criteria, options) [3]. 

 
As argued in the introduction, however, the design of 

an architecture is a creative task. It involves much 
judgment and heuristics on the importance of NFRs and 
FRs and different AOs. Thus, it is error-prone (e.g., 
guesses about how well an architecture meets a set of 
NFRs can be wrong) or expensive (e.g., when using a 
prototype realization of the architecture to experimentally 
assess the suitability of the architecture). Moreover, it can 
only be learned through experience and apprenticeship. 
Hence, leveraging off past experience can help these 
challenges to be addressed. This raises another issue: 

• Issue 4 – Representation of past experience to 
facilitate issues 1-3: How can one capture and use 

experience on FR, NFRs, AOs, their dependencies 
and their assessments? Such representations must 
not only include the AOs under consideration, but 
also sufficient knowledge for their selection and 
application. This includes the context in which they 
can be used and the trade-offs they entail. 
Architectural styles, for example, are used to 
capture typical AOs, a correlation catalogue to 
capture typical assessments [7].        

 
The last issue is rather implicitly treated in many 

approaches. In contrast, we have put most emphasis on 
identifying how experience can support the integrated 
process. 

 

3. Our Approach 
In the following, we present our approach for 

capturing experience to support the integrated elicitation, 
specification of NFRs and FRs and design of architecture. 
First, we explain the fundamental concepts in terms of a 
metamodel. Second, we sketch the process and the 
products. We illustrate the process and the products with 
a case study dealing with a mobile, interactive application 
to allow users monitor production activities, manage 
physical resources and access information. This case 
study is based on a real system and was provided by 
Siemens in the context of the Empress project. 
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Figure 3: The experience-based process 

3.1 Foundation 
Our integrating approach is based on a metamodel that 

describes the main concepts we are dealing with (see 
Figure 2). 

• quality attribute (QA) is a non-functional 
characteristic of a software product or process. We 
distinguish between high-level QAs (i.e., 
efficiency, maintainability, reliability, usability, 
and portability) and refining QAs of these 
attributes. The high-level QA  “efficiency” can, for 
example, be refined into “time behavior” and 
“resource utilization”, “time behavior” can be 
refined into “workload” and “response time“. In 
addition, QAs can have positive or negative 
influences on each other, e.g., if the “workload” is 
higher, the “response time” will increase (negative 
influence). 

• To make explicit the distinction between 
knowledge about QAs gained in experience and 
the quality to be achieved in a specific project, we 
use the term NFR to describe the latter. A NFR is 
an instantiation of a QA that is created by 
determining a value (range) for a metric associated 
with the QA. For example, the NFR “The database 
of our new system shall handle 1000 queries per 
second.” instantiates the QA “workload of 
database”. The value is determined based on an 
associated metric “Number of jobs per time unit”. 

The distinctive feature of this metamodel is that we 
distinguish problem-oriented refinement from solution-
oriented refinement of QAs. The latter is made explicit in 
terms of means which mediate between QAs and patterns. 

• Means are principles, techniques, or mechanisms 
that facilitate the achievement of certain qualities in 
a software architecture. They are abstract patterns 
that capture a way to achieve a certain quality 
requirement, but are not concrete enough to be used 
directly (i.e., they have to be instantiated as 
patterns). Means are described by scenarios, which 
consist of stimulus and response, and a metric. For 
example, a scenario for the NFR mentioned above 
is “object creation throughput must be fast”, where 
the stimulus is “object creation”, the response is 
“throughput” and the metric is “number of objects 
created per second”. 

•  A pattern is used to document Aos. Pattern help 
designers in creating architectures by providing 
solutions for recurring problems in the design of 
software architectures. The pre-defined solutions 
have proven to be beneficial in certain situations. 
As they have been applied repeatedly, their impact 
on a software architecture is known. Patterns are 
chosen to satisfy the scenarios. They can be refined 
through specializations. For example, the pattern 

“layered architecture” can be specialized into 
“strictly layered architecture” and “loosely layered 
architecture”. Furthermore, if a pattern uses another 
pattern, the used pattern is applied to create the 
using pattern. With this mechanism, collaborating 
patterns can be used to form higher-level patterns. 
Two patterns can also be in conflict, e.g., the “client 
server” and “layered architecture” patterns cannot 
be applied at the same time. 

The following sections describe how these concepts 
are used within our approach.  

 
3.2 Experience-Based Process 

Figure 3 gives an overview on our experience-based 
process of integrating architectural decision making into 
the requirements engineering process. 

