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STRAW '03
Second International
Sof Twar e Requirements to Ar chitectures Workshop

Foreword by the Workshop Co-Chairs

Over the past 10 years, software requirements
engineering and software architecture have been the topic
of fastly growing research disciplines. Requirements
engineering has seen the advent of
e goal-oriented approaches,

e scenario-based requirements engineering,

e sociology- and linguistics-based techniques, and

e formal techniques

for identifying and specifying requirements.

Architecture design has seen the advent of

patterns research,

architectural style research,

attribute-based architecture design,

architecture description languages,

component-based approaches, and

product-line architectures.

There is a clear relationship between requirements
engineering and architecture design. However, for the
most part, the two disciplines have evolved independently
from each other, and promising areas of mutual interest
remain to be explored. For example, an important type of
design research consists of relating classes of problems to
classes of solutions. In software engineering, there are
interesting connections between software problem pat-
terns and software solution patterns. Recent research in
problem frames could therefore be extended by including
architecture patterns and investigating relationships be-
tween the two kinds of patterns.

The patterns paradigm may be extended by including
the wider business context, consisting of business
processes, actors, and strategies. In this wider context, the
problem is one of alignment of software architecture with
business architecture. Here, domain knowledge may be
codified using reference architectures.

A third area of potentia fruitful interaction is that of
component-based development. Assembling components
into a system requires an architecture that mediates
between the system requirements and the requirements on
the components. More generally, when we extend our
view from a single system to a hierarchy of systems, the

interplay between requirements and architectures is a cen-
tral guiding principle in system design.

The goa of the Second International Sof Tware Re-
quirements to Architectures Workshop (STRAW’03), to
be held in Portland, Oregon, U.S.A. in conjunction with
the 2003 International Conference on Software Engineer-
ing, isto bring together researchers from the requirements
engineering and architecture communities to exchange
views and results that are of mutual interest, and to dis-
cuss topics for further research. Topics of interest include,
but are not limited to:

e deriving architecture descriptions in concert with re-

quirements specification,

attribute-based architecture design,

tracing architectural decisions to requirements,

evolving architectures and requirements,

alignment between software architecture and business

architecture,

relating architecture patterns to requirements patterns,

reference architectures,

reuse of requirements and architectures,

systems engineering approaches,

formal foundations of the requirements—architecture

relationship,

e requirements and architecture specification languages,
and

e tools and environments for requirements engineers
and software architects.

Participation in the workshop is limited to 30 people
and is based upon the submitted papers, the best of which
will be presented. All submitted papers will be distribu-
ted to the participants before the workshop starts and are
included in these proceedings. Each presented paper will
be assigned an discussant, who will lead the discussion
about the paper. During the day, participants are expected
to propose issues to be discussed at the end of the day.
The workshop is expected to lead to the generation of
severa lists, of issues discussed, of disagreements identi-
fied, of conclusions reached, and of topics to be further
researched.



It is important to remember that a workshop is not a
formal conference. Rather, it is focused on discussion of
current, on-going, and possibly incomplete work. More-
over, the papers appearing in these proceedings are posi-
tion papers submitted both to suggest topics for discussion
and to indicate the authors’ interests in the subject of the
workshop. They are not to be considered formal publica-
tions, and they may be sent in the future to more formal
avenues of publication. Consequently, the organizing
committee, in consultation with the program committee,
decided to accept all papers submitted for publication in
the proceedings. The organizing committee then selected
a small number of these papers for presentation at the
workshop. This small number would alow for more
workshop-style discussion without the pressure to cover a
whole lot of papers, each with only a short period for pre-
sentation and an even shorter period for questions and
discussion.

The papers in these proceedings are divided into three
groups,

1. about moving from architectures to requirements and
realizations,

2. about moving from requirements to architectures, and

3. about requirements—architecture integration.

All papers, counterpoints, and discussion summaries
will be made available electronically at the workshop
website at
http://se. uwaterl 0o.ca/”strawd3/
soon after the workshop. The site aims to highlight out-
standing issues that should be the focus of future research
inthe area

This second workshop follows the first workshop of
the same name, that was held in Toronto, Ontario,
Canada, in conjunction with the 2001 International Con-
ference on Software Engineering (ICSE’'01). That work-
shop’swebsiteis
http: //wwv. ci n. uf pe. br/”strawdl/.

We extend our thanks to all those who have partici-
pated in the organization of this workshop, particularly to
the program committee who helped to design the call for
papers and to solicit submissions and who provided ad-
vice to the organizing committee. They are:

Jael son Castro, Brazil
Anthony Finkelstein, UK
Jaap Gordijn, Netherlands
Carlo Ghezzi, Italy
Manuel Kolp, Belgium
Jeff Kramer, UK
Axel van Lamsweerde, Belgium
Jeff Magee, UK
John Mylopoul os, Canada
Bashar Nuseibeh, UK
Dewayne Perry, USA
Finally, we hope that you will enjoy these proceedings.

Sincerely,
Daniel M. Berry, Canada,
Rick Kazman, USA, and
Roel Wieringa, the Netherlands
the Organizing Committee



Architectural Requirements Engineering: Theory vs. Practice

Robert W. Schwanke
Semens Corporate Research, Inc.
robert.schwanke@scr.siemens.com

Abstract

This paper discusses how architectural requirements
engineering fits into an overall software development
process in the concept and definition phases of a project.
It defines a reference process identifying the “ideal”
artifacts and their interrelationships, describes some key
technical activities that are useful for producing these
artifacts, and captures some practical experience in
commercial projects.

1. Introduction

Theory and practice are generally the same, in theory.
— Anonymous

This paper is an attempt to reduce the wide gap that so
often occurs between the theory and practice of
architecture requirements engineering in rea software
development projects. Too frequently, an organization
fails to capitalize on a good software architecture, for
reasons such as: the development process is not aligned to
profit fromit; the key stakeholders do not buy into it; or, it
simply solves the wrong problem.

The “theory” aspect of this paper offers a reference
process for architecture requirements engineering and
related activities. The artifacts and dependencies are
foremost in the process definition, because (in practice)
most software analysis and design activities are artifact-
driven and opportunistically scheduled, so modeling the
data of the process gives more insight than trying to model
control. These artifacts are sequenced within a simple
phase-and-gate framework that shows the phases and
decision points where the project can be cancelled, sent
for rework, or approved to enter the next phase.

The central artifact, for the purposes of this paper, is
the Globa Analysis document, first introduced by
Hofmeister, Nord and Soni [1]. The software architects at
Siemens Corporate Research have used Global Analysisin
half a dozen projects since the book was written. This
paper gives a brief review of the approach, updated based
0N our experiences.

The “practice” aspect of this paper offers hints on
doing software architecture effectively and efficiently.
Doing it effectively means building stakeholder consensus
and buy-in for both the technica design and the
development plan, by obtaining agreement on the
requirements and other constraints that they must satisfy,
and convincing people that the design and the plan do
satisfy the requirements and congtraints. Doing it
efficiently means focusing attention and other resources
on the important issues, at the right times, while tracking,
but living with, a large number of less-important
inconsistencies, unsatisfied constraints, and other
unknowns.

The “theory” and “practice” aspectsareintermingled in
the presentation, in hopes of reducing that gap.

2. An Architecture-Centered Process

The architecture group at Siemens Corporate Research
provides technical and project management consulting
services to awide variety of software development groups
within Siemens (primarily in the United States but
occasionally in Europe). The process described here is our
starting point: how we would like to do architecture if we
could. Naturaly, every rea project has constraints that
prevent this, such as the legacy process used previoudly,
the legacy artifacts providing input to the project, and the
skills and comfort zones of the key players. After
presenting this idealized process we will discuss some of
the adaptations that may be necessary to use it in a real
project. (Hereafter, the word “we” usually refers either to
the SCR architecture team or to the team and the readers
of this paper, depending on context. “I” refers to the
author.)

The process definition has four major parts. the
artifacts produced, the dependencies between artifacts, the
phases of the project, and the rules for coordinating
artifacts. It does not specify any activities separately from
artifacts, other than reviews, because most activities are
artifact driven, anyway, and best discussed in the context
of the artifacts they produce. This process definition also



does not describe how to assign artifacts to teams and how
to coordinate teams; that would take another whole paper.

For brevity, this process description only covers the
parts of the process most related to architecture
reguirements engineering. It assumes that the project has
aready completed its “idea phase’, and sufficient
resources have been allocated to carry out the concept
phase. It also assumes that the project is predominantly a
software development project, and therefore does not
address hardware design, manufacturing, or separate
“system” artifacts. The principles presented here certainly
apply to such systems, but would require a longer
treatment.

3. Artifacts, dependencies, and activities

Figure 1 shows the artifacts and dependencies of the
process. Each arrow represents a dependency: “X 2> Y”
means “information in artifact X depends on (or is
justified by) information in artifact Y.” Typicaly, each
individual item in X, such as a specification, is annotated
with references to specific items in Y, such as
reguirements.

Although many of the artifacts are familiar to the
reader, afew comments arein order.

3.1. Stakeholder list

A stakeholder is an accessible person who represents a
class of persons who will be significantly affected by
architectural decisions. The stakeholder must be
accessible to the project team to answer questions and
review artifacts. Sometimes the stakeholder is a member
of the class (e.g. a testing manager can speak for al
testers), but sometimes he is appointed to represent the
class from outside (e.g. a marketing analyst who speaks
for the end user.) Every such class should be considered
for representation, including such diverse classes as
salespersons, buyers, end users (could be multiple
classes), software testers, installers, trainers, and help desk
attendants.

The stakeholder list clarifies exactly who cares about
the project, why they care, and why that matters. As the
list develops, it may go through several refinement steps.
The first draft might identify all the candidate stakeholder
classes, with stakeholder names, where known, and
explanations of why each class is important. As the list
stabilizes, the classes without named stakehol ders become
action items, either to find stakeholders or to explain why
the class is not important enough to be represented. Later
on, the list may also prioritize stakeholders or define
different groups of stakeholders, typicaly for allocating
stakeholders to artifact reviews.

If an organization has a well-developed business
process model, showing all the actors in the product’s
target business domain, many of these actors will require
stakeholders to represent them. However, since such
business process models are still uncommon in current
practice, this software process does not assume that such
an artifact exists.

3.2. Stakeholder requests

Stakeholder requests document the concerns of
stakeholders. Some stakeholders produce artifacts that are
defined in the company software process; others just write
white papers, send e-mails, and attend reviews. For the
purpose of this process definition, we assume that any
input from a stakeholder can be documented as a
stakeholder request. Since a stakeholder could request
amost anything, we are usualy only interested in
qualified stakeholder requests, which have been reviewed
and approved as being worth addressing.

Most stakeholders are “outside” the architecture team.
The chief architect and the project manager are often also
stakeholders. However, their requests should be qualified
by someone outside the project, so that they do not appear
to abuse their right to write requests.

3.3. Features

Requirements, in general, define properties of the
product, in terms that external (outside the devel opment
project) stakeholders recognize and understand. Features
are requirements at a coarse granularity, suitable for usein
sales presentations and for alocating to product releases
(in the Build/Release Plan). A feature could be a specific
service that the product provides, but it could also be an
attribute of the whole product, such as “fault-tolerant.”

The Features artifact should specify which
stakeholders' interests it represents. Often, it is limited to
customer stakeholders, and becomes the “voice of the
customer.” Eventually, each feature should be annotated
with references to qualified stakeholder requests that
justify the feature.

This process avoids using the terms “functional” and
“non-functional” to characterize requirements and
specifications, because these terms mean different things
to different people.

3.4. Detailed requirements

Detailed requirements spell out what the feature level
requirements mean in terms that are testable, but till in
the stakeholders language. We often find that 15-30
detailed requirements are needed per feature, to be
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Figure 1. An architecture-centered process

complete and unambiguous. A single detailed requirement
can support several features.

For user interface requirements, a Ul prototype is
strongly recommended, to capture both the intent and the
details of features, particularly aesthetic features like
“easy to use” and “common look and feel”. Eventudly,
the prototype can be captured in a conventional
regquirements artifact by copying screen shots into it, with
accompanying text and models (eg. state transition
diagrams or message sequence charts) to nail down
exactly what the product should do.

Some projects do not need both detailed requirements
and product specifications. (Cf. Section 6.4)

3.5. Product specifications

Specifications define properties of the product and its
parts, in technical terms that the developers, testers,
documenters, project engineers, maintainers, and other
“downstream” stakeholders understand. We often observe
an expansion factor of 2-5 between detailed regquirements
and product specifications. A key, theoretical difference
between detailed requirements and product specifications
is that a requirement should state what the product should
do, without reference to any particular implementation,
whereas the product specification describes the externally-
visible properties of the externaly-visible interfaces
identified in the architecture description.

When requirements and specifications are written by
different teams, the product specifications may represent
“push back” by the development team, conveying the
message, “We heard what you said you wanted, but thisis
what we think we can build.”



3.6. Feasibility and global analysis

The architecture team has the responsibility to analyze
everything that may affect the success of the project,
determine what the critical issues are, propose strategies
to address those issues, and then develop an architecture
consistent with this analysis. It is called “globa” analysis
because it is looks at the project from all directions (from
the perspectives of all the stakeholders), and because the
critical issues and strategies are typically aso global,
cutting across subsystem boundaries and appearing in
more than one view of the architecture. The global
analysis artifact contains three kinds of items: factors,
issues, and strategies.

3.6.1. Factors. A factor is any fact that is likely to
constrain or otherwise influence the architecture. Some
factors can be written as requirements, but others cannot
be so rigorously stated. Normally, we expect requirements
to state properties of the product, and to be correct,
unambiguous, and testable, whereas a factor is often
unverified, ambiguous, or uncertain, and may describe
something other than the product itself. Furthermore, we
usually use a stylized language to write requirements, e.g.
“The product shall cost no more than $300 per floating
license per year.” Imposing stylized language on factors
would interfere with communication. For example, is it
clearer to write, “The product shall be developed using
programmers whose previous experience does not include
ASP technology” or “Our programmers don't know
ASP’? The first aternative is verbose, passive voice,
vague, and might actually be incorrect, if there is an
option to hire a few ASP developers. The second
aternative succinctly captures one fact that constrains the
architecture.

Factors can come from anywhere. For convenience
they are grouped into three categories. product factors
(typically derived from features); technology factors,
which involve the technologies available to implement the
product; and, organizational factors, which involve
properties of the company or other organization that is
developing the product. These categories are further
grouped into sub-categories, such as product performance,
services provided, programming tools, technical
standards, staff skills, schedule constraints, and so on.
These categories and sub-categories should not be
considered exhaustive; any stakeholder request might
draw attention to a significant factor, whether or not it fits
neatly into one of the categories.

A factor should have a standard structure. We typically
record the following properties:

Category and sub-category

Name

Unique ID

Brief statement of the factor.

Flexibility (what sort of “wiggle room” istherein
the factor today?)

Changeability (how might it change later on?)

Impact (how does it affect the architecture?)

Authority (what or who justifies this constraint?)

Owner (person responsible for text of this factor)

Status

Priority

Previoudly, we have tried to capture each factor as a row
in a table of factors, but found several practical problems:
the columns became too narrow, there was lots of white
space, cross-referencing the factor name or number was
awkward, and our usual word processing tool didn’t
handle word-level change tracking very well in tables. So,
I recommend organizing the factors into categories and
subcategories, giving each constraint its own sub-sub-
section within its sub-category, and using a standard text
structure within the subsection. Figure 2 suggests a
format.

1. Organizational Constraints
1.3 Management

1.3.5 Buy reporting subsystem
(Factor-37)

The reporting subsystem should be based on a
commercial product, e.g. Crystal Reports

Flexibility. Previous reporting system was
implemented in-house, so buying COTS is not a
rigid requirement. But competitors are already doing
this.

Changeability. Reporting features may become
more specialized, making the “buy” option less
advantageous.

Impact. Buying the market leading product has low
development cost, risk, and time to market, but
introduces licensing costs and reduces product
differentiation.

Authority: Features 135, 136, and 139, and SR
174 from Jim Smith, who has interviewed
customers concerning reporting features.

Figure 2. Textual presentation of a constraint

Although storing factors in an ordinary text document
is often practical, we are also considering using a



requirements management tool to manage architecture
factors, but have no experience yet.

Even when a factor is written in the form of an
architecture requirement, there are two important
differences between a marketing feature and an
architecture factor: range and uncertainty. The range of
the architecture factor is a way of capturing a set of
similar requirements that vary only in certain dimensions.
For example, “The architecture must support customers
with transaction rates between 1 million and 100 million
per day.” This factor does not say that any particular
customer installation has to perform well across the whole
range, nor does it even say that any particular release of
the product has to handle the whole range. For example,
there could be two variants of the product for low-volume
and for high-volume customers.

The dimensions that factors frequently span include
numerical ranges, members of a product family,
successive generations of a product or family, and ranges
of calendar time. For example, “In four years, the
architecture must support GUIs on handheld devices.”
This alows the architect to choose between designing the
infrastructure for handheld GUIs now, or leaving a
placeholder for them and designing them in two years, by
which time the technology will have changed anyway.
Note that variation over calendar timeis different from the
“stability” of a feature or a factor. In the example above,
the factor is very stable, but is chronologically positioned
four yearsin the future.

Allowing uncertainty in an architecture factor allows
the architect to document the problem before the
uncertainty is resolved. For example, now that Internet
services are beginning to be offered aboard airplanes, the
marketing department might envision the day when
radiologists, traveling on airplanes, want to download
medical imagesto their laptops. A factor might be written,
“the product must be evolvable to support medical image
viewing over low-bandwidth, high-latency Internet
connections.” Such a statement would normally be
disqualified as a requirement, because “evolvable’ is a
vague word. But, such statements are valuable to the
architect, despite their vagueness. Note that “uncertainty”
is also somewhat different from “stability”, because the
statement of the factor explicitly captures the sense in
which it is uncertain, whereas calling a requirement
“unstable” has more to do with its status.

It may be useful to describe range and uncertainty as
separate attributes of afactor, but we haven't tried it yet.

Unlike requirements catalogs, the collection of
architecture factors does not have to be complete. Global
analysis prioritizes them, finds conflicts and tradeoffs
between them, and finally reduces them to a set of key
issues that shape the architecture. The less important
factors will likely be ignored, for most purposes, so
missing a few of them is not important.

3.6.2. Issues. An architectural issue is a potentia conflict
or tradeoff between two or more factors — usually many
more! For example, the issue “Aggressive Schedule”’
might be stated as, “The project probably can't be
completed in 14 months if we have to train our
programmers in Java, add new tools to our development
environment, and implement all 75 major features, 7 of
which require exploratory prototyping.” Normally, there
are many potentially significant issues, but certain ones
rapidly emerge as the most critical. Fortunately, because
of the inherent uncertainty of many factors, it is not
necessary to satisfy all of them. The architects must
identify and prioritize the issues, so that the architecture
and the project development plan can be designed to
address the most critical ones. The others are managed as
project risks, to be addressed later.

3.6.3. Strategies. A drategy is a decision that addresses
one or more significant issues. The strategy may be
technical, managerial, or a combination. For example, if
the issue is “ASP programming is best done in Java, but
our programmers only know C++", the architect and
project manager could choose to “retrain our programmers
in JSP’, “buy an ASP development environment for
C++", or “use some C++ programmers to write C++
applets, and retrain others to write JSP.”

3.6.4. Putting it all together. The original description of
Global Analysig[1] suggested using “Issue Cards’, where
each card defines and discusses one issue, then defines
and discusses strategies for addressing it. This approach
doesn’t work well when a strategy addresses several issues
— which many of them do. Instead, | recommend
documenting issues and strategies by embedding themin a
coherent presentation of the rationale for the architecture.
The first part of the Global Analysis artifact should be a
catalog of factors, as described above. The second part
should present the significant issues and strategies for
resolving them. Each issue should be documented in a
format that is partly structured and partly informal. The
structured part includes backward references to the most
relevant factors and references to the most important
strategies for dealing with the issue. Each strategy could
be defined at the first place it is referenced in the text,
perhaps in a sidebar or an inset box. The informal part of
the issue description discusses how the factors interact to
shape the issue, and how the proposed strategies would
help to resolve the issue. The third part of Global Analysis
should be a freeflowing, coherent rationale for the
proposed architectural approach. This presentation
technique emphasizes coherent argumentation more than
cataloging and cross-referencing the issues and strategies,
as we have sometimes done in the past.



3.7. Architectur e concept

This artifact should not be confused with the
conceptual view of the architecture. The architecture
concept artifact is written for external stakeholders, is
informal, and presents the essential concepts of the
architecture in notations and words that are comfortable
for the stakeholders. It is typically based on a paper
“proof-of-concept”, which describes a slice of the system
using the proposed architecture approach. It then uses
portions of this system dlice to illustrate the concepts it
presents, depending on what is needed to educate and
convince the stakeholders

3.8. Architecture description

This artifact is the complete description of the
architecture, typically following the IEEE standard 1471-
2000. Note that the architecture description depends on
the detailed requirements, but the architecture concept
does not. This is so because (a) the architecture concept
should not be sensitive to small changes in requirements,
and (b) the architecture concept usually needs to be
relatively complete, reviewed, and approved before
authorizing the expense of developing detailed
reguirements.

3.9. Project risks

This process does not specify how project risks are
described and managed, but many risks are identified in
the course of global analysis and architecture design. Any
key issues that are not fully resolved by the strategies, as
well as any major assumptions made while drafting the
architecture description, become risks that must be
managed.

3.10. Build Plan and Release Plan

The build plan defines a sequence of interna
development milestones, or builds, with each module,
product specification, and detailed requirement to be
implemented in a specified build. We typically
recommend that the individual builds be scheduled about
6 weeks apart, to provide rapid feedback on the
effectiveness of the design and maintain a common
understanding of the system across the development team.
Some of the builds are designated as releases that the
customer will see (although perhaps only as a demo).

3.11. Softwar e development plan

The software development plan depends on the global
analysis artifact for strategies and on the architecture
description as the basis for a bottom-up cost estimate. At
SCR we use an estimation methodology that annotates the
module view of the architecture with development cost
estimates, collecting the assumptions needed to make
those estimates. The modules become tasks in the plan;
the assumptions become risks to be managed. For more on
architecture-centric  software project management, see
Paulish’s book of that title [2].

4. Project phases

Figure 1 divides the artifacts into two phases: the
concept phase and the definition phase. This division
signifies the phase in which each artifact receives its first
critical review and sign-off. Of course, each artifact is
revised in subsequent phases, as needed.

5. Coordinating artifacts and activities

Other than at the end of each phase, the process does
not specify an order in which the artifacts are finished and
reviewed, because this ordering varies widely between
projects, depending on many “soft” factors. Instead, we
expect that the artifacts will be written by different people,
and will therefore evolve concurrently. In order to manage
this efficiently, it is important to identify where
information provided in one artifact is used in another,
and to cross-review artifacts between teams. It is equally
important to alow, but document and manage,
incompleteness and inconsi stency between artifacts.

5.1. Incompleteness and inconsistency

Recording incomplete links is especially valuable in
the global analysis artifact. It istrue that, eventually, every
issue should be based on factors, and that those factors
should derive their authority from other artifacts.
However, global analysis frequently identifies potentially
significant factors long before the relevant stakeholders
have raised concerns about them. Rather than waiting to
document the factor until the stakeholder writes a request,
the architect should put a note in the authority field of the
factor, describing where he expects the authority will
come from. The note could even include a shortened draft
of the item (e.g. a feature) that he would like to see added
to some other artifact. (If necessary, the architect might
have to write his own stakeholder request.) Similar
techniques should be used wherever links between
artifacts may appear. (Incomplete links are very much like



the “fat references’ used in the Pattern Languages of
Programming community.)

5.2. Cross-reviewing artifacts between teams

One of the most important heuristics for effective
artifact review is, “Choose reviewers who depend on the
information they are reviewing.” In this process, the
dependency links between artifacts are an excellent guide
for identifying reviewers. Consider, for example, the
detailed requirements. The people who wrote the features
(if different) will want to be sure that the detailed
requirements accurately define the features. The people
who will be writing product specifications will want to
make sure they receive good-quality detailed
requirements, to make their job easier. The people who
have to write tests against the detailed requirements will
want to be sure the requirements are testable.

Using the dependency links to identify reviewers also
reduces the chances of “disconnect” in a project. Many of
us have experienced projects where artifacts were “thrown
over the wall” from one group to another, leaving both
groups dissatisfied. Having such a wall between
requirements engineering and development, for example,
tempts developers to ignore the requirements they don’t
understand or don't like. By using cross-reviewing to
strengthen communication and buy-in between teams,
such problems can be reduced.

5.3. Reviewing links between artifacts

Whenever an artifact is formally reviewed, the links
between it and other artifacts should aso be reviewed.
This includes both the artifacts on which it depends, and
the artifacts that depend on it. This is very important for
building consensus! When a requirements engineer signs
off on the global analysis artifact, his signature should
mean that, except for noted defects, (@) all relevant,
previously documented features have been referenced in
the right places in the analysis, (b) any relevant, not-yet-
documented features have been discussed and given
incomplete references in the analysis, and (c) he agrees
with the analysis of these features. On the other side,
when the global analyst signs off on the Features artifact,
his signature means that every feature needed to justify
significant factors, whether or not they have been
published yet, appears either in the artifact itself or the
review notes.

The review notes then become action items for
resolving incomplete and inconsistent links. However, the
resolution does not necessarily need to happen
immediately. Some of the items may be very low priority,
some may require further investigation, and some may not
be resolvable until alater stage of the work.

5.4. Validation and Consistency

Each significant item in each artifact, such as a feature,
an issue, or a specification, is subject to validation in the
course of review. Part of the definition of consistency
between artifacts isthat alink from an itemin artifact X to
an itemin artifact Y isonly fully consistent when the item
in artifact Y has been validated. Sometimes the validation
is simply a yes/no decision on whether the item should be
included in the artifact; in other cases, included items are
further assigned to “buckets’ that represent different
development/release cycles. In the latter case, of course,
the bucket assignments of X and Y must be compatible.

5.5. Phasereviews

At the end of each phase there is areview, often called
a gate, whereby managers outside the project determine
whether to continue funding the project. There are
actually two separate questions to answer: “Is the project
ready to move into the next phase?’ and “Is the company
ready to pay for it?" Some organizations actually have two
separate reviews, because some of the decision-makers are
different for these two questions.

Each phase review specifies the artifacts that will be
considered at the review. In this process, each artifact is
considered at each phase review after its introduction, if it
is relevant to the decision. Naturally, these artifacts must
have been reviewed individually prior to the phase review.
However, they don’'t have to be absolutely complete and
consistent, as long as there is an action plan for resolving
the inconsistencies.

This approach to handling incompleteness and
inconsistency is especially valuable when the devel opment
organization is undergoing change to adapt to new or
improved development processes. Often artifacts cannot
be completed and reviewed in the same order as the chain
of dependencies. Because the show must go on, explicitly
documenting incompleteness and inconsistency for later
resolution is often the best approach.

6. Merging the Processes

Because there is little standardization of software
development processes across organizations, the process
defined above will normally have to be adapted for usein
the context of an organization's existing process. This
section describes some of the adaptations that are likely to
be necessary, and some of the issues that may need
resolving.



6.1. Enriching the concept phase

Many existing processes focus mainly on defining
product features in the concept phase. If possible, one
should insist on doing some feasibility analysis in the
concept phase, before committing the resources necessary
to do a complete high-level design. This feasihility
analysis would then include global analysis and the
architecture concept, as well as a Ul prototype if the
product has a user interface.

6.2. Regrouping information in artifacts

Sometimes it is necessary to combine logically separate
artifacts into a single artifact, or, for reasons of scale, to
divide a single logical artifact into a main artifact and
several subsidiary artifacts. However, it can aso be
necessary to redefine an existing artifact so that it carries
more architecture information than it hasin the past.

For example, a process may define a*“ System Concept”
artifact, typically due at the end of the concept phase,
which has historically been a very informal document.
This might be a good place to put the Architecture
Concept.

6.3. Caring for stakeholders

Many existing processes do not address al the
important  stakeholders. For example, a Market
Requirements artifact might be limited to addressing the
logical functionality of the product, ignoring non-
functional features. This typically arises from a focus on
end-users, ignoring the needs of other stakeholders like
system administrators, buyers, and commissioning
engineers. The remedy might be to add another artifact to
carry non-functional features, or to address quality
attributes in the Global Analysis artifact.

More generally, the process should be adapted so that
every important stakeholder has a “voice” in some artifact
—inGlobal Analysis, if not elsewhere.

6.4. Detailed requirementsvs. specifications

Although in theory there is a clear logical distinction
between a detailed requirement and a product
specification, in practice the two artifacts are frequently
combined. We have found several reasonsfor this:

e Cost pressure: maintaining two descriptions of strongly
related information is more expensive than maintaining
one.

o Skill shortage: good requirements engineers are under-
appreciated, and therefore in short supply!

e Process: without an architecture description, the only
input to the product specification is the detailed
requirements, anyway, so why not combine them?

e Disconnect: because of inadequate communication
between those who write features and those who write
specifications, it is not obvious that the detailed
reguirements are missing.

o Difficulty: it isactualy quite difficult, in many
instances, to write a good set of detailed requirements
without referring to implementations, especialy early
in the definition phase when so many questions are
unsettled.

One way often suggested to overcome these difficulties
is to introduce a prototype, often as a controlled process
artifact, whose purpose is to facilitate consensus-building
between requirements analysts and developers. The most
common types, of course, are the Ul prototype and the
proof-of-concept prototype. The detailed requirements
and product specifications do not need to be written down
until the prototype stabilizes and is reviewed. Then, both
artifacts can be derived fromiit, if both are needed.

7. FutureWork

We are currently investigating how to extend our
process to effectively use rigorous models for domain
analysis, requirements analysis, design, and testing.

Acknowledgements

The process diagram in Figure 1 was produced by
rapid iteration based on feedback from my colleagues,
each of whom contributed different expertise: project
management (Dan Paulish), problem statements (David
Laurance), architectural concept and consensus building
(Dilip Soni), globa analysis (Bill Sherman and Rod
Nord), requirements engineering (Brian Berenbach), and
user interface design (Nuray Aykin).

References

[1] Hofmeister, C., R. Nord, and D. Soni, Applied Software
Architecture, Boston: Addison-Wesley, 2000.

[2] Paulish, D. Architecture Centric Software Project
Management: A Practical Guide, Boston: Addison-Wesley,
2002.



From Architecture to Requirements: A Success Story

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA
pamela@research.att.com

Abstract

User requirements for telecommunication systems are
difficult to understand because they are obscured by a long
history of ad hoc feature development and technological
limitations. The presence of a viable modular architecture
for telecommunication features gives us a fresh start. Work-
ing within this framework, we can discover desirable prop-
erties that ought to be requirements for all telecommunica-
tion systems.

1 Introduction

This paper tells a story. By the end of the story there
is a close relationship between requirements and architec-
ture in the telecommunication domain. The recognition of
true requirements developed from the architecture, how-
ever, rather than shaping the architecture as might be ex-
pected.

Although this appears to be a success story, it is far from
over, and there is much work yet to be done.

2 No telecommunication requirements

The life of the Public Switched Telephone Network
(PSTN) began in 1875. Since the 1960s telephone switches
have been controlled by software, which has enabled and
encouraged addition of a steady stream of features of all
kinds.

In this paper, “requirements” refers to user requirements,
descriptions of the behavior of the system as a user observes
it. Requirements concerning performance, reliability, re-
sources, administration, etc., are not discussed.

Beyond the most basic requirement of allowing people to
talk to each other at a distance, the PSTN seems to have no
requirements, or at least no requirements in the sense of de-
sirable properties that are globally satisfied. Every desirable
property one can think of has many exceptions. To give a

simple but rich example, consider this property: If the sub-
scriber owning address x subscribes to a feature that blocks
all calls to or from address y, then the owner of x is never
talking to the owner of y through the telephone network.

This property might not be satisfied because z and y are
associated with devices, and at least one of their owners is
using a different device. This is typical of the ambiguity
we see everywhere in the PSTN—addresses identify many
things, but never what we really want to identify, which is
people.

Alternatively, the property might not be satisfied because
of an interaction among features. For example, the owner of
y might cooperate with the owner of 2 so that calls to z are
forwarded to . If the forwarding feature sets the source of
the call to z at the same time that it sets the target of the call
to  (which is the most common behavior), and if z is not
blocking calls from z, then the owner of y can call z and
be connected to the owner of z. In this case the behavior
of the call forwarding feature subverts the intention of the
blocking feature.

The property could also be violated by interaction with a
large-scale conference feature. Such conferences have their
own addresses; participants can join the conference by call-
ing the conference address, or can choose ahead of time to
be called by the conference. Either way, the blocking fea-
ture of z cannot prevent its owner from joining a conference
in which the owner of y is also a participant.

The lack of satisfied requirements in the PSTN is not
surprising, given its long history, incremental development,
technological limitations, and geographical and administra-
tive distribution. There is also, however, a near-complete
lack of understood and agreed upon requirements, whether
satisfied or not. Simply put, we do not know how telecom-
munication systems should behave.

Beyond the obstacles to requirements already men-
tioned, the goals of subscribers often conflict, and there is
no consensus about how to balance them. In addition, many
people appear to believe that a telecommunication system
should behave toward each subscriber exactly as that sub-
scriber might wish during every moment of his life, without



acknowledging the impossible complexity of reaching such
a goal.

There is now an industry-wide trend away from circuit-
switched networks, and toward packet-switched IP net-
works. This change is removing many technological limita-
tions, but it is not getting us any closer to understanding re-
quirements for telecommunications. On the contrary, the IP
community is much less aware of the issues than the PSTN
community is. There is an unfortunate “Internet boom” ar-
rogance that leads newer entrants in the telecommunications
arena to believe that they have nothing to learn from the
past.

3 The feature-interaction in

telecommunications

problem

As features are added to telecommunication software,
they interact with old features, often in subtle, unpre-
dictable, or disastrous ways. This feature-interaction prob-
lem makes telecommunication software extremely expen-
sive to develop. PSTN software is not unreliable, but only
because reliability is so important that switch manufacturers
take heroic measures to ensure that failures are contained.

The feature-interaction problem has been recognized
since the late 1970s, and there has been quite a bit of re-
search attempting to solve it [2, 3,4, 5, 9].

Ultimately, to manage feature interactions properly we
need to understand what they are, prevent the bad ones, and
enable the good ones. Unfortunately, distinguishing the bad
ones from the good ones depends on having requirements
for desirable global behavior, which is just what we do not
have.

In the shorter term, there is plenty of value to being able
to add and change telecommunication features easily, in a
way that is modular and guaranteed not to break the system.
This is a huge improvement over adding features by patch-
ing monolithic code, with all its attendant difficulties and
dangers, even if feature interactions can still cause behavior
that is undesirable to users. This short-term goal has been
reached with an architectural approach.

4 An architecture for telecommunication ser-
vices

Distributed Feature Composition (DFC) is a component
architecture for telecommunication services [7, 8]. It was
designed for feature modularity, feature composition, struc-
tured feature interaction, and generality within the telecom-
munication domain.

In DFC a request for telecommunication service is satis-
fied by a usage, which is a dynamically assembled graph of
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boxes (components) and internal calls. A box is a concur-
rent process providing either interface functions (an inter-
face box) or feature functions (a feature box). An internal
call is a featureless, point-to-point connection with a two-
way signaling channel and any number of media channels.

The fundamental concept of DFC is pipe-and-filter mod-
ularity [10]. Each feature box behaves transparently when
its functions are not needed. Each feature box has the au-
tonomy to carry out its functions when they are called for; it
can place, receive, or tear down internal calls, it can gener-
ate, absorb, or propagate signals traveling on the signaling
channels of the internal calls, and it can process or trans-
mit media streams traveling on the media channels of the
internal calls. A feature box interacts with other features
only through its internal calls, yet does not know what is
at the far ends of its internal calls. Thus each feature box
is largely context-independent; feature boxes can easily be
added, deleted, and changed.

In DFC there are exactly two mechanisms for feature in-
teraction (or component coordination, to use a more archi-
tectural term). One is the signaling through internal calls,
which is governed by the DFC protocol. The other is the
DFC routing algorithm, which routes each internal call to a
box, thus determining the configuration of boxes in each us-
age as it grows, shrinks, and reshapes itself. Feature boxes
can influence the routing in specific ways, which is how
routing becomes a mechanism for feature interaction.

DFC has been notably successful at reaching its goals. It
is not easy to say how one could reproduce the success in
another application domain, but here are a few observations
that seem relevant:

e Michael Jackson and I began work on DFC at the be-
ginning of 1997. At that time one or both of us had
been studying the telecommunication domain, on and off,
since 1982. Trying to tame the complexity of feature in-
teractions, we had run up seemingly every possible blind
alley.

¢ We were completely content to be domain-specific; we
had no interest in any other domain, believing that
telecommunications was more than enough challenge for
us. More general applications of the ideas in DFC are just
now beginning to emerge.

o Inimportant ways, DFC is low-level: it is close to the true
building blocks of telecommunication implementations.
This accounts for its generality.

o At the same time, DFC is abstract enough to be formally
defined in a few pages. This makes the application of
formal methods to DFC tractable.

Since 1997 we have made a number of changes to the
original DFC architecture [7]; these are documented in the
manual [8]. Some changes are refinements, while others ex-
tend DFC to cover aspects of telecommunications not orig-
inally considered, for example multimedia. Nevertheless,



the central ideas of the original architecture are still present
and essentially unchanged.

S Experience with the architecture

Since 1999 we have been implementing and exploiting
DFC within AT&T Research. Our BoxOS system [1] is an
IP implementation of DFC with excellent interoperation ca-
pabilities; for example, it can be packaged as a SIP applica-
tion server.

We have used this environment to create interesting
voice-over-IP services. In 2002 alone we implemented
features for personal mobility, mid-call movement from
one device to another, switching, small-scale conferencing,
transfering, augmenting a telephone with a graphical user
interface on a nearby personal computer, call logging, voice
mail, speed dialing, click-to-dial, voice signaling, reaching
a representative of a group, and large prescheduled confer-
ences.

This rapid feature development creates relentless pres-
sure to understand feature interactions better. When a fea-
ture developer is faced with a seemingly arbitrary choice
of feature behavior, he wants to know the consequences of
each choice. Which choice will cause the feature to interact
best with all other features, present and future?

Although the pressure to understand feature interactions
returned us to the seemingly hopeless problem of discover-
ing the requirements for telecommunications, we returned
to it with some additional weapons in the arsenal. The im-
provement was due to the presence of a viable architecture.
Because of the architecture, we could implement features
quickly and plan ambitiously; this gave us a broader base of
knowledge about features, how they can interact, and what
people are trying to use them for. Also because of the ar-
chitecture, we had a tractable formal framework in which to
reason, without loss of generality, about features and their
interactions.

6 Example: call forwarding

As an example of the subtleties of telecommunication
behavior, let’s return to the example of call forwarding as
introduced in Section 2. When the owner of y calls z and
the features of » forward the call to by changing its target
address to z, should the source address of the call also be
changed to z?

Most forwarding features make the source change, both
in telephony and in electronic mail [6]. If some error occurs
in attempting to reach the new target address z, then the
error should be reported to the features or owner of 2, which
know about z. If the error is reported to the features or
owner of y, the result may be confusion or a violation of
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privacy, since y may know nothing about z. There is also
a vague concern that if the source address is not changed
and no trace is left of the role of 2, there might be security
problems.

On the other hand, changing the source address during
forwarding has negative consequences. The source address
is no longer a reliable indication of who the callee will be
talking to when he answers the call, which is why the block-
ing feature is undermined. Also, x may have features that
automatically return a received call, by placing a new call
to its source address, under various circumstances. If one
of these features is activated while z is still forwarding its
incoming calls to z, then a forwarding loop will be created.

It might seem attractive to solve this problem by main-
taining a complete address history within the signals of the
call protocol, rather than just two addresses. Unfortunately,
this also has many negative consequences.

Because address histories can grow quite long, they
place a heavy burden on the infrastructure. In fact, the
voice-over-IP protocol SIP, which maintains an address his-
tory for reasons other than the ones discussed here, is caus-
ing implementation problems due to very long headers. Ad-
dress histories do not interoperate well with the existing
telecommunication infrastructure, all of which is based on
calls with two addresses.

Equally important, address histories can violate privacy.
Consider a physician calling patients from home. He has
a feature that allows him to change the source address of
his calls to his office address. A complete address history
would reveal to patients the address of his home telephone,
which is the original source of each call. Yet the physician
has a legitimate right to keep this information private.

7 Ideal address translation

It should be clear by now that if we accept the telecom-
munication domain as it exists today, the call-forwarding
problem has no solution. Any choice we make about its
behavior violates some desirable property that should be a
global requirement.

One way out of this dilemma is to concentrate on an ideal
version of telecommunications in which there are no legacy
constraints, and both the infrastructure and the features be-
have in the right way. This gives us the freedom necessary
to figure out what the right way might be.

Address translation is the function performed by a fea-
ture when it changes the source or target address of a call.
Call forwarding performs address translation, as do many
(perhaps even most) other features. For the feature interac-
tions caused by address translation, a search for the ideal has
succeeded, yielding two important and highly intertwined
results [11]:



e Requirements that a telecommunication system should
satisfy.

e Constraints on the infrastructure and on feature behav-
ior that guarantee satisfaction of the requirements without
sacrificing functionality.

The constraints on the infrastructure are architectural, and

are inspired by DFC.

It is outside the scope of this paper to present the princi-
ples of ideal address translation. As a substitute, here is a
brief, informal explanation of how the conflicts of the pre-
vious section can be resolved.

In the recommended infrastructure, a call is implemented
by a chain of requests, feature modules, and interface mod-
ules as shown in Figure 1. Each request has source and tar-
get addresses. The chain has a source region in which there
are (optional) feature modules associated with source ad-
dresses. For example, s/ might be the address of the physi-
cian’s home telephone, and 52 might be the physician’s of-
fice address. The source feature module of s/ changes the
source address of the call to s2 at the physician’s request.

The source region is followed by a target region in which
there are (optional) feature modules associated with target
addresses. For example, 2 might be z, and the target fea-
ture module of 2 might do call forwarding by changing the
target address from #2 to 1.

There is an authenticity requirement that the source ad-
dress of a request chain should reveal to the callee the entity
at the other end of the call. Call forwarding is not chang-
ing the source of the call in any way, and therefore must
not change the source address. It if does, the authenticity
requirement will certainly be violated.

This constraint on the behavior of call forwarding and
other target-region features is necessary but not sufficient
for authenticity. For example, an unauthorized person might
use the physician’s home telephone, or might even program
the features of his own telephone to set the source address
of the call to 52!

The authenticity of s2 as a source address can only be
secured if the source feature module of s2 contains an au-
thentication feature that demands a password or other proof
of identity. The infrastructure guarantees that any request
chain containing s2 as a source address must pass through
this module and therefore be subject to authentication.

There is a reversibility requirement that a target-region
feature or targeted user should be able to call the source
address of a request chain and thereby target the entity at the
source of the request chain. Clearly this is another reason
why call forwarding must not change the source address.

In this example, the source address s2 that reaches the
target region identifies the physician in his role as a physi-
cian. It is more abstract than s/, which is only the address
of a particular device. This is why the reversibility require-
ment is stated in terms of “the entity at the source of the
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request chain” rather than “the device at the source of the
request chain.”

In the formal definition of the reversibility requirement,
an abstract address such as s2 is considered to identify a
truer source of the request chain than a concrete address
such as s/. This has important consequences. If a patient
misses the physician’s call and calls back later, the physi-
cian may no longer be at home, and the s/ address would
not reach him. However, his role address s2 can subscribe
to a location feature that will locate him wherever he is now.

There is a privacy requirement that use of a more abstract
address such as s2 effectively conceals a more concrete ad-
dress such as s/. This requirement is also guaranteed by the
constraints in [11].

Note that privacy and authenticity balance the conflicting
goals of knowing and concealing. The effect of privacy is a
person can conceal an address that he owns behind another
address that he owns. The effect of authenticity is that an
address can only be used by a person who owns it.

Errors are signaled back through the request chain. So
if target address ¢/ turns out to be unknown, then the error
signal will first reach the target feature module of 2, which
should handle the error if possible, and conceal ¢/ if neces-
sary.

8 Future work

There are many other areas of feature behavior and fea-
ture interaction besides address translation. It is important
to attack them with the same weapons, in the hopes that
they, also, will yield their secrets.

The infrastructure that supports ideal address translation
is generally similar to all telecommunication protocols in
use today. At the same time, it is different in crucial ways
from all of them except DFC as implemented in BoxOS.
So a gap has been opened between theory and practice that
must be bridged in some way. This will require the utmost
creativity, pragmatism, and patience.