In the following, the different activities of our process 
are listed. The overall process is iterative, that means 
within each activity and between the activities iterations 
are probable and necessary. Products consumed and 
produced by the activities of the process are explained in 
more detail and illustrated with examples in the 
following. sections.  
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• Elicitation: During the elicitation, the customer has 
to prioritize the QAs at the highest level of 
abstraction for the system to be developed. A 
questionnaire is used for this purpose. Then, QAs 
with the highest priorities are refined with the help 
of checklists. Refinement graphs for the high level 
QAs are the foundation of all checklists. We 
distinguish different types of checklists. Each 
checklist focuses on a certain refinement aspect 
(e.g., problem-refinement, solution-refinement, 
dependencies between QAs). The rationale for 
specific estimates for the NFR (e.g. maximal load ) 
is captured. 

• Specification: During the specification, 
measurable NFRs will be documented in a 
requirements document. Checklists guide this 
activity. We use a requirements template that allows 
different NFRs to be described at different places in 
the document. NFRs, for example, that are 
expressed over FRs are explicitly stated together 
with the FR. We use Use Cases and Use Case 
descriptions to describe FRs (our approach for 
describing FRs for embedded systems has been 
developed in the QUASAR project [9]). NFRs (e.g., 
response time requirements) are explicitly stated in 
the Use Case descriptions.  
Furthermore, concrete means to achieve the NFRs 
are identified by using the assessments of their 
suitability documented in a refinement graph.  The 
rationale for a chosen means is captured. 

• Design: During the design, requirements that have 
an effect on the architecture are selected. In 
addition, the principal structure of the system is 
refined based on the requirements and the means 
and pattern catalogue. In the following, the existing 
architecture is iteratively refined based on 
requirements and the catalogue. After each 
refinement step, the architecture is assessed 
concerning their non-functional properties. The 
rationale for chosen means and patterns is captured. 

• Experience Capture: During the performance of a 
project, experiences are collected and consolidated 
to improve the questionnaire, refinement graphs and 
checklists and the patterns and means catalogue.  

 
3.3 Questionnaire for Prioritization 

For the prioritization of QAs at the highest level of 
abstraction, a standardized questionnaire is used. The 
questionnaire elicits wishes and facts concerning the 
development context of the customer and relates them to 
a selection of the QAs defined by ISO9126 [10]: we 
selected maintainability, efficiency, usability, and 
reliability in our case study. 

In the following, we describe at first how the 
questionnaire was developed and then how it can be 
applied.  

To develop the scales of the questionnaire, in a first 
step, potential scale items were generated. For this 
purpose, we phrased a set of 120 statements containing 
wishes and facts, which a person involved in a system 
development project would express. The statements 
covered the complete set of second level QAs (ISO 9126) 
of the high level QAs mentioned above.   

Once the statements were generated, they were 
presented to eight software quality experts. These experts 
judged, whether a customer that needs a certain QA 
would agree to each statement. A 1-5 rating scale was 
used for the judgment. The experts were – as usual in 
scale development [11] – asked not to rate their own 
project context, but rather to judge based on their 
personal experience, how favorable each item is with 
respect to the QA of interest. 

In a next step, items with the highest mean and lowest 
variance (high interrater reliability) were selected and 
assembled to a 30 items questionnaire. As response scale, 
a 1-5 Likert scale was chosen, of which 17 statements 
covered facts of the current project (strongly agree – 
strongly disagree), and 13 statements covered wishes for 
future conditions (very important – very unimportant). 

The determination of the mean value of the statements 
affecting one QA enables to build a rank order of these. 
The one with the highest ranking is the most important 
attribute for the current system development project and 
should receive the greatest deal of attention. The 
prioritization is of special interest in case of limited 
requirements engineering resources and allows focusing 
the requirements engineers’ energies on the most 
important high-level QAs. This priorization questionnaire 
was applied in the case study. It did not confirm the prior 
expressed expectations of the customers. A closer 
analysis showed, that the customers tended to rate such 
quality aspects as most important, that were difficult for 
them to handle, namely “efficiency”, instead of naming 
the most important aspects for the success of the project 
in scope. The results of the prioritization questionnaire 
ranked “maintainability” as most important. The customer 
confirmed the correctness of this result. 

 
3.4 Refinement Graph 

A refinement graph (also called quality model) 
instantiates parts of our metamodel. It describes typical 
refinements of high-level QAs into more detailed QAs, 
metrics, and means. In addition, it describes relationships 
between different QAs. Therefore, it captures experience 
of previous projects. Our refinement graph is similar to 
the goal graphs of e.g. [6], but emphasizes dependencies. 
Figure 4 gives an example for such a refinement graph for 
the QA “efficiency”. White rectangles represent QAs at 
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different levels of detail. Ovals represent metrics that 
measure certain QAs. Grey rectangles represent means to 
achieve certain QAs. 

Four types of relationships can be found in such a 
refinement graph. The metamodel in Figure 2 describes 
the general types of relationships.  

 
• A QA, such as “efficiency” is refined into more 

detailed QAs, such as “time behaviour” and 
“resource utilization”. 

• A means has influence on a QA, i.e., it is used to 
achieve the QA, e.g., “load balancing” is used to 
achieve “workload distribution”. 

• A QA is measured by a metric. For example the 
“workload” can be measured by the metric 
“number of jobs per time unit”. 

• A QA can be positively or negatively influenced 
by another QA. If the “workload”, for example, is 
higher, the “response time ” will increase (negative 
influence). 

Our approach provides a default refinement graph that 
can be used without adaptations by a company. Reasons 
for this can be a lack of time or money. We recommend 
tailoring the refinement graph to the context of each 
company and project. Alternatively, a company might 
have an own refinement graph that shall be used. In this 
case, it is very important to agree on the meaning of the 
different QAs in this graph. Our recommendation is to 
build a refinement graph together with the company in a 
workshop. By doing so, the refinement graph benefits 
from the already integrated experience of our default 
refinement graph and it is tailored to the project and 
company. So far, we defined default refinement graphs 
for the QAs “efficiency”, “reliability”, and 
“maintainability”. NFRs are elicited for each QA and 
relationships between NFRs and FRs are established via 
the checklists. 

A mechanism to capture the experience of multiple 
projects and store the various refinement graphs is also 

developed as part of the ITEA EMPRESS project. This 
so-called Prometheus approach (Probabilistic Method for 
early evaluation of NFRs) is described in [12]. 

 
3.5 Checklists 

Based on the information included in the refinement 
graph, we developed checklists that focus on different 
aspects of a high-level QA. We distinguish for each high-
level QA between: (1) initialization checklists, (2) 
refinement checklists, and (3) dependency checklists. All 
checklists are described in more detail in the following. 
Again, in the other approaches for integrating RE and 
architecture we have not found something similar to 
checklists. They help to make the experience captured in 
the refinement graph directly applicable in workshops. 

Initialization checklists are defined that capture 
everything that has to be decided before NFRs are 
refined. There are two types of initialization checklists 
that are used in our process: a general initialization 
checklist and specific high-level QA checklists. 

The general initialization checklist includes aspects of 
the following categories: 

• Organizational aspects (e.g., domain knowledge 
required) 

• Technical issues (e.g., notations required ) 
 
Figure 5 depicts an extract of such a general 

initialization checklist. 

 
Figure 5: Extract of general initialization checklist 

 
Initialization checklists include a set of questions. To 

support answering the questions, examples are given in 
brackets. Italic formatted comments describe at which 
place in the requirements document, the information 
should be stated.  Examples for NFRs concering 
organizational experience are: 

• “At least 3 years of experience in maintenance is 
required (the longer the better).” 
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• “Project experience with wireless networks is 
required.” 

An excerpt of a specific initialization checklist for the 
high level QA “efficiency” is given in Figure 6. This 
structure of the checklist corresponds to the structure of 
the other initialization checklist. In our case study, there 
were no specific NFRs concerning the organizational 
experience regarding efficiency. 

 
 
After initialization checklists were used to elicit initial 

NFRs, refinement checklists are used to elicit specific 
measurable NFRs. Refinement checklists are specific for 
high-level QAs (e.g., efficiency). In case of efficiency 
and reliability requirements, we recommend creating Use 
Cases to identify concrete NFRs. An excerpt for the 
refinement checklist for throughput NFRs is given in 
Figure 7. Again, text in italics indicates the place to 
document the NFR in a given document structure. 

 
Figure 7: Excerpt of refinement checklist for throughput 

Measurable efficiency NFRs that were elicited by 
using the refinement checklists in the case study are for 
example: 

• In a maximum usage, 8 people must be able to 
download a document (about 1 MB) within 10 sec. via the 
WLAN (6.4 Mbit/s). 

• The PDA must be able to handle 60 alarms (coming 
from machines) at the same time. 