Even though current telecommunication systems fall
short of satisfying them, the requirements discovered so far
are simple, compelling, and convincing. They would have
been discovered long ago, except for the complications of
a long history that has made them as difficult to see as to
satisfy.
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Abstract ing structured or object-oriented concepts, was appropri-
ate for a product development in relatively stable and well-
The large gap in the levels at which requirements are understood problem domains.
specified results in inadequate means for ensuring that Domain-level requirements analysis and specification
business goals are properly supported. Architecturetleve appeared as a solution to a need for building software
requirements specifications help us reduce this problemsystems for large, difficult to understand, and changing
by providing necessary constructs and traceability mech- problem domains. Goal-driven requirements engineering
anisms. Enhancing traditional requirements engineering emerged as a leading approach for dealing with domain-
approaches by incorporating architecture-level requiesth level requirements for large systems [10, 23, 29]. The main
specifications will facilitate business goals satisfaatand emphasis of this approach was on making sure that soft-
simplify the design of appropriate software architectures  ware actually fulfills business goals. This goal fulfillment
problem was one of the main weaknesses of the traditional
product-level requirements engineering approach.
1. Introduction Now, with the emergence of new economic trends, the
Internet as a business medium, software as a commodity,

Since its early days, software development has been!C, even small systems have become much more diffi-
implementation driven. Programming, still considered by Cult to build and maintain. New software paradigms and
many as the most important and difficult development ac- [€chnologies such as web services, agility, and product
tivity, has attracted most of the research attention oveeti  IN€S, émerged to solve this new wave of problems. In this
While sufficient in some cases, programming has become€W situation, both business systems and software systems
a relatively routine activity compared to the other develop change faster than ever before. Naturally, both domain and
ment activities in the development of today’s large, com- product_-level_ requirements specifications become o!:e;olgt
plex, and constantly changing software systems. The main’€"Y quickly, in some cases even before the product is built
difficulty in today’s development is not anymol®w to [17,19].
build the system, butvhatto build and how to make it as
adaptable to future change as possible [6]. 2. Agility, Web Services, and Product Lines

Because of its early importance, implementation tech-
nologies and paradigms have influenced all development In this section | would like to emphasize the common-
stages, even the early ones such as requirements analysalities of agile development paradigms, web services, and
and design. For example, structured and object-orientedproduct lines as related to requirements specificationnEve
programming paradigms resulted in structured [12, 31, 30] though all three concepts seem to have contradictory goals,
and object-oriented analysis and design techniques [21, 9they do share and contribute many new common develop-
4]. This tradition continues with emergence of new method- ment principles.
ologies such as aspect-oriented analysis [1], which has its First, they deemphasize product-level requirements
origin in aspect-oriented programming paradigm. specifications. The agile development philosophy states

The success of such approaches was mostly due to the¢hat a detailed up-front specification of the product level
fact that the traditional way of development focused on requirements is unnecessary [18, 3]. Rather, agile follow-
one product at a time [19]. A clear product-level require- ers believe that product-level requirements are best disco
ments specification combined with low-level design, us- ered on the flyj.e., by developers who directly communi-
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cate with clients and implement these features without doc- 2. Domain-level requirements specification:

umenting them or preserving their rationale. Web services
elevate responsibility for product-level requirementnir

the application developer to the service provider. Applica
tion developers can choose and integrate many different ser
vices which vary in particular feature details. A produceli
stresses the development of several product at a time. The
main focus of the product line development is on the es-
tablishment of a robust architecture that will support many
kinds of different product-level variations. In all thregses,

we have a shift from product-level thinking to a whole new
way of thinking, which allows us to think in terms of future
changes and how we can accommodate them as easily as
possible.

Second, all three approaches take into account the con-
stant change in the problem domain. This is similar to the
changes at the product-level.

So in summary, now we have the situation that software
systems have to adapt to constantly changing problem do-
mains, and also to be easily adaptable to new problem do-
mains. This leads us to the following main constraints that
requirement specifications should satisfy:

e Requirements artifacts should be reusable and easily
modified,i.e., they should bassets

The focus should be on the clear separation between
commonalities and variabilities, from the requirements
perspective.

Domain and product-level requirements should be sec-
ondary as they describe mostly variations in function-
ality, and low-level requirements should be left to de-
velopers.

We should emphasize stable, change resistent require-
ments with a high architectural impact.

3. Requirement Abstraction Levels

Requirements are specified either directly or indirectly
for many different purposes, and as part of many different
engineering activities. For our purposes, we can sort them
according to different levels at which they usually appear:

1. Business-level requirements specification: Business-
level requirements are most often indirectly speci-
fied as the part of business reengineering activities
[17,11, 2, 27]. The most common concepts that appear
at this specification level are business goals, processes,
resources, and rules. It can be argued that this is proba-

3. Product-level requirements specification:

4,

As men-
tioned previously, domain-level requirements are one
of the traditional approaches to the requirements spec-
ification [10]. Newer, more systematic versions of
domain-level requirements engineering have received
a lot of attention recently [5, 7, 24]. Most of its ap-
plications are in the area of business systems, which
are getting increasingly complex and difficult to ade-
quately support by software systems [8, 16, 15]. The
most common concepts that appear at this specification
level are user goals, user tasks, domain input, domain
output,etc More recent trend is the incorporation of
agent-based analysis as the part of domain modelling
[26, 20, 25, 14].

Product-

level requirement specifications are the most common
type of requirement specifications. There exists an ex-
tensive body of knowledge about them, and most of

the previous research focused on perfecting different
techniques used to elicitate, specify, and validate this
type of requirements. The most common artifacts and

concepts that occur as the part of product-level spec-
ifications are features, use-cases, functional lists, data
input, data outpuietc

Design-level requirements specification: This is an-
other type of well understood and widely used type of
specification. A lot of efforts were invested into its
standardization through Unified Modelling Language
(UML) [21, 13]. UML artifacts present the most com-
mon types of concepts and techniques used to capture
requirements at this level. This level acts as a tran-
sition phase between product-level specification and
code-level requirement specifications.

. Code-level requirements specification: Lastly, usually
considered as a part of programming activity, low-level
algorithm and data structure specification makes what
we refer to as the code-level requirements specifica-
tion. This is the type of the specification which most
programmers are familiar with, as it is inseparable part
of coding. It focuses mostly on the implementation re-
lated issues and constraints. This is also probably the
best understood requirements specification level.

From this discussion, we can observe that most of the

bly the most important type of requirements specifica- current forms of requirement specifications focus on the
tions, as the goal of software systems is to ultimately specification of functionality at the different levels. $hi
satisfy and contribute to the fulfilment of these busi- leads us to the definition of the problem | am aiming to

NEess processes, goadse
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4. Problem Statement techniques and artifacts to these levels. In particulailll w
define a set of techniques and artifacts that can be used to

While new development technologies and paradigms capture architecture-level requirements. These include a
stress structure and quality over changeable functignalit architecture-level requirements specification methodckwh
traditional requirements engineering techniques stitufo is based on the the focus shift from product and domain to
on primarily capturing the low-level functionality of the their architectural properties, integration, and quesiti
system. Structure and quality requirements are often deem-
phasized and hidden within specifications. The requirementg_ Architecture-Level Use Cases
engineering artifacts must be adapted to support this new
development reality and improve the return on investment
in all possible ways. Therefore, the problem that we are
dealing with is: How should we organize and specify re-
guirements in such way to emphasize structure, quality, and
stable requirements, and at the same time provide a way for
capturing changeable and variable requirements?

In addition, as change is occurring in both, business sys-
tem and supporting software system, we have to perform
the analysis and specify structural and quality requiregsen
of both systems. A software system has to be adaptable t
support also several different business systems, andio all
the evolution of all of them.

In my opinion, the most promising way to deal with these

One of the already identified uses of architecture-level
requirement specifications is the architecture recovery of
software systems [28]. | successfully performed extractio
and specification of architecture-level requirements & th
form of architecture-level use cases

Use cases — that is, narrative descriptions of domain
processes — appear in different forms in all phases of a de-
velopment cycle. They are typically used as the artifacts
around which development cycles are organized. When
Qsed this way, all other activities and artifacts depend on
them.

A use case describes the interactions between actors and
system processes. A use case encapsulates responsibilitie

es, : :
; X at are performed during a computation by actors and by
of software development cycle is the effective use of soft- system processes.

;/\r/]are f?rctr_utecture arln(;lts\:es and ;_&ich?lqu?s.hN_evertheles Architecture-level use cases are use cases that describe
.e"e eﬁ |venesio fo d arle arc ||te;clure ict ”'thEFfﬁ'??h logical processesvithin the system. In my study, these
clally when one has to develop muttipie architectures attne, oo, ose5 were not created by developers, but were gener-

fsrzier;rr:eer’\tlss Ire]:cr;i)(/: ;?Aﬂ'gnwgﬁﬁe;ﬁz”tg;ﬁ?{)ee?sﬁgs?zneated using high-level responsibilities that were written a
>4 : P . . P the part of the code documentation. The purpose of this
different issues such as low-level functionality, one prctd

. . . eneration was to document dynamic processes within the
focus,etc The goal is to try to solve this problem by intro- g y b

duct t architecture-level . i ificati system. This was a technique used as the part of the logical
uction otarchitecture-ievet requirements speciiication architecture view in order to present dynamic interactions

] in a comprehensible format.
5. Proposed Solution Requirements were discovered and abstracted from the
method-level to the subsystem level. While module-level

The hypothesis is that architecture-level requirementsresponsibilities provide a compact way to encapsulate and
specification provides more support for the development of represent architecturally significant features, metheel
software systems using web services, agility principled, a  responsibilities are used to understand and present mod-
product lines, than traditional domain and product level- ule and subsystem interactions using architecture-lesel u
requirements specifications. This support reflects throughcases. The advantage of architecture-level use cases over
an improved architecture for the system, clear identifica- other presentations like sequence diagrams is that they
tion of common structural elements and functionality, and present dynamic aspects in a comprehensible way while
identification of variation points and constraints on the fu hiding low-level details.
ture evolution of the system. Also, architecture-levelspe Architecture-level use cases were built using naviga-
ification lies conceptually between domain and product- tional capabilities of several code-browsing tools in con-
level specifications, allowing clear definition and verifica junction with documented responsibilities. The main value
tion of the mechanisms through which product features helpof this approach was not in a documentation of all possible
achieve the business goals. Providing this traceability isuse cases, but in an ability to recover them as needed. Al-
identified as one of the most important requirement engi- though responsibilities were not required to be documented
neering problems [22]. within source code, the advantage of having them docu-

Therefore, my work will focus on the definition of differ- mented there is that a transition from architectural level
ent requirement specification levels, together with thé-ana analysis to low-level design analysis is seamless. Beltow i
ysis and adaptation of different requirement specification an example of a fully developed architecture-level use:case
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Name:Play Song
Actors: End-user
Stakeholders:

1. End-user
2. Music provider

Event:User pushes play button
Systemxmms, libxmms, input, output, visualization

Purpose:Describe collaboration among subsystems to
accomplish “play” functionality

Priority: 10/10-core business process, crucial for busi-
ness operation

Overview: Input stream is processed to produce
wanted output (song playing or streaming to a file on
hard disk)

ReferencesNone
Related Use-CaseSetup
ResponsibilityPlay media stream or write it to a file

Preconditions: Play-list was configured, Setup use-
case successfully performed

Postconditions: System stops playing, after input
stream end, if Repeat option is turned off.

Invariants: None
Main Scenario:
1. xmms: User interface component signals “play”

event is raised.

2. xmms: Signal to input subsystem to start pro-
cessing data

3. xmms: Connector between input and output is
established

4. input, output, visualization: Start processing data
streams

5. input: If end of the stream signal xmms and stop

6. xmms: If “Repeat” option turned on signal in-
put to start processing again, else “stop” signal to
output and visualization

o Alternatives:

— step 4: data stream disconnected before end of
it (file deleted, network connection went down,
etc.) — raise exception and inform user
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— step 4: special effects events raised — activate
appropriate plugin, which alters output

e Quality Attributes:

1. Responsiveness — events are handled without
delays

2. Reliability — user is informed within 1 second if
system stops due to data stream problems

e Technology: Network access support for network
streams

e Special Requirementskor low-end systems, output
processes have higher priority over visualization and
affect subsystem’s processes

e Open IssuesNone

A single column format was used to document this par-
ticular use case. One could also use multiple column format
to emphasize subsystems and modules. The second option
has a drawback that it is harder to format text properly thus
increasing production and maintenance time.

7. Current Work and Open Questions

Currently, | am involved in an exploration of the follow-
ing topics:

¢ |dentification of architecture-level requirements: prop-
erties and patterns. This topic involves analysis of
which properties of the requirements have a significant
architectural impact. This knowledge can be used to
discover them and isolate from the different software
requirement specification documents.

e Recovery of the architecture-level requirements from
code, Ul, and deployment properties. This recovery is
a process of abstracting and combining requirements
all the way up to the business level. Its value is in be-
ing able to analyze how software impacts the business.
This analysis is important in situations in which new
software is acquired and business is tailored to it.

e Analysis of the architecture-level requirements
change. This analysis is an observational study of
several systems to try to discover the evolution pat-
terns and properties of the requirements that actually
change over time.

e Techniques for the architecture-level requirements
specifications. There are two main techniques:



— Proposal of a hew way to organize software re- [11] T. H. Davenport.Process Innovation — Reengineering Work

guirement specifications. The aim is to structure
the requirement specifications in order to pre-

serve and emphasize business and software archi-

tecture requirements and concepts.

— Architecture-level use cases for capturing dy-
namic properties and functional requirements at
the subsystem level.

8. Conclusion

[12]

[13]

[14]

This paper has attempted to emphasize the importance[15]
of the conceptual shift from the traditional domain and
product-level requirement specifications to multiple leve
specifications and to architecture-level requirements-spe 16]

ifications, in particular.
is to accommodate the development using new software
paradigms. Also presented were some parts of the work

The main purpose of this shift

that was done as a part of a study in software architecture[17]
recovery.
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Abstract

This paper presents a practical approach to
architecture-based design of computer based systems. The
approach is discussed in relation to other existing
methods of performing discovery, abstraction, refinement
and evolution of systems architectures. It has also be
shown that this approach can be supported by formal
methods of refinement. The approach assists the designer
to maintain a strict focus of reasoning about the
architecture and its qualities.

1. Introduction

The importance of architecture in the engineering of
computer based systems is widely recognised [19, 22, 34,
38]. Given a dtrong architectura model [30], the
architectures of systems can be visualised [9], reasoned
about [4, 8, 27, 32], and evolved [36]. These activities are
part of any process of architecture-based design, which we
call A-Design. This paper particularly investigates the area
of (formal) design traditionally called refinement.

It isimportant to consider architecture-based design in a
practical engineering context and in particular to address
the practical concerns of the engineering effort involved in
developing (short term change) and evolving [36] (long
term change) a given Computer Based System (CBS). One
must always be sure that in designing a system the non-
functional requirements of the system are satisfied [5, 11].
Additionally, no system is ever built from nothing; in
practice the designers will have suggestions for the system
at every level of abstraction [3, 29, 41].

The latest IEEE Requirements standard recommends
that requirements are hierarchical [21] and aways have
some associated implementation restrictions. As a result
there will be a need to place these restrictions at whichever
level of abstraction is most appropriate [5, 11, 31]. In
addition to this need to be able to interact at which ever

LI refinement is the process of taking an architecture from the abstract to
the concrete, then “abstracting” is the reverse process - taking an
architecture from the concrete to the abstract. For the purposes of this
paper we refer to both the concepts of “abstracting” and traditional
refinement as (part of) design.

20

level of abstraction is most appropriate, the practicing
designer will often as a first step need to discover the
architecture of an as-built system. That is, they will need to
develop a concrete architecture of a system and abstract
away details until the underlying architecture of the system
isexposed [14, 24].

This paper presents a practical approach to architecture-
based design of CBSs. The approach is discussed in
relation to other existing methods of performing discovery,
abstraction, refinement and evolution of systems
architectures. It will also be shown that this approach
(whilst generally being more practically based than other
more forma methods) can be supported by these formal
methods of refinement in particular. The approach also
helps to maintain a strict focus of reasoning about the
architecture and its qualities.

General architectural definitions are presented in section
2. Section 3 presents a discussion of related work on
refinement in general and section 4 builds upon this work
with our concept of architecture-based design. Finaly a
practical approach to architecture-based design is presented
in section 5. The paper finishes with a discussion of future
work and a conclusion (section 5.1).

2. Architecture

This section presents some general architectural
definitions to establish the vocabulary of the paper. From
the IEEE [22] and extended by the ECBS Architecture
Working Group [37] and UTS [26] the following
definitions are provided,;

System: A set of interrelated entities which display a
specified behaviour while interacting with the system’s
particular environment.

Architecture:  Any well defined form of a system’s
essential, unifying structure defined in terms of
components, connections and constraints along with the
system’ sinteraction with its environment.

Architectural description (A-Description): A product
which documents an architecture and consists of zero or
more architectural models, including rationale for and
rel ationships between the models and views chosen.

Architectural models (A-Models): Any formal
description of a system which describes the system's




architecture. Typically A-Models are formulated using a
specific A-Style while embodying (or portraying) one or
more A-Views (refer to [26]).

Architectural Model Elements (A-Elements): The
congtituents of a system's architectural model which
represent the components (Cp), connections (Cn) and
congtraints (types, implementations, properties, etc) of the
proposed system architecture.

Please note: For reasons of brevity and concentration,
the concepts of Architectural Styles (A-Style),
Architectural  Patterns  (A-Patterns),  Architectural
Principles (A-Principles) and Stakeholders concerns are
extensively discussed in other places, including our
working group [26] but omitted here.

In Figure 1, UML notation [40] is used as an extended
entity relationship diagram, to compare and contrast the
meanings of the definitions.

System

+has 1

Architecture

+documents 1

0.1

A-Description

0“*
A-Model

map:
0.*

A-Elements

.

Figure 1 — Interrelationship between key
Architectural terms [26]

3. Related Work

This section discusses the history of refinement methods
in general from it's origins in early program proving work
to the emergence of architectural refinement methods in the
1990's. Additionally, existing architectural refinement
approaches are discussed, and, findly the strong
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relationship between requirements and refinement is argued
with a recognition of the importance of hierarchical
requirements to a refinement approach.

3.1 History of Refinement M ethods

Existing refinement methods have their origins in the
program proving work of Dijkstra [10] and Hoare [17].
The initial work on stepwise refinement by Dijkstra [10]
appears to be the first to use logic in the construction of a
program from a design, as specified by pre/post conditions.
Refinement of programs from models gained a boost with
the work on the Vienna Development Method (VDM) [23]
and Z [15] and B [2]. These methods specify systems, and
refine them to programs using predicate calculus and proof
obligations. Z has been used on large practical systems to
reverse specify and then, by proof techniques, understand
and re-specify industrial systems, including the IBM CICS
system [42]. They have also been used to model and prove
the correctness of systems. Another approach, exemplified
by the LARCH project, [25] makes use of axioms and
rewriting logic to model a system and prove the correctness
of an implementation.

All these methods have one major weaknessin that there
is no concept of design attributes being satisfied. For
example, the design requirement that the system be
maintainable could require the application of the principles
of coupling and cohesion. One exception is Object-Z [7]
which implicitly applies the principles of coupling and
cohesion since it forces an information hiding paradigm on
the modeller.

3.2 What is Architectural Refinement

Architectural refinement methods have been devel oped
since the early 1990's. Broadly speaking, these methods
can be classified into predicate logic reasoning and
refinement methods [4], and methods focussing on
rewriting logic or mapping architectural patterns and styles.
[5, 31].

In [6], Bochi discusses refinement from a formal
specifications perspective. He refers to refinement to be
that “the implementation actually complies with its
specification, or, more precisely, is a refinement thereof”.
This perspective is similar to the classical refinement
approach which uses the notion of “behavioura
substitutability”.  That is, the concrete representation
should not show any behaviour not observable in the
abstract representation [13]. This is the approach used in
CSP [18]. Moriconi et a [31] argue that behavioura
substitutability may not be sufficient and introduce
“conservation extension”. That is, if a feature is not
explicitly included in the abstract then it is implicitly
claimed not to exist [13]. According to the above authors,
refinement is thus the process of ensuring that these



conditions of “behavioura
“conservation extension” are met.

Garlan [13] introduces his own perspective on
refinement by claiming “that there is no single definition of
refinement. Rather, refinement rules must be specific about
what kinds of properties they are preserving in the refined
design”. This sort of definition is moving towards the
notion that refinement can be thought of in terms of
ensuring the non-functional properties of a system such as
evolvability and performance.

substitutability”  and

3.3 Refinement and Requirements

Egyed et a [11] imply a strong relationship between
requirements (both functional and non-functional) and
refinement. They mention the “need of having requirements
engineering and architectural modeling being intertwined
and mutually-dependent development activities in order to
ensure their complete and consistent treatment (i.e,
refinement).” This perspective is also supported by
Bolusset et a [5] who state that refinement is used to
ensure that the system’'s concrete implementation till
meets its requirements.

We propose to extend Egyed et a and Bolusset et a’s
concepts of architectural refinement by including the
concept of hierarchical requirements, supported by the
latest |IEEE sandard on System  Requirements
Specifications [21]. It argues that requirements are
assembled “into a hierarchy of capabilities where more
general capabilities are decomposed into subordinate
requirements’. The implication of this to architecture-based
design isthat at each level of abstraction a certain subset of
the overall system requirements will be addressed. Thisis
further discussed in the following section.

4. Architecture-based Design

This section defines the architecture-based design of
Computer Based Systems (CBSs). Additionally two types
of architecture-based design (horizontal and vertical) are
identified and discussed with regard to the differing
reasons for using each one. The section concludes with a
diagrammatic summary of the terms and relationships
introduced in this section. This diagram provides the basis
for the proposed practical design approach (section 5).

4.1 Definition

The more recent interpretations of refinement [5, 11]
and the concept of hierarchical requirements [21]
influences the definition of architecture-based design used
within this paper. Within the context of the architecture-
based design approach discussed herein and the genera
architectural definitions of the UTS [26] (summarised in
section 2) architecture-based design (A-Design) can be
defined as;

A-Design: the addition (or removal) of A-Elements
to the A-Model to ensure a larger subset of the
overall requirements are met.

Asisevident in Figure 2, A-Design can be seen in terms
of developing another A-Model that satisfies more of the
overall systems requirements. The initial A-Model satisfies
a certain set of the system’s requirements, R;. After the
refinement step, the final A-Model satisfies the set of
requirements, R,. Given that R; is a proper subset of R,
the fina A-Model aso satisfies al of the requirements
originally satisfied by theinitial A-Model.

In practice, R; may not be a proper subset of R, after the
first attempts at refining. The actual refinement method
must detect this and ensure that the condition is met before
the refinement step is considered complete. This is
discussed further in section 5.

Satisfies

| \

ot ko, More
Concrete an
Cnl
i YN
Cp3
A-Model Cndl cpa
A-Model

Figure 2 - Relationship between A-Design
and Requirements

4.2 Typesof A-Design

Following the general definition of A-Design given in
section 4.1, more specific definitions can be given for two
types of A-Design, horizontal and vertical, that are often
discussed, though not entirely agreed upon, in literature.

Bolusset et a [5] refer to horizontal refinement as
inducing a specification modification where there is no
change of abstraction level. We build on this, and within
our approach and architectural definitions of the UTS [26]
(summarised in section 2), define;

Horizontal A-Design: the addition (or removal) of
A-Elements at the same level of abstraction to
satisfy an additional subset of the overal
requirements — both functiona and non-functional.
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In [5] the process of vertical refinement is referred to as
moving “closer to the implementation by going from afirst
architecture description language, to a second one”, that is,
moving from one level of abstraction to a second one.
“Details are added to remove a part of indeterminism or to
facilitate implementation”. This interpretation of vertical
refinement as involving a transition of levels of abstraction
is generally well understood.

Whilst discussing the vertical case with respect to their
refinement method, Moriconi et a [31] comment that “we
are guaranteed that the most concrete architecture in the
hierarchy meets the requirements of the most abstract
architecture in the hierarchy.” Thus vertical refinement
involves atransition of levels of abstraction.

We build on these concepts and within our approach and
architectural definitions of the UTS [26] (summarised in
section 2) define:

Vertical A-Design: the addition (or removal) of A-
Elements at a more concrete or less concrete level
of abstraction to satisfy an additional subset of the
overall reguirements — both functional and non-
functional.

Of particular note is the “more concrete or less
concrete” portion of the definition which reflects the
concept of abstracting (from concrete to abstract) being
the reverse process of refining (from abstract to concrete).

4.3 Levelsof Abstraction

A fundamental aspect of our architecture-based design
(A-Design) approach is the concept of levels of abstraction
for A-Models that originates from the work of Ward and
Méllor. In [41] they introduce the concepts of an Essential
Model and an Implementation Model:

“ Given that a system must function in a specific
environment, and given that it has a purpose to
accomplish, it is possible to describe what it must do
(the essential activities) and what data it must store
(the essential memory) so that the description istrue
regardless of the technology used to implement the
system...an essential model.

It isalso possible to describe a system as actually
realised by a particular technology...an
implementation model.

The implementation model is defined as an
elaboration of the essential model that contains
enough detail to permit a successful implementation
with a particular technology.” [41]

We extend these concepts to the domain of systems
architecture by introducing the essential architecture and
the implementation architecture. In addition to these two
architectures we also introduce the concept of many
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intermediate architectures. In all cases, these architectures
are actually represented using the UTS [26] terms
summarised in section 2. Each of the essential, intermediate
and implementation architectures represent differing levels
of abstraction in modelling the system.

4.3.1 Essential Architecture

The essential architecture is the most abstract
representation that a particular project will use of the
architecture. It utilises abstraction to help highlight key
system  properties, architectura components and
component interaction. The essential A-Model(s) are the
primary model(s) about which one can reason about to
ensure that the system is capable of meeting its
requirements. Further essential modelling concepts may be
drawn from systems engineering and systems theory
literature to help establish the essential A-Model [3, 29,
41]. Our approach is used to formalise the concepts
associated with the essential A-Model and then provides a
basis on which to reason about the feasibility of the
proposed architecture.

The most important aspect of an essential architecture is
that, by definition, it contains no implementation details.
As Ward and Méellor state, the system as described by an
essential architecture could equally be implemented by
humans manually executing the required processes as it
could by a computer system [41]. The essential architecture
should give no indication of what technology should be
used in the final implementation.

4.3.2 Intermediate Architecture

Depending on the complexity of the system being
modelled, there may be multiple intermediate
architectures. The intermediate architectures describe the
system in successively more detail than the (essentia)
requirements driven essential  architecture. The
intermediate A-Models are a primary tool in refining the
system down to a subsequent implementation architecture
that is capable of meeting the system’s functionality,
performance and quaity (including evolvability)
requirements. Our approach is used to develop the
intermediate A-Models and provides a basis on which to
continue to reason about the feasibility of the proposed
architecture, and its relation to the essential architecture.
In relation to the essential architecture, we are especialy
interested in the intermediate architecture being a correct
refinement, which shows promise in meeting the non-
functional requirements.

One important point to raise here is that by having
intermediate architectures one can approach the A-Design
of a system at whatever level of abstraction the designers
are comfortable with, or have data with which to populate
the A-Modd [3, 29, 41]. The merits of this flexibility
concept in our A-Design approach will be further discussed
in section 5.



4.3.3 Implementation Architecture

A system's essentid and intermediate A-Models are
important abstractions, however they do not consider the
system solution sufficiently with respect to implementation
issues — it is the final implementation architecture that
deliversthe final, specified functionality and capability [39,
43]. Our approach is used to ensure that the architectural
solution chosen is appropriate and feasible given the skills
and technology available.

The final implementation architecture is not the end of
the detailed design process, it isin fact, the beginning. The
implementation architecture components, connections and
constraints are now ready to be implemented as (e.g.)
collections of classes.

4.4 A representation of A-Design

Given the definitions for architecture-based design (A-
Design) and the essentia, intermediate(s) and
implementation A-Models as discussed above, an approach
for A-Design can now be presented that facilitates the
mapping between each of the A-Models.

Figure 3 illustrates the important concepts in our
approach for performing A-Design. It can be seen that A-
Design can occur in two “dimensions’: horizontal and
vertical, and that each of these dimensionsis bi-directional.
Each level of abstraction (essential, intermediate(s) or
implementation) satisfies a certain subset of the system’s
requirements. The requirements shall either be fulfilled
directly at that level of abstraction, or indirectly via the fact
that the architecture at the current level of abstraction is a
faithful interpretation of those architectures at a higher
level of abstraction. Thus, a the implementation
architecture, all requirements shall be fulfilled [31].

It is important to note that while each vertica
refinement of the A-models in Figure 3 is shown as a
graphically similar A-model this is not necessarily the case.
As represented graphically and described in [12], for
successive A-models “a given element from one space can
map to zero, one, or more elements in the lower level
space”.

5. A Practical A-Design Approach

This section presents a practica approach to
architecture-based design  (A-Design). Firstly, the
regquirements for A-Design (the necessary capabilities of a
A-Design method) are presented. The details of a practical
A-Design method follow. The section finishes by
discussing how this practical A-Design method satisfies the
reguirements of A-Design.
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5.1 Requirementsof A-Design

Following from the previous discussion, and definitions,
we propose that the following requirements need to be met
in order to produce a practical A-Design process that will
aid the designer in both the development and the evolution
of Computer Based Systems. The A-Design approach must:

1) Be scalable and practical for large, heterogeneous
systems.

Provide the ability to begin design with an A-Model
at any level of abstraction.

Provide the ability to design in any dimension and
direction (see section 4).

Support “long term design”, that is, evolution
Ensure that both functional and non-functional
reguirements are met.

2)
3)

4)
5)



6) Berigorous, yet flexible, with no specified ordering
of horizontal or vertical A-Design steps.

5.2 Approach

This section describes in steps a process for practical A-
Design. The input to the A-Design process is an A-Model,
and the output is simply another A-Model that has been
refined or abstracted depending on the dimension in which
refinement is occurring.

There are two “pre-steps’, or essentially tasks that are
assumed to have been done prior to use of the practical A-
Design approach, as follows:

Pre-Step A (A-Model Population / A-Discovery):

This pre-step involves gathering the appropriate
“information” from the most appropriate available sources.
Examples include requirements documents, especially
constraints and specified equipment, source code, design
documents and interviews with system architects /
designers. Once this information is parsed (either manually
or automatically) a collection of elements (but not
necessarily A-Elements) will exist. A-Discovery is
concerned with reasoning about the gathered elements and
deciding which of those are legitimate A-Elements and
which are not. Thus, after gathering the elements they must
be filtered so as to keep only the A-Elements. Once thisis
done we have the initial architecture model, designated A-
Model;. A-Model; may represent the system at any level of
abstraction (from Essential to |mplementation ).

Pre-Sep B (Requirements):

A requirements analysis has to have been completed before
the A-Desigh can commence. The requirements need not
be completely defined from the outset, however when the
A-Design takes place it will simply work off whichever
requirements are defined at that stage. As such the
approach could be used in many different system
development life cycles, from traditional waterfall to
evolutionary, all of which have a different notion as to what
stage and level of completion the requirements analysis
shall be completed before embarking on the subsequent life
cycle stages.

Once these pre-steps have been completed, the main
steps of the architecture-based design approach can
commence. The input to the approach is a certain A-Model,
A-Model;. The output from an iteration of the approach is
the next A-Model, A-Model;.;. The composition of the new
A-Model depends on which direction and dimension A-
Design is taking place. For example if one is abstracting
(vertica A-Design moving upwards) the A-Model might
typically contain fewer A-Elements and be generally
simpler, whereas if one is refining (vertical A-Design
moving downwards) the A-Model might typically contain
more A-Elements and be generally more complex.

The man steps of the approach are shown
diagrammatically in Figure 4 and are as follows:
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Sep 1 (Initial Evaluate and Prove):

This step is important as it sets the baseline “status’ for A-
Model;. This step gives the approach the ability to know
where one is coming from, in order to guide where one is
going to. For example, assume a a high level of
abstraction, an architecture exhibited a strong peer-to-peer
architectural  shape, however an implementation
requirement is the specification of a particular client-server
(shaped) database. The evaluation of the architecture when
the client-server implementation detail is added would be
flagged as a“ mismatch”.

Essentially, the aim is to prove whether the functiona
requirements (Rg) are met, and to evaluate whether the
non-functional requirements (Ryr) are met (for more details
see step 4). Regardless of whether the requirements are met
or not, this evaluation, or performance index (P1), isfed to
the A-Principles “knowledge base”. This knowledge baseis
used for the generation of new A-Models, that is, it is used
to gauge how successful previous modifications to the A-
Models have been, and to then guide the proposal of new
A-Models.

Sep 2 (Propose New A-Model):

This step involves generating a proposed alternative to the
current A-Model;, designated A-Model;,;. The generation
of the next A-Model;,; is guided by the A-Principles
knowledge base (as discussed above). Given A-Model;, the
Pl guides the designer in making the appropriate
aggregations, substitutions and decompositions depending
on the dimension and direction being refined (see section
4).

Sep 3 (Evaluate and Prove):

This step is a repetition of the activities of step 1 and
involves checking A-Model;,; against the requirements,
both functional and non-functional. It must be proven that
the functional requirements are met. It is at this point in the
approach that existing methods of architectural refinement
could be used. The specific method used would vary
depending on how the functiona requirements had been
expressed [5, 31]. Typical non-functional requirements
evaluated in this step are performance, evolvability and
openness.

Once these proofs and evaluations are complete, we can
see whether A-Model;,; satisfies the requirements. The
results of the evaluation are fed back into the A-Principles
Pl so as to enhance the “knowledge” contained. Should the
evaluation prove that the requirements have been met, the
fact that the changes from A-Model; to A-Model;.; resulted
in a successful refinement are incorporated into the
knowledge base. The same is true for the reverse case - the
changes did not result in the requirements being met, and
thisis aso fed back into the knowledge base. If the answer
is“No” then the process is repeated from step 2 again until
we are successful in meeting the requirements and we have
the refined A-Model, designated A-Model;.;.



It isevident, via step 1 of the approach, that we have the
ability to enter the A-Design process at whichever level of
abstraction is most appropriate. Obtaining the initial A-
Model; from source code will result in a refinement process
that begins at a much more concrete level of abstraction
than one that begins with a high level architectural
description.

A-Discovery
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Prove R;

Baseline

A

A-Model;

] 4
Reguirements
R. &R, Propose New
A-Model,,,

A-Mode

A-Principles

i1
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Prove R,

Experience Results

NO A-Model, ,

YES

v

A-Model,,,

Figure 4 — An Iteration of the Architecture-
based design (A-Design) Approach

Within this approach, A-Design can proceed in any
dimension and any direction (horizontal moving left and
right, and vertical moving up and down respectively). This
is partly due to the evaluation method described in step 1
and 3 which alows any new model, A-Model;;; to be
evaluated against the functional and in particular the non-
functional regquirements of the system.

The benefit of this to the designer is that it gives them
the ability whilst typically developing a new system, to
design vertically and down in order to approach a more
concrete model. In addition, for an as-built system which is
required to evolve in acertain way, it gives the designer the
ability to enter the A-Design process with a typically more
concrete model, and to abstract vertically and upwards until
the model is sufficiently abstract to reason about and make
the required changes. Once this reasoning is complete and
satisfactory, the A-Design process can proceed in the
reverse direction (that is, verticaly and down) until a
suitably concrete model is again obtained. This “round
trip” of abstracting up, reasoning, making alterations and
then refining down is an approach that is very well suited to
the long term evolution of a system.

Consequently, the approach is very flexible in allowing
the designer the freedom to enter at any level of
abstraction, and to move in any dimension and direction as
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required by the designing task at hand. However, at the
same time, the approach is rigorous in that at each A-
Design step the new model is evaluated against the overall
requirements of the system to ensure that no unsuitable or
unwanted changes have been made.

Non-functional requirements and their evaluation are
fundamental to this approach and it is in this area that the
practical A-Design approach described here differs the
most from existing refinement methods [5, 18, 31].

The approach is tied heavily to the satisfaction of
requirements, functional and importantly non-functional.
Consequently, it gives the designer confidence that they are
not only producing an architecture that is a valid
refinement or abstraction of their starting point, but
additionally that it isa“good” architectural solution.

6. FutureWork and Conclusion

There are three aspects to the future work. Firstly, to
incorporate related work such as co-design [35], and other
methods such as MASCOT. Secondly, to include into the
approach the idea of evolution as a third dimension of A-
Design. We also need to develop a forma method for
evolution. Finaly, we need to incorporate the whole
approach into the ABACUS tool suite [1].

In conclusion, we have developed a practical approach
to the architecture-based design (referred to as A-design)
which aims to simultaneously satisfy the functional and
non-functional properties of a system. This approach is
based upon the various architectural refinement calculi.
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ABSTRACT

This position paper suggests an approach for building
software systems using patterns, right from business
architecture to software architecture. Further, the
approach incorporates a concurrent and iterative
development process to ensure that the business
architecture and software architecture are aligned, end
to end. Usage of patterns leads to reuse of various
artifacts, involved in the software development life
cycle.

1. INTRODUCTION

It ishighly desirable to start the development of a
software system with most of the system requirements
being captured in the form of use cases. However, in
practice systems evolve. New requirements crop up
when the business on which the system is based keeps
growing/changing. Also, development of a system gives
rise to new ideas, which could be incorporated in the
system. Thus, in practice, activities take place
concurrently, rather than sequentially.

Nuseibeh [15] mentions that there are compelling
economic arguments why an early understanding of
stakeholders’ requirements leads to systems that more
closely meet these stakeholders' expectations. There are
equally compelling arguments why an early
understanding and construction of a software system
architecture provides a basis for discovering further
system requirements and constraints, for eval uating
alternative design solutions and states that, in practice,
software devel opment starts from either requirements or
software architecture [15].

It is obvious that the requirements, both functional and
nonfunctional, are derived from business architecture.
The underlying business architecture may be either
implicit or explicit. Hence, we propose that the
approach suggested by Nuseibeh could be extended to
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business architecture, as well. It is apparent that the
effect on requirements would have a cascading effect on
the business architecture, and vice-versa. Sometimes,
the effect of the software architecture, which led to
modification of requirements, could even lead to

busi ness process re-engineering.

This article illustrates the linkages that would be there
between various artifacts used in the development of a
software system. We also suggest a concurrent and
iterative process to software devel opment.

2. BUSINESS ARCHITECTURE

Therole of architecture in building any type of structure
iswell defined. A well-designed architecture makes it
possible to thoroughly understand the structure being
built, to plan the actual construction, and to estimate
costs; it serves as the basis for the blueprints of the
structure. Once construction has been completed, a
good architecture remains as the documentation of the
process and the result, making it possible to understand,
maintain and, if so desired, to extend the structure [18].

An architecture captures the vital parts of a structurein
an organized manner and is a practical tool for
managing a complex system, such as a software system
or abusiness. Business Architecture defines the
business structure, so modeling this architecture is key
to understanding the business and how it functions[18].

Eriksson and Penker [18] propose a business
architecture description using four views: business
vision, business process, business structure, and
business behavior.

They state “The knowledge and information in a
business architecture is used to define the software
architecture. Thisisn't a one-to-one mapping, and there
is no simple algorithm to convert the business model
into a software model. They are two different models
that serve different purposes. The business model
describes a business or a specific part of a business; not
all of the business goesinto the software systems. To



define a software architecture, the business architecture
is used to:

Identify suitable support systems.
Identify functional requirements.

I dentify nonfunctional requirements.
Act as basis for analysis and design.
I dentify suitable components.”

Creating a business model before the software models,
then using the information in that business model for
the creation of software models, will increase the
quality of the software systems. Systems that better
support the business of which they are a part will be the
result [18]. They have also catalogued some business
patterns.

At times, it may so happen that while establishing the
business goals it may be realized that some of the
business processes may have to be changed, event to the
extent of having a business process reengineering.

3. SOFTWARE ARCHITECTURE

A Software Architecture is a description of the
subsystems and components of a software system and
the relationships between them. Subsystems and
components are typically specified in different views to
show the relevant functional and non-functional
properties of a software system. The software
architecture of asystem isan artifact. It isthe result of
the software design activity [8].

Buschmann [25] states. “ According to its definition, a
pattern system for software architecture should support
building concrete software systems with help of
patterns. Fortunately, many well-described patterns for
software architecture already provide steps and
guidelines that specify their implementation [GHJIV 95]
[POSA1] [POSA2]. Many such patterns also provide
information about their refinement and combination
with other patterns. Whenever another patternis
referenced, itsimplementation steps can be applied:
they thus complement and compl ete the implementation
steps of the original pattern.” He also sees some
drawbacks in application of patternsto certain areas like
partial design and suggests improvementsin the
application of patternsin building software architecture.

4. FROM BUSINESS ARCHITECTURETO
SOFTWARE ARCHITECTURE

UML isade-facto as well as de-jure standard for
modeling object-oriented systems. The business
architecture could be developed by using UML, as
suggested by Eriksson and Penker. The software
architecture could also be modeled using the UML or
any Architecture Description Language. Between the
two ends we could consider the use cases for capturing
and documenting requirements, the class diagramsto
capture the analysis models as well as design models.
The other diagrams of the UML could be used to
support the devel opment process.
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This paper suggests that the conceptual class diagrams
derived from the use cases be refined. It is suggested
that the conceptual class diagrams be refined using the
classes that can be derived from the analysis patterns of
the specific domain or the generalized analysis patterns
which apply to the domain under consideration. It may
be mentioned that a good number of analysis patterns
have been documented covering domains like
insurance, virtual libraries, oil & refinery and so on
[21,22,23].

It would involve some experience or training to
understand that a transaction would give birth to an
association class, which hasto be identified and
documented as an analysis class. Similarly, analysis
patterns help in identification of additional classes. This
would help in refining the conceptual class diagrams.

The other suggestion is with regard to the design class
diagrams. The design class diagrams which are
identified in the system could be refined using the
design patterns. Apart from the design patterns
documented by Gamma and others there are design
patterns specific to technologies like EJB, J2EE and so
on. These would help in refining the class diagrams.

Taking into consideration the existing architectural
patterns/styles could refine the identified software
architecture.

Thus, the software architecture, which is a composition
of patterns, is derived from the business architecture.

Each of the artifacts would affect the other, as shown in
figure 1 (Appendix IV).

5. SOFTWARE DEVELOPMENT PROCESS

The Unified Process describes process workflows as:
business modeling, requirements, analysis & design,
implementation, test and deployment. It describes
configuration & change management, project
management and environment as the supporting
workflows.

The waterfall methodology describes the various phases
of software development cycles as; requirements
gathering, analysis, design, coding, testing and
maintenance.

The phases of the waterfall model or the workflows
suggest sequencing of activities. However, in practice
we experience that activities in the phases or workflows
happen concurrently.

We strongly feel that the concurrent and iterative
development approach presented in [14] and [15], using
the Twin Peaks, is close to reality. We suggest that the
approach be extended to Three Peaks, with the addition
of the business architecture as the third peak. The
modification isas givenin figure 2 (Appendix V).

6. A Case Study



We had studied a knowledge management system,
developed in-house, to identify and discover analysis
and design patternsin the system [1]. Theidentified and
discovered analysis and design patterns are presented
in Appendix |1 and Appendix I11 respectively.

Further, study of the system in identifying the business
patterns led to the identification of the business patterns
presented in Appendix I.

As regards the solution architecture of the system, our
study shows that the System follows the MV C
architecture. We have used the Microsoft’s ASP
technology.

7. CONCLUSIONS

We advocate the continuing of use cases for capturing
requirements. However, use case driven approach leads
to identification of classes, with boundary, control and
entity stereotypes. The conceptual class diagram, which
has thus been arrived at, would be similar to adesign
class diagram without the application of design patterns.
Hence, the analysis patterns of the domain or
generalized analysis patterns could be used to refine the
conceptual class diagram. This would enable creation of
rich conceptual class diagrams. The conceptual
diagrams could lead to the questioning of business
processes and requirements.

The design class diagrams could be refined using design
patterns. This would lead to development of systems,
which would address the nonfunctional attributes like
flexibility, scalability, maintainability, etc..

Some of the issues that need to be addressed are:
Training the various stakehol ders.

Analysis patterns for more domains have to be
developed.

This methodology has to be validated.
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APPENDIX | - Business Patterns

Resource and Rules Patterns:

1.

Actor-Role: Provides guidelines for using actor and
role concepts, including how they should be
separated and how they can be combined.
Organization and Party: Used to create flexible and
qualitative organizational (processes)chartsin
object-oriented models.

Product Data Management: All businesses have
many products and/or documents that must be
organized and structured. Capturing the structure of
the relationship between documents and productsis
adifficult but common problemin all businesses.
Thing — Information: Eliminates the focus-shifting
that occurs during the modeling process by
referring to two frequently used foci(thing focus
and information focus) in business modeling and
how they are related to each other.

Title-Item: Helps modelers to simplify the design
process for systems that involve objects that exist
in multiple copies or instances. It separates the
information about the title from the information
about individual instances of that title.
Type-Object-Value: Models the relationships
between a type, its Object, and value.

Goal patterns:

7.

Business Goal — Problem: Used to identify the
connection between business goals and their related
problems in order to correct the problems and
achieve the goals

Process Patterns:

8.

Action Workflow: A tool for analyzing
communication between parties, with the purpose
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of understanding and optimizing this
communication.



APPENDIX Il - Analysis Patterns

The following analysis patterns have been identified in
the System:

1. Recurring event pattern: (Fowler [3]).

2. Individual instance method (Fowler [3]).

3. Effectivity analysis pattern (Fowler [3]).

4. Range analysis pattern (Fowler [3]).

5. Structured Pin Board (Hahdler [2]).

The following analysis patterns have been discovered in

the System:

1. PushPull Analysis Pattern and

2. Collaborative Problem Solving Analysis Pattern.
APPENDIX [l - Design Patterns

During our literature survey, we had come across two

types of design patterns. The first dealing with the user

interface and the second dealing with the functionality

of the System. We have used all the Ul Design Patterns

mentioned in [12]. We have used 3 design patterns of

GoF [4] and 12 design patterns from Fowler [5].

Theidentified design patterns from the Gang of Four
are: Decorator, Iterator and Facade.

Theidentified design patterns from Fowler are: Front
Controller, Two Step View, Server Session State,
Gateway, Mapper, Service Layer, Recordset , Data
Access Object, Transaction Script, Domain Model,
Table Module and Active Record.

APPENDIX IV

Figure 1 — Relationship between the various artifacts:

Business
Architecture

Solution
Architecture

Analysis Class
Diagram
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APPENDIX IV

Figure —2: Three Peaks —amodel of the concurrent
development of business architecture, requrirements
and software architecture

Requirements
Business < Software

Architecture Architecture

33



Experience with Global Analysis: A Practical Method for Analyzing Factorsthat
I nfluence Softwar e Ar chitectures

Robert L. Nord", Dilip Soni
Semens Corporate Research
755 College Road East
Princeton, New Jersey 08540 USA
rn@sei.cmu.edu, dilip@scr.siemens.com

Abstract

A practical method for analyzing the factors that
influence software architectures is presented. Factors
include organizational context and constraints, available
technologies, and product requirements. Analyzing the
factors uncovers a small number of issues that drive the
design of the architecture. These issues arise from the
factors that have little flexibility, a high degree of
changeability, and a global impact on the system. The
result of the analysis is a set of global strategies that
guide the architecture design.

A two-phase approach for analyzing factors and
developing architecture design strategies is given.
Experience has been gained with this approach in three
ways. (1) developing the approach during the design of
an imaging system; (2) using the approach to analyze
four systems in retrospect; (3) using the approach in new
software devel opment projects.

Introducing global analysis into the software
development process resulted in a new global analysis
specification document that helped bridge the gap
between requirements and architecture design and
provided a place to explicitly record design rationale.

1. Introduction

Global analysis analyzes factors that globally influence
the architecture design of a system. Factors include
organizational context and constraints, available
technologies, and product requirements. This analysis
focuses on key issues that transcend boundaries between
development activities, subsystems, and architecture
views. The result of the analysis is a set of global
strategies that guide the architecture design and improve
its adaptability with respect to changes in the factors.

Successful projects prepare for change by noting the
flexibility of influencing factors and their likelihood of
change, characterizing interactions among the factors and
their impact, and selecting cost-effective design strategies
to reduce the expected impact of the changes[8].

Three categories of influencing factors are considered
during global analysis: organizational, technological, and
product.

Organizational factors arise from the business
organization. Organizational factors constrain the design
choices while the product is being designed and built.
They are external to the product, but influence it. Their
influence is important because if they are ignored, the
architecture may not be buildable.

External technology solutions are embedded or
embodied in the product. These factors are primarily
hardware and software technologies and standards. These
technological factors are external to the product being
designed. Unlike the organizational factors, however,
they can affect the product throughout its lifetime.
Further, they can change over time, so the architecture
should be designed with this changeability in mind.

Product factors are used to describe the product’s
requirements for functionality, the features seen by the
user, and nonfunctional properties. The product factors
are also subject to change over time, so the architecture
should be designed to support such changes.

In this paper, we present the concept of global analysis,
a practical method for analyzing factors that influence
software architectures. We demonstrate its role in
software architecture design and discuss its relationship to
other software development activities. We present our
experience with developing the method and its use by
others in new software development projects. We
conclude with lessons learned about the method’s value
and where further improvement is needed.

! current Address: Software Engineering Institute, 4500 Fifth Avenue, Pittsburgh, Pennsylvania 15213USA.
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2. Related Softwar e Development Activities

Figure 1 shows the relationship of global analysis to
software architecture design and project planning
activities.

Software Architecture Design

Organizational . Global
Factors ' Analysis

Market

Reguirements Design

Evaluatlon

N fy Technological
SOy Factors

Project
Planning:

Release Pro ect Project
Planning Goals Strategies

Figure 1. Software Architecture Design and
Project Planning Activities

Globa analysis complements requirements analysis
tasks. Globa analysis helps focus on the important
architecture requirements; these are the quality attribute
requirements. But global analysis goes further than just
examining requirements; it includes organizational and
technological factors that are not typically included in the
reguirements document.

The method hel ps bridge the gap between requirements
and architecture design by anayzing the impact of
reguirements on important technical and business issues
that affect design. Global analysis records rationale and
provides traceability as requirements are linked to
strategies that guide design.

The description of regquirements is often textual, but
more rigorous requirements analysis methods may employ
some combination of feature modeling [6], use case
modeling, or object modeling [5]. If such an approach is
used, then the artifacts will provide useful input to the
global analysis method. Features will be put in global
analysis factor tables for further analysis. Use cases show
a specific interaction between a stakeholder and the
system and provide a means to evaluate the impact of the
design decisions in providing a solution to the design
issue. Objects encapsulate system responsibilities and
will inform the choice of conceptual components in the
global analysis strategies that guide the design.

Globa analysis generates issues and strategies that
guide architecture design and provide input to architecture
evaluation. Global analysis begins as the architecture is
defined and continues as the design decisions are made.
Figure 2 shows the iterative nature between global
analysis and the design tasks for any given architectural

Architecfure
Ssues & DeS:I’Ip ion

Risks &
Mitigations

PI'O] Stret Risks &
Concsions Mitigations
Risk
Analysis

view. Global analysis guides design decisions. Asdesign
decisions are made, additional constraints may arise that
are in turn analyzed and in turn guide additional design
decisions.

Organizational Factors
Technological Factors
Product Factors

New factors,
issues, or

strategies
Global e Central & Final
Analysis s> Design Tasks ===» Design Task

Issue Cards

Figure 2: Architecture Design

Globa analysis complements architecture evaluation
tasks, such as the Architecture Tradeoff Analysis Method
(ATAM) [3]. Often, much time is spent at the beginning
of the evaluation capturing information about relevant
business drivers, quality attribute requirements, and
architectural approaches. Rather than record these after
the fact, the best time to capture them is as they are made
during the design activity. Globa analysis captures this
information and provides design strategies and their
rationale that can be reviewed during the ATAM. ATAM
will uncover risks for which additional strategies may
need to be devel oped.

Global analysis provides input to project planning and
management activities. It is used to generate project
strategy conclusions that help define project goals[10].

3. Global AnalysisActivities

The global analysis method consists of two phases:
Analyze the factors and Develop issues and strategies.

N

/" Analyze the Factors
1. Identify and describe the factors.
2. Characterize their flexibility and changeability.

\__ 3. Analyze their impact.
v £

Develop Issues and Strategies

1. Identify issues and influencing factors.

2. Develop solutions and specific strategies.

\\ 3. Identify related strategies. /

Figure 3: Global Analysis Activities

The process isiterative and may start with either phase.



Phase 1: Analyze the Factors. The first phase
analyzes the factors using three steps: (1) Identify and
describe the factors; (2) Characterize the flexibility or the
changesbility of the factors; and (3) Analyze the impact of
the factors.

Identify and describe the factors: Consider factors that
have a significant globa influence, those that could
change during development, those that are difficult to
satisfy, and those with which you have little experience.
Can the factor’s influence be localized to one component
in the design, or must it be distributed across several
components? During which stages of development is the
factor important? Does the factor require new expertise?

Characterize the flexibility of the factors: Describe
what is negotiable about the factor. Is it possible to
influence or change the factors so that it makes your task
of architecture development easier? Use this information
when factors conflict or for some other reason become
impossible to fulfill.

Characterize the changeability of the factors: Describe
what could change about the factor, both in the near and
more distant future. In what way could the factor change?
How likely is it to change during or after development?
How often will it change? Will the factor be affected by
changesin other factors?

Analyze the impact of the factors: If the factor will
change, which of the following would be affected and
how: other factors, components, modes of operation of the
system, other design decisions.

Phase 2: Develop Issues and Strategies. The second
phase develops strategies for the architecture design using
three steps: (1) Identify issues; (2) Develop solutions and
specific strategies; and (3) Identify related strategies.

Identify issues. An issue may arise from factors in
many ways:

e limitations or constraints
(e.g., Aggressive Schedule)
e reducing the impact of changeability
(e.g., Changesin Software Technology)
« difficult-to-satisfy product factors
(e.g., Easy Addition and Removal of Features)
e common solution to global requirements
(e.g., Implementation of Diagnostics)

Develop solutions and specific strategies: Discuss a
general solution to the issue, followed by a list of
associated strategies. The solution description records
analysis-based rationale that illustrates that the strategies
satisfy the issue. Strategies should address the issue and
one or more of the following goals:

» reduce or localize the factors' influence
(e.g., Buy rather than build)

«  reduce the impact of the factors' changeability
(e.g., Use apipeline for image processing)

» localize required areas of expertise (e.g., Map
independent threads of control to processes)
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e reduce overall time and effort
(e.g., Useincremental development)
Identify related strategies: When a strategy belongs to
more than one issue, describe it in one place and reference
it as arelated strategy in the other issues where it applies.

4. Experience with Developing the Method

We developed the approach informally while designing
the architecture of an image acquisition and processing
system. After the conclusion of the project, we developed
a more rigorous description of the method and provided
an example of itsuse in terms of afictional system we call
1S2000, inspired by this and other systems we studied [4].
The 1S2000 system consists of a probe that takes sensor
readings that are processed according to the type of
acquisition procedure selected by the user. The results of
the first phase are documented in a factor table. We
illustrate the factor table with an excerpt from 1S2000.

Factor Flexibility/ Impact
Changeability
04.2 schedule Feature Delivery
Features are Negotiable Moderate impact
prioritized on the schedule
T2.1 Domain-specific Har dwar e Probe Hardware
Hardwareto Upgraded every Large impact on
detect and three years as image acquisition
process signals technology and processing
improves components
P1.1 Features Acquisition Types
Acquire raw New types of Affects Ul,
signal dataand acquisitionsmay  acquisition
convert into be added every performance, and
images three years image processing

The organizational factor (04.2) shows there is
flexibility in delivering features according to their priority.
For other systems these kinds of factors may not affect the
architecture, but in this system they will have a significant
impact. The technological feature (T2.1) shows that
change to the probe hardware is likely and will have a
large impact on the imaging components. The product
factor (P1.1) shows new types of acquisition algorithms
may be added during the lifetime of the system.

The results of the second phase are documented in an
issue card. We illustrate an issue card from 1S2000.

Issue: Easy Addition and Removal of Acquisition Procedures

There are many acquisition procedures. Implementation of each
feature is quite complex and time consuming. Thereis aneed to
reduce complexity and effort in implementing such features.

Influencing Factors
04.1: Timeto market is short
04.2: Delivery of featuresis negotiable




P1.1: New acquisition procedures can be added every three

years.

P1.2: New image-processing algorithms can be added on a
regular basis.

Solution

Define domain-specific abstractions to facilitate the task of
implementing acquisition and processing applications.

Strategy: Use a flexible pipeline model for image processing.
Develop a flexible pipeline model for implementing image
processing. Use processing components as stages in the
pipeline. This allows the ability to introduce new acquisition
procedures quickly by constructing pipelines using both old and
new components.

Strategy: Introduce components for acquisition and image
processing.

Strategy: Encapsulate domain-specific data.

Related Strategies
See also Encapsulate domain-specific hardware.

We performed a retrospective analysis on four systems
with the aid of the architects who designed the systems
[4][9]. We interviewed the architects to understand the
process they used to go from requirements to design. We
solicited feedback on the approach to ensure that the
artifacts captured the design rationale of their systems.

These sysems come from domains such as
instrumentation and control, signal processing, central
monitoring, and communication. They vary in size,
complexity, and have different system characteristics that
influenced the architecture design such as fault tolerance,
multiprocessing, safety critical, real-time performance,
interoperability, distribution, heterogeneity.

The following table lists typical categories of
influencing factors based on our observations. Within
each category there will be a number of factors. For
example, the schedule (O4) will record the time to market
and how features are to be delivered; performance (P3)
will record latency and bandwidth considerations.

Organizational Technological Product

O1: Management T1: General- P1: Features
purpose Hardware

02: staff Skills T2: Domain- P2: User Interface
specific Hardware

O3: Development T3: Software P3: Performance

Environment Technology

O4: Schedule T4: Architecture P4: Recovery
Technology

O5: Budget T5: Standards P5: Diagnostics

The following table gives an indication of the kinds of
strategies we found in the systems we examined.

Organizational Technological Product

Reuse existing Encapsulate Use feature-based

components hardware components

Build rather than Separate Separate the user

buy processing, interaction model
control, and data

Makeiteasytoadd Usevendor- Separate time-

or remove features  independent critical components
interfaces

5. Experience with Using the Method

We have taught the global analysis method in courses
and have observed its use as it has been applied to four
additional systems as part of a forward-engineering
software development process.

A B C D
Application  data image business automation
mgt. mgt. mgt. mgt.
Factors
Org. 14 9 28 28
Tech. 8 7 22 14
Product 7 11 28 25
I ssues 11 3 19 23
Strategies 24 21 100 64
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System A is representative of the way global analysis
was applied. System A is a software system for acquiring
and processing meter data from electrical, gas, and water
meters [10]. System A performs calculations on the meter
data and the results are sent to a utility’ s billing system. A
global analysis specification was produced.

Factor tables were adopted asis. They are recorded in
tables in a globa anaysis specification document.
Columns record the factor name, description, flexibility
and changeability, and impact.

Experience with System A provided evidence of the
generality of the origina collection of factors and
categories. The author of the global analysis document
was able to cut and paste many of the factors from the
1 S2000 system and make minor modifications to adapt the
analysis to his stuation. An example of such a
technological factor was the database system. Although
marketing specified Oracle 8 be used it was known that it
would change over time. New database versions would
become available and some customers would prefer
databases from other vendors. The strategy for dealing
with this factor was to design a layer in the architecture to
isolate and encapsulate the database so that the effect of



changes could be localized and accommodated in the
future.

Experience with System A reinforced the importance
of considering organizational factors in addition to
traditional requirements and enhanced the collection of
project management strategies. An example of such an
organizational factor was that company management
wanted to get the product to market as quickly as possible.
Since the market was changing rapidly, it was important to
provide users with a subset of features so that they can
provide feedback. The strategy employed to address this
factor was to develop products incrementally so that
scheduled release dates could be met.

Experience with System A suggested improved support
for additional topics such as product lines. An example of
such a product factor was to support a product line in the
market place.  The graphical user interface must
accommodate many types of wusers for different
applications. A web-based GUI was employed so that
additional flexibility could be achieved as new
applications are added and location independence
achieved for the various user populations. The
performance of the system must scale for higher-end
applications so a scalable distributed platform was
necessary to meet these more stringent calculation time
reguirements.

A summary of issues and strategies was documented.
The summary provided a listing of the issue name with a
short description, factor cross-reference by number, and
strategy name. |ssue cards were not documented.

The strategies have implications for the project
management. Strategies were analyzed and consolidated
to develop project strategy conclusions about how the
system should be designed and developed. This short list
of major project strategies served as guiding principles for
al the development team members. These project
strategies helped define the project goals and risks that
must be mitigated for success.

System B is similar in scope to System A and yielded
similar conclusions. Systems C and D continued to
expand our repertoire of factors and strategies; but the
large number of factors and strategies that needed to be
considered challenged us to think about new ways of
managing and ordering this information. We address this
in the following section where we discuss | essons learned.

6. Lessons L ear ned

What value did global analysis add that wasn’t present
before global analysis was used?

Introducing global anadysis into the software
development process of new projects resulted in a global
analysis specification document that helped bridge the gap
between requirements and architecture design and
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provided a place to explicitly record design rationale. The
process of global analysis also can be used to build
stakeholder consensus. In one case, a global analysis
workshop was held to elicit feedback from stakeholders,
discuss conflicting stakeholder requests and possible
tradeoffs, and prioritize the factors.

Global analysis strategies advocated the adoption of an
architectural pattern or style, provided design guidelines
(encapsulation, separation of concerns), placed constraints
on elements of the systems, or introduced additional
structure. In essence, the drategies yielded a set of
congtraints on the architecture design in terms of
prescribing a collection of component types and their
patterns of interaction. These building blocks were
developed from software engineering principles and the
experience of building previous products. Component
types, their relationships, properties, and constraints
define an architectural pattern or style. As experience
grows these patterns may be codified and the architect
could select common patterns from a repository. The
patterns embody a set of predefined design decisions.
Congtraints that emerge during global analysis could be
used to select the appropriate ones.

Another benefit is improved documentation of the
system. Design decisions between and within views of the
architecture and the supporting rationale are recorded.
The drategies are linked backward to requirements and
forward to design decisions to provide traceability and
validation [2].

In addition to guiding architecture design, it was not
surprising to see the outputs of global analysis used by
project management, since architecture plays a central role
in software development activities. Issues and strategies
provide input for project strategies that are used in release
planning and scheduling in the software development
plan. Issues also capture risks that the project manager is
interested in tracking. Globa analysis helps identify
project and technical risks and suggest strategies for
mitigating them.

What should be changed as a result of using global
analysisin practice?

Many of the systems we examined had characteristics
of product lines. Global analysis takes on an even more
prominent role in product line design. The architect must
characterize how the influencing factors vary among the
products within a product line. The architect develops and
selects strategies in response to these factors to make
global decisions about the architecture that allows the
developers of the products to make uniform decisions
locally. Guiding the developers in this way ensures the
integrity of the architecture. This is an iterative process.
During the design, certain decisions feed back into the
global analysis, resulting in new strategies.

Since product lines focus on variations among
products, it would be advantageous to have separate



columns for flexibility, changeability, and variation so that
more guidance can be offered and the characterization and
its type of impact can be more precisely captured.

Strategies suggest solutions for addressing a problem
highlighted by an issue. Asthe architect selects a strategy,
it is being evaluated in a continuous activity that we call
global evaluation. Later on, these decisions could be
evaluated during an architecture evaluation exercise. It
would be beneficial while the issue is being articulated to
also link it to an evaluation technique such as scenarios
that would provide criteria for successfully meeting the
requirement. 1t makes sense to do so asthe issue is being
formed and input gathered from the architect and relevant
stakeholders rather than being captured after the fact
during an evaluation exercise.

What wasn't used from global analysis and needs
better elaboration?

Issue cards were not explicitly documented. The
information they were meant to capture is therefore
missing: text describing the problem and explaining
tradeoffs and the degree of difficulty, text describing the
factors in relation to the problem, and the solution
statement.

Instead of the issue cards, a summary of issues and
strategies table was used. This could be because the first
time global analysis was used the document was written
by the project manager. This experience showed the need
for two views of the global analysis information. Using
the summary of strategies served the project management
view well, but trying to use it for the architecture view in
lieu of the issue cards resulted in a number of problems.
This was seen in a subsequent project where an architect
used the global analysis document of the first as a
template.

A problem with not using issue cards is that the
summary table is not easy to read, especialy the factor
numbers. Instead of using numbers, it would be more
readable to include the factor name with a link to the
factor description and analysis. Issue cards help cross-
reference information among the factors relevant to
particular issues. Without their use, the factor table is
used to pick up the dack. But because it was not designed
for this purpose, the global tradeoffs and issues are more
difficult to discern. For example, factor tables are used to
address tradeoffs, such as schedule vs. qudity and
function. The impact column is used to address analysis
and the solution. Issues tend to get grouped into factor
categoriesinstead of being cross-cutting across factors.

What needs further study for improving the global
analysis method?

Issue cards were inspired by design patterns [7].
Further study and codification of the artifacts is needed to
see them effectively adopted in practice.

A catalog of common factors, issues, and strategies is
emerging. The original list of factors and categories was
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not meant to be exhaustive but illustrative. These factors
were inspired by standards such as ISO/IEC 9126, the SEI
taxonomy on software development risks, and our
experience with numerous case study systems. Some of
the additional factors we have seen include: legacy
systems, global development, project engineering (for
product lines), internet architecture technology (e.g.,
middleware, clients, and servers), scalability, and
usability.

Similarly the list of issues and strategies were meant to
be illustrative.  Strategies are drawn from software
engineering principles (loose coupling and high cohesion,
separation of concerns, encapsulation), heuristics,
patterns, and styles. As experience grows these strategies
may be codified [1].

It would be useful to identify a core set of factors,
issues, and strategies applicable to al systems. They
could be used to derive a global analysis checklist used in
conjunction with atemplate that the architect would use as
an integral part of design and not be viewed as an extra
documentation obligation.

A better articulation of the solution field in the issue
card is needed, explaining the dependencies and tradeoffs
among the strategies and how they might be used
separately or in conjunction with one another.

Thereisvaluein creating a global analysis document at
the beginning of architecture design to support
management functions. However, globa analysis is not
meant to be a static document but one that evolves as the
architecture is designed. The architect needs better
support in thisiterative process.

The global analysis data needs to be presented in
different ways to different stakeholders. For example, we
saw examples of how strategies were grouped by issues,
by project recommendations and by architecture structure
that they influence.

7. Conclusions

This paper has presented our experiences with a
practical approach for analyzing the factors that influence
software architecture. Approaches we have observed tend
to focus on the functiona requirements. But it is the
quality attributes and constraints from the organization
and the underlying technology that most strongly shape
the architecture. These organizational, technological, and
product factors are analyzed in global analysis. We have
presented examples of factors based on experience and
see arolefor a catalog of such factors.

Global analysis helps the architect make the conceptual
leap from the requirements to architecture design. Global
analysis identifies factors that influence the architecture
and yields a set of constraints on a collection of
architecture design element types and their patterns of



interaction. Global analysis also helps the architect record
design decisions made between and within views of the
architecture and the supporting rationale.

These factors are constantly changing. We found that
successful architects analyze factors that have a global
influence to produce an architecture that localizes the
effects of change. Globa analysis aids the architect in
designing for change and building flexibility into the
software.

To help the architect in this process, we have provided
a two-phase approach for analyzing factors and
developing strategies. The process is iterative and may
start with either phase. We have provided factor tables
and issue cards to capture the information.

We have validated and gained experience with this
approach in three ways. First we developed the approach
informally while designing the architecture for an image
acquisition and processing system. Second, we did a
retrospective analysis of four existing systems,
interviewing the architects to understand the process they
used to go from requirements to design, and getting their
feedback on the resulting global analysis approach and the
artifacts captured for their systems. Third, global analysis
is being taught in courses and used in new software
development projects. The result is the production of
global analysis documents that are used by the architect,
project manager, and other stakeholders. The benefits
they have realized include: documented factors and design
strategies that guide the architecture design; inputs for
developing project strategy conclusions, goals, and risks;
and improved documentation of the architecture. These
applications give us confidence that the approach is
practical and helpful.
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Abstract

Architectural considerations play a key role in the
success of any software-based development project.
Architecture evaluation is an early risk reduction method
for identifying risks that prevent a system or product line
meeting the organization’s business goals and customer
needs. This paper introduces a tool that supports
architecture evaluation. It gives an overview on its
information management capabilities and discusses
development issues as well as the underlying data model.

1. Introduction

Architectural considerations play a key role in the
success of any software-based development project.
Architecture evaluation is an early risk reduction method
for determining whether the system or product line will
satisfy the desired business and quality requirements. An
important prerequisite to achieve this is getting an
understanding of the consequences of architectural
decisions with respect to those requirements.

Unfortunately, requirements specifications are often
not definitive enough in practice, neither for architectural
design nor for evaluation. As a consequence,
requirements must be made explicit in order to be useful
for development. Scenarios are practical in this respect
since they allow to describe concrete interactions between
the stakeholders and the system. They are, for example,
useful in understanding run-time qualities such as
performance and reliability. This is because scenarios
specify the kinds of operations over which the qualities
need to be measured, and the kinds of failures the system
will have to withstand. Therefore, scenario-based
methods have been proven useful in practice for
evaluating architectures during a review [1, 3].

This paper describes a tool that supports scenario-
based architecture evaluation. In Chapter 2, we sketch
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basic steps performed during an evaluation. Chapter 3
introduces AET, a tool developed by the authors that
supports the evaluation team during a review. In Chapter
4 development issues of the tool are discussed. Finally,
Chapter 5 concludes with a short summary and gives an
outlook on further development activities.

2. Architecture Evaluation

The goal of an architecture evaluation is to identify
risks that prevent the system or product line to be
successful. Successful systems meet the organization’s
business goals and satisfy the customer needs.

The Software Technology department of Robert Bosch
Corporate Research and Development performs
architecture evaluations for business units [2, 3]. Some of
these evaluations are based on [1]. Typical activities of
[1] are the following:

Step | Description

Presentation

1 Present method: The evaluation team describes
the evaluation method to the assembled
stakeholders (typically, architects, managers,
marketing, integrators, testers etc.).

2 Present business drivers: The marketing
representative describes what business goals are
motivating the development effort and hence
what will be the primary architectural drivers
(e.g., high availability or high security or time-
to-market).

3 Present architecture: The architect describes
the proposed architecture, focussing on how it
addresses the business drivers.

Investigation and Analysis

4 Identify architectural solutions: Determine the
central mechanisms (e.g., architectural styles or

patterns) used in the architecture.




5 Brainstorm and prioritize scenarios: The
stakeholders elicit scenarios to make business
drivers and important requirements more
concrete. The scenarios are then prioritized
according to a ranking scheme (e.g., market
importance and effort/cost).

6 Analyze architecture: Evaluate the architectural
decisions made to achieve the high-priority-
scenarios. This is supported by examining the
architectural solutions from step 4 and by
identifying those design elements that are
affected by the scenarios.

Reporting

7 Present results: Present the findings (e.g., risks)
to the audience and summarize them in a written
report.

In the past, the results of an evaluation have been
documented in prose. As a consequence, the access on the
results of those evaluations was quite inefficient and
unsatisfactory. This motivated us to start the development
of a database application. One goal was to create an
experience repository of architecture evaluations, another
to speed up information access and report generation. In
the next chapter we describe the current status of the tool.

3. Architecture Evaluation Tool

The Architecture Evaluation Tool (AET) is a research
tool developed by the authors at the Software Technology
department of Robert Bosch. It supports a review team in
documenting results and managing information during an
architecture evaluation. AET makes reporting more
convenient and allows exploring the content of an
evaluation.

AET uses two different databases to store information:
one for general data and one for project data. The general
database contains static data — this means, data that does
not depend on a specific system context. General data
such as general analysis questions or scenarios can then
be used to support the evaluation of a particular system.

The project database contains project-specific
information obtained during an evaluation (dynamic
data). It includes data such as qualities, scenarios,
architectural approaches, and risks that have been
identified and examined during evaluation.

In the following we describe how AET can be applied
in practice during an architecture evaluation.

3.1. Requirements and Qualities

During the presentation of business drivers and the
architecture (step 2 and 3), a lot of information about
requirements and quality attributes is usually obtained
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from stakeholders. This information can be recorded in
AET for later exploration and reference. Business goals,
functional requirements, and design constraints can be put
into a requirements list. Quality attributes can be
documented in a quality tree. A sample quality tree for a
fictitious Embedded Vehicle Control System (EVCS) is
shown in Figure 1.

El@ Project Qualities
El@ | ntegrability

...... {0 3d party software

-1} Modifiabilty

@ Performance

- (@) Portability

-1} Reliability

..... @ Device failure

..... @ Software failure

-1} Scalabilty

[_]@ Security

----- @ Perzonal data protection

¥
=

----- @ Protection againzt illegal manipulation

AT Usabilty
----- @ Lirnited systern adminiztration

----- {1 Training

----- {1} Localization to regional requirements

----- {1 Consistent manner of operations

Figure 1. Quality Attribute Tree

Optionally, a starter set of typical quality requirements
and scenarios for the type of systems under evaluation
(e.g., embedded automotive systems) can be generated
from the general database.

Each quality attribute may contain one or more sub-
factors, as shown in Figure 1. Sub-factors describe
specific stakeholder concerns of the quality. For example,
in Figure 1 “personal data protection” is of specific
concern for security. Note that each item in the quality
tree can be moved easily. This allows quick modifications
during an architecture evaluation.

3.2. Scenarios and Prioritization

AET allows to record the scenarios gathered in step 5
in a scenario list, as illustrated in Figure 2. Scenarios can
also be described in more detail. For example, you can
document potential stimuli and responses in order to
make the expected behavior more concrete. In addition,
you can link scenarios to a particular quality attribute or
business goal in order to document that it contributes to
that attribute or goal. In Figure 2, the selected scenario



contributes to “quick start up” which is a sub-factor of
performance.

Furthermore, you can assign stakeholder priorities to
each scenario, as defined in step 5. The scenario priorities
then drive the further analysis. In the example of Figure
2, we use two dimensions (business importance and
architectural difficulty) and three values (High, Medium,
Low) for prioritization.

However, AET allows to adapt the dimensions and
priority scale to fit individual needs of the evaluation, as
shown in the lower right of Figure 2. Scenarios can easily
be sorted according their priority such that the most
important ones (high importance, high difficulty) appear
at the top of the list.

3.3. Scenario Analysis

Each scenario can be analyzed in AET. Usually, you
start with the most critical scenarios. There is room for a
detailed description of the analysis results, including text
and pictures. For example, you can describe the

architectural elements that contribute to a particular
scenario. You may also like to document how the
architecture would need to be changed to accommodate a
scenario. The description is stored in HTML-format in the
database for post-processing.

Furthermore, AET allows to classify important
findings of the analysis. Important finding are, for
example, risks or tradeoff points. Risks arise from
architecturally important decisions that have not been
made, yet. A tradeoff point occurs when multiple quality
attributes are differently affected when changing one
architectural parameter. For example, improving
throughput may result in reduced reliability.

When recording a finding, AET directly links the
finding to the scenario under analysis. This is very useful
since it allows you to easily trace back risks, tradeoffs,
issues etc. to its source — the scenario. You may follow
the trace to obtain a more detailed description of the
analysis. Storing traces also supports statistics, for
example, about which scenarios are most critical for the
success of the system.
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File Wiew Settings Help
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m Project Data General Data | [rata Management |
Scenarios Title | Importance | Difficulty | - Add
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@ Integrate control of the air conditioning inta the spstem High Lowe _—
@ Change the operating system from Windows CE to Vaworks Medium High
@ Connect laptap to the system and transfer infarmation via e-mail Medium tedium
@ Intearate safety critical components inta the system Medium tedium
@ Integrate different communication bus inta the system Medium Law ;I
Description | The user starts the car. The system should be initislized and be available for use in less than ten seconds. ;I
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Stimulus IUser starts car

Response ISystem iz available after ten seconds
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Delete Medium il
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@ Froject |® Hequirementsl @ Qualiies

) Scenarios | @ Lnalysis | 3 Reults |

For Help, press F1

I I

Figure 2. Classification of Scenarios in AET



3.4. Analysis Results

Since the number of risks identified during an
evaluation can be high, AET allows to classify them in
risk themes [1]. Risk themes summarize key architectural
issues that pose potential future problems for the success
of the system. For each risk theme, AET allows to assign
one or more findings. In addition there is room for a
detailed discussion of the risk theme. Risks and risk
themes can be clearly arranged in a “result tree,” as
shown in the lower part of Figure 3. This tree is
automatically generated by AET based on the
relationships between findings and risk themes.

AET can also generate a “utility tree,” as illustrated in
the upper part of Figure 3. This tree represents a summary
of the elicited scenarios and priorities together with the
respective sub-factors and quality attributes. As shown in
Figure 3, four scenarios have been documented to address
the modifiability concern of supporting “multiple
customers.”

Finally, the results documented in the AET project
database can be included in a written report. The different
tree views visualize the results of the evaluation in a
concise form. This supports clarity and understandability
of the documentation.

— Utility Tree

4. AET Development and Database Model

AET is an easy-to-use application. It is implemented in
C++ and runs on Microsoft® Windows operating
systems. It uses a commercial database system for storing
and retrieving data which has reduced the development
effort drastically. Furthermore, AET deals efficiently with
its resources. It is thus a suitable companion for a mobile
application at the customer site.

From the architectural perspective, AET is organized
in three layers: presentation, application, and data
management. The presentation layer is responsible for
user interaction and data presentation. Data post-
processing such as scenario sorting or combining data
from different database tables is done in the application
layer. The data management layer provides low-level
services to access and maintain the database.

Figure 4 shows a simplified model of the project
database. For each evaluation project you can record
individual  requirements,  scenarios,  architectural
decisions, findings, and risk themes. Priority dimensions
and scales are global to a project. Each scenario can have
a ranking. The ranking must conform to the global
scheme defined for the project.
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Figure 3. Tree View of Qualities, Scenarios, and Analysis Results



Priority contains ) documents_problems_of
. h Project
Dimension
1
Priority Scale has
is a has_impact_on
Business Driver — > Requirement
1
Functional
Requirement
is_made_concrete_by
Quality
Requirement
L. . has . has i
Priority Ranking Scenario Stimulus
1 1
1
conforms_to
is_used_to_identify
Response
* is_analyzed_to_identify
Archi ral - classifies )
¢ t_e(ftu a Finding Risk Theme
Decision . N . y
1
Zr is_a
Risk Sensitivity Point Tradeoff Issue
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Scenarios have a stimulus and a response. They are
explored in order to identify architectural decisions.
These decisions can further be analyzed to identify
particular findings. A finding can be a risk, sensitivity
point, tradeoff, or issue. Risk themes classify and
summarize findings. Each risk theme has an impact on
one or more requirements — this means, some of the
business drivers or qualities cannot completely be met.
The risk themes document the problem areas associated
with the system under evaluation. They indicate how
close an organization is to fielding a successful system.

5. Summary and Qutlook

In this paper we have introduced AET, a tool that
supports scenario-based architecture evaluation. We first
discussed typical steps of an architecture evaluation.
Next, we gave an overview of AET, and, finally, we
sketched development issues and the AET data model.
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AET is still under development. We plan to improve
the export interface for report generation and to include
functionality for querying the project database and for
performing evaluation statistics.
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Abstract

A good software architecture is becoming recognized as a
major factor for successful products. There has been
much research on the technical aspects of software archi-
tecture and it is recognized that the driving requirements
for architectures are "non-functional”, but few have stud-
ied how organizations decide on architectural changes. In
this paper we study the topic through several case studies.
The changes to the architecture are in all cases changes
to the "non-functional” requirements on the system. I ssues
that we want to evaluate are: when and how is the need
for an architectural change discovered; what isthe under-
lying non-functional requirement; who drives the change;
how is it prepared and evaluated; and finally, who makes
the decision and how isit implemented.

Through interviews with people that have experience
from architectural changes we compare the decision
process for architectural changes to the ordinary func-
tional requirement change process and the organizational
change process. We find that architectural changes have
aspects of both functional and organizational changes. An
architectural change does not only need to be technically
sound, it also needs to be anchored firmly in the or ganiza-
tion. This report gives both architects and managers
guidelines to balance short-term project goals and long-
term organizational goals with respect to architecture.

1. Introduction

Software architecture is becoming a well-established field
in technical terms, i.e. the different types of architectures
have been characterized [1]; different useful views of the
architecture have been described [2, 3]; as well as books
covering the whole area, eg. [4, 5, 6]. However, little
research has been done on how decisions on architectural
changes are made in organizations.

Architectural changes are often different in nature
from other functional changes. They can impact larger
parts of the product, they can imply new ways of working,
they are often not clearly connected to one customer re-
quirement, and they are often expensive to implement.
Functional changes often originate from a customer de-
mand and are the responsibility of a defined role in a
company, i.e. product management. Architectural
changes, on the other hand, often emerge from various
sources, and roles are seldom defined to drive such
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changes. All these factorsimply that they differ from pure
functional changes.

The process for taking decisions regarding functional
changes and features has received attention in recent years
[7, 8]. Software development processes generally support
this rather well. When it comes to decisions regarding the
software architecture, the architect is often not so well
supported, neither for the analysis of the technical impacts
nor the organizational aspects of the change.

Since architectura changes have impact on organiza-
tions they might be best compared to the organizational
change process, as defined by Kotter [9]. Kotter’'s eight-
stage process describes how to prepare an organization for
major change, and how to anchor the change in the or-
ganization:

Establishing a sense of urgency

Creating the guiding coalition

Developing avision and strategy
Communicating the change vision

Empowering employees for broad-based action
Generating short-term wins

Consolidating gains and producing more change
Anchoring new approaches in the culture

These steps will be referred to in the overview of the
suggested process for architectural changein Section 3.

This paper examines how severa changes to the
software architecture have been handled at three software
development organizations, and what internal or external
forces that drive the need for changes and control which
solutions are decided upon. Concretely we have |ooked at
the following questions for each architectural change:

1. What isthe architectural change?

2. Why was the architectural change needed?

3. Whoinitiated it?

4. How was the associated decision made?

Based on the analysis of these questions, the ordinary
process for deciding on functional changes, and theories
for organizational change, we propose a process for han-
dling architectural changes, which provides guidelines to
consider in each step.

The three companies involved in this study are indus-
trial partners of the Center for Applied Software Engi-
neering at Lund University (LUCAS). Part of LUCAS is
the LUCAS Architecture Academy that is a one-year part
time software architecture education program for the
LUCAS partners. This research is done based on issues
that came up in the context of the architecture academy.
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2. Method

In this study we have studied seven architectural changes
initiated at three Swedish software-devel oping companies.
The project has included a number of sessions where the
companies present their architectural work for each other,
and issuesin the area have been raised and elaborated.
The approach taken in this research can be described
as flexible [7]. This type of research is characterized by
less pre-specification than in, for example, controlled ex-
periments. In a flexible design the mgjor research ques-
tions can be specified in advance, athough they must be
allowed to evolve during the course of the research.
Qualitative data has been collected in two sets of in-
terviews. The first set was held with architects and system
designers at the three companies to collect information
about the companies, their products, and their architec-
ture. Recent architectural changes were identified. Key
persons in those changes were interviewed in a second set
of interviews. These interviews were guided by the four
guestions mentioned in the introduction. The data was
then analyzed according to the following factors:
= Architectural change
»  Phase of change process
»  Topicsthat were considered important in changes
The collected data was categorized and tabulated ac-
cording to these factors, and analysis was carried out
through discussion and pattern searching.

3. Process Overview

This section describes our suggested process for making
technical decisions. The process is illustrated in Figure 1
and has been derived from the case studies, Section 4. The
relation between the process and the case studiesis shown
in Section 5. The purpose of this process is to enable or-
gani zations to make the right decisions by the right people
at the right time. From an employee viewpoint the process
shall give guidance in the decision process, both for
change initiators and decision-makers. Note that one as-
pect that differentiates the architectural change from the
functional change is that the functional change usually is
initiated by a customer request, and there is usually some-
one in the organization dedicated to handling these, e.g.
product management. Architectural changes can be initi-
ated by many roles in the organization.

The genera process for functional changes involves
requirements elicitation, pre-studies, implementation, and
related decision-points. It focuses on how an organization

1. Initiation:
A need emerges

- =

shall make decisions. Kotter's [9] process for large-scale
organizational change instead focuses on how to make
changes happen. In the following process the two features
are combined. This has basically been done by mapping
Kotter's change process onto the functional change
framework, which is considered to be fairly established in
software industry. In practice the process therefore has to
be adapted to the present functional change framework.

1. A need emerges. The process is superceded by a
chain of events where need for change emerges or is
created, and someone, the change initiator, sees this
need and considers it his or her responsibility. This
can to some extent be compared to Kotter’'s Estab-
lishing a sense of urgency, and to requirements elici-
tation in afunctional change process.

2. Initial decision preparation: In this phase the
change initiator does preparations with the goa of
getting resources to analyze and implement the
change.

= Document background: To increase the chance of
having an impact on the resolution of the need, the
change initiator should document the background
of the need, i.e. what products, components or or-
ganizational entities are involved, the history be-
hind the need, how it manifests itself, what effects
it might have not to satisfy the need etc.

= |dentify stakeholders/decision makers: While
documenting the background, stakeholders are sure
to emerge. In order to have optimal impact, the
change initiator should pay specia attention to
these and especially to the decision makers that
will be involved in the following process. This is
related to Kotter’s Creating the guiding coalition.

3. Decision: Go/no-go: An initia decision must be
made whether the issue at hand is adequate and feasi-
ble to treat. Probably, there has not been spent very
much effort before this decision point, e.g. one per-
son’s work for hours or days. Work done in the rest
of this process, but before a decision on any particu-
lar solution or implementation of change, probably
reguires resources that must be budgeted, e.g. a hand-
ful of persons or more, which work for days or
weeks. Therefore a person responsible for resources
must make a decision whether to go on with this
process or not. The formality of this decision-point is
controlled by the organization at hand. If the change

2. Initial decision preparation: .
3. Decision:

Document background Go/no-go

Identify stakeholders

4. Decision preparation:
Analyze technical alternatives
Analyze organizational impact
Return on investment

5. Decision:

Rollout 6. Rollout

Figure 1. The process of architectural change
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can be viewed as a normal product requirement or
change proposal, it can be treated as such through the
ordinary channels: implementation proposal and re-
lated decision points. If the change however is more
of achange in the way people work, or achangein an
internal quality attribute not leading up to completion
of a specific project, the process steps that follow are
of a different complexity. The risks of facing opposi-
tion are higher and the decision process and prepara-
tions must be more thorough.

Decision preparation: This phaseis akin to perform-
ing a pre-study or devel oping an implementation pro-
posa in technical change management. In terms of
Kotter's process, it resembles Developing a vision
and strategy.

= Analyze technical alternatives: When technical al-
ternatives have been proposed, these can be ana-
lyzed from an architectural viewpoint in a number
of ways[11],i.e. ATAM [12].

* Analyze process and organization impact: When
making atechnical analysis, the organizational im-
plications are often forgotten. This might lead to
unexpected resistance to a change. An organiza-
tional analysis is therefore made, based on the ini-
tial analysis of stakeholders, in order to assess the
impact of the change and prepare the organization
for the change. The activity therefore contains parts
of Kotter’s Communicating the change vision.

» Return on investment: The need that the change
satisfies has to have a financial side. A return on
investment analysis will simplify getting support
for the change from top management and manage-
ment of any project that might implement the
change. This activity will support Kotter's Gener-
ating short-termwins.

Decision: Rollout: Software projects generally have
atollgate or decision point where it is decided which
implementation proposals will be include in the re-
sulting product. The same decision is made in this
phase, regarding technical aspects of the architectural
change. Organizational changes are however not suit-
able to implement in a product oriented project, and
will therefore need another form of implementation
and associated decision.

Rollout: This activity involves the implementation of
the change. The objective of this process is that the
rollout of the technical part of the change shall be
carried out within an ordinary project, i.e. where gen-
erally most organizationa resources are alocated.
This has to be synchronized with the rollout of the
organizational change, which must be managed by,
and given resources from, the line organization. This
activity is related to the late phases of Kotter’'s proc-
ess. Consolidating gains and producing more
changes, and Anchoring new approaches in the cul-
ture.

When comparing to Kotter's process it is important to
keep the proper context in mind. Kotter presents a process
for long-term organizational changes, which means some
phases are of a different scale. Kotter's process aso fo-
cuses on engaging employees and preparing an organi za-
tion for a change, and not so much on how to perform the
actual change. Since this paper focuses on changes to
software architectures, we can use the decision framework
common in software projects as a basis for a change proc-
ess with features of both perspectives.

4. Case Descriptions

This section describes architectural changes at three com-
panies, located in southern Sweden. All companies de-
velop products to a mass-market, and their products have
long lifetimes. Thisimpliesthat their architectures need to
support several simultaneous versions of their products,
with several releases over an extended period of time.

4.1 Company A

Company A develops control system environments for
industrial automation, e.g. chemica plants, dairies, oil
platforms, etc. The control system environment consists
of both a development view, called control builder, and a
deployment view, i.e. the controller itself. Within the con-
trol builder, controllers can be designed by specifying
hardware sensors and actuators, constructing control
loops, and connecting variables in those control loops to
the hardware devices. A fully specified system can then
be compiled and deployed onto a controller in a control
system.

Company A typically carries out one large project at
a time, involving the entire organization. Each project
evolves the same product further by adding features to the
control builder, e.g. new editor facilities, and the control-
ler, e.g. new hardware interfaces. |mplementation propos-
as are developed during a feasibility study. Accepted
implementation proposals pass a tollgate, where after im-
plementation begins. Development is organized in teams,
each working on a number of implementation proposals.
Work is feature-focused and the organization has no mod-
ule-responsible and no architects, but instead relies on
senior developers to take responsibility for long-term ar-
chitectural goals. Two changes were studied at the com-
pany:
Protocol Framework: Company A recently acquired
companies within their domain in order to increase their
market share. The controller developed by Company A
was intended to replace those companies’ products. To
support the same customers, the controller therefore had
to support a number of legacy protocols from those prod-
ucts. This was realized as a problem using the present
architecture, as the protocols were intertwined with the
rest of the code, and could only be developed at one site,
the one studied here. This site only had capacity to de-
velop 1-2 new protocols per project. To be able to develop



severa protocols ayear, Company A decided to develop a
generic 10 and communication protocol framework. The
solution was developed through a pre-study and an im-
plementation proposal, which resulted in a solution that
enabled frequent releases of the product with many new
or legacy protocolsin each release. Thiswould be accom-
plished by letting other departments of the company de-
velop the protocols they were responsible for, using the
protocol framework.