• The memory of the database server must at least 
have a capacity of 512 MB. 

While eliciting the NFRs, dependencies to other NFRs 
and architectural decisions are checked by using a 
dependency checklist. Figure 8 depicts an excerpt of the 
efficiency dependency checklist.  

After applying these checklists, conflicts between 
NFRs and solution alternatives are documented. If 
concrete solutions were specified, also the rationale for 
the decision is documented. In our case study, a conflict 
appeared between the following two NFRs: 

• “In a maximum usage, 8 people must be able to download 
a document (about 1 MB) within 10 sec. via the WLAN (6.4 
Mbit/s).” 

• “The WLAN supports 10 Mbit/sec.” 
In this case, the net throughput of the WLAN might 

be not sufficient for the first requirement. This conflict 
was documented.  

 
 
 

3.6 Means and Architectural Patterns 
The general dependencies between means and patterns 

are captured in a separate catalogue. This catalogue is 
used as follows. A designer working on a certain 
component or (sub-) system chooses the architectural 
relevant FRs, as well as the NFRs. The NFRs are then 
used to select appropriate means. This is done by 
comparing the scenarios associated with the means with 
the requirements. Once the means are selected, the 
patterns that specialize the respective means are selected 
from the catalogue. This is again is done by comparing 
the scenarios related to the patterns with the requirements. 
The selected patterns are instantiated to support the 
design. 

 
3.7 Rationale  

The refinement graph and the catalogue capture 
general relationships between QAs, means and patterns. 
The choice of a specific pattern requires detailed 
evaluation of the means and the patterns against the 
relevant requirements. We capture this evaluation in 
terms of rationale that can then be used to refine the 
refinement graphs and the catalogue. 

The designer documents the selection of means with 
an assessment matrix for each subsystem under 
consideration  (see Table 1). The rows of the matrix 

Figure 8: Excerpt from efficiency dependency checklist 

Figure 6: Excerpt of efficiency initialization checklist
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represent the selected means. The columns of the matrix 
represent the requirements that are relevant to the 
subsystem under consideration. Each cell denotes whether 
a specific means makes it easier or more difficult to 
realize the corresponding requirement with the symbols 
“+” and “-“ and a reference to the scenario that was used 
to generate the value. If the means has no impact on the 
requirement, the cell is left empty.  Once the matrix has 
been filled out, the designer identifies potential conflicts 
between selected means. While the designer can select 
alternate means in order to reduce the number of 
conflicts, in general, however, the potential conflicts 
cannot be completely eliminated. The remaining conflicts 
are documented by annotating the cells (i.e., means x 
requirement x scenario) that are involved in the conflict 
for further consideration during the next step. 
 

 FR1 FRn Efficiency Maintainability 
Locality   - + 
Load 
balancing 

  + - 

Caching   + - 
Concurreny   + - 
Sharing   + - 

Table 1. High-level assessment matrix for detecting conflicts 
among means 

 
The patterns are selected by comparing the scenarios 

related to the patterns with the requirements. For each 
means, the designer builds a new assessment matrix. The 
rows represent the candidate patterns selected with the 
scenarios. The columns include the requirements 
addressed by the means. When the means under 
consideration is involved in a conflict, the columns in the 
higher-level matrix that are negatively affected by the 
means are reported into the lower-level matrices. The 
designer uses the scenarios that result in negative 
assessments in the higher-level matrix to select a set of 
architectural patterns, hence addressing the relevant 
requirements and resolving the potential conflict.  

This two-level approach for documenting trade-offs 
between options is similar to the rationale capture of 
designing services from user tasks described in [13]. The 
use of an assessment matrix enables the designer to 
summarize the rationale behind the selection of means 
and patterns and their evaluation with scenarios. Using a 
two level selection process reduces the size of the 
matrices that the designer has to work with and the total 
number of cells that need to be considered. By identifying 
conflicts in the higher-level matrix and reporting 
conflicting columns in the lower-level matrices, the 
designers focuses only on the relevant interactions 
between means and attempts to address those during the 
pattern selection and instantiation. Thus, the distinctive 

feature of our rationale capture is the detailed guidance 
we give for decision making. 

 

4.  Conclusion 
We have presented a comprehensive approach 

covering the issues identified in section 2. 
• Issue 1: The different views of the stakeholders are 

elicited and negotiated through the prioritization 
questionnaire, different view-oriented checklists 
and the rationale-based discussion. The distinction 
between QAs and means helps to keep the 
discussion on an adequate level of abstraction. This 
is achieved by separating problem refinement from 
solution refinement. 