Real-Time Operating System: Company A had for a
number of years had discussions about cutting licensing
costs on Real-Time Operating Systems (RTOS). A sug-
gestion from local product management at the studied site
to develop their own RTOS was rejected by local devel-
opment management. In parallel, high-level management
decided to reduce the number of RTOSs to only one. This
would not only lower licensing costs but aso provide fo-
cus on a common competency regarding RTOSs and tool
support, which would standardize and simplify distributed
development. Top-level development management initi-
ated a pre-study across al departments of the company.
Participants were interviewed regarding their use of, and
competencies in RTOSs. The site studied here used one
RTOS, but the pre-study led to a recommendation for all
departments to switch to another. Eventually the recom-
mendati on became a requirement for a project at the stud-
ied site. This requirement was postponed by the local or-
ganization, while an OS expert prepared a solution with a
Virtual Operating System (VOS) layer, which was intro-
duced in alater project.

4.2 Company B

Company B develops platforms for consumer electronic
devices. These platforms are sold to external customers
who configure the services within the platform to create
complete products. The software platform consists of a
number of modules, and a middleware layer hides the
internal architecture from the customers.

Projects are organized in: a project management
group, with product management responsibility; a system-
engineering group, with expert groups and function
groups responsible for major features within market re-
quirements; and a system realization group, which re-
ceives specifications from the system engineering group
and develops the platform. The system realization group
is divided into a hardware- and a software branch, which
are subdivided into development teams responsible for a
set of modules. The organization has module responsible
that work with function groups during specification and
development teams during implementation. The company
also has adedicated architecture group that performs most
of its work within projects, especially supporting and in-
fluencing the system-engineering group. Three changes
were studied at the company:

Data Router: During routine reviews the system-
engineering group discovered several modules handling
data streamsin similar ways. These modules could instead
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use a common data router and thereby save memory. The
architecture group developed a design proposal that was
approved, but no resources were provided from the pro-
ject. Project management did not consider the memory
savings to be large enough. Therefore the solution was
implemented by the software architecture group, and inte-
grated with a small-scale system on an isolated branch of
the code. After inspection this branch was merged with
the main track, and the software architecture group initi-
ated documentation and education on the new architec-
tural mechanism. The solution was still not widely ac-
cepted, as most modules already had their own implemen-
tations of the same functionality.

Hardware Abstraction Layer (HAL) Split: The bottom
layer of the architecture had existed in previous versions
of the product, but had not been formally defined, and
therefore there had been no clear rules as to how to access
the hardware. The hardware was also not encapsulated
well enough from the magjority of the software, leading to
unnecessary impacts in the software when the hardware
changed. The developers working in the lower layers of
the product realized the need for a clearer definition of
these layers. They proposed a solution that meant clearing
the HAL interface from hardware dependencies, i.e. creat-
ing alogical layer on top of the previous HAL. One driv-
ing force for introducing this logical layer is that the cost
for a product developed from the platform is very depend-
ent on the hardware components used, and therefore these
are often changed to provide cheaper solutions. The pur-
pose of the logical layer isto alow such changes without
expending effort in the higher layers of the software.

The solution was presented for the system-
engineering group and brought to the software architec-
ture group. When the proposed solution was established
within the system-engineering group and the software
architecture group, project management decided to assign
resources to the change. The software architecture group
introduced new coding rules according to the suggestion
and made changes to the architecture descriptions. At the
same time, the developers in the HAL prepared by plan-
ning the change, before doing the actual implementation
when resources were assigned and the architecture was
updated.

Include-file Reorganization: The software architecture
group had created a flexible structure for the source- and
include-files. The design rules that enforced this structure
required several files for each component, and when the
number of modules grew to around 100, unexpected ef-
fects on the development tools emerged. Compilation
times increased, the configuration management system
behaved sluggishly and the globally distributed CM serv-
ers started to crash more frequently. The persons respon-
sible for tool support within Company B were in contact
with support personnel from the tool supplier, who identi-
fied the problem as having too many files in the system.
The software architecture group was assigned to create a
new structure.



The flexibility provided by the original structure was
only needed by afew of the about 100 modules, and these
could continue to use the previous structure. The rest of
the modules were given a new structure, which basically
involved merging three or four source files into one file.
Thisresulted in a three-to-one reduction of source files.

4.3 Company C

Company C develops software engineering tools. One of
their main products is a design tool that consists of a
front-end with editors for various types of diagrams and
source code, and a back-end for compiling the diagrams
into code. Other utilities such as a simulation tool are also
part of the design tool.

Company C releases a new version of their product
every six months, and successive release cycles overlap.
Features are implemented by development teams in an
assembly-line fashion, described in [13, 14]. The organi-
zation has architects per project but no establisehd line
organization for architecture, and module responsibility is
assigned to senior experts. Two changes were studied at
the company

Communication Mechanism: New requirements, espe-
cialy related to new language standards, have meant that
the old architecture could not support further develop-
ment. Therefore top-level management decided to create a
new product generation. Company C had recently ac-
quired other companies, which developed software engi-
neering tools that were to be integrated into the new prod-
uct. One of the problems with the new requirements was
an increase in the number of diagram editors. The old
communication mechanism did not support this increase,
but one of the acquired companies had recently solved
that problem, using a common object model. A technical
discussion led to a consensus of using the new solution,
although it meant major architectural changes.

Editor Framework: The editor framework used to de-
velop graphical editors was also changed using a more
generic solution, a decision also taken by consensus in the
development project. The drivers for this change were
increased reuse of common editor elements, and outsourc-
ing of development throughout the organization. Several
other decisions in this change process had to be enforced
by the responsible architect, as consensus could not be
reached. Both these changes were introduced in the same
project.

5. Analysis of Process versus Cases

This section compares the process suggested in Section 3
to the architectural changes described in Section 4.

5.1 A Need Emerges

Before the suggested process is initiated a need for a
change somehow appears. The reasons for changesin this
report has included business decisions to increase market
share, lower costs and lead time, but also more technical
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reasons where the architecture has not been able to sup-
port increased complexity and new features.

In Company A the need for the protocol framework
was initiated when top management decided to increase
the market-share by acquiring other actors in the same
domain. Mid-level managers and experts then saw the
need for support of legacy protocols found in the newly
acquired companies products. The need for a change of
RTOS on loca level came from a higher-level need to
save licensing costs and focus competencies by reducing
the number of RTOSs. The process was initiated by
higher-level management and supported by developers at
other sites of the organi zation.

In Company B the introduction of a data router was
driven by memory size being an important quality attrib-
ute. The opportunity to save memory was discovered by
system engineers during routine code-reviews. The need
for a HAL split emerged as the company wanted to be
able to change hardware components frequently in order
to save costs. The hardware-rel ated devel opers themselves
initiated the change in order to simplify the frequent
changes. The need for an include-file restructuring be-
came apparent, as the configuration management tool did
not support the existing structure. The architecture group
initiated this change since they were responsible for the
include-file structure.

The product generation shift performed in Company
C contained two major changes. A new mechanism,
which allowed different editors to work against the same
system representation, was introduced in order to increase
the number of possible editors. A framework for editor
development was introduced in order to increase reuse of
common editor components and enable outsourcing of
editor development. Local experts initiated these changes
and the technology came from the newly acquired compa-
nies.

Change initiators have been identified from all levels
of the companies, i.e. managers, experts appointed when
the issue came up or as part of their ordinary role, where a
special case is the architects themselves, and down to the
developers. This can be compared to functional changes
where needs often emerge from customers and are taken
care of by marketing or product management.

5.2 Initial Decision Preparation

A decision process that can be initiated by non-decision
makers will eventually have to be brought before a deci-
sion maker. In this phase the change initiator documents
the background of the issue, and identifies stakeholders
and decision makers.

When the need for legacy protocol support had
emerged in Company A, loca experts and managers ana-
lyzed the protocol framework solution in a pre-study.
Limited attention was however paid to other departments
that were supposed to implement protocols on this frame-
work. Regarding the change of RTOS, the pre-study had
been carried out by higher-level management. This re-



sulted in recommendations to change to a single and
specified RTOS. The pre-study involved interviews on all
company sites.

The introduction of a data router in Company B was
initially prepared by the system-engineering group by
marking the places were similar functionality had been
found. Stakeholders such as current users of such func-
tionality and future clients to the data router were loosely
identified but not further analyzed. The only stakehol der
that was approached was the architecture group, who
would be responsible for developing an implementation
proposal. Regarding the HAL split, the developers in that
layer prepared a solution themselves, and set up ameeting
with the appropriate decision-makers, in this case the sys-
tem-engineering group. In the case of the include-file re-
structuring, the initial preparation was made by the tool-
vendor’s support organization. They concluded that the
projects contained too many files. The architecture group
was identified as a stakeholder, since they had developed
the previous structure. Apart from that, stakeholder identi-
fication was not done actively, since the frequent tool
failures meant that stakeholders presented themselves.

In Company C the first steps of the product genera-
tion shift were taken on many levels, both within the
origina organization and by developers and managers in
newly acquired organizations. Technical discussions were
held which lead to the realization that the whole architec-
ture had to be changed. Solutions were gathered from all
parts of the organization, and the new architecture was
adapted to enable distributed development. Stakeholders
and decision-makers were therefore covered.

In the case studies we have seen examples of less
successful changes, where too little has been known about
the impact of the change. Effects of functional changes
are often more limited and customer-oriented. As opposed
to architectural changes, functional changes often have
resources allocated to this phase, such as product man-
agement performing requirements elicitation.

5.3 Decision Point: Go/No-Go

In this activity the first decision to commit resources is
made. The right decision maker shall have been defined
previously, and process and organizational i ssues must not
be forgotten in this decision.

In Company A, local level management decided that
an implementation proposa of the protocol framework
should be developed, since the solution would allow for
more protocols and more frequent releases of the product.
The organizationa impact was not given much focus in
this decision. Regarding the RTOS switch, top manage-
ment decided to turn the recommendation into a require-
ment for the following projects. This requirement was
later postponed by the local organization.

In Company B, the system-engineering group decided
that the architecture group should devel op an implementa-
tion proposal of a data router. Regarding the HAL split,
the solution was so well prepared by developers that nei-
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ther the system-engineering group, nor the architecture
group had to invest large resources in preparation, and
therefore the related decision was of little significance.
Regarding the include-file structure the architecture group
themselves decided that they should develop a solution.
Resources spent by the architecture group were consid-
ered insignificant in comparison to the resources wasted
during tool problems. Organizational impact related to
difficultiesin rolling out the new structure was considered
at this stage.

In Company C, the decision to apply resources to the
change process was at a higher level, since it involved
starting a whole new line of product-oriented projects. A
decision was therefore made by top management to pre-
pare and plan for afirst project, which should result in a
prototype for the product.

A forum for architecture issues could be hel pful when
making this decision. Considering functional changes,
organizations sometimes have product management fora,
making similar decisions. The problem for the architect is
that the decision is one of resources, for which the archi-
tect seldom has responsibility. Getting project resources
has a benefit since the change can be more easily em-
braced by that project. It is however not trivial to receive
resources from a project manager.

5.4 Decision Preparation

In the decision preparation phase a small group of people
will analyze technical aternatives, process and organiza-
tional impact, and return on investment. From a company
viewpoint this is done to make the right decision, and
from an architect or change initiator viewpoint this will
help convincing people of the need for change. This phase
is similar to devel oping an implementation proposa when
making a functional change, and should therefore be
adapted to how implementation proposals are handled
within the organization. The analysis of technical alterna-
tives can be done in paralel with the analysis of process
and organizational impact.

At Company A, the protocol framework was prepared
by developing an implementation proposal, in the same
way as a normal requirement. The technical solution was
based on expert opinions. The process and organi zati onal
impact was considered, and a pilot study was made which
involved devel oping a protocol at another site in the same
company. However, there are many developers in the ac-
quired companies that are impacted by this change but
have not been involved in the first phase. The change of
RTOS was postponed to a later project, and in the mean-
time an OS expert prepared a solution involving a VOS
layer to allow for several operating systems. One organ-
izational impact was overlooked, as the change meant that
new RTOS support contacts had to be established. Re-
garding return on investment, the change of RTOS lead to
no short-term wins for the local organization.

In Company B, the architecture group developed the
data router solution in a pre-study. It was based on a ready



implemented solutions, but the group failed to realize op-
position from project management and developers. A re-
turn on investment was calculated late in the process. The
developers had aready prepared the HAL split so the ar-
chitecture group only had to prepare changes to architec-
ture documentation and design rules. No quantitative re-
turn on investment was made but the ability to change
components was considered an obvious benefit. Regard-
ing the include-file restructuring, the architecture group
found that the flexibility provided by the original structure
was only needed in afew modules, and asimpler structure
was created for other modules. Return on investment
calculations were made regarding the rollout, since rollout
was expensive and did not contribute directly to any
product.

In Company C the first project of the new product
generation was planned. When making technical decisions
many parts of the organization were involved, and con-
sensus in joint forums was the goal. When this could not
be reached, the architect responsible for that type of func-
tionality had to make the decision. Organizational impact
was not only considered when selecting solutions, but also
when distributing development of various modules. This
distribution could at least in one case have been better
planned, as they ended up with developing a module at
one site, which was highly dependent on two other mod-
ules at another site, leading to unnecessary problems.

5.5 Decision Point: Rollout

When a feature-oriented implementation proposal is com-
pleted, it is generally passed through atollgate in the pro-
ject. In this tollgate the project decides which features or
implementation proposals shall be included in the upcom-
ing release. The activity described here is similar, but the
changes we have studied have had organizational impact.
Such changes, and their related decisions, are hard to
make in a product-oriented project, i.e. a project that will
result in aproduct aimed at the market.

In Company A, the implementation proposal for the
protocol framework involved two different types of proto-
cols, and a set of services for these protocols. The deci-
sion to implement was made according to the standard
project model. Both protocol types were to be imple-
mented in the upcoming project, but a part of the services
were postponed to later projects. Regarding the change of
RTOS, the expert’s VOS solution was chosen, and local
development management decided to roll it out onto a
current project. This project had to start implementation
before the VOS was ready, and therefore local develop-
ment management decided that the VOS team would
make relevant modifications of the project’s code when
the VOS was ready.

In Company B the system-engineering group ap-
proved the implementation proposal for the data router,
but the architecture group did not receive project re-
sources to implement the proposal. They then decided to
implement the data router with their own resources. The
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HAL split was however granted resources by project
management, because it had backing from developers,
system engineering, and the architecture group. The in-
clude-file restructuring was urgent, but difficult to roll
out. First a script was developed that would automate
rollout. This script depended on that the design rules had
been followed, which was not the case. A second strategy
was to halt development over a number of days, and per-
form the changes manually. This solution was too costly
and eventually appropriate line management decided to
roll the new structure out onto newly started projects, let-
ting old projects use the old structure.

Company C decided to launch the series of projects
for the new generation of products. Top management took
this decision, and the content of each project has slowly
been decided throughout the first projects by top man-
agement, product management and project management.

One conclusion from this activity is that it might be
beneficia to restrict functional content of a new product
when introducing major architectural changes. This was
adequately done when introducing the 10 and communi-
cation framework in Company A, as the number of ser-
vices available to the protocols was restricted in the first
release. Company C has however had problems deciding
on the final content of the first product to be released on
the market. Restriction of functional content is a tradeoff
since customers will not accept lower functional content,
and the new architecture must be able to support future
functional content. Another tradeoff regarding how many
future features an architecture should enable concerns the
debate of programming for the future or, as XP [15] advo-
cates, programming only for the present.

5.6 Rollout

Implementation of technical aspects of changes is made
successfully within product-oriented projects. | mplement-
ing technical aspects elsewhere is more problematic, since
such implementations are not so easily embraced by de-
velopers in projects. The problem is that the process and
organizational aspects are often forgotten in product-
oriented projects, and there seldom exists a standard rou-
tine for carrying out such changes, as opposed to carrying
out a product-oriented project.

In Company A the protocol framework was imple-
mented as part of a product-oriented project, but many
departments that were intended to develop protocols have
not yet had opportunity to give feedback on the frame-
work. There istherefore still arisk that some departments
will object to the framework. The VOS was developed in
parallel with a product-oriented project. When the VOS
was ready the two projects were merged, and the VOS
team had to make remaining modifications.

In Company B the architecture group developed the
data router on an isolated branch, which was later merged
with the main branch. The problem was that most of the
clients to the new data router aready had implemented
their own solutions, and usage of the router was only rec-



ommended, not required. It has therefore not provided the
anti cipated memory savings. The HAL split had been well
prepared by both developers and architects before deci-
sions were made, and it was rolled out as part of a project.
The new include-file structure was rolled out onto one
project at a time across the whole organization. The roll-
out coincided with an architectural change, which lead to
little overhead when the key module responsible checked
in the new file structure into the tool at project startup.

Company C has implemented their architectural
changes in a prototype project, and a product for the mar-
ket is under development. The main problems have been
to settle on feature content, and as previously mentioned,
the distribution of work.

In the case studies we have seen several examples of
changes where the technical part has been assigned to a
certain project as a requirement, but postponed to later
projects. We have also seen examples where the changes
have been performed outside of product-oriented projects,
further decreasing the chance of embracing the change.
One of the cases made a satisfactory tradeoff, where the
change of operating system was postponed to a later pro-
ject, but prepared by an expert ahead of the project start.

6. Conclusions

In the case studies we have seen that need for architectural
changes can emerge from various sources, and that vari-
ous roles, such as managers, architects and developers,
may take responsibility for initiating the change. The de-
cisions regarding architectural changes are often carried
out in the same way as companies make decisions regard-
ing functional changes, while the implementation of archi-
tectural changes may take many forms, such as part of
ordinary projects, parallel but separate projects, independ-
ent smaller projects or as new full-scale projects.

We have discovered three major differences between
functional changes and architectural changes. First of all,
architectural changes are often more complex than func-
tional changes and affect large parts of the product with-
out showing a clear connection to a customer need. Sec-
ondly, architectural changes do not only have impact
across large parts of the product, but often across the
whole organization, and changes of processes and organi-
zation are often overlooked and hard to implement in
product-oriented projects. Finally, while companies often
have mechanisms and resources in place to treat func-
tional changes, such mechanisms are seldom established
for architectural changes, and it is aso hard to commit
resources to activities without clear customer value.

We believe the process presented here helps putting
focus on organizational issues in an architectura change,
while taking advantage of the decision support found in
the ordinary functiona change process. This will lead to
that the technical part of the architectural change is im-
plemented according to company standard, hopefully
within a product-oriented project.
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In further studies, the process presented here could be
optimized by running it in pilot studies. A goal of such
studies could beto find aframework for implementing the
organizational part of the change.
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Abstract

RequiementsEngineering (RE) deals with the early
phasesof softwae engineeringnamelyrequirementelici-
tation, modeling specificatiorand validation. Architecture
of a softwae systememphasizethe structural constaints
imposedon the application. Potential reusein the form of
softwae patternsare available for softwae designes to
structue their applications. This paper proposesa pat-
tern orientedmethodolgy for softwae development.Us-
ing this approach, the skeleton of the application can be
perceivedup-front by usingknowledg of previouslyiden-
tified patterns. Functional requirrmentsof the application
cansubsequentlipe madeevolvingaroundthis basicstruc-
ture. The methodolgy thus bridges the gap betweenre-
guirementsspecificationand the architecture of the appli-
cation. This approach not only leadsto highly flexible and
reusabledesignsolutions,but also providestraceability of
requirementsn designsolutionsmakingmaintenancdess
tedious.

Keywords: Requiement€Engineering(RE), Softwae
Architecture, DesignPatterns,Architectural Patterns

1. Intr oduction

Architecturegainedmportancen softwaredevelopment
processas a powerful meansof software abstraction. To
a greatextent, architectures distancedaway from the de-
tails of the system. Potentialreusein the form of interac-
tion modelingis capturedin patternsat varying levels of
granularity Patternsenabledesignerdo capturethesein-

teractionsasreusableartifactsin software designprocess.

Theseinteractionsn turn provide a structurefor the entire
application. In otherwords, patternsdeal with the archi-
tecturalaspect®f a softwaresystem.Commonlyoccurring
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patternsn softwaresystemshave beencateyorized. Archi-

tecturalpatternexpresses fundamentaktructuralorgani-
zation for the software systemby providing a set of pre-
defined subsystemsand their responsibilities. It also in-

cludesrulesandguidelinesfor organizingtherelationships
betweerthesesubsystemf8]. Objectorientationfacilitates
reuseof classeswithin and acrossapplications. General-
izationandaggreyationhierarchiesenablethis. Designpat-
terns[7] are basedon theseprinciples. The fundamental
structureof the entire softwareis not governedby design
patternsBut they do influencethe architectureof a subsys-
tem.

Software developmentmethodologiespracticedtoday
fail to addresghe synegy betweenthe requirementengi-
neeringprocessand architecturaldesign. Traditional sys-
tem developmentmethodologiedik e waterfall model fol-
low a sequentiaktep. The requirementsare capturedfirst
and only upon completionof this step,designand subse-
guentstagesn thedevelopmentprocessareaddressedre-
guirementelicitation mainly concentratesn the functional
aspectof the system.Unlessthe collaborationsamongthe
entities directly contribute to the functional aspectsthey
arenot adequatelcapturedduring this phase.We propose
a developmentmethodologywhereinthe systemsstructure
in termsof the collaborations,is capturedat the require-
mentsphasdtself by intuitively understandinghe interac-
tionsamongtheparticipantsandrelatingthemwith thepre-
viously known patterns. This givesa skeletonfor the ap-
plication’s solutionat a higherlevel, which canfurther be
refinedto lower level patterns.

Patternsareavailableat varyinglevels of granularityfor
the above mentionedapproacH5, 7, 8]. Architecturalpat-
ternsguideusin giving a structurefor the software. Gang-
of-Four (GoF) patternsaddresdssuescloseto code. The
sameprincipleswhichform thebasisof thesepatternsould
aswell beappliedat anabstractevel in thedesignprocess.



Choosingan appropriatestructurefor the applicationup-
front, constrainandboundsthe designspace Also, choice
of a patterncorveys the semanticof the application. The
characterizatiorof applicationin termsof patternsdo not
stick to any formal definition of that pattern,but they do
corvey muchmoreaboutthe structureaswell ascomputing
model.

Creatinganexhaustve setof patterndor the entiresoft-
waredomainis aneverendingprocessAlso, it is notpossi-
bleto have acompletepatternianguageo designasoftware
system In suchcasesthedesignshouldbebasecnthere-
lationshipbetweertheentitiesidentifiedduringtherequire-
mentsphase Dependingontheproblemdomaininvolved,a
hierarchyof patternsandarelationshipbetweerthemcould
be figured out. As this processattainsmaturity; it could
leadtowardsvaluabledesignguidancein theform of ade-
signhandbooKor the organizatiorfor specificdomainsand
specificconcerng4] similarto the onesavailablein mature
engineeringlisciplines.

The paperis organizedasfollows. Section2 detailsthe
importantactivities in requirementsngineering. Section
3 introduceghe patternorientedsoftwaredevelopmentlife
cyclemodel. Sectiord explainssoftwaredesignasapattern
compositionproblem. The approactproposedn Section3
is explainedin Section5 usinga smallcasestudy Section6
providesa comparatie accountof relatedwork. Section7
concludeghe papermwith adiscussioron afew ideaswhich
includesoutstandingssuedor furtherwork.

2. Requirementsengineering

Requirementengineeringlealswith the earlyphase®f
softwareengineeringiamelyrequirementglicitation,mod-
eling, specificationandvalidation[6]. We could employ a
variety of techniquedor this suchasinterviewing, use-case
modeling,essentiaprototyping,ClassResponsibilityCol-
laborator(CRC) modelingetc. Irrespectve of the model-
ing techniquesised the basisof the activity remainssame.
Requirementsnalysisresultsin domainclasses.Domain
classeslongwith framework classedeadto classmodels.

Extractinginformationout of problemspaceitself may
notbe easyin somecasesConceptsn problemspacemay
not necessaril\pe translatedo concreteobjects. This may
be dueto the fact thatrealizationof requirementsnay re-
quire multiple classes.Ambiguity in problemspaceneeds
to beresolhedbeforemoving onto solutions.

Requirementspecificationsshould not only aim at so-
lution end from implementatiornpoint of view, but should
alsofocuson the long life of designs. Suchdesignswill
beresilientto evolving requirementsRE is concernedvith
the servicegprovided by andthe constrainton a largeand
complex software system[9]. Apart from this, RE is also
concernedvith the relationshipof thesefactorsto precise
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specificationof systemsbehaior andtheir evolution over
time andacrosssystemfamilies. ThusRE becomes chal-
lengingactivity which haseffectontheforthcomingphases
andthe quality of the design. For an applicationwhich is
intendedto be usedonce,the traceabilityof requirements
is importantonly duringthe maintenanc@hase.However,
for thederivationof architecturesik e productlinesthis ac-
tivity is morecrucial. Here RE encompasseactiities like
planningthe baselinearchitectureanalyzingcommonality-
variability etc. A patternorientedapproacHhor thedesignof
frameawvorksfor softwareproductliness explainedin [17].

3. Pattern oriented software development life
cyclemodel

We proposea patternorientedlife cycle modelfor soft-
ware development. Figure 1 gives an outline of this ap-
proach. The key ideahereis to have a global structurefor
the applicationbasedon its overall computationand com-
municationmodel, guided by the knowledge available in
theform of patterncatalogsandpatternlanguagesAn intu-
itive understandingf the applicationin termsof the global
dataflows would suffice for this step. This is an elegant
approachsincethe global concernsof the applicationare
addressedhereandit is possibleto apply this approachto
the systemat varying levels of granularity Architectural
patterns[8] can be usedas fundamentaldesigndecisions
for the software system,imposinga structuralframework
for the applicationduring this step. For example,a system
whereinformationflows in a sequentiafashioncanbe per
ceived asa pipe andfilter architecturalpattern. Database
applicationsandnetwork protocolscouldbe structuredasa
layerspattern8]. Thestructuralframeawork thusperceved,
in turn formsa context for subsequerdinalysisandrealiza-
tion of requirements.

Communication model
Global data flow

RR

Problem Domain to design
Architecture
Concepts

Pattern languages
Pattern catalogs

Cyclic progress of requirements and design activities

Figure 1. Pattern Oriented Life Cycle Model

Next stepin thelife cycleis therefinemenbf thisarchi-
tectureto design. During this phase,requirementscould
further be analyzedin detail, to identify lower level pat-
ternsin the systemsand subsystems.By lower level pat-
terns,we meandesignpatternswvhich couldbe productspe-
cific like J2EE patternsor generalsolutionslike GoF pat-
terns. Choiceof productspecificpatternsagaincouldbe a

Towards solution



requiremendriven factor This is a cyclic actiity during
which, requirementaswell asstructureof the application
getevolved simultaneouslyeachactivity forming the con-
text for theother

3.1 Procesdmpr ovementby patterns

The applicationof a well-managediterative andincre-
mentaldevelopmentlife-cycle hasbeenpointedout asone
of five characteristicef successfubbject-orientegrojects
[10]. Usuallyin systemdevelopmentprocessthe require-
mentmodelsdevelopedearlyin the developmentcycle un-
demgo several working compromisesduring the develop-
mentcycle. Soit is naturalthattheinitially percevedand
documentednodelsare not available when the develop-
mentis complete.Patternbasedrequiremeninodelssolve
this problemconsiderablybecauséehe basicdesigntrade-
offs encounterethy softwaredesignersarewell capturedn
the patternschosento fit in the design.Considerablearia-
tion from thisstructures unlikely whenthedesignelements
arefilled upin this structure. Thesemodelsact as power-
ful communicatiormechanismsluringdesignandredesign
process.

Software designis primarily dictatedby the context in
which the designactiity takesplace,andis influencedby
enablingtechniquedik e modularization encapsulatiorn-
formation hiding, separatiorof interfaceandimplementa-
tion etc. Software patternsare solutions,which arebased
ontheseenablingtechniquesPatternsaddressheissuesn
designto agreatextent. Requiremenimodelscanrightly be
transformedo designmodelsby meansof thesepatterns.
Thedomainfunctionality couldthenbe providedin thede-
sign. Sincethe induction of a patternis for addressinga
specificconcernin the systemtraceabilityof requirements
in solutionsbecome®asy

3.2 Requirementsengineeringfr om a newperspec-
tive

Requirementsengineeringshould adequatelyaddress
functionalandnon-functionakequirementsf the software.
In fact, if functional requirementsaffect only that part of
the software that determineghem, they typically have lo-
calizedeffects. On the otherhand,requirementsvhich cut
acrossv/ariouspartsof the systemganbe capturedrom the
interactionsamongtheseparts. Theseinteractionsgovern
the structureof the system.

While analyzingthe requirementsn a systemit is a
good ideato classify the requirements. Certain require-
mentscould be currently existing in the system.The anal-
ysis processcould stretchitself to foreseecertainrequire-
mentswhich the systemis likely to accommodatén the fu-
tureatthesametime makingprovisionfor incorporatinghe
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requirementsCertainrequirementsnay necessitatpoten-
tial changesn systemgdesign.Theremay be some,which
thesystemwill neverbeableto handle.This cateyorization
helpsthe systemslesigneto comeup with anoptimumar-
chitecturefor the system. The designercould also make
judgementaboutthe capabilityof the systemthathasbeen
designedasednthis classification.

Architecture concernswith the structureand is like
"load-bearingwalls” [13] of the software. This meanghat
within a particulararchitecturalframework, it is possible
for the applicationto undego changeswithout affecting
this structure . Thesystenfunctionalityshouldbe evolvable
within this architecture.Patternorientedapproachthatwe
suggesbecomesneaningfulin this context. Sincethereare
infinite waysof realizingthesedesignsolutionsin code,it
will be possibleto addor remove requirementsvhich have
localizedeffectsin the future unlessthey are precludedn
adwanceby thechoiceof a specificpattern.

3.3 Novel approachfor requirementscapturing

To ensurdonglife for designsthey shouldbeadaptable.
Software in generaland OO systemsin particularshould
be realizedasanimplementatiorof anabstraction.At the
sametime, theseabstractionshouldhave the ability to ac-
commodateequirementchanges.The modulardecompo-
sition of a systemshouldbe bothopenandclosed[1]. The
designsthushave a stablecore on which the resultingap-
plicationscanrely on, atthe sametime have openportions
whichcanaccommodateontext dependentariationsor re-
guirementthangesMost of thedesignpatternsaaddresshis
issue.

Portionsof anapplicationthatshouldbe keptresilientto
changesndextensionareoftenreferredto ashotspotg21].
Organizationof anapplicationaroundsuchhot spotsdeter
mineshow well it is closedfor modificationsat the same
time openfor adaptationKnowledgeaboutthe hot spotsin
adesignandhow they areaccesseby theclientsoftwareis
importantfor all phase®f softwaredevelopmentindmain-
tenancewhetherit is constructioncomprehensionr evo-
lution. The”open-closed’principleandhot spotdrivende-
signshouldbe concevedvery earlyin the developmentife
cycle; preciselyatrequirementapturestagestself. Pattern
basednodelsthatwe suggesessentiallydo this.

3.4. Patternsin requirementsengineering

Any softwaredevelopmenimethodologyhasanunderly-
ing modelsupportinghe developmenprocessModelsand
abstractionsonstitutethe basicframework for thedevelop-
mentprocessn a domain. Fromthe requirementgoint of
view, architecturahbstractionsnake trade-of analysissim-
pler, and providesa modelthatis easilyrefinableto code.



Themodelgetsitself evolvedasthe developmentproceeds.
For example,the domainprocessest a coarseevel could
be expressedy usingsubsystenmor componentandtheir
interactions. Furtheranalysiscould be aidedby usecases
for requiremenmodeling. Use casedeadto a conceptual
modelwhere conceptsare realizedusing objects. Subse-

quently the collaborationbetweenobjectsare addressed.

Subsysteninteractionsand relation betweenvarious use
casexould be seenasrequiremenpatternswhich canbe
documented Oncetheserequiremenpatternsare mapped
to correspondingarchitecturalbr designpatternsthe map-
ping couldaswell be usedasareusableartifact.

Interactiondiagramsare one of the mostimportantarti-
factscreatedduring RE. Skillful assignmenof responsibil-
ities for the participantsin the interactiondiagramsis also
importantirrespectve of the granularityof the participants,
whetherthey be subsystemsr objects. Proactve andpre-
scriptive useof patternsassisthedesignetto a greatextent
in this step. Patternscanaid the RE processn two ways.
They canresultin singlesolutions. Secondlythey canaid
in the developmentof reusabldrameavorkswhich are cus-
tomizabledesignsolutions.Patternsplay animportantrole
in customizinganddesigningapplicationframaworks. This
hasbeenemphasizeéh [15].

It is generallyobsened that successfubprojectsspend
considerablamountof time andresourcesn theRE phase.
It would be usefulif, this phasecanaswell comeup with
requirementpatternsandtheir correspondingnappingfor
relatedproblems. Requirementgatternscould be docu-
mentedin the form of usecasescombinationof usecases
or sequencef occurrenceof events.

3.5 Patterns assolution to non-functional require-
mentsof software

In software designprocesschoiceof an architecturds
more of an activity of giving a structureto the whole ap-
plication. The realizationof the restof the functionality
of the software succeedshis stepandideally the software
functionality shouldbe evolvable within this architecture,
withoutcompromisingts constraints.

Patternsmostly addressnonfunctionalrequirementsof
software.Bystructuringa databasapplicationusinga mul-
tiple layeredpattern[8], we make the changesisolated.
Problemssuchas lack of flexibility in most OO systems
canbe solved by reomganizingthe designby makinguseof
astratgy pattern[7]. Theimplicationof thisis thatthede-
signis addressinga non functionalrequiremenbf the sys-
tem calledflexibility. Anotherinterestingpoint is thatthis
reomganizatiorwill resultin the degradationof systemper
formancebecauséheinstanceof oneclassneedgo invoke
aninstanceof a stratgy class.Thus,patternbasedequire-
mentmodelssincethey abstracout details,sene theideal
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solutionsfor requiremenimodels. Also, thesemodelsen-
ablethe point at which certainquality attributesareinhib-
ited. As aresult,selectingdesiredsolutionsfrom a setof
alternatesolutionsbecome®asier

In orderto make surethat a systemis well structured
and organized,in additionto exposingglobal structureof
the system,designshouldobey certainbasicdesignprin-
cipleswhich areto be well documented.Well structured
requirementsand designdecisionsat several layersof ab-
stractionarecrucial for understanding detailedspecifica-
tion documen{20]. The patternorientedsoftwaredevelop-
mentmethodproposedassistsn systematicunfolding of
requirementsat varying levels of abstractiorand provides
sounddesigndocumentation.

4. Software design as pattern composition
problem

Application of patterndn softwaredevelopments to be
seenas a patterncompositionproblem. Here we provide
a designsolution, ratherthana programmingsolutionthat
is tunableonly at the implementationlevel. Understand-
ing of how the abstractionsn software areto be adapted,
extendedcomposedindmaintaineds equallyimportantas
providing knowledgeaboutthe locating of the key abstrac-
tionsin it. Advantagef using patternsasbuilding blocks
of architectureandtherelatedissuesareexplainedin [12].

The combinationof collective behaior of components
needto be explored at the designand architecturalevels.
Thisissueis addressetly designpatterns.lfwe usepatterns
asbuilding blocksof architecturenot only thatwe address
a specificfunctionalaspectput alsothe interactionamong
the variousrequirements.Thebjectvesmetby designele-
mentscouldbeaddressedsingtherolesplayedby different
objectsin that pattern. Requirementsnodelingaddresses
dynamicnatureof therequirementsn this case.

When patternscombineto generatesolution architec-
tures,the structuralandbehaioral compositionneedto be
addressed Behavior compositionaddressesoncerndike
therolesplayedby variousobjectsaselementsn patterns.
This kind of designis referredto as responsibility-drven
designor interactionorienteddesignin OO literature[16].
Assignmenbf responsibilitiedo objectsanddesignof ob-
jectcollaborationss veryimportant.Neglectingtheimpor-
tanceof the creationof interactiondiagramsandresponsi-
bility assignmenhasbeenpointedout asa commonprob-
lem in objecttechnologyprojects[2]. We believe that re-
guirementsanalysisemphasizinghesestepsand patterns
as designsolutions,will alleviate this problemto a large
extent. When patternsare usedas compositionalunits of
an architecture an elegant mechanisnfor addressinghe
collaborationsamongthe patternparticipantsis discussed
in [3].



5. Casestudy

This Sectionillustratesthe methodologywe have pro-
posedusing an example of componentinteractionsin a
feedbackcontrol system. The systemusesfeedbackfrom
the outputto control a processlike ary feedbackcontrol
systemavailablein control literature. Feedbackunit takes
the outputdatafrom the processheingcontrolledandthen
malkes necessanadjustmento be fed to the feedforward
unit after comparingthe feedbackvalue derived from the
output, with a referencevalue. Then, feedforward unit
sendsthe modified outputto the controlledprocess.Con-
sideringthe globaldataflow in the application the adjustor
readsfeedbackdataandreferencelata,the controlledpro-
cessreadsthe modified outputandthe feedbackunit reads
the outputdatafrom the controlledprocess.

Adjustment
Feedforward
unit

ndino payIpoiN

Y

Controlled

Reference value

| Adjustor

'\ Process

erep indinp

Feedback

unit

Feedback value

Figure 2. Component Interactions in a Feed-

back Contr ol System

Even though the global data flows in the application,
look like a pipe-and-filterarchitecturapattern [8], this ar
chitecturedoesnotfit in heresincepipe-and-filterdoesnot
allow ary feedbackoops.Ontheotherhand,it fits into the
blackboargattern[8], in whichseveralspecializegubsys
temsassemblé¢heir knowledgeto build apossiblypartialor
approximatesolution.

Figure3 givesonepossibledesignfor this problem.An-
alyzing the requirementdurther, it can be seenthat con-
trolled processactsasa mediatorbetweerfeedfornardand
feedbackunits thusthe interactionsamongthemresemble
that of a mediatorpattern[7]. Controlledprocesscanalso
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be realizedasa singletonpattern. Now, having identified
thesepatterns,requirementsould further be analyzedin
detailto assigrresponsibilitiego theclassesn the patterns.

Mediator

ndino payipon

******

i
| D
| Controlled | .
! Process Hﬁ Singleton
I [
I '
I [
I b

Reference value

| Adjustor

Figure 3. Design 1 for the Feedback Contr ol
system

It is naturalthatmorethanonedesignis possiblefor the
sameproblem. In this context we give an alternatve de-
signfor the sameproblem.Thisdesignis givenin Figure4.
The functionality provided by the feedforward unit to the
restof the units shouldbethe samejrrespectve of the dif-
ferentcontrol stratggiesusedby it. A stratgy pattern[7]
could be usedfor this. The sameinterpretatiorholdswith
feedbackunit also.To reducethedependengbetweercon-
trolled processandthe feedbackunit, obsenrer patterncan
beused.

When alternatedesignsexist for the same problem,
basedon sometrade-of analysisthe designemayhaveto
choosethe bestdesign. In suchsituations,a methodology
proposedn [4] aidsthe designerto comparethe alternate
designsn termsof somemetricslik e staticadaptability dy-
namicadaptability extendibility etc. Detailsregardingthis
methodologyis availablein [4].

Fromthecasestudy it is evidentthatpatternorientedife
cycle model allows the developerto systematicallyarrive
at the design,by concentratingon the interactionsexisting
in thedomain. It is to be emphasizedhattrade-of analy-
sisfor alternatedesignsgs alsopossible. The requirements
aremappedo correspondingatternsasthedesignevolves.
This makestraceabilityof requirementsn solutionseasy
Designsolutionsthus obtainedare reusablesincethey are
composedf patternswhich are implementationindepen-
dent,abstracentities.
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6. Relatedwork

Software engineerings definedas the applicationof a
systematicdisciplined,quantifiableapproacho the devel-
opmentoperationandmaintenancef software;thatis, the
applicationof engineeringo software[11]. Stepsavailable
in softwaredevelopmentife cycle modelsexplainedin [14]
do not seemto be addressin@ll theseaspects.Sincepat-
ternsareidentifiedasdistilled experienceof expertdesign-
ers,patternorienteddevelopmentife cycle modelturnsout
to bea systemati@nddisciplinedapproach.

[19] proposesa mechanisnthat utilizes UML model-
ing capabilitiesto composedesignpatternsat variouslev-
els of abstractions. The approachgives emphasigto the
traceabilityof patternsin designs.A systematicapproach
whichtakesinto accountheglobalstructureof theapplica-
tion and subsequentlyefining this structureto lower level
patterngloesnot seento beaddressebdly researcltommu-
nity yet. Our approactalsoopensup issueghatarisewhen
patternsare usedasfundamentabuilding blocks of archi-
tecture,mostimportantissuebeingthe interactionsamong
patterns.

Patterncompositionis addressetdy usingrole diagrams
in [18]. Thefocushereis on deriving a compositepattern,
whichis acombinatiorof individual patterns Thiscompos-
ite patternsolvesabiggerproblemin the sensehatthe syn-
ergy of participatingpatternsmakesthe compositionmore
thanits parts. However, a generalizedapplicationdevelop-
mentusingpatternss notaddressetiere.
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Patternssolving independenproblemsare documented
in [8, 5, 7]. Thesesene only asindependenpatterndocu-
mentationsexplainingthe context, forcesandsolution.Our
approacthis towardsrefiningandcombiningthesesolutions
to build reusableapplicationsolutions.

7.Conclusionsand futur e work

We have proposed life cycle modelusing patternori-
entedapproachfor the developmentof software. The ap-
proachrelieson the applicationof previously known solu-
tionsto designproblemsin theform of patternsThe struc-
ture of theapplicationis percevedin thebeginningandde-
tailedrequirementglicitationfollows this step.As the pat-
ternsarerefinedto lower level patternsrequirementalso
getrefined. Throughthis approachRE, aidsarchitectural
designby mappingthe constraintsmposedby the require-
mentsto known solutionsandfacilitatesfasttrade-of anal-
ysis. Architecturalmodelingis supportedby not only the
functionalandnonfunctionalrequirementsbut alsothe ra-
tionale behindthe formation of the pattern. The method-
ology proposedenablesrequirementscapturein the con-
text of formal architectures. We believe that when com-
plex systemsarecomposedrom pre-eisting components,
the contractuabbligationsof the participatingcomponents
alsoneedto be capturedasrequirements.Thesecontracts
may leadto compositionpatterns asnecessitatetty com-
positioncontext andsemanticsAs partof our future work,
we planto addresgheseissues.We foreseethis asanim-
portantproblemworth addressingn the context of design
reusein the form of patternsandcodereusein the form of
components.
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ABSTRACT

Ideally, a software project commences with requirements gath-
ering and specification, reaches its major milestone with sys-
tem implementation and delivery, and then continues, possibly
indefinitely, into an operation and maintenance phase. The
software system’s architecture is in many ways the linchpin of
this process: it is supposed to be an effective reification of the
system’s requirements and to be faithfully reflected in the sys-
tem’s implementation. Furthermore, the architecture is meant
to guide system evolution, while also being updated in the pro-
cess. However, in reality developers frequently deviate from
the architecture, causing architectural erosion, a phenomenon
in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold.
In this paper, we present an approach intended to address the
problem of architectural erosion by combining three comple-
mentary activities. Our approach assumes that a given system’s
requirements and implementation are available, while the
architecturally-relevant information either does not exist, is
incomplete, or is unreliable. We combine techniques for archi-
tectural discovery from system requirements and architectural
recovery from system implementations; we then leverage
architectural styles to identify and reconcile any mismatches
between the discovered and recovered architectural models.
While promising, the approach presented in the paper is a work
in progress and we discuss a number of remaining research
challenges.

1 INTRODUCTION

Ideally, software systems are developed via a progression
starting from requirements through architecture to implemen-
tation, regardless of the lifecycle model employed. Any
changes to those systems during their, possibly indefinite,
lifespans should then follow the same progression: a change in
the requirements is reified in the architecture and, subse-
quently, the implementation. However, frequently neither the
initial development process nor the system’s evolution and
maintenance follow such a path for reasons that include devel-
oper sloppiness; requirements that are immediately imple-
mented due to (the perception of) short deadlines; architectural
decisions that are violated to achieve non-functional qualities
(e.g., improve performance, satisfy real-time constraints,
reduce application memory footprint); off-the-shelf (OTS)
functionality that is directly incorporated into the system’s
implementation; and the existence of legacy code that is per-
ceived to prevent careful system architecting.

For these reasons, architectural artifacts are often out of
sync with the system’s requirements and its implementation,
and we say that the architecture is eroded [27]. There are many
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potential problems associated with architectural erosion: diffi-
culties in assessing how well the current implementation satis-
fies the current requirements; inability to trace a specific
requirement to implementation artifacts; lack of understanding
the complex effects of changing a requirement; and inadequate
system maintainability and evolvability. The incorrect percep-
tion of the architecture may lead to incorrect architecture-level
and, subsequently, implementation-level decisions in response
to new or changing requirements.