• Issue 2: Typical dependencies between QAs are 
captured in the refinement graphs. Concrete 
dependencies are elicited with the help of checklists 
and are captured in the rationale matrices. We use 
patterns to document AOs and Use Cases to 
document FRs. We use a requirements template that 
allows different NFRs to be described at different 
places in the document. NFRs, for example, that are 
expressed over FRs are explicitly stated together 
with the FRs. However, we have not yet worked on 
an intuitive representation of the dependencies 
between patterns and Use Cases. 

• Issue 3: The relationships between AOs, FRs and 
NFRs are covered by our rationale matrices. 

• Issue 4: As described in detail, we capture and use 
experience in terms of the questionnaire, the 
refinement graphs, the checklists, the patterns, and 
the rationale. 

 
Of course, there are still many issues to be solved, in 

particular a full-scale case study. So far, we have used 
this approach together with our cooperation partners from 
Siemens to elicit and specify the FRs, NFRs, means and 
metrics. In a 2 day workshop its was possible to define a 
measurable and a more complete set of NFRs in 
comparison to ad-hoc approaches. In addition, the 
relationships between FRs and NFRs were clear. The 
choice of the patterns will be performed in the near 
future. 

 
Till the end of the year, we plan to address the following 
questions: 

• Package experience for different QAs from 
literature, in particular the catalogues for means and 
patterns. 

• Find suitable architecture descriptions that facilitate 
the assessment of the dependencies between 
requirements and AOs. 
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So far, we have not investigated the utilization of 
problem frames (as a further instance of documented 
experiences). That would correspond to capturing typical 
FRs in the refinement graph. This would generalize our 
work from the domain of embedded systems – which is 
the focus of EMPRESS – to other domains. 
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Abstract

Traceability helps stakeholders to understand the rela-
tionships that exist between software artifacts created dur-
ing a software development project. For example, the evolu-
tion of the relationships between requirements and the com-
ponents to which they are allocated can provide insight into
the maintainability of a system. Unfortunately, due to the
heterogeneous nature of these artifacts, creating, maintain-
ing, and viewing these relationships is extremely difficult.

We propose a new approach to traceability based on
techniques from open hypermedia and information integra-
tion. Open hypermedia and information integration provide
generic techniques for establishing, maintaining, and view-
ing relationships between software artifacts. Our approach
allows the automated creation, maintenance, and viewing of
traceability relationships in tools that software profession-
als are accustomed to using on a daily basis.

1. Introduction

Traceability can provide important insight into system
development and evolution. Antoniol et al. maintain that
traceability assists in both top-down and bottom-up pro-
gram comprehension [4]. According to Jacobson, Booch,
and Rumbaugh, “[t]raceability facilitates understanding and
change [9, page 10].” Palmer asserts that “[t]raceability
gives essential assistance in understanding the relationships
that exist within and across software requirements, design,
and implementation [13, page 412].”

Even if we limit our discussion to relationships between
requirements and architectural artifacts, we are confronted
by a large number of potentially useful relationships. The
models of Ramesh and Jarke [16] and Pohl [14, 15] sug-
gest possible relationship types between various elements
and artifacts. Han [7] lists three categories of structural

relationships: coarse-grained inter-document, fine-grained
inter-document, and fine-grained intra-document. We di-
vide inter-document relationships into two subcategories:
relationships between different versions of the same arti-
fact and relationships between different artifacts. Further-
more, we consider relationships between both consecutive
and non-consecutive versions of the same artifact as well as
relationships between relationships. Figure 1 depicts these
five relationship types.

Relationships can exist between elements of a single ar-
tifact (relationship type 1 in Figure 1). For example, in
a requirements specification, one requirement might elab-
orate or depend on another. In an architectural diagram,
a component might be part of another component or de-
pend on another component. Across versions of the same
artifact (relationship types 2 and 3) we may observe rela-
tionships such as refines, replaces, based on, and formal-
izes. Between requirements and architectural components,
relationships such as satisfies and allocated to might be use-
ful (relationship type 4). Furthermore, software engineers
may be interested in how a particular type of relationship
between artifacts evolves over time (relationship type 5).
For example, a number of instances relationship might pro-
vide insight into component cohesion. If the number of al-
located to relationships between a requirements document
and a component diagram explodes after an iteration in the
design phase, this may indicate that one or more compo-
nents have lost cohesion.

All of these relationship types might be useful to one
or more stakeholders at some point in the software develop-
ment project; however, the vast number of possible relation-
ships makes the task of manually creating and maintaining
these relationships daunting. Furthermore, different stake-
holders have diverse information needs. Not all relation-
ships will be of interest to all stakeholders. For example,
a customer might only be interested in knowing that all re-
quirements have been allocated to components whereas a
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Figure 1. Implicit and Explicit Relationships in Software Artifacts.

software developer might need to understand the require-
ments in light of their allocated components and subcom-
ponents as well as the dependencies between these compo-
nents. Stakeholders need to be able to filter relationships
to provide a view of the information space that conforms to
their information needs.

Finally, users should not be required to use a specialized
tool to view traceability information. Different stakeholders
use different tools to produce requirements and architectural
artifacts. It is more likely that stakeholders will make use
of these relationships if they are able to view the relation-
ships in the tools that originally created the artifacts. How-
ever, these tools are often not designed to interact. Thus, we
must also overcome the problem of heterogeneous artifacts
produced by different tools [3].

These problems lead to three requirements for creating,
maintaining, and viewing traceability relationships:

• The creation and maintenance of traceability relation-
ships must be automated.

• Stakeholders must be able to create a view of traceabil-
ity relationships based on their information needs.

• Users should be able to create and view traceability
relationships within common, familiar software tools.

In addition, we suggest that a traceability tool should pro-
vide support for evaluating the evolution of relationships
between artifacts. This analysis can provide insight into the
entire project.

2. Approach

We hypothesize that open hypermedia [12] and informa-
tion integration [2] enable an approach to traceability that
allows:

1. automation of the discovery, creation, and mainte-
nance of traceability relationships.

2. customized views of these relationships based on the
information needs of the stakeholders.

3. creation and viewing of these relationships in the tools
that originally created the artifacts.

In this section, we provide a brief overview of open hy-
permedia and information integration and then present our
conceptual framework. Next, we offer a motivating scenario
and then describe our proposed prototype.
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Figure 2. The InfiniTe Information Integration Environment [2].

2.1. Open Hypermedia

Open hypermedia systems [12] enable the creation and
viewing of relationships in heterogeneous applications as
well as the traversal of those relationships within and be-
tween applications. Open hypermedia services allow links
(relationships) to be stored separately from an artifact. The
open hypermedia data model supports complex relation-
ships such as bi-directional relationships, relationships with
multiple anchors (n-ary relationships), and relationships be-
tween relationships [3]. Open hypermedia systems also pro-
vide services to filter relationships based on type and to cre-
ate collections of relationships (hyperwebs or, more com-
monly, linkbases).

2.2. Information Integration

Information integration [2] provides services to automate
the discovery, creation, maintenance, and evolution of re-
lationships between heterogeneous artifacts. Information
integration uses the concept of a data source to model in-
formation outside the information integration environment.
Translators are responsible for importing information from
data sources into the information integration environment as
well as exporting information from the information integra-
tion environment to data sources. Integrators work within
the environment to automate the discovery and creation of
relationships. Specific integrators can be developed to find
different relationships within the environment. These rela-
tionships can be between artifacts, other relationships, or
collections of artifacts and relationships. In addition, infor-
mation integration uses contexts to model different views
of the information space. A conceptual model of the In-
finiTe information integration environment [2] is shown in
Figure 2.

2.3. Conceptual Framework

Our conceptual framework builds on techniques from
open hypermedia and information integration. The main
elements in our framework are tool, artifact, relationship,
and metadata. These concepts are illustrated in Figure 3. A
tool is something that a stakeholder uses to perform a task.
Examples of tools include word processors, UML diagram-
ming tools, integrated development environments (IDEs),
mail programs, version control systems, and issue tracking
systems. An artifact is produced by a tool. A relationship
is a semantic association between artifacts, portions of arti-
facts, or relationships. Metadata allows a method engineer
(or someone familiar with the software project) to describe
the artifacts and relationships that are created and used dur-
ing the project.

As can be seen in Figure 3, stakeholders are able to use
their original tools. These tools produce heterogeneous arti-
facts. Artifact and relationship metadata provides informa-
tion about artifact and relationship types. The metadata in-
cludes information such as which translators can be applied
to specific artifact types or which integrators can be used to
find particular relationship types. The artifacts are trans-
lated into the information integration environment where
traceability relationships can be automatically discovered
and created by appropriate integrators as determined from
the metadata. These relationships are forwarded to the open
hypermedia system, which provides services to display the
relationships in the tools that originally created the artifacts.
The traceability system provides services to schedule inte-
grators and translators, to “chain” relationships together to
form new relationships, to register new artifact and relation-
ship types, to create customized views by filtering both ar-
tifacts and relationships, and to provide insight into system
evolution based on the traceability relationships that the sys-
tem has discovered.
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Figure 3. Conceptual Traceability Framework.