To deal with the problem of architectural erosion, research-
ers and practitioners have typically engaged in architectural
recovery [2,10,14,15,18,22,28,31,32], where the system’s
architecture is extracted from its source code. However, exist-
ing architectural recovery approaches fail to account for sev-
eral pertinent issues. They rely primarily on implementation
information, leveraging requirements in a limited fashion, if at
all. Since the implementation may have violated certain system
requirements, they will, in effect, recover incorrect architec-
tures in such cases. In addition, architecturally-relevant deci-
sions are frequently obscured by the implementation. This may
be the result of justified implementation-level decisions, such
as eliminating processing bottlenecks, removing duplicate
modules for efficiency, OTS reuse, and so on. Architectural
decisions might also be ignored without justification, due to a
missing system-wide view, developer sloppiness, misguided
“creativity” in implementing the desired functionality, and so
on. Another problem with existing approaches to architectural
recovery is their relative heavy weight, a by-product of the lack
of reliance on information already present in the system’s
requirements. Perhaps most importantly, the existing architec-
tural recovery approaches exhibit no understanding of the
importance and role of architectural styles in developing large-
scale, complex software systems. An architectural style is a
key design idiom that implicitly captures a large number of
design decisions, the rationale behind them, effective composi-
tions of architectural elements, and system qualities that will
likely result from the style’s use [8,22,29]. Without this knowl-
edge, a system’s architecture will present only a partial picture
regardless of how faithfully its structural, compositional,
behavioral, and/or interaction details are recovered.

Our research goal is to combine software requirements,
implementations, and architectural styles in a light-weight and
scalable manner to stem architectural erosion. Requirements
serve as the basis for discovering a software system’s architec-
ture. Implementations serve as the basis for recovering the sys-
tem’s architecture. Because of their different inputs, discovery
and recovery are likely to reveal different and possibly incom-
plete architectural models. Architectural styles can be used to
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reconcile the two models and combine them into a coherent

and more complete model of the software system’s archi-

tecture. Our approach therefore consists of three interre-

lated activities as depicted in Figure 1:

1. a technique supporting the discovery of an architecture
from system requirements;

2. a technique for recovering an architecture from system
implementations; and

3. an architectural style characterization technique to
identify and reconcile any mismatches between the
discovered and recovered architectural models.

We assume that the existing information about an archi-
tecture either does not exist or is unreliable. We also
assume that the system’s requirements are known and that
an inspectable implementation exists. We acknowledge that
many modern software systems depend heavily on off-the-
shelf libraries (e.g., GUI libraries) or middleware platforms
(e.g., CORBA, DCOM). However, deriving architectural
properties from such technologies is a challenging task and
is thus outside the current scope of our work.

2 BACKGROUND

This work builds on three related areas: software archi-
tectures and architectural styles; software requirements,
and specifically approaches for mapping requirements to
architectural decisions; and architectural recovery.

2.1 Software Architectures and Styles

Software architecture is a level of design that “involves
the description of elements from which systems are built,
interactions among those elements, patterns that guide their
composition, and constraints on these patterns” [29]. A
goal of software architectures is to facilitate development
of large-scale systems, preferably by integrating pre-exist-
ing building blocks of varying granularity, typically speci-
fied by different designers, implemented by different
developers (possibly in different programming languages),
with varying operating system requirements, and support-
ing different interaction protocols.

An architectural style [8,16,29] is a set of design rules
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that identify the kinds of building blocks that may be used
to compose a system, together with the local or global con-
straints on the way the composition is done [29]. Styles
codify the best design practices and successful system
organizations [1,20]. Several architectural styles have been
in use for a number of years, including client-server, pipe
and filter, blackboard [29], C2 [30], and REST [9].

2.2 Architectural Discovery

Software requirements describe aspects of the problem
to be solved and constraints on the solution. Requirements
deal with stakeholder goals, options, agreements, issues,
and conditions to capture the desired system features and
properties. Requirements may be simple or complex, pre-
cise or ambiguous, stated concisely or elaborated carefully.
Although informal requirements described in natural lan-
guage often lead to ambiguities and inconsistency, they are
frequently used in practice and are thus of special interest
in our research.

The relationship between the requirements and architec-
ture for a desired system is not readily obvious. Several
existing techniques provide suggestions for addressing the
problem. For example, the QUASAR approach [4] relates
desired system features (e.g., “The system must be
secure.”) to solution fragments that effect those features
(e.g., “Employ an encryption scheme.”). The objective of
QUASAR is to allow reuse and compose solution frag-
ments across systems with similar desired features. How-
ever, this work has only recently begun addressing the
relationship of desired features and software architectures.
ATAM [17], a technique that supports the evaluation of
architectural decision alternatives in light of non-functional
requirements, has a similar limitation. Twin Peaks [25]
attempts to overcome the separation of requirements speci-
fication and design activities by intertwining them. How-
ever, unlike our approach, Twin Peaks does not take into
account the implementation. Brandozzi and Perry [3] have
recently coined the term “architecture prescription lan-
guage” for their extension of the KAOS goal specification
language [19] to include architectural dimensions. Their
approach has the same limitations as our architectural dis-
covery technique: they are unable to suggest a complete
architectural configuration based on the information
extracted from the requirements, and they currently make
no use of non-functional requirements in modeling the dis-
covered architecture. This is why we have decided to cou-
ple architectural discovery, recovery, and styles.

Finally, a key issue in transforming requirements into
architecture and other software models is traceability.
Researchers have recognized the difficulties in capturing
development decisions across software models [11]. In
response to this, Gotel and Finkelstein [12] suggest a for-
mal approach for ensuring the traceability of requirements
during development.

2.3 Architectural Recovery

A number of existing approaches focus on recovering a
software architecture from source code. ARM [14] is an



approach to architectural reconstruction distinguishing
between the conceptual architecture and the actual architec-
ture derived from source code. ARM applies design pat-
terns and pattern recognition to compare the two
architectures. Unlike our architectural recovery approach,
ARM assumes the availability of system designers to for-
mulate the conceptual architecture. Similarly to our recov-
ery approach, software reflexion models [24] treat a
system’s architecture from two perspectives: the idealized,
high-level view and the low-level view derived from source
code. Reflexion models support incremental architectural
recovery to analyze whether varying sets of relationships
hold between the idealized and actual architectures. How-
ever, reflexion models do not make direct use of architec-
tural concepts such as styles and connectors.

MORALE [28] is an approach for evolving legacy soft-
ware systems developed with procedural languages.
COREM [10] is an approach that converts procedural into
object-oriented systems via four steps: design recovery,
application modeling, object mapping, and source code
adaptation. Neither of these approaches provides a means
for determining whether the implemented systems com-
pletely and correctly satisfy their original requirements, or
whether the requirements themselves are complete and
consistent.

Recently, a series of studies has been undertaken to
recover the architectures of several open-source applica-
tions [2,15]. The approach taken in these studies has been
to come up with a conceptual architecture from a system’s
documentation and use it as the basis for understanding the
system’s implementation. The system documentation is
assumed to be correct when, in fact, both the documenta-
tion (e.g., requirements) and implementation may be par-
tially incorrect, incomplete, or internally inconsistent. As
with all of the above approaches, architectural style infor-
mation is not leveraged during recovery.

3 EXAMPLE APPLICATION

To illustrate the discussed concepts we use ShareDraw,
an application implemented in Visual C++. ShareDraw is
an extension to the DrawCli application, which is provided
as part of the Microsoft Foundation Classes (MFC) release.
DrawCli allows users to manipulate 2-D graphical objects
(lines, ovals, polygons). ShareDraw extends DrawCli into a
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distributed application that adds collaborative drawing and
chatting facilities, as depicted in Figure 2.

The architecture of ShareDraw was not available to us.
Similarly, DrawCli’s requirements were not available.
However, given the highly interactive nature of the applica-
tion, we can easily extract many of the functional require-
ments from the application’s observed behavior. The
requirements for the extension of DrawCli into ShareDraw
were available. Several informally stated requirements
describing some commonly performed operations are as
follows:

Reqt;: ShareDraw should allow the user to save
drawings for later retrieval.

Reqt,: ShareDraw should make object manipulation
operations easily accessible to the user.

Reqt;: ShareDraw should allow the user to group and
simultaneously manipulate multiple drawing objects.
Reqty: ShareDraw should allow the user to instantly

view the actions of all other users.

4 THE APPROACH

The goal of our research is to develop a generally appli-
cable, style-centered approach for integrating architectural
discovery and recovery techniques, and reconciling the
identified differences. Our approach will comprise three
separate, but complementary techniques, as depicted in
Figure 1:

1. an architectural style-based technique for architectural
discovery from software requirements,

2. an architectural style-based technique for architectural
recovery from software implementations, and

3. atechnique that leverages styles to reconcile the results
of discovery and recovery.

4.1 Architectural Discovery

Elaborating system requirements into a viable software
architecture satisfying those requirements is often based on
intuition [25]. Software engineers face some critical chal-
lenges in performing this task [13]:

* Requirements are frequently captured informally in a
natural language, while software architectures are usu-
ally specified formally [21].

* Non-functional system requirements are hard to capture
in an architectural model [21].

* Mapping requirements into architectures and maintain-
ing their inter-consistency is complicated since a single
requirement may address multiple architectural concerns
and vice versa.

» Large-scale systems have to satisfy hundreds, possibly
thousands of requirements, making it difficult to identify
and refine the architecturally relevant information con-
tained in the requirements.

To address these challenges we developed CBSP [13], a
light-weight technique to distill from the system require-
ments the key architectural elements and the dependencies
among them. The result of the technique is an intermediate
model between the requirements and architecture that con-



tains the essence of architectural information embedded in
the requirements. This model is referred to as the discov-
ered architectural model, or DAM. The CBSP approach
creates DAM in a structured process using conflict resolu-
tion to address ambiguities in the requirements. The pro-
cess consists of three main activities, detailed in [13]:

1. classify architecturally relevant requirements,

2. identify and resolve classification inconsistencies, and
3. refine/restate architecturally relevant requirements.

In this section we detail the DAM model itself.

4.1.1 Discovered Architectural Model

The basic idea behind our approach to architectural dis-
covery is that any software requirement may explicitly or
implicitly contain information relevant to the software sys-
tem’s architecture. It is frequently very hard to surface this
information, as different stakeholders will perceive the
same requirement in very different ways. CBSP captures
this information in the intermediate DAM model. DAM is
structured around a simple set of general architectural con-
cerns derived from existing software architecture research
[21,27,29]:

» Components provide application-specific functionality.
They may be data or processing components [27].

» Connectors facilitate and govern all interactions among
the components.

* Configuration of a system or a particular subsystem
describes the relationships and organization among mul-
tiple (possibly all) components in the system.

* Properties describe the non-functional characteristics of
individual components and connectors, or the entire con-
figuration.

Thus, each derived DAM element explicates an archi-
tectural concern and represents an early architectural deci-
sion for the system. For example, a requirement such as

Reqt: The system should provide an interface to a Web
browser.

can be recast into a DAM processing component element

and a DAM connector element

Compp: A Web browser should be used as a component
in the system.

Conn: A connector should be provided to ensure
interoperability with third-party components.

Because of the complexity of the relationship between
requirements and architecture, DAM gives a software
architect leeway in selecting the most appropriate refine-
ment or, at times, generalization of one or more require-
ments. Examples of both refinement and generalization are
given below.

There are seven possible DAM dimensions discussed
below and illustrated with simple examples from the Share-
Draw application. The seven dimensions involve the basic
architectural constructs and, at the same time, reflect the
simplicity of our approach.

(1-2) Comp,, and Comp 4 are model elements that describe

or involve an individual processing or data component in
an architecture, respectively. For example

Reqt: The system should allow the user to directly
manipulate graphical objects.

may be refined into DAM elements describing both pro-
cessing components and data components
Comp,,: Graphical object manipulation component.
Comp: Data for abstract depiction of graphical object.
(3) Conn are model elements that describe or imply a con-
nector. For example

Reqt: Manipulated graphical objects must be stored on
the file system.

may be refined into
Conn: Connector enabling interaction between Ul and
file system components.

(4) Conf are model elements that describe system-wide
features or features pertinent to a large subset of the sys-
tem’s components and connectors. For example

Reqt:Allow independent customization of application
look-and-feel and graphical object manipulation tools.

may be refined into
Conf: Strict separation of graphical object manipulation,
visualization, and storage components.
(5) Propcemp are model elements that describe or imply
data or processing component properties, such as reliabil-
ity, portability, incrementality, scalability, adaptability, and
evolvability. For example

Regt: The user should be able to view the effects of his
actions with minimal perceived latency.

may be refined into
Propcopy: Graphical object manipulation component
should be efficient, supporting incremental updates.
(6) Propc,,, are model elements that describe or imply
connector properties. For example

Reqt: The system should support loading of graphical
manipulation tools at runtime.

may be refined into
Propcopn: Robust connectors should be provided to
facilitate runtime component addition and removal.
(7) Propc,y,y are model elements that describe or imply
system (or subsystem) properties. For example
Reqt:The system must support collaborative editing of
graphical objects.
may be transformed into
Propcons The system should be distributable.
Note that, e.g., the Prop,,,,, example (5) involved refin-

ing a general requirement into a more specific DAM ele-
ment. On the other hand, the Propc,,s example (6)

involved the generalization of a specific requirement into a
more general DAM artifact. In fact, in both cases multiple
DAM artifacts may be produced as part of a single require-
ment. We are currently studying this issue with the goal of
providing practical guidelines to architects engaging in this
task.

4.1.2 Summary and Open Issues

At this point, we have an intermediate model, DAM.
DAM classifies the key architectural concerns into seven
categories: data components, processing components, con-



nectors, configurations, component properties, connector
properties, and (sub)system properties. DAM is still stated
in a requirements-like notation, such that it can be verified
against the intentions of the system’s non-architect stake-
holders (e.g., customers). DAM reinterprets architecturally
relevant requirements; no requirements are actually
changed aside from clarifications that arise during the dis-
covery process. Finally, DAM classifies and describes the
system’s architecturally relevant information in a way that
makes it much easier to derive an architecture, and, subse-
quently, implementation from it would be from “raw”
requirements.

However, a remaining problem is that the DAM ele-
ments provide a very low-level view of the architecturally
relevant system requirements (recall the above examples).
It may not be straightforward to map some aspects of DAM
(e.g., configuration information, properties) into an effec-
tive architecture that will realize them. For example, in our
experience architectural discovery is often unable to infer
all interdependencies between architectural elements. This
directly motivates the need to introduce additional informa-
tion into the picture, as further discussed below.

4.2 Architectural Recovery

Architectural recovery complements architectural dis-
covery by highlighting the major structural characteristics
of the implemented system: data and processing compo-
nents, connectors, and configuration. The result of archi-
tectural recovery is a recovered architectural model, or
RAM. In this section we discuss the process of generating
RAM. Later we will show how this information can be
coupled with DAM to arrive at a more complete architec-
tural model. We use UML to represent the recovered archi-
tecture.

4.2.1 Recovered Architectural Model

Our proposed architectural recovery technique will consist
of the following four simple activities.
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Figure 3. Identifying components from a UML class diagram. At
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illustration, to convey the scope of the task.
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Generate class diagrams. Numerous tools are available
to infer class diagrams from source code automatically; the
engineer need not even look at the system’s source code to
accomplish this step. Figure 3a shows the class diagram of
ShareDraw’s client subsystem, automatically generated by
Rational Rose®.

Group related classes. Typically, a large number of
implementation classes are required to implement individ-
ual architectural components and connectors. Classes can
be grouped based on different criteria and/or architectural
concerns. Multiple architects may participate in this pro-
cess and, consequently, disagreements and mismatches
may arise. The diagrams in Figure 3b-e show one possible
such grouping of ShareDraw’s classes, obtained by apply-
ing the three simple rules adopted from our Focus tech-

nique [6]:

* Classes isolated from the rest of the diagram comprise
one grouping (Figure 3b).

* Classes that are related by generalization (i.e., inherit-
ance) comprise additional groupings, as do classes
related by aggregation and composition (Figure 3c).

+ Finally, classes with two-way associations are grouped
together since they denote tight coupling (Figure 3d).

Package groups of classes into architectural elements.
Clusters of classes identified in the previous stage are pack-
aged together into processing components, connectors, or
their relationships (links). These elements can be further
aggregated into even larger elements. Using this process,
ShareDraw’s client implementation is abstracted into seven
components and three inter-component links (Figure 3¢), as
well as two remote procedure call (RPC) connectors. The
connectors are not shown in Figure 3 since UML and
Rational Rose® provide no mechanisms for distinguishing
connectors from components. Figure 3 also does not show
data components as introduced by Perry and Wolf [27] and
discussed in Section 4.1. Data components may be
extracted from the processing components’ states and inter-
faces based on varying desired criteria (e.g., all class vari-
ables, all public method parameters, or both).

Determine partial system configuration. The relation-
ships among the components identified in the preceding
steps reflect the system’s configuration. The configuration
information may be incomplete in cases where the compo-
nents do not interact in easily detectable ways (e.g., access
to shared implementation substrate classes, implicit invo-
cation, distributed interaction, and so on). Figure 3e shows
only a partial configuration of ShareDraw’s client: the
topological relationship of the FrameWindows Mgr,
Dialog Mgr, and View Mgr components with the remain-
ing components has not been identified in this process; in
addition, the diagram does not identify the connectors for
reasons discussed above.

4.2.2 Summary and Open Issues

The described architectural recovery technique is very
simple and scalable, relying only on structural manipula-



tion of the system’s implementation. The outcome of the
technique is the RAM model, i.e., the collection of existing
system’s major processing and data components, its con-
nectors, as well as a partial architectural configuration.
RAM is intended to map to the structural aspects of DAM
proposed in Section 4.1.

The result of the recovery step is not a complete “as is”
architecture of the system. Several pieces of information
are still missing. As discussed above, the architectural con-
figuration information will likely be incomplete. In addi-
tion, similarly to a great majority of the existing recovery
techniques (e.g., [2,10,14,15,18,28,31,32]), our proposed
approach does not take into account non-functional proper-
ties. This shortcoming suggests the next step of our
approach: by coupling the information represented in RAM
and DAM with architectural style information, we can mit-
igate this problem and present a more complete picture of
the architecture, as discussed below.

4.3 Reconciling Discovery and Recovery

The above two techniques provide related, though dis-
connected models of the system’s architecture, as depicted
in Figure 1. The requirements are refined and rephrased
into DAM elements along the seven dimensions represent-
ing the key architectural concerns: data and processing
components, connectors, configurations, component prop-
erties, connector properties, and (sub)system properties.
The implementation is abstracted into four types of RAM
elements: data and processing components, connectors, and
(partial) configurations. This section discusses how the two

models can be “matched up” to derive a more complete
architecture based on their combined information.

4.3.1 Determining Appropriate Architectural Styles

As discussed earlier, architectural styles [8,16,29] pro-
vide rules that exploit recurring structural and interaction
patterns across a class of applications. Styles constrain
architectural models syntactically and semantically. In
order to select the appropriate style(s) for the given appli-
cation, we propose to classify existing architectural styles
across a set of commonly recurring dimensions. Our goal is
to provide the foundation of a classification that is rich
enough to allow us to effectively represent and select styles
based on the given DAM and RAM models.

Our preliminary study of architectural styles [22] has
identified the following seven dimensions as a good candi-
date set for effectively describing styles.
the types of data exchanged between style elements;
the structure of the elements allowed in a style;
the allowed topologies of architectural elements;
the allowed behavior of a style element;
the types of supported interactions between style
elements and their allowed specializations;
the key non-functional properties especially enabled by
the style; and.
the style’s domain of applicability.

Table 1 depicts the result of an exercise in which we
mapped four commonly occurring styles using this frame-
work. This experience has indicated several challenges that
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Table 1: Characterization of Four Architectural Styles

Data Structure Topology Behavior Interaction Properties | Domain
Separable compo- Limited component Exposed via named ser- . o .
. p P P xposed v Asynchronous coordination | Distributability
Discrete events nents dependencies vices only
Partially ordered con- | Data queueing and buffer- Implicit invocation .
.. o . Heterogeneity
nectivity-based “top ing by connectors . . GUI
C2 « » ; Event-based interaction _
. and “bottom” relations Composability | Systems
Data tuples Explicit connectors . . . - - -
. . Multi-tasking mechanisms | Direction-oriented events
Dynamic creation of .
. such as threads propagated to topology- Dynamicity
connections L
based recipients
M " Listening server Server location
. any-to-many connec- - . L o
Parameterized | Independent servers | . Y Y Connections setup and Remote connection and | Distributability
tions among clients and s
request servers teardown communication protocol
Cli Buffering and queueing of | Implicit server invocation Security Distrib-
ient- e ; - =
server Bpecializediolicnts requests Data marshalling and Evolvability | uted Sys-
. . Multi-tasking mechanisms unmarshalling tems
Dynamic creation of - —
Typed response | . . 5 such as threads Client call synchronization .
Distributed protocol connections - Heterogeneity
Exposed via named ser-
stacks . Request-response protocol
vices only
Explicit pipes and | Stream between a pipe Synchronization between | Heterogeneity
Pipe filters and a filter Stream transformation state filter reads and writes
p Streams of typed |  Input and output . machine Reusability Dataflow
and-fil- No two sources or sinks .
records ports on filters Propagation of stream con- systems
ter - connected to the same R
Sources and sinks on : . . tents to sinks e
pipes port instance Data buffering by pipes Composability
Independent produc- Content filtering in distrib- . . o .
. P P s Distributor location Distributability
Channel notifi- ers Producers connected utors
cation s only to distributors | Bufferi i R ti labili
L y uffering an'd queueing by emote connection and Scalability Distrib-
Push- distributors communication protocol ol
- uted sys-
based Channel access/sub- M b ) Subscrintion setu Data marshalling and Robustness temZ
Subscription scribers EHHS T CIETEE P P unmarshalling
: : among receivers and dis- — -
request Receiver user inter- 8 . Distribution policy .
tributors Content storage/expiration — : Security
face Implicit invocation
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we will need to address. First, we will need to carefully
specify a large, representative if not complete, set of exist-
ing architectural styles. This process will help us test our
hypothesis that the seven dimensions are sufficient to
uniquely and richly describe a style. Second, we will need
to characterize each style in a manner that will simplify the
task of relating the information contained in DAM and
RAM models to the information contained in Table 1.
Third, we will need to address situations in which multiple
styles are highlighted in this process as plausible candi-
dates. A related issue is dealing with situations in which
multiple styles are most appropriate to use in tandem for a
given problem.

In fact, we indeed selected two styles in our ShareDraw
example application: client-server to handle the distributed,
coarse-grained aspects of the application, and C2 for its
ability to compose the GUI-intensive application compo-
nents within each client and server. This choice was aided
by several factors, including our familiarity with these two
styles, the fact that we had used them together in the past,
the relatively small number of styles we had considered
(e.g., Table 1 only includes four styles), and some domain
properties (distribution and GUI aspects) that clearly
mapped to these two styles. We envision this to be a much
greater challenge in a more general setting. Our future
work will include identifying conditions and situations
under which specific combinations of styles are
(dis)allowed. This is a non-trivial problem that deserves
particular attention.

4.3.2 Integrating DAM and RAM

Once we have determined the suitable architectural
style(s), we can integrate the, still separate, DAM and
RAM models into a single integrated model. There are
three possible approaches to accomplishing this step:
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1. Apply the style information to DAM to derive an “as
intended” architecture, and then “map” the information
from RAM onto this architecture.

2. Apply the style information to RAM to derive an “as
implemented” architecture, and then “map” the
information from DAM onto this architecture.

3. Integrate DAM and RAM into an “as extracted”
architecture, and then apply the style information to the
integrated model.

We are currently investigating the respective benefits and
drawbacks of the three approaches.

The “as intended” architecture of the ShareDraw appli-
cation, obtained by integrating DAM and architectural style
information as discussed above, is given in Figure 4a. The
complete architecture, obtained by mapping the informa-
tion contained in RAM to the “as intended” architecture, is
shown in Figure 4b. As mentioned above, the final Share-
Draw architecture combines the client-server and C2 styles.

Irrespective of the chosen integration approach, inte-
grating DAM and RAM requires knowledge about how
their elements interrelate. Although both DAM and RAM
present architectural perspectives, they may be inconsis-
tent, e.g., in the element names or level of architectural
detail. The two models will thus need to be reconciled. Var-
ious interesting reconciliation scenarios can be envisioned.
For example, a single RAM element may map to multiple
DAM elements, and vice versa. It is also possible that no
obvious relationship can be established between an element
in one of the models and the other model’s elements. We
will carefully study these scenarios.

5 CONCLUSION

This work described in this paper is motivated by the
observation that architecturally-relevant information is



readily available in a system’s requirements and its imple-
mentation, although not always in an obvious form. This
information can then be uncovered and used to help stem
architectural erosion. The information captured in a sys-
tem’s requirements is high-level, possibly imprecise, but
rich in human stakeholders’ insights and rationale; this
information often suggests the suitable architectural
style(s) for the system. On the other hand, the information
contained in a system’s implementation is low-level, pre-
cise, and rich in detail; this information reflects the style(s)
applied in the system’s construction. We postulate that nei-
ther of the two sources of information should be considered
complete or correct by itself. Instead, we propose that they
be combined using the three presented techniques: archi-
tectural discovery, recovery, and reconciliation.

The work described in this paper is on-going. We have
already identified several open issues that will frame our
future research. In addition, we envision that the combina-
tion of the three techniques will likely result in a self-
adjusting process in which the architecture is already
known to be incorrect and/or incomplete, but, in addition,
neither the requirements nor the implementation need be
assumed correct or complete. Furthermore, the proposed
approach will result in clearly specified and maintainable
traceability links across the requirements, architecture, and
implementation. We plan to adopt existing techniques (e.g.,
[7,26]) to capture and manage the traceability links.
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Abstract

Requirements engineering and software architecting are
two key activities in software life cycle. Researchers have
paid much attention to mapping and transformation from
requirements to software architecture, but there’s still lack
of effective solutions. In this paper, the inadequacy of
traditional mapping approaches (such as approaches in
structured method and OO method) for this challenge is
analyzed, and further a feature-oriented mapping
approach is introduced. The rationale, process and
guidelines for this approach are specified, and the
approach is illustrated by an example of bank account and

transaction (BAT) system.

1. Introduction

Requirements engineering and software architecting are

life
Requirements engineering is concerned with purposes and

two important activities in software cycle.

responsibilities of a system. It aims for a correct, consistent
and unambiguous requirements specification, which will
the
validation and system evolution. In contrast, software

become baseline for subsequent development,
architecting is concerned with the shape of the solution
space. It aims at making the architecture of a system
explicit and provides a blueprint for the succeeding

development activities. It is obvious that there exist quite
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different perspectives in user (or customer) requirements
(SA). Mapping
requirements to SA is by no means trivial work. In
traditional software development methods, the mapping
relationship between requirements and SA is indirect and
not straightforward, and existing mapping solutions are
inadequate for mapping user (or customer) requirements to
SA. In order to adapt to iterative, incremental and
evolutionary development paradigm, it is necessary to
make the mapping relationship between user (or customer)
requirements and SA direct and straightforward, so as to
support the traceability between requirements and SA more
effectively.

As we have noticed, today more and more researchers
pay their attentions to the research of feature-oriented
software development methods. There have been efforts to
apply feature to software development. In 1982, Davis [1]
identified features as an important organization mechanism
for requirements specification. In 1990 Kyo C. Kang [2]
etc. proposed feature-oriented domain analysis (FODA)
method. In this method, the concept of using feature model
for requirements engineering was introduced. As a main
activity in domain modeling, feature analysis is intended to
capture the end-user’s (and customer’s) understanding of
the general capabilities of applications in a domain. Later,
FORM method [3] extends FODA to the software design
and implementation phases and prescribes how the feature
model is used to develop domain architectures and
components for reuse. FORM method is quite fit for

and software architecture from



software development in mature domain where standard
terminology, domain experts and up-to-date documents are
available. C. Reid Turner [4] puts forward a conceptual
framework for feature engineering in 1999. Turner prefers
to look feature as an important organizing concept within
the problem domain and proposes carrying a feature
orientation from the problem domain into the solution
domain. Turner’s framework comes from software
development experience in telecommunication domain,
and is still conceptual and incomplete. It does not provide
particular solution for mapping requirements to SA from
software engineering perspective. But above researches
and practice show that it is feasible and effective to make
features explicit in software development and to take
feature orientation as a paradigm during the software life
cycle.

In this paper, we will explore how to apply feature
orientation as a solution for the mapping problem between
requirements and SA from general software engineering
perspectives, focusing on the mapping and transformation
process. Our solution is to organize requirements in
problem domain into a feature model, and then base our
architectural modeling on the feature model, with the goal
mapping  between
requirements model and architecture models. Further, we

maintaining direct and natural
will address functional features and nonfunctional features
separately in different architectural models. Our approach
is not a replacement of but an improvement on traditional
methods. Our approach can integrate closely with OO
method. The modeling concepts and notation adopted in
this paper are based on UML, but have appropriate
extension.

The rest of this paper is organized as follows. Section 2
the
engineering and software architecting, and specifies the

analyzes relationship  between  requirements
necessity for supporting traceability between requirements
and SA. Section 3 analyzes the inadequacy of mapping
approaches in traditional methods. Section 4 proposes a
feature-oriented mapping solution, and specifies the
rationale, process and guidelines for this approach. Section

5 concludes the paper and further research effort is
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envisioned. Application of our mapping approach to the
bank accounts and transactions system (BAT) has been
used in this paper as an illustrative example.

2. Requirements Engineering and Software
Architecting

The IEEE standard [5] defines “requirement” as

“(1) A condition or capability needed by a user to solve
a problem or achieve an objective.

(2) A condition or capability that must be met or
possessed by a system or system component to satisfy a
contract, standard, specification or other formally imposed
document.

(3) A documented representation of a condition or
capability as in (1) or (2).”

This definition is not so clear. In practice, requirements
for a software system may exist in multiple different
abstract levels, varying from organization’s business
requirements, through user’s task requirements, to eventual
software requirements specification (SRS).

Requirements engineering aims at reaching a good
understanding of the problem domain and user’s (or
customer’s) needs through effective problem analysis
techniques, and producing a correct, unambiguous,
complete and consistent requirements specification which
serves as a baseline for developers to implement the
software system. Requirements engineering only focuses
on problem domain and system responsibilities, but not
design and implementation details.

SA has become an important research field for software
engineering community. There exists a consensus that for
any large software system, its gross structure-that is, its
high-level organization of computational elements and
interactions between those elements-is a critical aspect of
design [6][7]. It is widely accepted that SA is a very
important product and software architecting is a necessary
phase in software life cycle. As an important design
concept, SA “can serve as the key milestone in the entire
software life cycle process”. SA’s “support of the needs of
system engineers, customers, and

developers, users,



maintainers, also implies that is involved in all phases of
the software and system life cycle”[8].

Until now software engineering researchers don’t reach
an agreement about the relationship between requirements
engineering and software architecting. Following waterfall
development model, software architects should not begin
software architecting until a complete, correct and
consistent requirements specification is reached. But some
researchers[10] have pointed out that this model is
discredited. In “multilevel life cycle chart” model,
[10],

throughout

proposed by Merlin Dorfman requirements
the

architecting process, that is, the steps of requirements

engineering is involved software

analysis and design alternate. Rational Software
Corporation [9] proposes the Unified Process, which is a
use case driven, architecture-centric, and iterative and
incremental process framework.
different  perspectives,

evolutionary and concurrent development paradigms are

In spite of existing

now iterative, incremental,

gaining more and more wide-spread acceptance. In
development following such paradigms, it is more
important to maintain direct and natural mapping and

traceability between requirements specification and SA.

3. Traditional mapping approaches

Looking back on the development of software
development methodology, it is not difficult to find that
keeping the traceability and the consistency in concepts
between requirements and designs always are the goals
that we pursue. Two main software development methods,
structured method and object-oriented method, both
provide solutions for mapping analysis model to design
model.

In structured method, software requirements are
captured in Data Flow Diagram (DFD), and design is
described in Module Structure Chart (MSC). Because there
exists evident difference between the basic concepts and
principles of DFD and MSC, mapping DFD to MSC is
difficult and just by heuristic rules. Object-oriented

approach cured the symptom that the structured paradigm
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did not. Because Object-Oriented Analysis (OOA) and
Object-Oriented Design (OOD) use the uniform basic
concepts and principle, the mapping between OOA model
and OOD model is natural and direct. Also, keeping
traceability is easy and transformation could be done
mechanically.

But both structured method and OO method don’t
provide complete solution for mapping requirements to SA
indeed. On one hand, in both methods, SA and components
are not paid enough attention to; On the other hand, both
DFD and OOA model describe internal structure of the
system from developer’s view and not external behavior
from end users’ view. They contain some information that
is not of interest to end-users (or customers). So there is
still a gap between analysis model (DFD or OOA model)
and user requirements description. Based on above
analysis, we can conclude that, the mapping approaches in
traditional methods are inadequate for mapping from
requirements to SA.

4. Feature-oriented mapping

In this section we will explore how to apply feature
orientation as a solution for mapping and transformation
from requirements to SA aiming at improving traditional
methods.

Feature has been defined in various ways, some

important definitions are as follows: A feature is “a
coherent and identifiable bundle of system functionality
that helps characterize the system from the user
perspective”[4]; A feature is “a prominent or distinctive
user-visible aspect, quality, or characteristic of a software
system or systems”[2]; A feature is “an externally desired
service by the system that may require a sequence of
inputs to effect the desired result” [11]; A feature is “a
service that the system provides to fulfill one or more
stakeholder needs”[12]. We think that a feature is a
higher-level abstraction of a set of relevant detailed
software requirements, and is perceivable by users (or
customers). So it is reasonable to identify features as
in and

“first-class entities” requirements modeling,



combine feature modeling and traditional requirements
modeling together to describe requirements in different
levels. Further, in architectural modeling we will take
feature orientation as a goal, and try to maintain direct and
natural mapping between feature model and architectural
models at higher levels. By feature-orientation, we aim at
making the mapping relationship between requirements
and SA straightforward, which is impossible by traditional
approaches.

We also have recognized the different effect of
functional features and nonfunctional features on software
architecture and address them separately. First, we get an
initial partition of the proposed system into components
based on functional features. Then, further optimization
and transformation can be imposed on the partition,
iteratively and incrementally, considering nonfunctional
features.

The feature-oriented mapping process consists of two
stages:
feature-oriented architectural modeling.

feature-oriented requirements modeling and

4.1 Feature-oriented requirements modeling

Feature-oriented requirements modeling is intended to
capture users’ (or customers’) high-level expressions of
desired system behavior in terms of application features,
analyze the relationship between features, and then
organize and refine the features into a feature-oriented
requirements specification. Feature-oriented requirements
modeling can be divided into three activities: feature
elicitation, feature organization and analysis and feature
refinement.

Feature elicitation

Features elicitation focuses on eliciting user
requirements in terms of features. Keeping elicitation at
abstract feature levels, we can avoid plunging into detailed
functional requirements too early. Also, as the user often
has expertise in the domain and knows the value of the

features, problem analysis effort can be concentrated on

user-desired features and unnecessary work can be reduced.

Users’ (or customers’) knowledge about problem domain
is main source of features. Books, user manuals, etc. are
also sources of features. Main feature elicitation
techniques include interview, questionnaire, requirements
workshop, and so on. In mature domains, analyzing the
terminology of the domain language is also an effective

and efficient way to identify features.

Feature analysis and organization

As potential features are identified and elicited, they are

analyzed and organized into a feature hierarchy in a tree
form. The features collected can be divided into functional
features and nonfunctional features. All features reflect
stakeholders’ need to solve their problems. According Karl
E. Weigers’ view [13], stakeholders’ requirements may
exist in multiple levels, including business requirements,
user requirements and functional requirements. As
abstraction of functionality, features may exist at either
business level or user level. A feature at business level
describes the high-level desire of an organization or a
customer for future system. Features at user level describe
services which future system should provide for user tasks
and constraints on the services. We first partition the
features into the two levels, and we then further organize
the features based on following criteria:

O The features to support a specific business process
can be grouped and abstracted as a higher-level
feature

O The features to support a specific user class can be
grouped and abstracted as a higher-level feature

O A nonfunctional feature that is a constraint on a
functional feature becomes a sub-feature of the
functional feature.

O If a feature at user level is used to realize a feature at
business level, then the former becomes a sub-feature
of the latter. For instance, in the bank account and
transaction system (BAT) example (see Figure 1),
“identify client” feature is a realization of the
nonfunctional feature “security”, so “identify client”
feature becomes a sub-feature of “security” feature.

There exist various relationships among the features. We



identified
“composed-of”,

kinds  of
“generalization/specialization”,
constrained-by” and “dependent-on”, etc.
As shown in Figure 1, “identify client” is derived from

“security”,

have several relationships:

”

“derived-from”,

withdraw money” is constrained by “response
time <= 1min”, all customer services is dependent on
“identify client”.

Features themselves may be “mandatory” or “optional”.
A mandatory feature is necessary for general users, and an
optional feature is necessary for partial users. For example,

“withdraw money” is a “mandatory” feature, but “transfer
money” is an “optional” feature.

Feature refinement

Now we have a feature hierarchy, but it is not specific
enough for implementation. The next task is to refine the
features into detailed functional requirements. Here use
case technique can be used to elaborate a feature into a set
of functionality.

Figurel presents the resulting requirements model
through feature-oriented modeling.

Business
leve

customer Account Remote
services management client

e ———

7 RN
AY
User identify client '\\transfer money @
level S~ __ - -
Response
time <=1 min
function Identify Check Dehit Dispense
level client funds account money
Mandatory function
feature
e \  Optional
N 7 feature

Figure 1. The feature model of BAT system

4.2 Feature-oriented architecture modeling

After we have got requirements specification organized
by features, we can take it as an input to architecture
modeling and derive SA from it. We will take feature
prominence as a goal and try to maintain direct and natural
mapping between feature model and architecture models.
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Also, we have recognized that functional features and
nonfunctional features have each different contribution to
SA. A functional feature can be mapped to a subsystem or
a component. Nonfunctional features can generally not be
pinpointed to a particular component, but have impacts on
the system structure and behavior as a whole. So we can
address them separately in different models. We define SA



from three different viewpoints: conceptual architecture,
logical architecture, and deployment architecture. As
shown in figure 2, conceptual architecture focuses on the
system’s partition based on functional features, not
considering nonfunctional features. Logical architecture
focuses on logic design for addressing nonfunctional
features, considering the implementation environment.
Deployment architecture focuses on physical distribution

of the system, addressing related nonfunctional features.

Conceptual architecture

The conceptual architecture identifies the system

components, the responsibilities of each component, and
relationships between components in terms of application
domain concepts. It tries to preserve the structure of
problem domain by partitioning system based on
functional features and problem domain structure. Each
functional feature is mapped to a conceptual subsystem in
the conceptual architecture, and each function at the
function level can be mapped to an operation of a class in
the class diagram. Figure3, Figured4 and Figure5 illustrate
the three views of conceptual architecture in different
levels of details, among which the lower-level view is a
refinement of the higher-level view.

nonFunctional
features
Requirements nonFunctional Conceptual logical Deployment
model features architecture architecture architecture
1
1 1
Functional
features 7 ?\ *
 — - o — ¥ I —
\\\ ///
N
i .
ik B —
Figure 2. Mapping feature model to architecture models
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Figure 3. Business view of BAT conceptual architecture
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Withdraw money

Figure 4. User view of BAT conceptual architecture
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Logical architecture

Logical architecture is the
specification that defines the system components and
between components. Comparing with
conceptual architecture, the logical architecture introduces

detailed architecture
interactions
more logical structures or mechanisms considering the

implementation context and nonfunctional features. The
form of the conceptual architecture may be adapted or

even transformed. As shown in figure 6, considering
nonfunctional feature “various Ul”, we apply “separation
of concerns” strategy to the conceptual architecture. We
separate  responsibility  for from
responsibility for transaction management. So we got a
new system partition; “ATM
“Transaction management” subsystem and
management” subsystem.

user interface

interface” subsystem,

“Account

withdrawal transfers
______ NG <<subsystem>> L——50 <<subsystem>>
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Figure 6. Logical architecture of BAT system

Deployment architecture

The deployment architecture
functionality is distributed among computational nodes
and how computational nodes interact, to meet related
nonfunctional features. As shown in figure 7, considering
“remote client” and “fail-safe” features, a Three-Tier

focuses on how

ATM

architecture selected, and the CHAP
acknowledgement protocol is adopted to ensure connection
safety. Some components identified
architecture and logical architecture, such as “withdraw
money” subsystem, is distributed to the three nodes in this
view.
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Figure 7. Deployment architecture of BAT system
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5. Conclusion

In this paper, we analyze the gap between requirements
and SA and the inadequacy of mapping approaches in
traditional structured method and OO method. Based on
this analysis, we propose a feature-oriented mapping and
transformation approach. Our take
feature-oriented as a paradigm both in requirements
engineering and software architecting, so as to maintain
direct mapping between
specification and SA. Further, considering the different
effect of functional features and nonfunctional features on
SA, we address them separately in different models,
iteratively and incrementally. So our approach can fit into
incremental

solution is to

and natural requirements

iterative, or
paradigm.

We believe that feature-oriented development paradigm
will gain more and more wide-spread acceptance. Further
work will be to integrate our approach with existing CBSD
development paradigm in order to support components

reuse at different stages in software life cycle.

evolutionary  development
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Abstract

Despite the advances in software engineering since 1968,
how to go from a set of functional requirements to an
architecture that accommodates those requirements
remains a challenging problem. Progress with this
fundamental problem is possible once we recognize (1)
that individual functional requirements represent fragments
of behaviour, (2) a design that satisfies a set of functional
requirements represents integrated behaviour, and (3) an
architecture must accommodate the integrated behaviour
expressed in a set of functional requirements. This
perspective admits the prospect of constructing a design
out of its requirements. A formal representation for
individual functional requirements, called behavior trees
makes this possible.  Behaviour trees of individual
functional requirements may be composed, one at a time,
to create an integrated design behaviour tree. From this
problem domain representation it is then possible to
transition directly and systematically to a solution domain
representation of the component architecture of the system
and the behaviour designs of the individual components
that make up the system — both are emergent properties.

“Finding deep simplicities in a complex logical task
leads to work reduction ”- Harlan Mills.

1. Introduction

A great challenge that continues to confront software
engineering is how to go in a systematic way from a set of
functional requirements to a design that will satisfy those
requirements and an architecture that will support the
implied integrated behavior. In practice, these two tasks
are further complicated by defects in the original
requirements and, subsequent changes to the requirements.

A first step towards taking up this challenge is to ask —
what are functional requirements? Study of diverse sets of
functional requirements suggests it is safe to conclude that
individual requirements express constrained behaviour.
By comparison, a system that satisfies a set of functional
requirements exhibits integrated constrained behaviour.
The latter behaviour of systems is not inherently different.
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Functional requirements contain, and systems exhibit,
the behavior summarized below.

e Components realise states
o Components change states
o Components have sets of attributes that are assigned values

e Components, by changing states, can cause other
components to change their states
e Supplementing these component-state primitives are

conditions/decisions, and events involving component-states.

o Interactions between components also play a key role in
describing behaviour. They involve control-flow and/or data-
flow between components.

Notations like sequence diagrams, class and activity
diagrams from UMLJ[1], data-flow diagrams, Petri
Nets[2], state-charts and Message Sequence Charts
(MSCs) [3,4], accommodate the behaviour we find
expressed in functional requirements and designs.
Individually however, none of these notations provide the
level of constructive support we need. This forces us to
contemplate another representation for functional
requirements and designs. Such ventures are generally not
enthusiastically received — a consensus is that new
notations just muddy the waters. Our justification for
ignoring this advice is that the Behavior Tree Notation
solves a fundamental problem — it provides a clear, simple,
constructive path for going first from a set of functional
requirements to an integrated behaviour representation
that will satisfy those requirements and then to an
architecture and the set of accompanying component
behaviour designs [5].

2. Behavior Trees

The Behavior Tree Notation captures in a simple tree-
like form of composed component-states what usually
needs to be expressed in a mix of other notations.
Behavior is expressed in terms of components realizing
states, augmented by the logic and graphic forms of
conventions found in programming languages to support
composition, events, control-flow data-flow, threads, and



constraints. Behavior trees are equally suited to capture
behavior expressed in natural language functional
requirements as to provide an abstract graphical
representation of behavior expressed in a program. We
may therefore ask can the same formal representation of
behaviour be used for requirements and for a design? If it
could it may clarify the requirements-design-architecture
relationship.

Definition: A Behavior Tree is a formal, composable,
tree-like graphical form that represents behaviour of
individual or networks of entities which realize or change
states, make decisions, respond-to/cause events, and
interact by exchanging information and/or passing
control.

Behavior trees provide a direct and clearly traceable
relationship between what is expressed in the natural
language representation and its formal specification.
Translation is carried out on a sentence-by-sentence basis,
e.g., the sentence “when the door is opened the light
should go on” is translated to the behaviour tree below:

DOOR
?? Open ??

|

LIGHT
[On]

Component-State Label Semantics

Indicates that the component

tag COMPONENT Internal State has realized the particular
[State] internal state. Passes control
\L w hen state is realized
Indicates that the component
¢ COMPONENT Attribute - State will assign a value to one of
ag [Attribute := Value] its attributes.
Indicates that a container
tag| COMPONENT Container - State  component will have a sub-
9| [Sub-cpt[ State ] component realize a state
Indicates that the component
COMPONENT |IF - State will only pass control if If-state
tag 7 IF-State ? is TRUE
Indicates that the component
COMPONENT WHEN - State will only pass control when and

tag | 22 WHeN-State 22

if the event WHEN-state happens

i

COMPONENT
< Dataflow-State >

Indicates that when the
component hasrealized the
state it will pass the data to
\ll the component that receives
the flow

The system component,
System-Name realizes the

. state "State" and then passes
vV control to its output

Data-out State
tag

System - State

System-Name

tag [ State |

Figure 1. Behavior Tree Notation, key elements

The principal conventions of the notation for
component-states are the graphical forms for associating
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with a component a [State], ??Event??, ?Decision?, [Sub-
cpt[State] or relation, or [Attribute := expression | State ].
Exactly what can be an event, a decision, a state, etc are
built on the formal foundations of expressions, Boolean
expressions and quantifier-free formulae (qff). To assist
with traceability to original requirements a simple
convention is followed. Tags (e.g. R1 and R2, etc, see
below) are used to refer to the original requirement in the
document that is being translated. System states, are used
to model high-level (abstract) behaviour and some
preconditions/postconditions. Key elements of the
notation are given in Figure 1, above (see EBNF,
semantics, web-site http://www.sqi.gu.edu.au/gse/papers).

In practice, when translating functional requirements
into behavior trees we often find that there is a lot of
behavior that is either missing or is only implied by a
requirement. We mark implied behavior with a “+” in the
tag (and/or the colour yellow if colour can be shown).
Behavior that is missing is marked with a “-“ in the tag
(and/or the colour red). Explicit behavior in the original
requirement that is translated and captured in the behavior
tree has no “+/-* marking, and the colour green is used -
see Fig. 4 below. These conventions maximize traceability
to original requirements.

3. Genetic Software Engineering Method

Conventional software engineering applies the
underlying design strategy of constructing a design that
will satisfy its set of functional requirements. In contrast to
this, a clear advantage of the behavior tree notation is that
it allows us to construct a design out of its set of functional
requirements, by integrating the behavior trees for
individual functional requirements (RBTs), one-at-a-time,
into an evolving design behavior tree (DBT). This very
significantly reduces the complexity of the design process
and any subsequent change process [5].

What we are suggesting is that a set of functional
requirements, represented as behavior trees, in principal at
least (when they form a complete and consistent set),
contains enough information to allow their composition.
This property is the exact same property that a set of
pieces for a jigsaw puzzle possess. And, interestingly, it is
the same property which a set of genes that create a living
entity possess. Witness the remark by geneticist Adrian
Woolfson: in his recent book ([6], p.12), Living Without
Genes, “we may thus imagine a gene kit as a cardboard
box filled with genes. On the front and sides of the box is a
brightly coloured picture of the creature that might in
principle be constructed if the information in the kit is
used to instruct a biological manufacturing process”



The obvious question that follows is: “what information is

possessed by a set of functional requirements that might
allow their composition or integration?” The answer
follows from the observation that the behaviour expressed
in functional requirements does not “just happen”. There
is always a precondition that must be satisfied in order for
the behaviour encapsulated in a functional requirement to
be accessible or applicable or executable. In practice, this
precondition may be embodied in the behaviour tree
representation of a functional requirement (as a
component-state or as a composed set of component
states) or it may be missing - the latter situation represents
a defect that needs rectification. The point to be made here
is that this precondition is needed, in each case, in order to
integrate the requirement with at least one other member
of the set of functional requirements for a system. (In
practice, the root node of a behaviour tree offen embodies
the precondition we are seeking). We call this
foundational requirement of the genetic software
engineering method, the precondition axiom.

Precondition Axiom

Every constructive, implementable individual functional
requirement of a system, expressed as a behavior tree, has
associated with it a precondition that needs to be satisfied
in order for the behavior encapsulated in the functional
requirement to be applicable.

A second building block is needed to facilitate the
composition of functional requirements expressed as
behavior trees. Jigsaw puzzles, together with the
precondition axiom, give us the clues as to what additional
information is needed to achieve integration. With a
jigsaw puzzle, what is key, is not the order in which we
put the pieces together, but rather the position where we
put each piece. If we are to integrate behavior trees in any
order, one at a time, an analogous requirement is needed.
We have already said that a functional requirement’s
precondition needs to be satisfied in order for its
behaviour to be applicable. It follows that some other
requirement, as part of its behavior tree, must establish the
precondition. This requirement for composing/integrating
functional requirements expressed as behaviour trees is
more formally expressed by the following axiom.

Interaction Axiom

For each individual functional requirement of a system,
expressed as a behavior tree, the precondition it needs to
have satisfied in order to exhibit its encapsulated
behavior, must be established by the behavior tree of at
least one other functional requirement that belongs to the
set of functional requirements of the system. (The
functional requirement that forms the root of the design
behavior tree, is excluded from this requirement. The
external environment makes its precondition applicable ).

79

Interaction Axiom

Py
Matching
/Precondition
Py Ing,
BI- “Sratio,
P,

Integrating the root of BT-x
with a matching node in BT-y

Figure 2. Interaction Axiom - graphic form

The precondition axiom and the interaction axiom play a
central role in defining the relationship between a set of
functional requirements for a system and the
corresponding design. What they tell us is that the first
stage of the design process, in the problem domain, can
proceed by first translating each individual natural
language representation of a functional requirement into
one or more behavior trees. We may then proceed to
integrate those behavior trees just as we would with a set
of jigsaw puzzle pieces. What we find when we pursue
this whole approach to software design is that the process
can reduced to the following four overarching steps:

e  Requirements translation — (problem domain)
e Requirements integration — (problem domain)
e  Component architecture transformation

e Component behaviour projection

Each overarching step, needs to be augmented with a
validation and refinement step designed specifically to
isolate and correct the class of defects that show up in the
different work products generated by the process.

Comprehensive  description,  formalization, and
justification of a software development method and
notation, like the one here, requires significantly more
than a conference paper length treatment To maximize
communication we will only introduce the main ideas of
the method informally and show how the architecture and
component designs are obtained. The process is best
understood in the first instance by observing its
application to a simple example. For our purposes, and for
the purposes of comparison, we will use a design example
for a Microwave Oven that has already been published in
the literature [7]. The seven stated functional requirements
for the Microwave Oven problem [7, p.36] are given in
Table I below. Shlaer, and Mellor have applied their
state-based Object-Oriented Analysis method to this set of
functional requirements.



Table 1. Functional Requirements for Microwave Oven

R1. There is a single control button available for the user of the oven.
If the oven is idle with the door is closed and you push the button, the
oven will start cooking (that is, energize the power-tube for one
minute).

R2. If the button is pushed while the oven is cooking it will cause the
oven to cook for an extra minute.

R3. Pushing the button when the door is open has no effect (because it
is disabled).

R4. Whenever the oven is cooking or the door is open the light in the
oven will be on.

RS. Opening the door stops the cooking.

R6. Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R7. If the oven times-out the light and the power-tube are turned off]
and then a beeper emits a sound to indicate that the cooking is finished.

3.1 Requirements Translation

After preliminary glossary/vocabulary processing and
removal of aliases, etc, requirements translation is the first
major step in the Genetic Software Engineering (GSE)
design process. Its purpose is to translate each natural
language functional requirement, one at a time, into one or
more behavior trees. Translation identifies the
components (including actors and users), the states they
realise (including attribute assignments), the events and
decisions/constraints that they are associated with, the
data components exchange, and the causal, logical and
temporal dependencies associated with component
interactions.

Example Translation

The translations for the first six functional requirements
for the Microwave Oven given in Table 1 are shown in
figure 4. Translation of R7 from Table 1 will now be
considered in slightly more detail. For this requirement we
have wunderlined the states/actions and made the
components bold, i.c., “If the oven times out the light and
the power-tube are turned off and a beeper emits a sound
to indicate that cooking has finished”. Figure 3. (see
below) gives a translation of this requirement R7, to a
corresponding requirements behavior tree (RBT). In this
translation we have followed the convention of trying
wherever possible to associate higher level system states
(here OVEN states) with each functional requirement, to
act as preconditions/postconditions.

What we see from this translation process is that even for
a very simple example, it can identify problems that, on
the surface, may not otherwise be apparent (e.g. the
original requirement, as stated, leaves out the precondition
that the oven needs to be cooking in order to subsequently
time-out). In addition, the behavior tree representation
tags (here R7) are able to provide very direct traceability
back to the original statement of requirements. Our claim
is that the translation process has good repeatability if
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translators forego the temptation to interpret, design, and
introduce new things as they do an initial translation.

Requirement-7
If the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.
R7 OVEN
+ [Cooking ]
OVEN
R7| 22 Timea-out 72
LIGHT POWER-TUBE
R7 [of R7 o
BEEPER
R7 [Sounded]
OVEN
R7 [Cooking-Finished|

Figure 3. Behavior Tree for Requirement R7

3.2 Requirements Integration

When requirements translation is completed each
individual functional requirement has been translated to
one or more corresponding requirements behavior tree(s)
(RBT). We can then systematically and incrementally
construct a design behavior tree (DBT) that will satisfy all
its requirements by integrating the requirements’
behavior trees (RBT). Integrating two behavior trees
turns out to be a relatively simple process that is guided by
the precondition and interaction axioms referred to above.
In practice, it most often involves locating where, (if at all)
the component/state root node of one behavior tree occurs
in the other tree and grafting the two trees together at that
point. This process generalises when we need to integrate
N behavior trees. We only ever attempt to integrate two
behavior trees at a time — either two RBTs, an RBT with a
DBT or two partial DBTs. In some cases, because the
precondition for executing the behavior in an RBT has not
been included, or important behaviour has been left out of
a requirement, it is not clear where a requirement
integrates into the design. This immediately points to a
problem with the requirements. In other cases, there may
be requirements/behavior missing from the set which
prevents integration of a requirement. Attempts at
integration uncover such problems with requirements at
the earliest possible time.



Requirement-1

If the oven idle w ith the door closed and you
push the button the oven will start cooking
(that is, energize the pow er-tube for one
minute)

Requirement-2

If the button is pushed w hile the oven is
cooking it will cause the oven to cook for an
extra-minute.

Requirement-3
Pushing the button w hen the door is open has
no effect (because the button is disabled)

OVEN OVEN R3 DOOR
Rl lide] R2] rconing c| ropen
R2 USER
USER R3 BUTTON
R1 [ 228utton-Push?? 4 || PRl C+| [Disabled]
BUTTON
R1 EE;’UTSBJ]“ R2[ pushed
l/ \l/ R3 DOOR
OVEN C+|  [Closed
R1 P?gxg;g:f‘f R2 | Exra-Minute] 1/
l, \l’ R3 BUTTON
R2 OVEN A C+|  [Enabled)
R [C?)!E:g] + [Cooking]
Requirement-4 Requirement-5 Requirement-6

Whenever the oven is cooking or the door is
open the light in the oven will be on.

R4 DOOR
C [Open]
R4 LIGHT
c [on]
R4 OVEN
C [Cooking |
R4 LIGHT
C [On]

NQTE: Itis actually pressing the button

that causes the light to go on.

Opening the door stops the cooking

R5 OVEN
+ [Cooking]
R5 USER

+ | ??Door-Opened??

|

DOOR
[Open]

|

R5 | POWER-TUBE

+ [of]
OVEN
RS [Cooking-Stopped]|

Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6 OVEN
+ [Open]
R6 USER

+ | ??Door-Closed??

|

DOOR
R6 [Closed]
LIGHT
R6[ “om
R6 OVEN
+ [idie]

Figure 4. Behavior trees for Microwave Oven
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Example Integration

To illustrate the process of requirements integration we
will integrate requirement R6, with part of the constraint
Requirement R3C to form a partial design behaviour tree
(DBT). This is straightforward because the root node (and
precondition) of R3C, DOOR][Closed] occurs in R6. We
integrate R3C into R6 at this node. Because R3C is a
constraint it should be integrated into every requirement
that has a door closed state (in this case there is only one
such node). The result of the integration is shown below.

R6 OVEN

+ [Open]
Point of

R6 USER

Integration (@)

+ | ??Door-Closed??

R6 DOOR

@ [Closed]

R6 LIGHT R3 BUTTON
[Off] C+ [Enabled]

R6 OVEN

+ [Idie]

Figure 5. Result of Integrating R6 and R3C

When R6 and R3C have been integrated we have a
“partial design” (the evolving design behavior tree) whose
behavior will satisfy R6, and the R3C constraint. In this
DBT it is clear and traceable where and how each of the
original functional requirements contribute to the design.

Using this same behavior-tree grafting process, a
complete design is constructed (it evolves) incrementally
by integrating RBTs and/or DBTs pairwise until we are
left with a single final DBT (see Figure 6 below). This is
the ideal for design construction that is realizable when all
requirements are consistent, complete, composable and do
not contain redundancies. When it is not possible to
integrate an RBT or DBT with any other it points to an
integration problem with the specified requirements that
needs to be resolved. Being able to construct a design
incrementally, significantly reduces the complexity of this
critical phase of the design process. And importantly, it
provides direct traceability to the original natural language
statement of the functional requirements. From a careful
inspection of the integrated DBT (Fig. 6) we see that there
is a missing requirement associated with opening the oven
when it is idle. This has been added as requirement R8.
Note with constraint R4 we have used the causal
relationship for the light turning on rather than the literal
translation of the requirement.

82

BUTTON
[Enabled ]

USER
??Button-Push??

R1

POWER-TUBE
[Energized]

R1 OVEN R8 OVEN *
@ [Cooking] _ [Open]
R2 USER R5 USER R7 OVEN
+ | 72Bution-Pushi?? + | 7?Door-Opened?? 22 Timed-Out 22
BUTTON R5 DOOR LIGHT POWER-TUBE
|R2| A | |@| L] | |R7| 0 | |R7| o
R OVEN R5| POWER-TUBE R3 BUTTON = BEEPER
[Extra-Minute] + ff] C [Disabled] [Sounded]
R2 OVEN * R5 OVEN OVEN
| + [Cooking] [Cooking-Stopped] R7 | (Cooking-Finished

Figure 6. Integration of all functional requirements

Once the design behavior tree (DBT) has been
constructed the next jobs are to transform it into its
corresponding software or component architecture (or
component interaction network - CIN) and then project
from the design behavior tree the component behavior
trees (CBTs) for each of the components mentioned in the
original functional requirements.

3. 4 Architecture Transformation

A design behavior-tree is the problem domain view of
the “shell of a design” that shows all the states and all the
flows of control (and data), modelled as component-state
interactions without any of the functionality needed to
realize the various states that individual components may
assume. [t has the genetic property of embodying within
its form two key emergent properties of a design: (1) the
component-architecture of a system and, (2) the behaviors
of each of the components in the system. In the DBT
representation, a given component may appear in different



Traversed Design Behavior Tree Evolving Component
STEP 8 Interaction Network

R6 OVEN

+ [Open]
\l/ OVEN

R6 USER

+ | ??Door-Closed?? \l/
\L USER

R6 DOOR

@| [closed \L .
\[\\ DOOR
LIGHT R3 BUTTON

R6| Tom C+| [Ereble
\L BUTTON

R6 OVEN

@ [idle] SR |
v

v v \ 4 A 4
R8
R1 ??BmlﬁE:Jsh?? - ??Dool:-scfpz\ed?? LIGHT POWER-TUBE
BUTTON DOOR
RII pusheq R8I [open
R4 s R4 LIGHT R3 BUTTON H H
A L\[(S}:]T R1 P?EWnErZiI;?E A on o| pisaes €= Level 8 of Design Behavior Tree

Figure 7. A step in the Tree-to-Network Transformation

parts of the tree in different states (e.g., the OVEN
component may appear in the Open-state in one part of the
tree and in the Cooking-state in another part of the tree).
Interpreting what we said earlier in a different way, we
need to convert a design behavior-tree to a component-
based design in which each distinct component is
represented only once. This amounts to shifting from a
representation where functional requirements are
integrated to a representation, which is part of the solution
domain, where the components mentioned in the
functional requirements are themselves integrated. A
simple algorithmic process may be employed to
accomplish this transformation from a tree into a network.
Informally, the process starts at the root of the design
behavior tree and moves systematically down the tree
towards the leaf nodes including each component and
each component interaction (e.g. arrow) that is not
already present. When this is done systematically the tree
is transformed into a component-based design in which
each distinct component is represented only once. We call
this a Component Interaction Network (CIN)
representation. Above, we show the eighth step of this
transformation, involving the components on the eighth
level of the DBT. Here the POWER-TUBE gets included
into the CIN network and the link between the BUTTON
and the LIGHT is added to the network.

The complete Component Interaction Network derived
from the Microwave Oven design behavior tree is shown
below in Figure 8. It defines the component-component
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interactions and therefore the interfaces for each
component. It also captures the “business model” or
“conceptual design” for the system and represents the first
cut at the software architecture for a system. The next
important task is to isolate the behaviors of the individual
components present in the architecture from the DBT
using projection.

5

USER

.

o
—

Figure 8. Component Interaction Network - ( CIN)

BUTTON




3.4 Component Behavior Projection

In the design behavior tree, the behavior of individual
components tends to be dispersed throughout the tree (for
example, see the OVEN component-states in the
Microwave Oven System DBT). To implement
components that can be embedded in, and operate within,
the derived component interaction network, it is necessary
to “concentrate” each component’s behavior. We can
achieve this by systematically projecting each
component’s behavior tree (CBT) from the design
behavior tree. We do this by essentially ignoring the
component-states of all components other than the one we
are currently projecting. The resulting connected
“skeleton” behavior tree for a particular component
defines the behavior of the component that we will need to
implement and encapsulate in the final component-based
implementation.

Example — Component Behavior Projection

To illustrate the effect and significance of component
behavior projection we show the projection of the OVEN
SYSTEM component from the DBT for the Microwave
Oven.

OVEN COMPONENT - Projected Behavior

OVEN |

| 6 [Open]

OVEN
| 1 [Idie] |
1 OVEN G OVEN A
{ Cooking} {Open}
2 OVEN 5 OVEN 7 OVEN
{ Extra-Minute} {Cooking-Stopped} { Timed-Out}
OVEN * 5 OVEN * 1 OVEN
2 [Cooking] [Open] [Cooking-Finished
Missing \‘/
OVEN *
5 [Idie]

Missing

Component behavior projection is a key design step in the
solution domain that needs to be done for each component
in the design behavior tree. When this process has been
carried out for ALL the components in the DBT, that is,
USER, BUTTON, etc, all the behavior in the DBT has
been projected into the components that are intended to
implement the system. That is, the complete set of
component behavior projections conserve the behavior
that was originally present in the DBT. What this set of
component projections allows us to achieve is a
metamorphosis from an integrated set of functional
requirements to an integrated component based design. To
complete the component-based design, we embed the
behaviors of each component into the architectural design
provided by the component interaction network (CIN) —
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see, for example figure 8 above. The tasks that then
remain are to rationalize the component interfaces and to
implement the component interaction network which
supports the component interactions that, in turn,
implement the system behaviors. And finally, we must
provide implementations to support the behaviors
exhibited by each of the components. Component
integration can be done using either the facilities of a
component framework [1] or by using a standard code
implementation that maps the graphic network into code.

In a number of reports and presentations at
http://www.sqi.gu.edu.au/gse/papers we provide a more
detailed account of the GSE method, the notation and its
application to a diverse set of problems including contract
automation and much larger applications. We also provide
examples that show how to translate the designs that the
method produces into object-oriented and component-
based implementations in Java.

Conclusion

What we have presented is an intuitive, stepwise process
for going from a set of functional requirements to a design
and a supporting architecture. The method is attractive for
its simplicity, its traceability, its ability to detect defects,
its control of complexity, and its accommodation of
change. Derivation of the software component architecture
from the design behavior tree and projection of the set of
component behavior trees from a design behavior tree are
both repeatable, algorithmic processes, that can be
automated if we choose to do so. The greatest chance for
variation with work products comes in the translation of
natural language descriptions of functional requirements
to requirements behavior trees (RBTs)
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Abstract

Software systems development happens within a
context which organizational processes are well-
established. Hence, software needs to be built with
flexible architectures based in social and intentional
concepts to enable software to evolve consistently with
its operational environment. In this sense, the Tropos
requirements oriented development methodology, has
defined a number of organizational architectural styles
which are suitable to agent, cooperative, dynamic and
distributed applications. In this paper, we use an
extended version of UML to describe these novel
architectural styles in order to provide a detailed
representation of both the structure and behaviour of the
architectural design using these styles. This proposal has
been applied to an e-commer ce software system.

1. Introduction

Companies are continually changing and turning their
attention to improve their business strategies.
Stakeholders are demanding more flexible and complex
systems. Hence, software has to be based on
architectures that can evolve and change continually to
accommodate new components and meet new
requirements. A flexible architecture with loosely coupled
components is much more likely to accommodate new
feature requirements than one that has been highly
optimized for just itsinitial set of requirements. Tropos[1],
a requirements-driven development methodology, has
defined organizational architectural styles [6],[7],[8] based
on concepts and design alternatives coming from research
in organization management, used to model coordination
of business stakeholders — individuals, physical or social
systems. Tropos relies on the i* notation [4] to describe
both requirements and organizational architectural styles.
Unfortunately, this notation is not widely accepted by
software practitioners nor able to represent some detailed
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information which sometimes is required in architectural
design such as set of signals that are exchanged between
architectural components, as well as the valid sequence of
these signals (protocol). On the other hand, the Unified
Modeling Language — UML [3] has been extended and
used to represent the architecture of simple and complex
systems. Such an architecture description language is
based on UML for Real-Time systems (UML-RT), an UML
extension tuned for real time software systems.

In an effort to provide detailed representation in
architectural phase of Tropos methodology, as well as to
represent the organizational architectural styles into a
mainstream industrial notation, in this work we propose to
accommodate within UML-RT the concepts and features
used for representing organizational architectures into
Tropos. In order to validate this proposal, we applied it to
an eccommerce software system extracted from [1]. This
work is an improvement of another attempt for
representing the Tropos conceptsin UML [2].

The rest of this paper is organized as follows: Section
2 presents the Tropos methodology. Section 3 describes
how software architecture can be modeled using UML. In
Section 4, we define how organizational architectures can
be modeled using UML-RT. Section 5 depicts the
application of the proposal to a case study. Section 6
points to some future work and discusses the contribution
of this proposal.

2. The Tropos M ethodology

Tropos proposes a software  development
methodology and a development framework which are
founded on concepts used b model early requirements
and complements proposals for agent-oriented
programming platforms. This methodology is based on the
premise that in order to build software that operates within
a dynamic environment, one needs to analyze and model
explicitly that environment in terms of “actors’, their goals



and dependencies on other actors. Tropos supports five
phases of software development:

- Early requirements, concerned with the understanding
of a problem by studying an organizational setting; the
output is an organizational model which includes relevant
actors, their goals and dependencies.

- Late requirements, in which the system-to-be is
described within its operational environment, along with
relevant functions and qualities.

- Architectural design, in which the system's global
architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

- Detailed design, in which behaviour of each
architectural component isdefined in further detail.

In this work, our focus in on architectural design
phase. Software architecture is more than just structure, it
includes rules on how system functionality is achieved
across the structure. Unfortunately, traditional
architectural styles for ebusiness applications [12],[13]
focus on web concepts, protocols and underlying
technologies but not on business processes nor non
functional requirements of the application. As aresult, the
organizational architecture styles are not described nor
the conceptual high-level perspective of the e-business
application.

Tropos has defined organizational architectural styles
[6],[7].[8] for agent, cooperative, dynamic and distributed
applications to guide the design of the system
architecture. These architectural styles (pyramid, joint
venture (Fig. 1), structure in 5, takeover, arm’s length,
vertical integration, co-optation, bidding, ...) are based
on concepts and design alternatives coming from research
on organization management. From this perspective,
software system is like a social organization of
coordinated autonomous components that interact in
order to achieve specific and possibly common goals. The
purpose to reduce as much as possible the impedance
mismatch between the system and its environment.

For example, the joint venture architectura style
(Figure 1) allows a decentralized architecture. The main
feature of this style is that it involves an agreement
between two or more principal partners/components in
order to obtain the benefits derived from operating at a
large scale, such as partial investment and lower
maintenance costs, as well as reusing the experience and
knowledge of the partners/components, since they pursue
joint objectives.

To support modeling and analysis during the initial
phases, Tropos adopts the concepts offered by i* [4], a
modeling framework offering concepts such as actor
(actors can be agents, positions or roles), as well as social
dependencies among actors, i ncluding goal, softgoal, task
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and resource dependencies. This means that both the
system’s environment and the system itself are seen as
organizations of actors, each having goals to be fulfilled
and each relying on other actors to help them with goal
fulfillment.
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Figure 1. Joint Venture

Asshown in Figure 1, actors are represented as circles;
dependums -- goals, softgoals, tasks and resources -- are
respectively represented as ovals, clouds, hexagons and
rectangles; and dependencies have the form
dependerb dependumb dependee. Hence, in Tropos we
have the following concepts:

- Actor: An actor is an active entity that carries out
actionsto achieve goals by exercising its know-how.

- Dependency: A dependency describes an intentional
relationship between two actors, i.e, an “agreement”
(called dependum) between two actors: the depender and
the dependee, where one actor (depender) depends on
another actor (dependee) on something (dependum).

- Depender: The depender is the depending actor.

- Dependee: The dependee is the actor who is
depended upon.

- Dependum: The dependum is the type of the
dependency and describes the nature of the agreement.



- Goal: A god is a condition or state of affairs in the
world that the stakeholders would like to achieve. How the
goal is to be achieved is not specified, allowing
alternatives to be considered.

- Softgoal: A softgoal is acondition or state of affairs
in the world that the actor would like to achieve, but unlike
in the concept of (hard) goal, there are no clear-cut criteria
for whether the condition is achieved, and it is up to
subjective judgment and interpretation of the developer to
judge whether a particular state of affairsin fact achieves
sufficiently the stated softgoal .

- Resource: A resourceis an (physical or informational)
entity, with which the main concern is whether it is
available.

- Task: A task specifies aparticular way of doing
something. Tasks can also be seen as the solutions in the
target system, which will satisfy the softgoals
(operationalizations). These solutions provide operations,
processes, data representations, structuring, constraints
and agents in the target system to meet the needs stated
in the goals and softgoals.

The first task during architectural design is to select
among alternative architectural styles using as criteria the
desired qualities identified in the previous phase (Late
Requirements). To this end, the NFR framework [5] can be
used to conduct the selection of the most suitable
organizational architectural style. More details about the
selection and non-functional requirements decomposition
process can be found in [6],[7].

In the next section, we show how architectural design
can be represented by using an extension of UML. We
expose our proposal for representing architectural design
in the Tropos methodol ogy using this extension of UML.

3. Architectural Representation in UML

The UMLRT [9],[10] is using UML as an architectural
modeling language. Some specific architectural modeling
concepts are defined as specializations of generic UML
concepts. These specializations, usually expressed as
stereotypes, conform to the generic semantics of the
corresponding UML concepts, but provide additional
semantics specified by constraints[9]:

- Capsules: A capsuleis a stereotype of the UML class
concept with some specific features. A capsule uses its
ports for all interactions with its environment. The
communication with others capsule is done by one or
more ports. The interconnection with other capsulesisvia
connectors using signals. A capsule is aspecialized active
classand is used for modeling a self contained component
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of a system. For instance, a capsule may be used to
capture an entire subsystem, or even acomplete system.

- Ports: A port represents an interaction point between
a capsule and its environment. They convey signals
between the environment and the capsule. The type of
signals and the order in which they may appear is defined
by the protocol associated with the port. The port
notation is shown as a small hollow sguare symbol. If the
port symbol is placed overlapping the boundary of the
rectangle symbol denotes a public visibility. If the port is
shown inside the rectangle symbol, then the port is
hidden and its visibility is private. When viewed from
within the capsule, ports can be of two kinds: relay ports
and end ports. Relay ports are ports that simply pass all
signals through and end ports are the ultimate sources
and sinks of all signals sent by capsules. These signals
are generated by the state machines of capsules (Figure
8).

- Protocols: A protocol specifies a set of valid
behaviors (signal exchanges) between two or more
collaborating capsules. However, to make such a dynamic
pattern reusabl e, protocols are decoupled from a particular
context of collaborating capsules and are defined instead
in terms of abstract entities called protocol roles
(stereotype of Classifier Rolein UML) (Figure 9).

- Connectors: A connector is an abstraction of a
message-passing channel that connects two or more
ports. Each connector is typed by a protocol that defines
the possible interactions that can take place across that
connector (Figure8).

4. Organizational Architectural Stylesin UML

The organizational styles are generic structures defined
at a metalevel that can be instantiated to design a specific
application architecture. They support non-functional
reguirements, represented in Tropos methodol ogy such as
softgoals, during architectural design phase. Unlike
functional requirements which define what a software is
expected to do, non-functional requirements specify
global constraints on how the software operates or how
the functionality is exhibited. NFRs are asimportant as the
functional ones. They are not simply desired quality
properties, but critical aspects of dynamic systems
without which the applications cannot work and evolve
properly. The need to treat non-<functional properties
explicitly is a critical issue when software architecture is
built. Organizational architectures integrate NFR with
architectural project, since NFRs are composing part of
these styles.

Tropos relies on the i* notation [4] to describe both
requirements and represent organizational architectural
styles. Unfortunately, this notation is not widely accepted



by software practitioners, since it is just beginning to be
recognized as a suitable notation for representing
requirements and its tool support is aso limited. On the
other hand, the Unified Modeling Language [3] has been
used to represent the architecture of simple and complex
systems. Using UML as an Architecture Design Language
in the Tropos methodology allow us for representing
detailed information which sometimes is required in
architectural design, such as set of signals that are
exchanged between architectural components, which are
not supported by the i* notation. In the sequel we explain
how the concepts of Troposcan be accommodated within
UML-RT, in order to represent organizationa
architecturesin UML.

Asexplained in section 2.1, in Tropos actors are active
entities that carries out actions to achieve goals by
exercising their know-how. In section 3.1, we explained
that in UML-RT, capsules are specialized active classes
used for modeling self contained components of a system.
Hence, an actor in Tropos is mapped to acapsulein UML-
RT (Figure 2). Note that ports are physical parts of the
implementation of a capsule that mediate the interaction of
the capsule with the outside world.

e Diepender 5
L)

==capsule== ==pratocal== ==gapsule==
Capsuled Protocol CapsuleB
==por== ==protocolRole==| |==protacolRale== ==por==
Portl F-{={ Depender Dependee  [=77}-{ Pon2

Figure 2. Mapping a dependency between actorsto UML

In Tropos a dependency describes an “agreement”
(called dependum) between two actors playing the roles of
depender and dependee, respectively. The depender is
the depending actor, and the dependee, the actor who is
depended upon. Dependencies have the form
dependerb dependumb dependee. In UML-RT, a
protocol is an explicit specification of the contractual
agreement between its participants, which plays specific
roles in the protocol. In other words, a protocol captures
the contractual obligations that exist between capsules.
Hence, a dependumis mapped to a protocol and the roles
of depender and dependee are mapped to protocol roles
that are comprised by the protocol (Figure 2).

The type of the dependency between two actors
(called dependum) describes the nature of the agreement.
Tropos defines four types of dependums goals, softgoals,
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tasks and resources. Each type of dependum will define
different features in the protocol and therefore in ports
that realizes its protocol roles. As noted earlier, protocols
are defined in terms of entities called protocol roles. Since
protocol roles are abstract classes and ports play a
specific role in some protocol, a protocol roledefines the
type of a port, which simply means that the port
implements the behavior specified by that protocol role.
As defined earlier, capsules are complex, physica,
possibly distributed architectural objects that interact with
their surroundings through ports. Note that a port is both
a composite part of the structure of the capsule and a
constraint on its behavior.

Goal type will be mapped to an attribute with boolean
type present into the port that realizes the protocolRole
dependee (Figure 3). It represents a goal that a capsuleis
responsible for fulfill by exchanging the signals defined in
the protocolRole dependee.
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Figure 3. Mapping a goal dependency to UML

Softgoal type is mapped to an attribute with
enumerated type present into the port that realizes the
protocol Role dependee (Figure 4). It represents a quality
goal that a capsule is responsible for fulfill to a given

extent by exchanging the signals defined in the
protocol Role dependee.
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Figure 4. M apping a softgoal dependency toUML



Resource type is mapped to the return type of an
abstract method placed on protocolRole dependee that
will be realized by a port of a capsule (Figure 5). This
return type represents a resource that a capsule is
required to provide by exchanging signals defined in the

protocol Role dependee.
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Figure5. Mapping aresour ce dependency to UML

Task type is mapped to an abstract method placed on
protocol Role dependee that will be realized by a port of a
capsule (Figure 6). It represents an activity that a capsule
is required to perform by exchanging signals defined in
the protocol Roledependee.
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Figure 6. Mapping a task dependency to UML

A more compact form for describing capsules is
illustrated in Figure 7, where the ports of a capsule are
listed in a special labeled list. The protocol role (type) of a
port is normally identified by a pathname since protocol
role names are unique only within the scope of a given
protocol. However, ports are also depicted in the
collaboration diagrams (Figure 8) that describe theinternal
decomposition of a capsule. In these diagrams, ports are
represented by the appropriate classifier roles, i.e., the
port roles To reduce visua clutter, port roles are
generally shown in iconified form. For the case of binary
protocols, an additional stereotype icon can be used: the
port playing the conjugate role (depender role) is
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indicated by a white-filled (versus black-filled) sguare. In
that case, the protocol name and the tilde suffix are
sufficient to identify the protocol role as the conjugate
role; the protocol role name is redundant and should be
omitted. Similarly, the use of the protocol name alone on a
black square indicates the base role (dependee role) of the
protocol. In Figure 8, we can see the details of (inside) the
capsule and the end port/relay port distinction isindicated

graphically.
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Figure 7. A capsule classdiagram

In UML-RT, each connector istyped by a protocol that
specifies the desired behavior that can take place over
that connector. A key feature of connectors is that they
can only interconnect ports that play complementary roles
in the protocol associated with the connector. In a class
diagram, a connector is modeled by an association while
in a capsule collaboration diagram it is declared through
an association role. Hence, a dependency (epender b
dependumb dependee) in Tropos is mapped to a
connector in UML-RT (Figure 7 and Figure 8). In the
sequel we show how the Joint Venture organizational
architectural style (Figure 1) ismodeled using UML-RT.

4.1. Joint Ventureln UML

The UML-RT notation of capsules, ports and
connectors is used to model the architectural actors and
their dependencies. In Figure 8, each capsule is
representing an actor of the joint venture architecture.
When an actor is a dependee of some dependency, its
corresponding capsule has an implementation port (end
port) for each dependency (ex. Portl), which is used to
provide services for others capsules. When an actor is a
depender of some dependency, its corresponding capsule
has an implementation port (relay port) to exchange
messages (ex. Port3).

The Joint Venture architectural style presents six
capsules disposed according to Figure 8. The capsule
Joint Management is responsible for ensuring the
strategic operation and coordination of such a system and
its partner capsules on a global dimension. Through the
delegation of authority it coordinates tasks and manages
sharing of knowledge and resources. The two secondary
partners are capsules responsible for supplying services
or for supporting tasks for the organization core. The
three principal partners are capsules responsible for
managing and controlling themselves on a local



dimension. They can interact directly with other principal
partners to exchange, provide and receive services, data
and knowledge.

From Figure 1 you can recall the goal dependency
Authority Delegation between Principal Partner_nand
Joint Management actors. Each actor present in Figure 1
is mapped to a capsule in Figure 8. Each dependum i.e,,
the “agreement” between these two actors is mapped to
the protocol (see Figure 9). A protocol is an explicit
specification of the contractual agreement between the
participants in the protocol. In our study these
participants are the two actors previously mapped to
capsules. Each dependency is mapped to a connector in
Figure 8. Each connector is typed by the protocol that
represents the dependum of its corresponding
dependency. The type of the dependency describes the
nature of the agreement, i.e., the connector type describes
the nature of the protocol. The four types of dependums
(Goal, Softgoal, Task and Resource) are mapped to four
types of protocols (Figures 9, 10, 11 and 12).
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Figure8. Joint Venture Stylein UML-RT's capsule
collaboration diagram

For example, in the Goal type, the protocol Authority
Delegation (Figure 9) assures that this goa will be
fulfilled by using the signals described in the protocolRole
dependee. The goal will be mapped to a boolean attribute
present in the port that implements the protocolRole
dependee. This attribute will be true if the goal has been
fulfilled and false otherwise. Hence, in the dependency
between Principal Partner_n and Joint Management
capsules depicted in the second doted area of Figure 8,
the goal dependency will be mapped to a boolean attribute
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located in the port which composes the capsulePrincipal
Partner_n and implements the protocolRole dependee of
the protocol that assures the fulfillment of this goal
(Figure9).

Now examine the softgoal dependency Added Value
between Principal Partner_2 and Joint Management
actors depicted in Figure 1. In this case, the protocol
Added Value (Figure 10) assures that this softgoal will be
satisfied in some extent by using the signals described in
the protocolRole dependee. The softgoal will be mapped
to a enumerated attribute present in the port that
implements the protocol Role dependee. This attribute will
represent different degrees of softgoal fulfillment.
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Figure9. Protocolsand Portsr epresenting the Joint
Ventur € sgoal dependency Authority Delegation

Hence, in the dependency between Principal
Partner_2 and Joint Management capsules depicted in
the third doted area of Figure 8, the softgoal dependency
will be mapped to a enumerated atribute located in the
port which composes the Joint Management capsule and
implements the protocolRole dependee of the protocol
that assures some degree of fulfillment of this softgoal
(Figure 10).
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Figure 10. Protocols and Portsrepresenting the Joint
Ventur e s softgoal dependency Added Value

In the sequence, look at the task dependency
Coordination between Principal Partner_1 and Joint
Management actors depicted in the Figure 1. Here, the
protocol Coordination (Figure 11) assures that this task
will be performed by using the signals described in the
protocol Role dependee. The task itself will be mapped to a
<<incoming>> signal in the protocolRole dependee and
the port that implements that protocolRole will be



committed to realize their signals. Hence, in the
dependency between Principal Partner_1 and Joint
Management capsules depicted in the first doted area of
Figure 8, the task dependency will be mapped to a
<<incoming>> signal placed in the protocol Role dependee
of the protocol that assures the performing of this task.
The Joint Management capsule is composed by a port
which implements this protocol Role dependee (Figure 11).
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Figure 11. Protocols and Portsrepresenting the Joint
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Finally we have the resource dependency Resource
Exchange between Principal Partner_2 and Principal
Partner_n depicted in the Figure 1. Again, the protocol
Resource Exchange (Figure 12) assures that this resource
will be provided by using the signals described as
<<incoming>> signals in the protocolRole dependee. The
resource will be mapped to a <<incoming>> signal that
returns an information of type resource in the
protocolRole dependee and the port that implements that
protocol Role will be committed to realize their signals.
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Figure 12. Protocols and Portsrepresenting the Joint
Ventur €' sresour ce dependency Resour ce Exchange

Hence, in the dependency between Principal
Partner_2 and Principal Partner_n capsules depicted in
the fourth doted area of Figure 8, the resource
dependency will be mapped to an <<incoming>> signal
that returns an information of type resource and is placed
in the protocol Role dependee of the protocol that assures
the providing of this resource. The Principal Partner_2

91

capsule is composed by a port which implements this
protocol Role dependee (Figure 12).

Although we have only detailed the mapping of four
dependenciesin the Joint Venture Style to their respective
representation in UML-RT, the remaining ones are
mapped analogously, according to their types.

6. Case Study

We extracted a case study from [1] that describes a
business organization selling media items (books,
newspapers, CDs, etc.) that has decided to open up aB2C
retail sales front on the internet named Medi @.
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Figure 13— Media@ systemar chitecture

Based on the joint venture architectural style, Figure 13
suggests a possible assignment of  system
responsibilities. Front Store primarily interacts with
Customer and provides her with a usable front-end web
application. Moreover, it is responsible for catalogue
browsing, items search in database and supplying ondine
customers with information about media items. Back Store
keeps track of all web information about customers,
products, sales, bills and other data of strategic
importance to Media Shop. Billing Processor isin charge
of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Joint
Manager manages all of the controlling security gaps,
availability bottlenecks and adaptability issues, in order to
ensure the software non-functional requirements. All four
capsules need communicate and collaborate each other in
the running system.



Observe that the message exchange between capsules
happens in the context defined by protocol implemented
by prts that compose each capsule involved in the
interaction. For example, the communication protocol in
Figure 15 shows a request from Back Store to Front Store
for producing the Customer Profile.

<<protocol>>
Profile

[#i<<incoming>> request custome profile() : customer profile

Figure 15. Profile Communication protocol between
Front Storeand Back Store capsules

Moreover, we can use sequence diagrams to depict the
interaction between the capsules which compose the
system when realizing a particular scenario: the request for
ordering amediaitem.
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Figure 14. Sequence diagram for Ordering Media Item
context

Using UML-RT capsules enable usto refine the system
architecture to lowerlevel components (sub-capsules)
which depend on each other to realize the whole system
responsibilities. Sequence diagrams insert details in
architectural behaviour, since it shows the exchanged
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signalsin the interactions, as well as the valid sequence of
these signal's (communication protocol between capsules).

7. Conclusions and Future Work

In this work, we have been proposed using UML Real-
Time to accommodate the concepts and features used for
representing organizational architectures in Tropos,
nowadays. This proposal has been applied to multi-agent
software system development for an ecommerce
application. In this paper, we outline an organizational
architecturein UML. Our approach is appropriate for:

- Obtaining an architectural model closer to
organizational environment where the system will
eventually operate, mitigating the existent semantic gap
between the software system and its running
environment.

- Modeling more detailed architectures both in
structural and behavioural aspects.

- Building a flexible architecture with loosely coupled
components, which can evolve and change continually to
accommodate new components and meet new
requirements, as well as support nonfunctional
requirements. Hence, it enables to realize stakeholders
demand for more flexible and complex systems.

- Being able to use UML elements to represent non-
UML artifacts enables us to use existing UML toolsets to
createthose views.

- Making organizational architectures styles widely
used in industry, namely by other agent-oriented
methodologies or those tuned to open, cooperative,
dynamic and distributed systems.

In Tropos, UML is used only in detailed design phase.
However using UML-RT for modeling architecture can
help Troposin the following issues:

- Common Representation Model: Modeling
information of different types of views (UML and non-
UML) can be physically stored in the same repository.

- Unified Way of CrossReferencing Model
Information: Having modeling information stored at one
physical location further enables us to crossreference
that information. Crossreferencing is useful for
maintaining the traceability among artifacts from
architectural design and detailed design phasesin Tropos.

To improve this proposal, future work is required to
provide systematic guidelines. Currently this processes
happens in a ad hoc way based on software engineer
experience. Proper guidance will enable us to create
instances from architectural metamodels, defined by



Tropos, from requirement models represented in i*
notation. Also we intend to model internal behaviour of
capsules with state diagram. Moreover, we am at
proposing UML extensions for representing social
patterns involving agents, as well as both the structural
and behavioural aspects and features defining such a
software agents, in the context of Tropos Methodology.
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Abstract connectors), control issues, data issues, control and data
interaction issues, and reasoning. Moreover, intuition and
Making architectural decisions based on requirements, rules of thumb on choosing styles to fit the problem are dis-
analyzing cost-benefit trade-offs, and keeping design op-cussed as a preliminary step to design guidance.
tions open is a difficult task. Existing work on classification ~ Around the same time, Kazman, Clements, and Bass
of architectural styles and features of reusable components,provided a classification on architectural elements in terms
and derivation of relevant architectural styles provides use- of features, which can be used to identify reusable elements
ful heuristics to the task, but it remains to be largely a labor- that match required feature criteria [5]. In their approach,
intensive activity. temporal and static features are defined for classifying ar-
In this paper, we propose a rule-based framework with chitectural elements and describing the matching criteria of
automated reasoning for eliciting architectural decisions requirements.
from requirements. Our goal is to gain a deeper under-  \ore recently, Egyed et al. addressed this problem us-
standing of the relationships between requirements and ar-ing the CBSP (Component-Bus-System, and Properties) ap-
chitectural decisions, define generic mappings based onproach [4]. In this work, the WinWin negotiation model [2]
these relationships, and use these mappings to guide archijs adapted to classify the requirements according to the
tectural design with a higher degree of automation. CBSP properties in the architectural context. Based on
these properties, a CBSP model can be built to derive and
validate architectural styles.

Keywords There are five characteristics in common in these ap-
proaches:
Architecture, requirements, mapping, decision elicita-
tion, design guidance, rule-base 1. classification of requirements and architectural proper-
ties

1 Introduction
2. definition of a partial mapping from requirements

properties to architectural elements or decisions using

It has been recognized by the research community that
a common language

building a systematic bridge between requirements and soft-
ware architecture plays an important role in software engi-
neering [1]. In particular, making architectural decisions 3. provision of design alternatives and trade-off analysis
based on requirements, analyzing cost-benefit trade-offs,
and keeping design options open remains to be a labor- 4. abstraction of information
intensive task. A number of approaches have made progress
towards providing assistance to software architects. 5. reuse through styles by condition matching

Early works include Shaw and Clements’ classification
of architectural styles that had appeared in the published lit- Despite these advances, a number of key issues in bridg-
erature [8]. Each style is categorized according to its char-ing the gap between requirements and software architecture
acteristics with respect to constituent parts (components andare not well addressed to date.