2.4. Motivating Scenario

This section provides an example of the use of relation-
ships to provide insight into the evolution of requirements
and a system architecture. The hypothetical product is an
income tax program. An initial analysis determined that
much of the functionality of the system would remain sta-
ble (e.g, user interface, data import and export). However,
the tax calculation component of the software would need to
be frequently updated to reflect current state and federal tax
laws. Thus, maintainability has been identified as one of the
important quality requirements of the software architecture.

In the initial architecture, the system architect chose to
allocate all requirements related to the calculation of taxes
to one component. The product is now in its fifth release and
the project manager has observed that it is taking software
developers more time to update the software to reflect the
current tax laws. In addition, these changes are adversely
affecting other functionality in the system.

The system architect is called in to review the evolution
of the architecture. To analyze the problem, he requests
that he be given a summary of all allocated to relationships
between tax computation requirements and the components
that satisfy those requirements. From this information, he is
able to discern that in the first three product releases, all tax

computation requirements were indeed satisfied by the tax
component. However, in the fourth and fifth releases, the
relationships show that some of the tax requirements are be-
ing satisfied by a component that also satisfies data import
requirements. For more details, the architect opens the re-
quirements specification associated with the fourth product
release. He requests that the system display all allocated to
relationships. By traversing these relationships, he is able to
view the component that currently satisfies the requirement.
Thus, the system architect is able to identify the point at
which the architecture began to lose its conceptual integrity
[5] and to suggest changes to restore the cohesion of the tax
component.

This scenario shows the need to be able to create and
view relationships between different versions of different
artifacts in a customized context. In addition, it suggests
that the evolution of relationships over various versions and
product releases can provide valuable insight into system
evolution.

2.5. Prototype

To evaluate the feasibility of our approach, we plan to
build a traceability system that implements the concep-
tual framework described in Section 2.3. The traceability
system will provide an infrastructure for the automated
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discovery, creation, and maintenance of traceability rela-
tionships between heterogeneous artifacts. The system will
be built using services from both open hypermedia and
information integration as well as our own traceability-
specific services. To provide open hypermedia services, we
have chosen the Chimera open hypermedia system [3]. We
will use the InfiniTe information integration environment
[2] for information integration services.

InfiniTe will provide services for the automated creation
of typed traceability relationships. As described in Section
2.2, translators will be used to import information to and
export information from InfiniTe; integrators will be used
to discover and create relationships. Chimera will provide
services for viewing and traversing relationships created by
InfiniTe in the tools that originally created the artifacts. To
utilize all open hypermedia services, a tool will need to be
integrated with Chimera (a Chimera “client”).1 If a tool
is not integrated with Chimera, the user will be able to re-
quest an HTML summary of the artifact’s relationships. The
relationships created by InfiniTe will be typed to facilitate
filtering these relationships to create customized contexts.
Chimera allows the selective viewing of relationships based
on type.

Our customized traceability services will be based on in-
formation provided in the artifact and relationship metadata.
A metadata definition tool will allow a method engineer to
define the artifacts and relationships that are required for an
organization’s software development process. Medvidovic
et al. [10] describe strategies for modeling architectures
in UML. Assuming that a project creates its requirements
specification in Microsoft Word [11] and creates architec-
ture diagrams in a UML diagramming tool, we can create
specific translators to translate these artifacts into InfiniTe.
We can then write one or more integrators to find relation-
ships of interest, for example the allocated to relationship
between requirements in the requirements specification and
components in the architecture diagram. In addition, we can
create one or more integrators to analyze the evolution of
the relationships between these artifacts. These translators
and integrators can be invoked automatically or as needed,
depending on the definitions in the metadata.

Since it is impossible to anticipate the needs of every
software development team, we do not propose to build a
comprehensive set of translators and integrators for every
artifact and relationship type. We do, however, propose to
implement a system that will manage artifact and relation-
ship metadata, inform users of available options for integra-
tors and translators, and invoke translators and integrators
when appropriate. The system will also provide informa-
tion about explicit and implicit relationships in the system
as well as provide filtering based on both artifact and rela-

1Fortunately, the open hypermedia community has developed tech-
niques to facilitate application integration [6, 17, 18].

tionship types. Users of the traceability system will be able
to customize the system to their traceability needs by defin-
ing artifact and relationship metadata; they then can create
and register translators and integrators that translate the de-
fined artifacts and create the required relationships.