94



Unified description language In order to bridge the gap e To what extent does architectural evaluation help in
between requirements and architecture, we need to define  choosing the best solutions for deferred decisions?
mappings between them. To establish these mappings, re- ) .

quirement specifications and architectural descriptions must ® 10 What extent do architectural decisions precede and
be formulated in a common language. This motivates the ~ Shape identification of requirements?

development of a unified language. We have seen that this o Are there any common factors for deferring decisions?

is done implicitly in the above approaches. But we do not Do they relate to specific classes of requirements?
yet know the following.

The earlier work has provided insights to the questions
e How feasible is it to use a unified language? posed above, but answers to many of them remain unknown.
In particular, answers to the question of what are the generic
and reusable mappings between requirements, architectural
properties, and decisions can lead to significant progress.
Our research is mostly motivated by these questions. In
answering these questions, we could gain a deeper under-
standing of the relationships between requirements and ar-
Relationship between requirements and architectural  chitectural properties, define generic mappings based on the
decisions relationships, and use the mappings to guide the architec-
tural design with a higher degree of automation.
In this paper, we propose a framework that can be used
to elicit architectural decisions from requirements, and de-

o Clearly, the architectural decisions made are related toSCriP€ @ potential rule-based implementation with auto-
the benefits and risks that are induced. Are we able Mat€d reasoning capability. Although user interaction is
to define relationships between them in assisting the rqulred in this framework, we belleveT |t|s§worthwhlle ex-

periment. Our reasons are the following. Firstly, the frame-

work can be customized for any application domain, and

o How do architectural decisions relate to the system’s the rule-base can be easily updated as new mappings are
requirements? required. Secondly, existing architectural decision making

knowledge can be evaluated using this framework. Thirdly,

e Are we able to classify relations between require- the evaluation of knowledge can help us define the relation-
ments and architectural decisions that are generic andships between requirements and architectural properties.
reusable? Lastly, this framework can be extended with higher degree

of automation once the reasoning system covers enough de-

e How do we abstract key architectural decisions made ¢jsion making strategies.
in existing systems? We plan to build a rule-based tool to capture the map-

pings, and in the process of doing so, to study how deci-

sions are made, what is the essential knowledge required,
and the structure of the knowledge. Our prior experience

[6, 7] shows that attempting to develop a rule-based (or pro-

duction) system raises useful questions about what knowl-

Architectural decisions deferral and trade-off  In prac- edge and heuristics to apply and how they interrelate.

tice, it is often necessary to defer an architectural deci- |n section 2, we describe our proposal of a general design

sion until further information is acquired and to keep de- guidance framework for eliciting architectural decisions. In

sign options open. Therefore, it is undesirable to make section 3, we outline a rule-based implementation of the
every decision up front and have little flexibility in mak- framework. In section 4, we present concluding remarks.
ing changes. However, having too many open ends will

make decision_ making difficult and prevent the development 2 Architectural Decision Elicitation Frame-

progress. This leads to the questions below. Answers to

these questions can help analyzing the trade-offs between work

different architectural decisions, and project architectural . _
evolutions with changing requirements. Requirements need to be obtained from stakeholders.

Likewise, architectural decisions need to be elicited from
e At what stage must these decisions be made beforerequirements. Even though a large body of research results
proceeding further? How much can they be deferred? and practical heuristics is available for making architectural

e How to express requirements and architectural descrip-
tions effectively using a unified language?

e What are the key properties of such a language?

e What kind of architectural decisions are frequently
made in building large systems?

trade-off analysis?

Studying decision making processes in existing systems
may provide insight into general relationship between re-
quirements and architectural decisions.
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Figure 1. The Architectural Decision Elicitation Framework

decisions, architects still need to carefully go through their sion making history, including the nodes along the branch
knowledge-base (usually their experience) to identify rel- and the source requirement, are describeddecesion unit
evant information, and analyze cost-benefit trade-offs, be-and sent to the conversion submodule.

fore making a decision. We propose an architectural de- A fyture extension to this module is the automated map-
cision ehcnauon_framework.(ADEF)_ that encapgu!ates the ping from requirements to architecturally significant prop-
knowledge required of making architectural decisions, and g(ties shown as the dotted box in figure 1. This extension

provides automated mapping from architecturally signifi- gictates that the requirements be stated in a formal lan-
cant properties to architectural decisions. This framework guage.

adapts a general Waterfall model.

There are two main moduleReasoningand Presenta-
tionin ADEF, as shown in figure 1.

The Reasoningmodule encapsulates the decision mak-

TheConvert to Analyzable Representatigoonversion)
submodule converts thgecision unitscreated in the map-
ping module to a form that can be interpreted by the anal-

. . . .ysis module. The converted decision units are then sent to

ing knowledgg, and reasons about t.he requirements to elici he analysis module as new facts.

relevant architectural decisions. This module consists three ) ] )

parts:mapping, conversigrandanalysis The Analysis submodule provides ongoing automated
TheMapping submodule uses built-in decision trees (di- "€@soning  of th.e following types using a predefined

rected acyclic graphs) to provide guidance to the user inKnowledge-base:

manually mapping each requirement specification to one

or more architecturally significant properties. Figure 2 il- 1 making architectural decisiondased on change in the
lustrates an example of a partial decision tree with only fact base (either a newly converted decision unit, or a
the properties that are significant in choosing architectural newly made decision), make appropriate architectural
styles (the ideas in this example are adapted from [4, 8]).  gecisions using heuristics defined in the knowledge-
We usedecision nodeo refer to both interior node and leaf base, then store the decisions as new facts
node in the decision tree, apdoperty noddo refer to leaf
node only.

Here is how the mapping is achieved. For each require- 2. resolve conflicting decisionsprovide resolution and
ment specified, starting at the root of the decision tree, explanation when multiple conflicting decisions are

present the user with the choices represented by the decision  made for the same part of the system

nodes associated (i.e. immediately below and connected) to

the root, and ask the user to decide whether each choice is ] ) ]
relevant to the current requirement. For each relevant deci- 1he Presentationmodule presents the resulting archi-
sion node chosen by the user, its associated decision nodg§ctural decisions to the user and updates changes made to
are then presented to the user in a depth-first fashion untilPrévious results. The process then is repeated for another

no more nodes are available as a choice. The description§€duirement specification.
of the property nodeshosen by the user are the architec- Next, we describe a rule-based implementation proposal
turally significant properties. Such a property and its deci- for this framework.
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Figure 2. An Example Decision Tree

3 A Rule-based Implementation tested against the current state of the working memory. For
example, the following rule debits a bank account.
In section 2, we have seen that the knowledge-base for ¢ (transaction
the mapping submodulis implemented in a decision tree. (type debit)
In this section, we describe a rule-based approach to achieve (amt  ?x)
the automated reasoning capability provided byahalysis (ac(fgl‘jr‘]’t“m ?a))
submodulausing a production system. (d ?a)
A production system keeps the fact knowledge-base (or (balance 2y A{>?x1}))

fact base) separate from the rule base. Rules can be de-THEN ~REMOVHE

. s L . . MODIFY 2 (balance [ ?y-?x])

fined a priori and maintained independently in the rule base.

The fact base is updated during the system execution. Nolyhere 2a, 2x and 2y are variables;{>?x} is a test for
only can new facts be added, but also the results made byajance >x; REMOVE deletes the first (i.etransaction )
each reasoning cycle are fed back to the fact base as upyME from the working memory; ansiopiFy 2selects the
dates. Ongoing reasoning is performed whenever updategecond WME and assigns the valug/af to balance .

to the fact base are received. These characteristics of pro-  g4ch condition can be either positive or negative. A neg-
duction system help to achieve dynamic analysis required ofatjve condition is of the formcond , wherecond represents
the framework. In addition, our prior experience has shown 4 positive condition. A rule is applicable if all of the vari-

positive results in applying the rule-based approach for au-gpjes can be evaluated using the WMEs in the current WM
tomated reasoning [6, 7]. Thus, we believe itis viable to use g,ch that the conditions are met. A positive condition is sat-

a rule-based implementation for thealysis submodule isfied if there is a matching WME in the WM; a negative
We first give a brief overview of production systems, condition is satisfied if there is no matching WME in the
then discuss the rule-based implementation forahaly- WM.
sis submodule A working memory elemehtas the following form,
(type (attribute 1 value 1) ... (attribute n value ,))
3.1 Production System Overview wheretype andattribute  ; are atoms, i.e. a string, a word,

or a numeral; andalue ; is an atom or a list.
The basic operation of a production system is a cyclic

A production systenis a reasoning system that uses N . ;
application of three steps until no more rules can be applied:

forward-chaining derivation techniques. It uses rules, called
production rulesor productionsin short, to represent its
general knowledge, and keeps an active memory, known as
the working memory(WM), of facts (or assertions) which
are calledvorking memory elemenfgVMEs) [3].

1. recognize identify applicable rules whose conditions
are satisfied by the WM;

2. resolve conflictamong all applicable rules (eonflict

A production ruleis usually written as: sed, choose one to execute;
IF conditions THEN actions
The conditions also known agatterns are partial de- 3. act apply the action given in the consequent of the
scriptions of working memory elements, which will be executed rule.
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3.2 Rule-based Analysis 4 Conclusions

In the analysis submodulethere are two goals to In this paper, we have posed many open guestions for
achieve: architectural decision making, and conflicting de- bridging the gap between requirements and software archi-
cision resolution. We use production rules to capture thetecture. Our research is motivated by these questions. In
knowledge and strategies for these goals. The challengegarticular, we are interested in exploring the applicability
here are to identify commonly used architectural decisions of a unified description language for requirement specifica-
and the architectural properties required for making thesetions and architecturally significant properties, classifying
decisions, choose an effective and concise representatiomrchitectural knowledge for building decision trees and pro-
scheme for facts, identify conflict conditions and resolu- duction rules for requirement mapping and analysis, identi-
tions, and design rules ro reflect these properties. fying the relationships between requirements, architectural

To illustrate how a decision making rule is defined and decisions and properties.
executed, we use the example decision tree shown in figure We have proposed a framework to provide design guid-
2. In this decision tree, the property nodes are closely re-ance in eliciting architectural decisions from requirements,
lated to some well known architectural styles. We use this and a rule-based implementation. Although human interac-
information to design the rules. For example, taking the tion is required to map requirements to architecturally sig-
first property node from the left, we can characterize it with nificant properties in the framework, we believe that using

a rule of the following form: a tool implementing the framework can help us evaluate ex-
_ isting architectural decision-making knowledge, and define

IF (t:]eelgiioer}\))%ts consumer and producer the relationships between requirements, architectural deci-
THEN ADD (use client/server style) sions and properties. Understanding of such relationships

can help us to provide higher degree of automation and min-
However, this rule does not capture key decision nodesimize human involvement.
along the branch and the source requirement. In addition,
the representation used in the rule is not concise. We refineReferences
the rule to be the following:
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Abstract

There is wide agreement that architecture plays a
prominent role in large, complex software systems.
Selection of an appropriate architecture — one that
matches the system requirements and implementation
resources — is a critically important development step.

We advocate the use of risk-based reasoning to help
make good architectural decisions. In this paper, we
explore the adaptation of a risk management process and
tool to this purpose.

1. Introduction

Software design for complex software systems is
difficult. The past decade has seen a convergence of
opinion about the importance of using established
architectures and design patterns. At the system level,
styles of software architecture [1, 11] like pipes-and-
filters or event-driven provide a starting point for design
of complex software systems. At the more detailed level,
architectural treatments capture well-reasoned decisions
whose strengths and weakness are understood, e.g.,
software design patterns like wrapper or builder. [7] This
paper will focus on the system level use of architecture,
although the approach should also be applicable to the
finer grained use of design patterns.

Choosing a good architecture is a critically important
step in the design of a system. A poor choice at this level
is difficult to repair at a more detailed design level. We
define the adjective good with respect to architecture to
mean an architecture that matches system requirements
and can be implemented within the resources allocated to
it. The implementation itself is a non-trivial task, and
induces a further set of critical decisions.

The primary thesis of this paper is that risk can be used
to guide these decisions. Use of risk-based reasoning
enables software engineers and managers to make choices
of software architecture and architecture implementation
that satisfy both criteria — meeting system requirements
and adhering to resource limitations.

This paper is organized as follows: section 2 describes
the current risk-based design process and the tool that has
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been developed to support this process; section 3
discusses some shortcomings in this process that are
caused by the failure to capture of explicit design and, in
particular, architectural aspects; section 4 describes ways
in which we are incorporating software architectural
decisions into this process and tool.

2. Basis for the approach - risk-based design

The approach advocated herein begins from an
existing risk-based design process and its accompanying
tool support. This is the “Defect Detection and Prevention
(DDP)” process [4], developed and used at JPL to help
engineers manage the trade space of choices in designing
spacecraft and associated technology.

DDP has three primary sets of issues that it captures
and tracks: requirements, risks, and mitigations. The DDP
tool is typically used to collect and maintain decisions and
information discussed in several meetings with a group of
experienced engineers and domain experts. The process
used in these DDP sessions is diagrammatically explained
in figure 1. The first step is the collection and weighting
of requirements. Given the requirements, the domain
experts determine the risks that these system requirements
entail. Each of these risks is then scored as to its impact
on each of the requirements. After risks are determined in
step 2, the activities that can mitigate these risks are then
listed. Each of these mitigations is scored as to its
effectiveness at reducing each risk.

DDP is unique in bringing a quantitative risk-based
approach to bear at early stages of decision-making. The
scoring of the links between risks and requirements, and
between mitigations and risks, are given a quantitative,
probabilistic interpretation. This allows DDP to add up
the cumulative impact of all risks, compare an individual
risk’s cumulative impact, compute how much of
requirements are being attained, compute how much net
benefit the use of a mitigation conveys, etc. [5]

This information is used together with budget
information on the cost of mitigations to make choices
about which mitigations to select. The goal is to reduce
the risks to sufficient levels (and so adequately attain



requirements) while remaining within resource
limitations.
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Figure 1: Standard DDP Process

In this process, risk is used as the intermediary through
which link requirements are indirectly linked to
mitigations. Our experience is that this indirection is
particularly useful. For example, the phenomenon of
“diminishing returns” as more and more mitigations are
applied to the same risks falls out naturally from this
approach. In contrast, attempts to link requirements
directly to solutions (development plans) often fail to
capture the multiplicity of problems and solutions.

3. Shortcomings in the current process

The standard DDP process depicted in figure 1
involves the gathering and linking of three major
concepts: system requirements (weighted to reflect their
relative importance), risks that threaten to detract from
attainment of those requirements, and mitigations to help
quell those risks (and so lead to improved attainment of
requirements). We have found this risk-centric approach
to be quite effective in guiding experts to make their
choices of mitigations. (The reader may wonder why
choices have to be made among mitigations. The answer
is one of resource limitation. Choosing to do all
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mitigations is typically not possible from a budget and
time perspective.)

We have observed that in use of the DDP tool and
process on JPL applications, there is some additional
structure to the concepts involved that the current process
is not adequately capturing. We describe how these
observations lead us to now propose to include
architecture as a first-class concept within the DDP
process.

Our first step in this direction stemmed from the
observation that some mitigations induce and/or
exacerbate risks. For example, a vibration test may be
used to check that a piece of hardware will operate
correctly when subject to vibration, thus decreasing the
risk of launching a spacecraft that is unable to operate
under mission conditions. However, there is some risk
that the test itself will cause problems (e.g., break
something). The risk of those problems we term induced
risk. Another example is of a protective coating applied to
a piece of circuitry, say. Its purpose is to protect the
circuitry from future damage, i.e., decrease those kinds of
risks. However, should there be need to modify the
circuit, that protective coating will make it harder,
perhaps even impossible, to effect the modification. We
describe the risks that would lead to the need for
modification as exacerbated by the protective coating
(i.e., while their likelihoods remain the same, their
impact, should they occur, is increased). Software
analogies of these phenomena are well known — fixing
one bug may introduce new ones; introducing monitoring
code may aid testing, but decrease performance (or lead to
changed timing behavior when that test-time code is
dropped from the final delivered code).

The standard DDP process (and its tool support) was
evolved to accommodate these phenomena by extending
the allowable range of the values attached to the links
between mitigations and risks. Initially all such values
were restricted to being positive proportions (i.e., in the
range (0, 1]), indicating the proportion by which
application of the mitigation would eliminate risk. Lack
of a link between a risk and a mitigation indicated that the
mitigation would have no effect whatsoever on that risk.
The extension was to allow the expression of negative
values as measures of effectiveness, where a negative
value in the range [-1, 0) indicated induced risk (the more
negative, the more the likelihood of the risk being
induced), and a negative value in the range [-1000000,
—1) indicated exacerbated risk (any existing risks’ impacts
would be multiplied by the abs(value)). For example, a
value of —3 means triple the impact of risks.

These extensions served their intended purpose to
allow DDP studies to take into account mitigation
induced/exacerbated risks. However, they opened the
door to (mis?)use as a way to represent design
alternatives.
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Figure 2: Revised DDP Process

To illustrate this we will first give a hypothetical and
simplistic system design example. Suppose that one of
the requirements for a planetary rover is to gather science
data on planetary formation, using a drill to extract a core
sample from rocks. Use of the drill demands a large
amount of power, so lack of available power is a
particularly serious risk against that science requirement.
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One possible mitigation to that risk is to deploy large
solar panels, capable of generating sufficient power. (An
alternative could be to drill more slowly but for a longer
duration). The large-solar-panel mitigation has its own
risks (rover is now prone to tipping; higher overall power
levels lead to the risk of electrical shorts; etc.).

A comparable software-domain example is the design
of a software subsystem with the requirement that the
software be able to respond to the position of the cursor
by displaying context-sensitive information that the user
needs. One risk to this requirement is that this
information will be displayed after an unreasonably long
delay. One possible mitigation is to design this system as
an event-driven system with an event loop that is
designed to catch and respond to mouse movements that
affect cursor position.

Our first inclination was to use mitigation-induced risk
as the means to represent these design options. For
example, the large solar panels mitigation for the risk of
lack of power we encoded as a DDP mitigation that
induces the rover tipping risk, the electrical shorts risk,
etc. Each of these induced risks were added into the same
list of potential risks, but with the unusual characteristic
that their a-priori likelihoods were set at zero (i.e., the
only way those risks could occur is through being induced
when the solar panel mitigation is selected). This enabled
us to avoid the need for further extension to the DDP tool.

From these latter examples, it is clear that the activities
that we have encoded as mitigations are, in fact, design
choices. In the software arena, these choices are software
architectural decisions. We are dissatisfied with
encoding of these as just more “mitigation” choices, albeit
with some unusual characteristics. At the very least, we
should call these out as architectural decisions, and so be
poised to take advantage of detailed methods for
architectural evaluation. We would also like to avoid the
need to start DDP from a “blank slate”, where all the
information must be supplied anew. Clearly, the body of
knowledge that pertains to architectures should be used to
pre-populate DDP. Finally, and most importantly, we
observe many of the risks and mitigations that derive
from an architectural choice affect how well that
architecture mitigates the original risks it was selected to
address. For example, suppose a pipes-and-filters
architecture was selected to mitigate the risk of system
ossification (inability to easily make system
modifications). The more the development of the system
strays from strict adherence to that architecture, the more
it diminishes the effectiveness of that architecture at
mitigating the ossification risk. In DDP-speak, the
architecture itself can be attained in whole or only in part
(the latter due to the cumulative impact of risks on the
realization of that architecture). Its effectiveness at
mitigating risks is determined by how successfully its
own risks are mitigated. We will see further examples of
this in the next section.



With this observation, we propose the capture of
architecture decisions explicitly in the DDP tool.

Before explaining this idea further, it is important to
remind the reader that not all mitigations are design
decisions. For example, one risk that may pertain to a
piece of software is that requirements are inconsistent.
One mitigation to this risk is a formal inspection process,
a form of analysis. The use of formal inspections is
clearly not a design decision. Indeed, in typical DDP
applications, a significant proportion of mitigations fall
into this testing/analysis category.

4. Incorporating software architectures

To incorporate software architectures into the DDP
tool without radically changing the tool, we have
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Figure 3: Shared data architecture

proposed a two-phase process as depicted in figure 2.

First we go through the original DDP process with
requirements-risks-architecture rather than requirements-
risks-mitigations. Thus, we are explicitly capturing
alternative design architectures that will reduce or
eliminate certain risks. Note that there may be a choice
among several architectures that reduce a particular risk to
acceptable levels.

To make this step easier, we propose seeding the DDP
tool with possible classic software architectures. [1, 11]
These architecture styles, e.g. pipes-and-filters,
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repository, object-oriented, serve as a starting point for
the architecture-selection process. Designers may, of
course, add their own hybrid designs.

The architectures that result from this first step become
the starting point for another iteration of the original
process, one that deals with architectures-risks-
mitigations. Thus, the architecture serves both as a
mitigation of risks in the first phase, and as an induced
requirement in the second phase. Note that the selection
of architecture is an important outcome of the DDP
process. Although we argued that risks themselves are
merely intermediaries, we do not make the argument that
architectures have a similarly nebulous status.

4.1 Examples

As a small but illustrative example, consider the
classic key word in context problem [10] proposed by
Parnas in 1972 (and discussed by many other researchers
since.)

The KWIC [Key Word in Context] index
system accepts an ordered set of lines; each
line is an ordered set of words, and each word
is an ordered set of characters. Any line may
be “circularly shifted” by repeatedly removing
the first word and appending it at the end of
the line. The KWIC index system outputs a
listing of all circular shifts of all lines in
alphabetical order.

We will treat this paragraph as a first-order
approximation to a set of requirements. In the DDP
process and tool, this set is represented in a structured
form, and the importance of each is evaluated and scored.
For example, we might prioritize the generation of the list
of all circular shifts as the most important, with the
alphabetizing of this list as being important, but having a
lower priority.

Now, let us consider some of the risks that might be
associated with these requirements. Parnas suggests two
potential risks (although he labels these as potential
design changes rather than risks.)

1.Changes to the processing algorithm
2.Changes in data representation

Garlan, et al [8] add three other risks to those of
Parnas.

Enhancement to system function
Performance
Reuse

(A nice discussion of this example and possible
architectures is provided by Shaw and Garlan. [11])

These risks are scored against requirements to see, if
they occur, how they would affect each requirement.

Now, we consider possible architectures for a
solution to this problem. First, consider two architectures
suggested by Parnas. [10] Figure 3 illustrates shared
memory architecture. Figure 4 gives an abstract data type

1.
2.
3.



solution. Another possible architecture is the pipes-and-
filters style as inspired by the Unix index utility and
described by Shaw and Garlan. [11] This is depicted in
figure 5.

type of change much more difficult. (This analysis is that
of Shaw and Garlan.[11])

In the DDP process we would push the software
engineers to quantitatively value these linkages between
risks and architec-
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The mechanism that we use to evaluate the strengths
and weaknesses of each potential architecture is to score
each architecture against risks that we have identified.
For example, we may determine that a pipes-and-filters
architecture may have performance (i.e. speed) issues
although the other two possibilities are likely to perform
more adequately. Conversely, the shared data and the
abstract data type architectures are likely to have trouble
if the algorithm for generating the index is changed. The
pipes-and-filters can more easily adapt its algorithm (by
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medinm shift
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Figure 5: Pipes-and-filters

merely changing or adding a filter.) However, the
abstract data type obviously can change its data
representation more easily; the other two would find this

in light of particular
risks. The numeric
entries are in the range 0 to 1, where 0 means no effect,
and | means that the architecture choice in that column
completely eliminates the risk in that row. The DDP tool
provides support for much larger matrices, and provides
other views of this linkage data in addition to the tabular
format.

In a realistic design, the number of requirements and
potential risks can be large. In DDP applications at the
component level (e.g., a memory device), it is typical to
deal with 50 — 100 each of requirements, risks and
mitigations, with hundreds of links between them. Even
if the number of viable architecture choices is relatively
small, the relationships between architecture and risks,
and risk and requirements can make the choice of the
preferred architecture quite complex. Addressing this
complexity is a strength of DDP.

With the assistance of DDP, the design team can now
select a tentative architecture. (This is a tentative
architecture because the entire process is iterative. For
example, the phenomena of requirements volatility and
requirement creep are well known.) This begins the
second phase of the DDP process. The starting point for
this phase is this tentative architecture. We list potential
risks inherent in this architecture. The risks enumerated
in the previous phase were those associated with
requirements regardless of architecture choice. Here we
are looking for design and implementation risks. What
things stand in the way of successfully implementing this
system with this architecture? If the system is highly
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interactive, a pipes-and-filters architecture style is quite
risky. However, an event-driven style would have much
lower risks in this area. Because of the paradigm shift
needed in object-oriented design (OOD) from traditional
procedural design, OOD may have a high dependency on
having a trained staff.

Table 1: Risk — Architecture matrix

budgeting information to make decisions about which set
of mitigations will achieve the system requirements using
the tentative architecture and within budget and resource
constraints. This is typically a complex decision given the
enormous number of interactions among requirements
(with their relative weights), risks (with their likelihoods),
the tentative architecture, mitigations (with their costs),
and linkages among these. DDP provides graphical
displays of this information that helps the design team
explore this complex trade space. An optimizer is
available that uses simulated annealing to find near
optimal choices of mitigations within a specified cost
bound.

Table 2: Risk — Mitigation matrix

Architectures
Shared Abstract Pipes and
data data type filters
store
w | Algorithm 0.9 0.7 0.1
Y]
2 | change
% [ Data 0.7 0.1 0.9
representation
change
Performance 0.1 0.1 0.7
issues

The process of listing risks and evaluating the impact
of each against the tentative architecture can be a tedious
one. It is clear that many software risks are common
across projects. We have preloaded DDP with a set of
common software risks. (We have used the risk
taxonomy identified by researchers at the Software
Engineering Institute. [2]) Furthermore, we have entered
linkages between these risks and a set of common
architecture styles. [11] Thus, a choice of architecture
obtains an associated set of risks and impacts. The design
team can use this as a starting point, adding additional or
more specific risks, and modifying or adding linkages.

Having identified software risks associated with this
architecture, we now identify those activities, i.e.
mitigations, that we can perform to eliminate, avoid, or
reduce the impact of risks. For example, if there is the
risk that our staff is not experienced in OOD, we could
give them additional training or hire some experienced
OO designers. Each such mitigation has a cost — the cost
of training materials and time, or salaries and benefits for
experienced designers.

We evaluate each mitigation against each risk to
score its effect at reducing that risk. The effect of
experience designers is likely to be greater against the risk
of inexperienced staff than is training. (A new design
method is often not fully understood until a certain level
of experience is reached that cannot be provided by even
the best training.)

Table 2 illustrates this matrix. Again, the numeric
entries are in the range 0 to 1, where 0 means no effect
and 1 means that the mitigation in that column completely
eliminates the risk in that row.

Finally, this collection of information (risks x
architecture, risks x mitigations) is combined with

Mitigations
Provide Hire Perform
OOD | experienced formal
2 training | OOD staff | inspections
2 | Inexperienced 0.7 0.9 0.0
& | staff
Inconsistent 0.0 0.1 0.9
requirements

As mentioned previously, this is an iterative process.
In these activities, it is common for the design team to
discover additional requirements or learn of the
infeasibility of certain requirements (resulting in the need
for descoping [6]). Additional risks of a particular
architecture choice may not be apparent until very late in
the process. Thus, the entire DDP process may be iterated
to capture these changes. However, note that subsequent
iterations are likely to be more efficient because of the
leverage of information derived during previous
iterations.

The reader may be struck by the length and
complexity of this process. We assert that this is the
nature of the task, not a side effect of our process. Design
of a complex software system is difficult.

5. Conclusions, Status, and Related Work

The argument set forth in this paper is that risk can
and should be used to guide architectural decisions. These
include both the choice of architecture itself, and the
decisions that flow from that choice. We have shown how
we arrived at this position through our observations of a
risk-based decision process in use in real-world design
activities. The gradual evolution of that process has led to
the point where we believe that architecture deserves a
place as a first-class object within the process itself. These
points have been illustrated using a small but familiar




example, the key word in context problem introduced by
Parnas.

The status of this work is that all the aspects of DDP
described in section 3 exist and have seen use in actual
spacecraft technology risk studies. Instances of the
phenomena we described in that section, of mitigation
induced or exacerbated risks, and of design decisions
encoded via this mechanism, have arisen in these same
actual studies. The extensions needed of the DDP tool to
support the two-phase approach, with mitigations leading
to derived requirements, have been incorporated in an, as
yet, unreleased version. We have used this within our own
experimentation, but it has not yet seen field use in real
project applications. Likewise, our encoding of
architectural considerations is also at the stage of internal
experiments that have yet to see actual customer
application. Additional information DDP can be found at
the Defect Detection and Prevention website,
http://ddptool.jpl.nasa.gov

A full comparison with related work is beyond the
scope of this workshop paper. We do draw attention to a
distinguishing characteristic of DDP, namely that it is
able to accommodate both architectural design decision
concerns, and other elements of project planning
(analysis, testing and process, represented as mitigations
in the DDP framework). Furthermore, DDP does so in a
quantitative manner. The combination of these aspects
sets DDP apart from many of the other approaches to
architectural decision making, e.g., the influence diagrams
of [3] (shown in use in [9]), or the goal graphs of [12]. A
key common thread that we have with those referenced
bodies of work is the reliance on computer support for
decision-making. Real-world problems involve a myriad
of concerns, whose number and complex interconnections
warrant support.
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Abstract

The step from the requirements for a software system
to an Architecture for the system has traditionally been
the most complex one in the software development
process. This step goes from what the system has to
achieve, to how it achieves it. In order to make this step
easier, we propose the use of Preskriptor, a prescriptive
architectural specification language, and of its associated
process, the Preskriptor process. Architectural
prescriptions consist in the specification of the system’s
basic topology and of the constraints associated with it
and its components and interactions. The Preskriptor
process provides a systematic way to satisfy both the
functional and non functional requirements from the
problem domain, as well to integrate architectural
structures from solution domains.

1. Introduction

The most difficult transition in the development
process for a non-trivial software system is likely the one
from the requirements for the system to the system’s
architecture. This step involves going from the problem’s
domain to the domain of its solution [1]. One of the
factors that makes the design of software systems so
challenging is that they have to satisfy many different
requirements (problems) at the same time, and there is
often more than a single solution to a particular
requirement.

Requirements specifications can be viewed as a
contract between the customer and the software
developers. Hence, they should be not only easy to
understand by the software architects and engineers but
also by the domain experts and users.

We propose the use of architectural prescriptions [2] to
perform the step from requirements to architecture. An
architectural prescription is the architecture of the system
in terms of its components, the constraints on them and
the interrelationships among the component (i.e., the
constraints on their interactions). At least initially, the
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constraints are only those coming from the problem
domain. While architectural descriptions provide more or
less complete details to the designers, prescriptions make
the step from requirements to architecture easier to model
and to perform. Prescriptions may also provide a means
of deeper understanding about the architecture. We will
show how we can perform this step from goal-oriented
requirements. Another advantage of prescriptions is that,
being at a higher level of abstraction, they can be reused
more easily, and they enable more creative designs.

The same prescription could be used for an entire
software family [3] of applications that differ only in
deployment requirements. If the applications differ also
in some requirements coming from the problem domain,
like the interaction with different types of users, we can
first develop the prescription for an ancestor system that
has all and only the requirements common to the whole
family and then get, by extending this prescription, the
prescriptions for all the descendent applications.

Because Architectural Prescription Languages APLs,
which we introduced in [4], are written in an elementary
ontology, they enable new, innovative designs. Let’s
consider, for example, a distributed system. An
architecture description language may include elements
such as clients and servers. It may be that the architect
writing a specification in such an architecture description
language uses client and server components also when,
for example, a multi-peer architecture might be a better
solution. The designer will then be constrained by such
architecture to a low-level design that adopts a client-
server solution. By describing the system at a higher
level of abstraction, a specification in an architectural
prescription language would instead permit the designer
to choose the best solution at the design level and even let
him/her take different choices for different members of
the family.

The paper is structured as follows: we first give an
overview of KAOS, the requirements specification
language our process uses as a starting point; then we
introduce the Preskriptor architectural prescription
language and process illustrating them with a practical
example; we conclude by summarizing the fundamental



results of the paper, and by discussing the future
directions of our research.

2. Overview of the KAOS Specification
Language

KAOS is a goal oriented requirements specification
language [5]. Its ontology is composed of objects,
operations and goals. Objects can be agents (active
objects), entities (passive objects), events (instantaneous
objects), or relationships (objects depending on other
objects). Operations are performed by an agent, and
change the state of one or more objects. They are
characterized by pre-, post- and trigger- conditions.

Goals are the objectives that the system has to achieve.
In general, a goal can be AND/OR refined till we obtain a
set of achievable sub-goals. The goal refinement process
generates a goal refinement tree. All the nodes of the tree
represent goals. The leaves may also be called requisites.
The requisites that are assigned to the software system are
called requirements; those assigned to the interacting
environment are called assumptions.

Let’s briefly see how obtain a requirements
specification in KAOS. The high-level goals are gathered
from the wusers, domain experts and existing
documentation. These goals are then AND/OR refined
till we derive goals that are achievable by some agents.
For each goal the objects and operations associated with it
have to be identified. Of course, more than one
refinement for a goal may be possible, and there may be
conflicts between refinements of different goals that can
be resolved as proposed in [6]. It’s up to the
requirements engineer to generate a “good” refinement
tree. By “good” refinement tree we mean one that does
not contain conflicts among refinements of different goals
and from which it is possible to derive an architecture that
achieves those goals. In addition to iterations with the
requirements specification process, there may also be
iterations between the requirements specification process
and the architecture prescription process.

In figure 1., there is an example of a goal specified in
KAOS, taken from the example we’ll use in next section.

Goal Maintain[ConfidentialityOfSubmissions]
InstanceOf SecurityGoal
Concerns DocumentCopy, Knows, People
ReducedTo
ConfidentialityOfSubmissionDocument
ConfidentialityOfIndirectSubmission
InformalDef A submission must remain
confidential. A paper that has to
be submitted has to remain
confidential.

Figure 1. Example of a goal specification in
KAOS
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The keyword Goal denotes the name of the goal;
InstanceOf declares the type of the goal; Concerns
indicates the objects involved in the achievement of the
goal; ReducedTo contains the names of the sub-goals into
which the goal is resolved. InformalDef is the informal
definition of the goal. Then there could be FormalDef, n
optional attribute; it contains a formal definition of the
goal (which can be expressed in any formal notation such
as first order logic).

3. The Preskriptor Process

We will illustrate our technique with an example. In
the example, we shall obtain an architectural prescription
for a system that automates some of the functions in the
paper selection process for a scientific magazine (or a
conference). Our starting point is a specification of this
software system in KAOS. The fundamental goal of the
paper selection system is to keep high the quality of the
magazine.

We have to determine the fundamental goal (root goal)
that the system has to achieve; this goal is the only
unavoidable constraint coming from the problem domain.
By using a KAOS specification as a starting point, we can
gradually increase the degree of constraint of the solution
by considering the goals that refine the root goal. We can
keep on refining goals to an appropriate level. The
Preskriptor process can take as input goals in any level of
the resulting goal refinement tree.

If we take the root of the tree, although the resulting
prescription will enable new, innovative solutions to the
problem, it will generally provide too little guidance to
the system’s designers.

On the other hand, taking the leaves of the goal
refinement tree (or even a further refining of the
prescription to achieve qualities as performance,
reusability, etc.) may produce a specification that
constraints too much the lower level designs. As Parnas
once noted, if in order to design washing machines we
used all the requirements coming from how we wash the
clothes by hand, we wouldn’t have got the very effective
rotary washing machines of nowadays.

Our approach leaves the software architect free to
choose the degree of constraint desired on the
architecture. Also, he or she could change the degree of
constraint during the architecture process according to
necessity. In the example that follows we use a high
degree of constraint (i.e. we consider goals deep in the
goal refinement tree) only for demonstration purposes.

The process of deriving the prescription is composed
of three steps that can be followed by an optional one,
and which may be iterated. In the first step we derive the
basic prescription from the root goal for the system. This
root goal is either already given or it can be obtained by
abstracting its sub-goals. In the second step we get the



components that are potential sub-components of the
basic architecture considering the objects that are in the
KAOS specification. In the third step we choose a level
of refinement of the goal refinement tree that we consider
appropriate, we decide which of the sub-goals at this level
are achieved or co-achieved by the software system, and
we assign them to the sub-components which we derived
at step 2. As a last step, the architectural prescription
may be further refined to achieve additional non-
functional properties.

Our example considers the KAOS specification for the
paper selection process developed in the thesis [7]. We
shall transform this KAOS specification into a
prescription for a Software System that is to assist in the
paper selection process. Figure 2. illustrates the first
three steps of the process.

from requirements
specification phase

Root Goal(s)

Step 1

Root Component(s)

\ 4

KAOS Objects Step 2

Potential Sub-
v component(s)

KAOS Goals Step 3

Architectural

feedback to
requirements

v

Figure 2: The fundamental steps of the
Preskriptor process

3.1 The First Step of the Methodology

The software system, that we hereafter denote as
“SelectionManager”, is co-responsible for the root goal
“Maintain[QualityOfTheScientificMagazine]”  together
with the system composed of the people involved. The
software system performs different functions that can be
automated and it interacts with the human system. Its
purpose is to speed up the paper selection process and to
improve its confidentiality.
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The Preskriptor language is an implementation of the
APL introduced in [4].

Preskriptor Specification: ScientificPaperManager
KAOS Specification: PaperSelectionProcess
Components:

Component SelectionManager [1,1]

Type Processing

Constraints

Maintain[QualityOfTheScientificMagazine]

Composed of ...

Uses PeopleConnect to interact with (AutorAgent,
ChiefEditorAgent,
AssociatedEditorAgent, EvaluatorAgent)

Figure 3: Example of a specification in
Preskriptor

At the beginning of a Preskriptor specification is the
declaration of its name. It’s followed by the declaration of
the KAOS specification from which the prescription is
derived. A prescription may derive from only one KAOS
specification, and if the prescription derives from several
different KAOS specifications, it’s better to merge the
specifications first and then to architect the system. By
doing so, if there are conflicts between goals in different
specifications they will be solved early at the
requirements phase. So, all the components of a
prescription derive from the same KAOS specification,
which may be the union of several KAOS specifications.
Following are the definitions of the components.

The field Component specifies the name of the
component. 7Type denotes the type of the component.
Constraints is the most important attribute of a
component. It denotes which are the requirements that
the component is responsible for. We use here the term
constraint to denote both functional and non-functional
constraints (both corresponding to requirements on the
system). Composed of identifies the subcomponents that
implement the component. The last attribute, Uses,
indicates which are the components used by the
component. Since interactions can only happen through a
connector, the Uses attribute has the additional keyword
to interact with denoting which components the
component interacts with using a particular connector.

At the highest layer of abstraction, to which the first
step of the specification corresponds, we have to write
next to the name of a component its possible number of
instances in the system. At the other layers this
information is optional because it will be contained
anyway in the Composed of field of the super-component
of the component considered. For example, [1,n] means
that the component can have any number of instances
from 1 to an arbitrary number n.

We will fill in the Composed of field after we decide
how to refine the system at the third step. The software



system has to interact with the people involved in the
process. To do so, it uses the (fairly complex) connector
“PeopleConnect”. To distinguish the people involved in
the process (agents) from the data components that may
be used in the software system to represent them, we
added the Agent suffix to their names. PeopleConnect is
specified as follows:

Component PeopleConnect [1,n]

Type Connector

Constraints
Maintain[QualityOfTheScientificMagazine]

Composed of ...

Uses /

Figure 4. Example of a connector specification

The symbol “/”” means none and, for now, we will omit
the fields whose value is none. The formal specification
of the Preskriptor language is in the Appendix.

3.2 The Second Step

From the objects in the KAOS specification we derive
potential data, processing and connector components that
can implement SelectionManager. If in the third step we
don’t attribute any constraint to these potential
components, they won’t be part of the prescription. In
that case, in fact, they won’t be necessary to achieve the
goals of the KAOS specification. In figure 5. is a sample
this set for the paper selection process.

Component Document
Type Data
Constraints ...

Component Paper
Type Data
Constraints ...

Component People
Type Data
Constraints ...

Component Knows

Type Data

Constraints ...

Composed of People[0,m], Document[0,n]

Figure 5. Sample of potential components for the
paper selection system

The notation, used in the Composed of field of the last
component, means that the component is composed of 0
or more ‘“People” sub-components and by O or more
“Document” sub-components. Obviously, the number of
instances assigned to different sub-components doesn’t
have to be the same.
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“SelectionManager” could be composed also of the
following processing component, and the following
connectors, which connect the processing component to
the data ones.

Component SelectionManagerEngine
Type Processing
Constraints
Maintain[QualityOfTheScientificMagazine]
Composed of ...
Uses
PeopleConnect to interact with
(AuthorAgent, ChiefEditorAgent,
AssociatedEditorAgent, EvaluatorAgent),
Connl to interact with Document,
Conn?2 to interact with Paper,

Component Connl
Type Connector
Constraints ...

Figure 6. SelectionManagerEnging and
associated connectors

3.3 The Third Step

Now we will complete the architectural prescription by
taking into account the goals that are at the goal
refinement tree level that we selected. We show how to
put constraints on the architectural components we got at
step 2.

Let’s first refine our root goal. After a first
refinement, the subgoals of the root that the software
system needs to achieve are:

Maintain[OriginalityOfSubmission],
Maintain[QualityOfPublishedArticles],
Maintain[QualityOfPrint],
Achieve[EnoughQuantityOfPublishedArticles].

By refining the first of these goals, we obtain the
following sub-goals:

Maintain[QualityOfEditorialDecisions],
Maintain[PertinenceOfPublishedArticles].

After two more refinements we obtain:
Avoid[ConflictOfInterestsWithAssociatedEditor]

This goal can translate directly into a constraint on the
“SelectionManagerEngine” and “People” subcomponents.
“SelectionManagerEngine” will somehow keep track of
the different ways the various people represented by the
People data component may know each other. The two



constrained components are able to achieve this
requirement and the existence of this requirement is a
sufficient condition for the existence of the two
components given our architectural rationale. By this we
mean that these components ought to exist even if they
have no other goals to achieve. On the other hand, if we
don’t care anymore about this requirement and there are
no further constraints assigned to these components, there
is no point in keeping them. By proceeding in a similar
fashion with the rest of the goal refinements, we obtain
the first version of a complete Preskriptor specification:

Preskriptor Specification: ScientificPaperSelector
KAOS Specification: PaperSelectionProcess
Components:

Component SelectionManagerEngine [1,1]
Type Processing
Constraints
Avoid[ConflictOfInterestsWithAssociatedEditor]
Avoid[SurchargeAssociatedEditor],
Achieve[ListOfPotentialEvaluators],
Avoid[ConflictsWithEvaluator],
Maintain[CommittedEvaluator],
Avoid[SurchargeEvaluator],
Maintain[FeedbackOnPaper],
Maintain[ConfidentialityOfPapers],
Maintain[IntegrityOfPapers],
Maintain[ConfidentialityOfSubmission],
Maintain[IntegrityOfEvaluation],
Maintain[ConfidentialityOfSensibleDocument]
Composed of ...
Uses
PeopleConnect to interact with (AutorAgent,
ChiefEditorAgent,
AssociatedEditorAgent,
EvaluatorAgent),
Connl to interact with Document,
Conn?2 to interact with Paper,

Component Document [0,n]

Type Data

Constraints
Maintain[FeedbackOnPaper],
Maintain[IntegrityOfEvaluation]

Component Paper [0,n]
Type Data
Constraints Maintain[IntegrityOfPapers],

Component Connl [1,n]

Type Connector [1,n]

Constraints

Maintain[IntegrityOfEvaluation],
Maintain[ConfidentialityOfSensibleDocument]

Figure 7. A prescription for the paper selection
process after step 3

111

We omitted the complete specification, but if we
included it, it would be possible to notice that the
components: ChiefEditor, Author, Knows, Holds,
IsAuthorOf, Supervise, InChargeOf and Evaluates, which
were potential sub-components at step 2, were removed
from the prescription because they are not necessary to
achieve the sub-goals for the system. This is due to the
rationale that we took in prescribing the system.
Different architects may use different rationales and
produce different prescriptions.

At the third step (and at the optional fourth) we first
consider the functional goals and than the non-functional
ones. The goals of the latter type have a more complex
effect on the system to achieve. In the most general case,
apart from further constraining already existing
components, they introduce new components and they
transform the system’s topology (i.e. they change the
relationships among the system’s components). Details
on how the Preskriptor process manages non-functional
requirements can be found in [8].

3.4 The fourth step

At this step of the prescription design process, the
architectural prescription is further refined to make the
system achieve goals that are not from the problem
domain. These additional goals are typically introduced
for a variety of reasons (for example architectural,
economic, etc.).

These goals can be classified as follows: useful
architectural properties, even though not required by the
problem (such as reusability, evolvability, etc.),
conformance to a particular architectural style, and
compatibility goals (such as compatibility with a given
platform or industry standard, or platform independency).