To evaluate the utility of our approach, we plan to apply
it to artifacts from an existing research project. We will de-
velop translators and integrators and then use the traceabil-
ity system to automatically generate traceability links be-
tween representative artifacts. Whenever possible, we will
make use of techniques described in the literature to find
these relationships.

The prototype will also allow us to perform a prelim-
inary evaluation of the user interface. We will engage 2–5
computer science graduate students to perform several tasks
(e.g., invoking a translator and an integrator, displaying dif-
ferent types of relationships). This preliminary evaluation
will help us to detect useability problems so that they will
not influence later evaluation.

In the next phase of our evaluation, a developer familiar
with the research project will manually create traceability
links in a commercial tool. We will record and compare the
time involved in creating these relationships in the commer-
cial tool and in our tool; we will also compare the number
and types of links created by each of these approaches.

For the final phase of our evaluation, we will seed the
research system with several defects. We will engage 5–
10 software developers of similar programming experience
who have no experience with the research project. The test
subjects will receive training on our traceability system and
the commercial tool as well as an overview of the research
project and development environment. We will then ask
them to locate and correct defects using three different sets
of information:

1. No explicit traceability links represented—developers
are free to use any tools with which they are familiar
(e.g., grep and find).

2. Traceability links created and represented in the com-
mercial tool.

3. Traceability links generated by our traceability system
and represented in the tools that originally created the
artifacts.

We will collect data on the number of defects found us-
ing each approach, the time required to find and fix each
defect, and the ability to correct a defect without introduc-
ing new problems. We will use post-evaluation surveys to
record the programmers’ experiences in using the different
tools and to solicit their opinions on the various approaches.
We will then analyze this data to determine the utility of our
system in locating and fixing defects as compared with the
other two approaches.
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3. Related Work

Han [8] describes an information model for requirements
and architecture management. The model provides the
structure for two templates, a System Requirements Doc-
ument and a System Architecture Document; a tool, TRAM,
facilitates the creation of documents based on these two
templates. TRAM’s use of templates differs from our ap-
proach in that with a template approach the data must con-
form to a prescribed format. Our approach allows a user to
create custom translators and integrators to handle different
artifact formats and relationship types.

The Unified Software Development Process [9] defines
trace dependencies between elements of its various mod-
els. For example, “[a] use-case realization [in the analy-
sis model] . . . provides a straightforward trace to a specific
use case in the use-case model [9, page 186].” The Unified
Software Development Process differs from our approach
in that it prescribes specific artifacts and relationships. In
our approach, we allow users to create and maintain arti-
facts and relationships of interest to the project (by locating
or creating appropriate translators and integrators). Thus,
with appropriate metadata definitions, our approach can be
adapted to various software development processes.

Pohl et al. [15] describe six meta-models for require-
ments and architectural artifacts. They then define depen-
dencies between the meta-models. The introduction of ex-
plicit dependencies between use case and architecture sce-
narios allows dependencies between other requirements and
architectural models to be “derived”. The derivation of de-
pendencies is the same as “chaining” of relationships in our
system. Thus, these meta-models can be realized in our
system. A user would need to create or locate appropriate
translators for the requirements and architectural artifacts.
Integrators to create the explicit relationships would need
to be developed as well. Our system could then manage the
automatic generation and representation of Pohl’s derived
relationships.

4. Conclusion

We believe that the services of open hypermedia and in-
formation integration can be leveraged to provide an ap-
proach to traceability that facilitates the automated discov-
ery, creation, maintenance, and viewing of relationships in
tools that originally created the artifacts. Furthermore, these
services can provide a customized view of the information
space.

This research is still in its early stages. To evaluate our
hypothesis, we plan to build a prototype traceability system
along with representative translators and integrators to find
relationships between requirements and architectural arti-
facts. We have demonstrated the feasibility of the cycle

represented in Figure 3 [1] and have already built several
translators and integrators for text, HTML, and source code
artifacts [2].

Although we believe that our approach can be success-
fully applied to requirements and architectural artifacts and
relationships, our approach is not limited to these artifacts
and relationships. We envision that, by developing an ap-
propriate set of translators and integrators, the approach can
address traceability concerns throughout a software devel-
opment project.
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