Examples of architectural goals are reusability,
location transparency and dynamic reconfiguration.
These goals can modify the prescription at the component
level, at the sub-system level, or affect the whole system.

As practical experience has shown [8], architectural
styles can be chosen as a particular solution to achieve
some goals or to refine some components. For example,
we can achieve the architectural goal of dynamic
reconfiguration by making all the components adhere to
the reconfigurable architectural style. By dynamic
reconfiguration we mean that the application can evolve
after it has been already deployed as demands change for
new and different kinds of configuration. A
reconfigurable architectural style is the following set of
constraints: provide location independence; initialization
must provide facilities for start, restart, rebuilding
dynamic data, allocating resources, and initializing the
component; finalization must provide facilities for
preserving dynamic data, releasing resources, and
terminating the component.



The last kind of goals that don’t come from the
problem domain are compatibility goals. They further
constrain a prescription to take into account, already at
this architectural design level, the need to assure the
compatibility of the system with one or more industry
standard(s) and/or platform(s). For example we may
want to make a system CORBA or Linux compatible.
This may be motivated by the need to assure
compatibility with legacy systems, other vendors systems,
available machines, or just for some marketing strategies.

Fig. 11 shows how step 4 interacts with the previous
steps of the Preskriptor process.

From Non Problem

From Step 3
rom >tep Domain specifications A

Architectural Goals

. L. Architectural Styles

Problem Oriented Prescriptio Compatibility Goals

> Step 4
feedback to Step 3
Solution Oriented Prescription
v

Figure 8: Step 4 of the Preskriptor process

As we can see, in general, the fourth step is iterated till
we have achieved all of the non-domain goals. This step
may also be iterated with step three. In that case,
alternative problem domain goal refinements and/or
components may be chosen to make the later prescription
design steps possible or easier to perform.

It’s important to distinguish between the artifact of the
third step and the one of the fourth. The third step
produces an artifact whose only constraints come from
the problem domain, which can be reused with similar
systems without over-constraining them. On the other
hand after the fourth step we obtain a prescription that
takes into account also constraints that we introduced for
the particular product we are developing, such as the use
of a particular architectural style or the compatibility with
a certain industry standard. While the artifact of step four
may be reused with other systems that we want to develop
in a similar manner, we also want to be able to easily
reuse a prescription in systems that are to be implemented
with different non domain constraints, like with different
architectural styles. For this reason we distinguish
between the specification of the prescription after step 3.,

which we call Problem Oriented Prescription (POP), from
the one after step 4, which we call Solution Oriented
Prescription (SOP).

Given the Problem Oriented Prescription for the
system and the non-domain driven goals, step 4 proceeds
similarly to step 3. It takes as inputs a POP and the non
problem domain goals, and gives a SOP as a result. In
this step the non-domain goals are assigned as constraints
to some POP components and/or the topology of the POP
may be modified in order to achieve them (in this step we
may reintroduce some of the KAOS components that we
discarded at step three).

A Solution Oriented Prescription specification is
similar to a POP specification, but it includes one or more
of the following additional attributes: Architectural Goals,
Architectural ~ Styles and  Compatibility — Goals
Specification. These new attributes are needed to keep
track of the specifications of the goals, which don’t come
from the problem domain.

4. Conclusion

This paper presents an introduction to Preskriptor a
method for transforming a requirements specification into
an architectural prescription. Architectural prescriptions
are a higher-level form of architectural specifications that
interface more easily with requirements specifications and
that do not include implementation oriented entities such
as client-server which are often default components in
architectural descriptions. We illustrated how to derive a
prescription with a practical example. The key steps in
the prescription specification process are: the selection of
the right level of goal refinement, the choice of the
potential components for the architecture, the assignment
of the constraints to the potential components for the
architecture and, often in the case of non-functional
requirements, the modification of the architecture’s
topology.

Preskriptor is a systematic and rigorous process to
make sure that none of the requirements are neglected,
that no useless requirements and/or components are
introduced and that the means for easily modifying the
architecture are provided. The generality of our approach
will allow the architects to choose their favorite ADL, or
design specification, to describe at a lower level an
architecture prescribed in Preskriptor.

The objectives for the future of our research are the
extension of the methodology to take into account the
most common non-functional requirements, the test of the
methodology with case studies and empirical studies, and
the development of a supporting tool.
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6. Appendix

Preskriptor Specification: [Prescription’s name]

(KAOS Specification: [Requirements specification’s
name])’

Components:

(

Component [Component’s name| (fnuml, num2j)
Type {Processing | Data | Connector}

Constraints ([Constraint’s name], )"

(Composed of ([Component’s name] [numi, num?2], )y
(Extends [Component’s name])’

(Generalizes ([Component’s name], )")’

(Uses [Connector’s name] to interact with ([Component’s
name], )")’

+

)

The terms between brackets denote the meaning of the
identifier that will be at their place. “*” means that the
preceding expression can be present 0 to an arbitrary
number of times. “+” is the same except that it has to be
present at least once. “?” means the expression can be
present 0 or 1 time only. The new symbol “&” means that
the expression is required only for the specification of the
components at the first level of the components
refinement tree.
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Abstract

Software systems of today are characterized by in-
creasing size, complexity, distribution, heterogeneity,
and lifespan. Understanding and supporting the
interaction between software requirements and
architectures remains one of the challenging
problems in software engineering research. To
address these challenges we are proposing an
integration framework developed within the context
of the Tropos project. The proposal aims at
identifying the key architectural elements and the
dependencies among those elements, based on the
stated system requirements.

1. Introduction

Requirements  Engineering and Software
Architecture have become established areas of
research, education and practice within the software
engineering community.

Evolving and elaborating system requirements into
a viable software architecture satisfying those
requirements is still a difficult task, mainly based on
intuition. It also remains a challenge to show that a
given software architecture satisfies a set of functional
and non-functional requirements. This is somewhat
surprising, as software architecture has long been
recognised to have a profound impact on the
achievement of non-functional goals ("ilities") such as
availability, reliability, maintainability, safety,
confidentiality, evolvability, and so forth.

In this work we show an approach for this
integration of systems requirements and software
architectures within the context of the Tropos project,
an information system development framework which
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is requirements-driven in the sense that it adopts
concepts used during early requirements analysis. To
model and understand issues of the application
domain (the enterprise) we use the i* technique [2],[3],
which allows a better description of the organizational
relationships among the various agents of a system as
well as an understanding of the rationale of the
decisions taken. In the architectural design we use a
catalogue of socio-intentional structures adopting a
set of architectural styles for multi-agent systems
motivated in organization theory and strategic
aliances[4], [9], [6].

The paper is structured as follows. Section 2
presents the Tropos ontology, including a modeling
framework for requirements analysis namely the i*
technique, and the organi zational-inspired
architectural styles. Section 3 emphasize the existence
of conceptual differences between requirements and
architecture. Section 4 introduces the baseline of our
proposal to integrating organizational reguirements
and socio-intentional styles. Finaly, Section 5
summarizes the related work, concludes the papers
with contributions and pointsto further work.

2. The Tropos M ethodology

The Tropos methodology adopts the view of
information systems as social structures. By social
structures, we mean a collection of social actors,
human or software, which act as agents, positions, or
roles and have social dependencies among them.
Tropos is intended as a seamless methodology
taillored to describe both the organizational
environment of a system and the system itself in terms
of the same concepts.



The Tropos ontology is described at three levels of
granularity [1]. At the lowest (finest granularity) level,
Tropos adopts concepts offered by the i*
organizational modeling framework [2], [3], [4], such as
actor, agent, position, role, and social dependency.

At a second, coarser-grain level the ontology
includes possible social patterns, such as mediator,
broker and embassy. At a third, more macroscopic
level the ontology offers a set of organizational styles
inspired by organization theory and strategic alliances
literature. All three levels are defined in terms of the i*
concepts.

Tropos methodol ogy spans four phases:

- Ealy requirements - concerned with the
understanding of a problem by studying an
organizational setting; the output is an
organizational model that includes relevant
actors, their goals and dependencies.

Late requirements - the system-to-be is
described within its operational environment,
along with relevant functions and qualities.
Architectural design - the system’s global
architecture is defined in terms of subsystems,
interconnected through data, control and
dependencies.

Detailed design - behavior of each architectural
component is defined in further detail.

More details about Tropos Methodology can be
foundin[1].

2.1 Requirementsin the I* framework

This section will review the main concepts of the i*
technique [2], [4]. It is a framework, which focuses on
the modeling of strategic actor relationships of aricher
conceptual model of business processes in their
organizational settings. The ontology of the i*
technique [4] caters to some of these advanced
concepts. It can be used for: (i) obtaining a better
understanding of the Organizational relationships
among the various system agents; (ii) understanding
the rationale of the decisions taken; and (iii)
illustrating the various characteristics found in the
early phases of requirements specification. According
to this technique, the participants of the organizational
setting are actors with intentional properties, such as,
goals, beliefs, abilities and comprormises. These actors
depend upon each other in order to fulfill their
objectives and have their tasks performed.

The i* technique consists of two models: The
Strategic Dependency Model (SD) and the Strategic
Rationale Moddl (SR).

The Strategic Dependency Model (SD) consists of
aset of nodes and links connecting them, where nodes
represent actors and each link indicates a dependency
between two actors. Hence, a model is described in
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terms of network of dependency relationships among
various actors, capturing the motivation and why of
activities. We can distinguish, four types of
dependencies, three of them related to existing
intentions — goal dependency, resource dependency
and task dependency — while the fourth is associated
with the notion of non-functional requirements, the so
called soft-goal dependency. In the goal dependency,
an agent depends on another one to provide the
desired condition, and it does not worry about how
this condition is achieved. In the resource
dependency, the agent depends on the availability of
physical resource or information. In the task
dependency, the agent informs the other what (and
how) should be done. The soft-goal dependency is
similar to the goal dependency, except that the
condition is not precisely defined at the start of the
process, i.e., the goals in a sense involves subjective
aspects, that gradually are clarified during the
development process. This type of dependency
provides an important link connecting two important
aspects in software engineering: (i) the technical and
(ii) manageria side. We still can identify different
degrees of dependencies. open, committed and critical
[5]. We can distinguish actors as agents, roles and
positions. An agent is an actor with concrete physical
manifestations. It is a person or artificia agents
(hardware/software). A role is an abstract
characterization of the behavior of asocial actor within
some specialized context, domain or endeavor. A
position is a set of rolestypically played by one agent.
Moreover we can anayze opportunities and
vulnerabilities of the chain dependency [3].
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Figure 1 — SD model for Media Shop

In the Figure 1, we have the Strategic Dependency
(SD) model of the ecommerce example. The Media
Shop is a store selling and shipping different kinds of
media items such as books, newspapers, magazines,
audio CDs, videotapes, and the like [1]. To increase



market share, Media Shop has decided to open up a
B2C retail sales front on the internet. With the new
setup, a customer can order Media Shop items in
person, by phone, or through theinternet. The system
has been named Medi@ and is available on the world-
wide-web using communication facilities provided by
Telecom Cpy. It also uses financial services supplied
by Bank Cpy, which speciaizes on on-line
transactions. Medi @ system is introduced as an actor
in this strategic dependency model depicted.
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Figure 2— SR model for Medi@

The second model of the technique i* is the
Strategic Rationale Model (SR). It is used to: (i)
describe the interests, concerns and motivations of
participants process; (ii) enable the assessment of the
possible alternatives in the definition of the process;
and (iii) research in more detail the existing reasons
behind the dependencies between the various actors.
Nodes and links also are part of this model. It includes
the previous four types of nodes (present in the SD
model): goal, task, resource and soft-goal. There are
two new types of relationship, meansend that
suggests that there may be other means of achieving
the objective @lternatives) and task-decomposition
that describes what should be donein order to perform
acertain task.

The analysis in Figure 2 focuses on the software
(Media), instead of an external stakeholder. The figure
postulates a root task Internet Shop Managed
providing sufficient support (++) [13] to the softgoal
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Increase Market Share. That task is firstly refined
into goalsInternet Order Handled and Item Searching
Handled, softgoals Attract New Customer, Secure and
Usable and tasks Produce Statistics and
Maintenance. Internet Order Handled is achieved
through the task Shopping Cart, which is
decomposed into subtasks: Select Item Add Item,
Check Out, and Get Identification Detail. These are
the main process activities required to design an
operational on-line shopping cart. More details can be
foundedin[1].

In next section we will detail the organizational-
inspired architectural styles Tropos which consider
information systems as socia structures all along the
development life cycle.

2.2. Socio-Intentional Architectural Styles

A system architecture constitutes arelatively small,
intellectually manageable model of system structure,
which describes how system components work
together. Unfortunately, traditional architectural styles
for e-business applications [12],[13] focus on web
concepts, protocols and underlying technologies but
not on business processes nor non functional
requirements of the application. As a result, the
organizational architecture styles are not described nor
the conceptual high-level perspective of the e
business application.
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Tropos has defined organizational architectural
styles [1],[5],[6],[7] for agent, cooperative, dynamic



and distributed applications to guide the design of the
system architecture. These architectural styles
(pyramid, joint venture (Figure 3), structure in 5,
takeover, arm's length, vertical integration, co-
optation, bidding) are based on concepts and design
aternatives coming from research on organization
management. The proposal is to use human
organizations as a metaphor to suggest a set of
generic styles for agent systems, with a preference for
organizational design theories over social emergence
theories.

For example, the joint venture architectural stylein
Figure 3. The joint venture style is a more
decentralized style based on an agreement between
two or more principal partners who benefit from
operating at a larger scale and reuse the experience
and knowledge of their partners. Each principal partner
is autonomous on a local dimension and interacts
directly with other principal partners to exchange
services, data and knowledge. However, the strategic
operation and coordination of the joint venture is
delegated to a Joint Management actor, who
coordinates tasks and manages the sharing of
knowledge and resources. Outside the joint venture,
secondary partners supply services or support tasks
for the organization core.

The organizational architectural styles have been
described in UML, in order to provide detailed
representation in architectural phase of Tropos
Methodology, as well as to represent the
organizational stylesinto aindustrial notation[16].

3. The Gap Between Requirements and
Ar chitectural Description

The inter-dependencies and constraints ketween
regquirements elements and architectural elements are
thus not well-understood and subsequently only little
guidance is available in bridging requirements and
architecture. The semantic gap between requirements
and software design is substantial [12].

Requirements Engineering is concerned with
identifying the purpose of a software system, and the
contexts in which it will be used. Software architecture
is related to the principled study of large grained
software components, including their properties,
relationships, and pattern of combination [9]. In
addition to specifying the structure and topology of
the system, the architecture should show the intended
correspondence between the system requirements and
elements of the constructed system. It can additionally
address system-level properties such as capacity,
throughput, consistency, and component
compatibility [14].

The existence of conceptual differences between
what to do (requirements) versus how to do it
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(architecture, design and code) constitutes a semantic
gap. Filling this gap requires better models and
notations for the intermediate step. There are some
critica challenges when trying to reconcile
requirements and architectures[8]:

- Requirements are frequently captured informally in
a natural language. On the other hand, entitiesin a
software architecture specification are usually
specified in aforma manner [11].

- System properties described in non-functional
requirements are commonly hard to specify in an
architectural model [11].

- Iterative, concurrent evolution of requirements and
architectures demands that the development of an
architecture be based on incomplete requirements.
Also, certain requirements can only be understood
after modeling and even partially implementing the
system architecture[12].

- Mapping requirements into architectures and
maintaining the consistency and traceability
between the two is complicated since a single
requirement may address multiple architectural
concerns and a single architectural element may
have numerous non-trivial relations to various
requirements.

- Red-world, large-scale systems have to satisfy
hundreds, possibly thousands of requirements. It is
difficult to identify and refine the architecturally
relevant information contained in the requirements
dueto thisscale.

- Requirements and the software architecture emerge
in a process involving heterogeneous stakeholders
with conflicting goals, expectations, and
terminology. Supporting the different stakeholders
demands finding the right balance across these
divergent interests.

The following section outlines the basis of our
approach.

4. The Integrating Framework Proposal

This section describes an informal four-steps
process to address the transition between
requirements and architectural design. Thisproposal is
a framework to identifying and mapping the
architectural  decision from a  requirements
specifications.

4.1. Mapping Ar chitectural Elementsfrom i*

This proposal focuses on finding a systematic
process to support the transition from requirements
specification to architectural design.

As showed in Figure 4 the proposal are composed
by two modules: i* Architectural Extension and



Integration Process. Our approach for integration
process takes as input a goal oriented requirements
specifications in i* technique and returns as output an
architectural model. The main concerns are related to
the identification, classification and support a variety
of architectural elements from system requirements.

i * Architectural Extension|

i * Framework  F' - ™
[ Templates J
@ [ Guidelines J
Integration Process |
[ Patterns J
Organizationa =
Architectural Model Socio Intentional
Architectural
Catalogue

Figure4 —i* Architectural extension

Thisextension includes:

- Templates — To extend and refine the properties
from i* architectural elements (possibly actors,
goals, softgoals resource, task, dependency and
links). The identified architectural elements from i*
framework are:

1. Components - The computational elements
(possibly systems actors) of the architecture
bound together by connectors;

2. Connections - The relations between
components (possibly dependencies between
actors or relationships to archive goas, like
means-end or task decompositions);

3. Constraints — assertions and constraints that
apply to the entire system or components
(possibly extracted from the non-functional
requirements, goals, dependency sequences or
architectural patterns);

- Guidelines — To support the mapping from SR
description into arganizational architectural styles
elements.

- Architectural Patterns — Compositions or styles in
which architectural elements are connected in a
particular way. In this work we are using the
architectural styles of the socio intentional
catalogue (e.g., Joint Venture style).

Figure 5 shows the four-steps Integration Process
to mapping and relating i* systems requirements and
organizational architectural elements:

- Step 1. Capturing the architectural requirements.
This step covers an analysis using as input the i*
regquirements model and architectural guidelines to
identifying architectural elements and capture
additional architecture-relevant information. As
output we have some templates for architectural
elements;
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- Step 2: Applying the NFR Framework to select
among the socio-intentional architectural style
using the non-functional requirements;

- Step 3: Relating i* architectural requirements with
the architectural elements from the socio-intentional
catalogue applying the guidelines;

- Step 4: Generating thei* architectural model.

i * Framework

TT

Integration Process
i* Architectural
1 — Capture Architectura Extension
requwements
[ 2-Apply NFR FramaNorkJ
3- RelateArchﬂecturaI
requirements and
architectural elements
Organizational
4 - Generate AI’ChI tectural Architectural Model
Model

Figure 5 — Integration process

Capture Architectural Requirements - The
primary activity is to identify an i* architectural
elements composed by requirements elements,
showing in Table 1, with complementary architectural
definitions.

Table 1 — Mapping the i* architectural elements

I* Elements [ Architectural Elements

Actor System component

Task Responsibility

Goal Responsibility/ constraint

Soft-goal Constraint

Dependency | Connection/Relationship/constraints
Resource System entity

Link Connection

In the sequence we show an architectural template
example for the component Medi@ system showed in
Figure 2.

The Table 2 shows the partial template definition of
a component. The Name attribute is the i*
specification from which the element (actor) is derived.
In our example “Medi@” it is a system component.
The Responsibilities attribute is alist of assignment of
system responsibilities (tasks and goals), the sub-
components that implement the component. The
Interface  attribute denotes the connectors
(dependencies) between others components or sub
components. The Constraints attribute denotes which




goals the sub-components satisfy, the soft-goals list
and architectural style selected.

Table 2 — Architectural templates

Type: System Component
Name: Medi @
Responsibilities: {list of task and goal}
Interface: {list of dependencies)
Constraints: { Assertions in use, relationship};
Architectural Pattern: {organizational style}
Composed of: { components}

{responsibilities}

The organizational architectures offer a set of
design parameters (such direct supervision,
standardization of skills, outputs and work processes)
that can influence the division of labor and the
coordination mechanisms. This design parameters,
include, among others task assignments. Tasks are
partially ordered sequences of steps intended to
accomplish some goal. Tasks can be decomposed into
goals and/or subtasks, whose collective fulfillment
completes the task. These decompositions also allow
to identify actors that can accomplish agoal, carry out
a task, or deliver some resource needed by another
actor. Fulfillment of an actor's obligations can be
accomplished through delegation and through
decomposition of the actor into components actors.

To define the roles in the organizational
architectures we propose an initial classification of the
responsibilities (tasks and goals) as show in Table 3.

Table3—Task type

Basic The input, processing and output
associated with the running the
organization

M anager The coordination and managerial
activities

Controller | Standardization of work process

Support The non-operational services that are
outside the basic flow of operational
tasks.

Applying NFR Framework - An important
task during architectural design is to select among
alternative architectural styles using as criteria the
desired qualities identified in the previous phase (Late
Requirements). They will guide the selection process
of the appropriate architectural style. The analysis
involves refining these qualities, represented as
softgoal s, to sub-goals that are more specific and more
precise and then evaluating alternative architectural
styles against them, as showed in Figure 6.
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The analysis resulting in a softgoal dependency
graph is intended to make explicit the space of
dternatives for fulfilling a top-level attribute. The
organizational  patterns are represented as
operationalized attributes Gaying, roughly, “fulfilled
by the pattern structure-in-5/joint-venture”) [7].

The evaluation results in contribution relationships
from the social structures to the quality attributes,
labeled “+", “++", “-", that mean respectively
partiallysatisfied, satisfied, partially denied and
denied. Design rationale is represented by claims
drawn as dashed clouds. They make it possible for
domain characteristics such as priorities to be
considered and properly reflected into the decision
making process. Exclamation marks are used to mark
priority attributes while acheck-mark “* " indicates
an accepted attribute and a cross “0” labels a denied
attribute.
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Figure 6 — Partial evaluation for selecting architectural
styles

More details about the selection and non-
functional requirements decomposition process can be
foundin[6],[7].

Relating the i* architectural elements and
Socio Intentional elements - The architectural
level of design requires a different form of abstraction
to reveal high-level structure. In particular, should be
possible to represent as first class abstractions new
architectural patterns and new forms of interaction
between architectural requirements elements, so that
the distinct roles of each requirement elements in the
structure are clearer.

The organizational pattern adopts the abstractions
offered by organizational theory. The structure of an
organization defines the roles of various intentional
components (actor), their responsibilities, defined in
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terms of tasks and goals they have assigned and
resources they have been allocated.

A role is an abstract characterization of the
behaviour of an actor within some specialized context,
domain or endeavour. Its characteristics are easily
transferable to other actors. Dependencies are
associated with a role when these dependencies apply
regardless of who playstherole. In order to describing
this relationship it is necessary to analyse the
responsibilities and roles in the system requirements.

Our work consists of extending the i* with
guidelines to support the mapping of i* requirements
elementsto i* architectural elements.

Guideline 1.1: The i* systems (or i* roles) can be
mapped to a system component in architectural
model.

For instance, the Figure 7 suggest a possible
assignment of system responsibilities for the
business-to-consumer (B2C) part of Media System.
Following the joint venture style, the architecture is
decomposed into three principa partner actor (Store
Front, Billing Processor and Back Store) .

Guideline 1.2: The i* relationship between systems
(or roles) can be mapped asinterface in architectural
model.

The partners control themselves on a loca
dimension for exchanging, providing and receiving
services, data and resources with each other. For
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instance, the Store Front interacts primarily with the
customers and provides them with a usable front-end
web application for consulting and shopping media
items. See Figure 7.

Guideline 1.3: The i* task (or goal decomposition
into task) can be mapped as responsibility in
architectural model.

For instance, some of the responsibilities (see table
1) in Medi@ system are “Internet Shop Managed”,
“Secure Form Order”, “Internet Orders Handled”,
“Maintenance”, asseenin Figure 2.

Guideline 1.4: The i* taskstype (or goal-type)
defines the roles of various intentional architectural
components (actor).

For instance, Billing Processor isin charge for the
secure management of orders and bills, and other
financial data. And the Joint Manager manages the
system on a global dimension. See Figure 7.

Further guidelines are required to describe a
complete mapping between requirements and
architecture. Of course not all concepts captured in the
requirements phase will correspond to architectural
system models. The models do not have a one-one
relationship; many elements of the organizational
requirements model are not part of the architectural
model, since not all of the organizational tasks require
a software system. Many tasks contain activities that
are performed outside the software system, and so do



not become part of the architectural system model.
Likewise, many elements in the architectura model
comprise detailed technical software solutions and
constructs that are not part of the organizational
mode.

5. Conclusion

The relationship between requirements and
architectures has received increased attention recently
[15]. A number of goa-based requirements
approaches, most notably KAOS [9] [10] and the NFR
framework [13], have proposed the explicit use of the
notion of ‘goals’ to structure system reguirements and
architecture. A proposal KAOS/APL presented in [15]
has suggested the use of intermediate descriptions
between requirements and architecture that they call
‘architectural prescriptions’, which describe the
mappings relationship between requirements and
architectures. The CBSP approach [8] explores the
relationships between software requirements and
architectures, and proposes a technique to reconciling
mismatches between requirements terminology and
concepts with those of architectures.

The purpose of this paper is to present our work
on the development of aframework to complement the
specification of architectural elements and mapping
the relationship  between  requirements and
architectural elements using a set of organizational
styles.

Future research directions will extend the
architectural catalogue with classical software pattern
proposed in the literature (piper-and-filters, layers,
event-based) .
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Abstract

Quality attribute models are proposed as the linkage
between a specification of a quality attribute requirement
and a design fragment that is focused on achieving that
requirement. Each quality attribute model has a
collection of parameters that must be specified in order to
determine from the model whether a requirement will be
met. These parameters can be bound through design
decisions, through values given from a quality
requirement, or through knowledge of the designer.
Architectural tactics are designed to relate design
decisions to control of a quality attribute model
parameter in order to achieve particular responses.

In this paper, we present a series of steps that enable
moving from a single quality attribute requirement to a
design fragment focused on achieving that requirement.
We demonstrate these steps through application to an
embedded system.

1. Introduction

It is well accepted that the satisfaction of quality
attribute requirements for a software system depends
heavily on the design of the software architecture for that
system. From this a plausible design approach isto use the
quality attribute requirements as primary when designing
the software architecture. In order for this approach to be
successful, four pieces must be in place: precise
specification of quality attribute  requirements,
enumeration of fundamental design approaches to achieve
various quality attributes, a linkage between the
specification of the requirements and the appropriate
design approaches that yields a design fragment focused
on achieving the requirement, and a method for
composing the design fragmentsinto an actual design.

In this paper, we focus on the third of these pieces: the
linkage between a specification of quality attribute

! Thiswork supported by the U.S. Department of Defense
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requirements and a design fragment focused on achieving
that requirement. We build on our prior work on quality
attribute scenarios and architectural tactics and propose
the use of quality attribute models as the linkage
mechanism. We demonstrate the linkage through deriving
a design fragment based on a performance requirement.
An application of these steps to an additional modifiability
scenario is precluded by space limitations but is available
in[2].

We begin by briefly summarizing our prior work in
quality attribute scenarios and architectura tactics. We
then discuss why quality attribute models are the missing
link and how they can be exploited to derive design
fragments from quality attribute requirements. We
illustrate the linkage through an example of a garage door
opener.

2. Quality attribute scenarios

Quality attributes as defined in standards such as 1SO
9126 [7] are not adequate for design. This is because the
definitions do not reflect the context in which they are
applied. For example, al systems are modifiable for some
set of changes and not modifiable for others. The key for
design is characterizing the set of changes that a particular
system will be subjected to. Similar comments hold for
other attributes.

We characterize quality attributes through quality
attribute scenarios and have used this characterization in
the ATAM®" [5] evaluation method as well as in other
methods. Our current definition of a quality attribute
scenario has 6 parts — stimulus, source of stimulus,
environment, artifact being stimulated, response, and
response measure. Quality requirements for a particular
system can be cast in terms of these six parts.

In Chapter 4 of [3], we present scenario generation
tables for the quality attributes of availability,
modifiability, performance, security, testability, and



usability. Table 1 gives the scenario generation tables for
performance — the attribute we use for our illustration.
The scenarios generated by the tables in [3] cover most of
the common meanings of these attributes [4].

The scenarios generated by these tables are “general”
in that they are system independent. In order to make them
act as requirements for a particular system, they must be
instantiated for that system and made “concrete”.

latency requirement). Therefore architectural tactics (by
definition) are points of leverage for achieving quality-
attribute requirements even though, as yet, no guidance is
provided as to how to choose appropriate tactics in
particular situations.

Table 2 enumerates the architectural tactics used to
achieve performance. See [2] for a description of the
meaning of each tactic.

Portion of Possible Values Category of Architectural tactic name
scenario tactic
Source — oneof anumber of Manage — manage event rate
independent sources Demand - control frequency of
— possibly from within the sampling external events
system — reduce computational

Stimulus — periodic events arrive overhead

— sporadic events arrive — bound execution times

— stochastic events arrive — bound queue sizes
Environment — normal conditions — increase computational

— overload conditions efficiency of algorithms
Artifact - System Arbitrate - increase logical

—  Process Demand concurrency
Response —  processes stimuli — determine appropriate

— changes|level of service scheduling policy
Response — latency — use synchronization
measure —  deadline !orotocol s

—  throughput M anage — increase physical

~ itter Multiple concurrency

_ missrate Resources - ba ance resource

_  dataloss alocation

— increase locality of data

Table 1: performance scenario generation table
3. Architectural tactics

Experienced architects have a collection of techniques
that they use to improve a system response with respect to
aparticular quality attribute. Some of these techniques are
captured in patterns of various sorts but others, such as
“reduce computational overhead” or “limit options the
system will support”, are not.

We have coined the term “architectural tactic” to
describe these techniques and define an architectural tactic
as a means of controlling a quality attribute measure by
manipulating some aspect of a quality attribute model
through architectural design decisions. In Chapter 5 of [3],
we provide an enumeration of architectural tactics, albeit
with a different definition.

Observe that an architectural tactic is concerned with
the relationship between design decisions and a quality-
attribute response. This response is usually something that
would be specified as a requirement (e.g., an average
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Table 2: performance architectural tactics
4. Quality attribute models

Associated with every quality attribute are one or more
“reasoning frameworks’ that allow prediction of the
response of a system with respect to particular attributes.
Performance frameworks such as queuing theory or
scheduling theory are the best known and studied and they
are very quantitative in nature. Frameworks for
modifiability include those based on coupling and
cohesion [6] and those based on dependency analysis [1].
These are much more qualitative but still allow prediction
of the difficulty of a modification. Other frameworks exist
for other attributes. Each framework has uncertainty in
terms of the accuracy of its predictions but these
frameworks have proven useful in assisting designers.

It isthese quality attribute reasoning frameworks and
their associated models that we exploit to link quality




attribute requirements (specified as concrete quality
scenarios) and architectural design decisions (as embodied
in architectural tactics).

Every quality attribute reasoning framework has a
collection of types of entities that are included in the
framework. Performance models, for example, have units
of concurrency such as threads or processes, dependency
among these units of concurrency, and resources. Thereis
some collection of inputs (arrival rates, resource
requirements) that drives the model. We call al of these
“parameters’ of the models. These are the itemsthat a
designer may potentially control to enable the
achievement of a desired response.

5. Linking concrete scenarios to ar chitectural

tactics

Our goal in this section is to describe how to derive a
set of tactics that are relevant for achieving a particular
concrete scenario and then use this to derive candidate
design fragments. This carried out using the following set
of steps. We assume that input to the set of stepsisa
concrete scenario and some set of already made design
decisions exists.

1. ldentify candidate modeling frameworks. It may be
that some of the information from the concrete
scenarios will eliminate possible modeling
frameworks. For example, if we know that arrivals
are periodic then the queuing modeling framework is
eliminated from considerations. Each reasoning
framework has a collection of parameters that must be
set before the reasoning framework can be applied.

2. Determine bound and free parameters. The candidate
modeling framework has a number of parameters.
Some of these may be given by the concrete scenarios
and some may be given by elements of the existing
design that are not changeable. For example, a
concrete scenario may specify “events arrive
periodically”. This may require a specific scheduling
model. Another element of the existing design might
be that a particular operating systemis to be used.
This determines the execution time associated with
processing one event. Thisis a parameter of the
model that is bound. All parameters not bound are
considered free.

3. Enumerate tactics associated with the free
parameters. Because atactic controls one of the
parameters of amodel in the reasoning framework,
we can list the tactics associated with the free
parameters, which we use as candidate tactics for the
next steps.

4. Assign free parametersan initial set of values. The
designer makes an estimate for each free parameter
based on intuition or knowledge. If the designer has
no intuition or knowledge for a particular parameter
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then an arbitrary value might be chosen. If this
parameter isimportant to the system, an
implementation of a prototype might be appropriate
to get an estimate.
Use tactics to devel op satisfactory bindings for all
free parameters. This step has two degrees of
freedom — the list of candidate tactics and the set of
free parameters. We begin our description by
considering the situation where there is only one free
parameter.
Each of the candidate tactics for this free parameter
controlsits value —that is, it allows the adjustment of
the free parameter. For each candidate tactic,
determine whether it can adjust the value of the free
parameter to a new value where the solution of the
resulting model satisfies the response measure of the
concrete parameter. If it can, then it becomes a
relevant tactic. If it cannot, then it is discarded.
Now consider multiple free parameters. In this
situation, we need to consider simultaneously
adjusting all free parameters. That is, if tactic one
controls parameter 1 and tactic two controls
parameter two, we need to determine whether we can
move the value for parameter 1 through tactic 1 and
the value for parameter 2 through tactic 2 until the
dependent variable for aresulting model satisfies the
response measure given by the concrete scenario. If
we can then we add both tactics to our list of relevant
tactics, if we cannot then we discard both tactics. If
we have more than one tactic for each parameter, we
need to consider all possible combinations of tactics
for the parameters.
Allocate responsibilities to architectural elements.
Every tactic enumerated in table 2 has a design
fragment assigned, if appropriate. For example one
performance tactic suggests using a certain type of
scheduler, or a modifiability tactic recommends the
use of an intermediary. Applying those fragments to
an existing design moves the architecture to a state
that supports the scenario, as demonstrated by the
modeling framework.
Design fragments come with their own
responsibilities and a set of rules that help to:
e Create/delete/refine design elements
* Add responsibilities to existing design
elements
» Reallocate responsibilities of already
existing design elements
* Refineresponsibilities and allocate them to
design elements
For example using the tactic semantic-importance-
based scheduling includes applying the following
rules:
»  Create adesign element “scheduler”



e Allocate the responsibilities with higher
importance to units of concurrency with
higher priority

or using the tactic break the dependency chain
includes applying the following rules:

» Create adesign element “intermediary”

e Add responsibilities to the intermediary that
trand ate from the more abstract interface
provided to the secondary modules to the
concrete interface provided by the primary
module

» Refine the responsibilities of the secondary
modules to use the services of the
intermediary

6. Garagedoor example

Our sample design problem is that of a garage door
opener. The controller for a garage door opener isan
embedded real-time system that reacts to open and close
commands from severa buttons installed in the house and
from aremote control unit, usually located in acar. The
controller then controls the speed and direction of the
motor, which opens and closes the garage door. The
controller also reacts to signals from several sensors
attached to the garage door. One of the sensors detects
resistance to the movement of the door. If the amount of
resistance measured by this sensor is above a certain limit,
then the controller interprets this as an obstacle between
the garage door and the floor. As a reaction, the motor
closing the garage door is stopped.

There are many scenarios that specify the requirements
for the controller software. In [2] we present both a
performance and a modifiability scenario. Here space
limits us to just discussing the performance scenario.

If an obstacle (person or object) is detected by the

garage door during descent, it must halt within 0.1

seconds.

We now exemplify our steps for this scenario.

1. Identify candidate reasoning frameworks

There are two performance reasoning frameworks that
might be applicable to a performance scenario: queuing
theory and scheduling theory. We know from looking at
our concrete scenario that we have sporadic event arrivals
and a hard deadline requirement. The hard deadline
requirement suggests that the applicable reasoning
framework is scheduling theory. Sporadic arrivals are
arrivals that cannot occur arbitrarily often. Thisisan
indicator that there is a bound on the arrival rate
variability, again indicating that scheduling theory is
relevant. The other relevant parameters are: execution
time, number of units of concurrency, and number of
processors.
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2. Determine bound and free parameters

In this step the scenario is recast in terms of the bound
and free parameters of the applicable reasoning
frameworks. Scheduling theory is concerned with
calculating worst case latency associated with carrying out
each scenario, given the execution time, arrival period
associated with each unit of concurrency, the number of
units of concurrency and how each unit is allocated to one
or more processors. Worst-case latency can then be
compared with the hard deadline to determine if the
requirement is satisfied or not.

For these parameters we first determine which ones our
concrete scenario binds. One parameter is the arrival
distribution. In this case the arrival distribution describes
how often an obstacle is detected. We assume this
happens infrequently and there is a bound on how
frequently it occurs (known as a sporadic arrival
distribution). We assume from the business context of the
garage door opener that a single processor will always be
adequate.

Since this is the one performance scenario considered
in this example we do not yet have any bound parameters
in the selected reasoning framework from previously
made decisions.

To summarize:

 Bound parameters: arrival distribution and
number of processors

* Free parameters. number of units of concurrency
and execution time of responsibilities

3. Enumerate tactics associated with the free parameters

Thisiswhere we start to employ our “decision
procedures’, which arereally aloosely structured set of
rules for which tactics to try (see Table 3). In this step the
decisions are based strictly on what parameters are
considered fixed and which are considered free.

1) Which parameters are fixed?

* Arrival distribution — arrivals are infrequent.

* Number of processors —we will assume that our
platform constrains us to a single processor

From the first rule in Table 3 we conclude that the
fixed arrival distribution rules out the following tactics:
Manage event rate and Control the frequency of sampling
external events

The architect constrains the solution to asingle
processor because of the business context and thisrules
out the following tactics: Increase physical concurrency,
balance resource allocation.



2) Which parameters are free?

» Execution time — The responsibilities will
suggest alikely range, but thisis not yet fixed.

» Number of units of concurrency — Thisisfree
and will be determined later in design

The following tactics are concerned with manipulating
execution time: Reduce computational overhead, Increase
computation efficiency, Control the demand for resources
and Bound execution time

Some of rules of our performance decision procedure
that are applicable for this step are shown in Table 3.

Table3 Example rules of our
performance decision procedure

« |f the arrival distribution is fixed then Manage
event rate and Control the frequency of sampling
external events are not tactics that can be used to
control worst-case latency.

* |f execution time is afree parameter then
consider using the following tactics: Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time

* |f the number of processorsis bound then
eliminate the following tactics as candidates: Increase
physical concurrency and balance resource
allocation.

4. Assign free parameters an initial set of values

Two things occur at this step. First, the architect offers
his’her best guess for values for the free parameters. The
list of applicable tactics suggests factors that impact the
setting of these values. Secondly, rules of the decision
procedure call attention to possibly problematic situations.

From the previous steps we know that two of the tactics
are relevant to estimating execution time: Reduce
computational overhead and Bound execution time. The
architect might guess that the sum of the execution time of
the 3 responsibilitiesis about 5 msec. Bound execution
time calls our attention to the effects of execution time
variability, however the architect predicts that these
responsibilities have very little variability. Reduce
computational overhead calls attention to various sources
of overhead that represent extra executiontime. It is
conceivable that each one of the responsibilities involved
in obstacle detecting - “detect obstacle”, “determine that
garage door is descending”, and “halt garage door “ -
incur some OS overhead for some pre-selected real-time
operating system. Consequently the architect estimates
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that the operating system adds an addition 1 msec of
overhead. The architect also assumes that all of this
scenario’ s responsibilities are alocated to a single unit of
concurrency. This last assumption is possible because this
is the sole scenario considered. We discuss some of the
issues involved in multiple scenarios in a further section.

While the architect does not yet know al of the details
of the other responsibilitiesin the system, he or she does
know that there will be other responsibilities with
associated execution times and these other responsibilities
hold potential for adversely affecting the ability of this
scenario to be realized. The architect is not yet ready to
gn values to the execution times associated with these
other responsibilities.

The second consideration at this stage is to examine the
scenario to determine if it is unreasonable or problematic.
For example, if execution times or arrival rates vary
considerably, but deadlines can never be missed, this
might be problematic. Examples of rulesthat call attention
such potentially problematic situations are in the table
below. However, for the current scenario none of these
situations apply.

Some of rules of our performance decision procedure
that are applicable for this step are shown in Table 4.

Table 4 More example rules of our
performance decision procedure

* |f the scenario has a hard deadline response
requirement that cannot be and if arrivals can occur
arbitrarily close to one another then use one of the
following tactics to ensure alower bound for the
inter-arrival interval: Manage event rate and Control
sampling frequency.

* |f the scenario has a hard deadline response
requirement that cannot be relaxed and if execution
times vary considerably to the point that they can
approach or exceed the hard deadline then consider
applying the following tactic: Bound execution time.

* If either of the above “unbounded” conditions
apply, but arrival rate and execution time are bound
parameters then declare the requirement untenable

5. Use tactics to develop satisfactory bindings for al free
parameters

At this point all of the parameters have values and
there is a candidate list of applicable tactics. The first
thing isto look at one or more of the applicable tactics
and apply the reasoning framework (in this case
scheduling theory) to determine if the current concrete
scenario is satisfied without “violating” any of the
scenarios that have already been satisfied.




The relevant tactics entering into this step are:

« Controlling resource demand through Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time have a bearing on how
execution time affects worst case latency.

* Increase logical concurrency and determine
scheduling policy both have abearing on
understanding how this scenario’s responsibilities
affect and/or are affected by the other responsibilities
in the system

Without considering the effects of other
responsibilities, the model isfairly simple. The only
contributors to latency are execution time and overhead, 5
msec and 1 msec respectively. Their sumiswell under the
deadline of 100 msec (that is, .1seconds), leaving 94 msec
to spare.

On the other hand it is very conceivable that the other
responsibilities in the system take more than 94 msec.
Using the last rule in the table below suggests that the
design decisions made in the next step be consistent with
our simple model, that is, they ensure that the latency
associated with this scenario’ s responsihilities is not
affected by any of the other responsibilities.

Some of rules of our performance decision procedure
that are applicable so far for this step are shown in Table
5.

Table 5 More example rules of our
performance decision procedure

of concurrency
* Increase logical concurrency
» Time-based scheduling

If the current scenario cannot suffer the worst-case
delay due to some or all of the other responsihilities then
consider them to be time-sensitive and use the following
tactics to create an appropriate scheduling policy: Offline
scheduling, Time-based scheduling (such as deadline
monotonic scheduling), and/or Increase logical
concurrency.

Up to now in this step tactics have been used to set
and/or adjust model parameters to satisfy the current
concrete scenario’ s response measure. However, it might
be the case that either the scenario poses an untenable
requirement or the collection of scenarios considered up
to this point are untenable in aggregate. If thisisthe case,
tactics should offer some ideas for how to relax
requirements or design constraints.

Some of rules of our performance decision procedure
that are useful for identify and relaxing requirements
and/or design constraints are shown in Table 6.

Table 6 Some of rules for relaxing
requirements and/or design constraints

* If the execution time associated with the arrival
is close to the deadline consider reducing execution
time by using the following tactics: Reduce overhead,
Bound execution time, and/or Increase computation
efficiency.

* If the difference between the worst and best case
is significant then review the following tactics and
apply their modeling techniques to assess miss rates
and average latency respectively: Bound execution
times and/or Bound queue sizes

* |f the response requirement for all scenarios can
be achieved even with the worst-case delay dueto all
of the other responsibilities of all of the other
scenarios, then use any the following tactics:

Allocate responsibilities to one of the
existing units of concurrency
« Offline scheduling

Or allocate responsibilities to a new unit

* |f the response requirement is specified as a hard
but limited misses can actually be tolerated then re-
characterize deadlines as follows:

Firm deadlines: Completing before the
deadline is very important. Missing occasionally
can be tolerated. A specific bound on miss rate
needs to be specified.

Soft deadlines: In this case the term
“deadline” is amisnomer. A specification of an
average latency requirement is what is needed.

« |f the time-sensitive set of responsihilitiesis not
schedulable then incorporate a notion of importance-
based scheduling to handle overload situations using
Semanti c-importance-based scheduling or add more
resource using Increase physical concurrency.
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6. Allocate responsibilities to architectural elements

Each tactic will suggest associated design fragments.
The tactics of primary concern so far in this example are:

« Controlling resource demand through Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time have a bearing on how
execution time affects worst case latency.

* Increase logical concurrency and determine
scheduling policy both have abearing on




understanding how this scenario’s responsibilities
affect and/or are affected by the other responsibilities
in the system

Reducing computational overhead can map to many
design decisions such as:

» choice of operating system

» choice of operating system services used in
implementing responsibilities

» choice of communication mechanisms, ...

We have accounted for OS responsihilities by
assuming 1 msec overhead. We have also assumed that all
of the scenario’ s responsibilities have been allocated to a
single unit of concurrency that we will assumeis athread.

The responsibilities for this scenario are pretty
straightforward;

Tactics of Increase computation efficiency, Control the
demand for resources and Bound execution time are likely
not relevant whereas tactics of Increase logical
concurrency and determine scheduling policy are
relevant. They suggest all ocating the obstacle detection
responsibilities to a particular module under one thread of
control and assigning this thread a suitably high
scheduling priority. Thisresultsin an design fragment
with two threads: the one containing the obstacle detection
responsibilities and the one containing other
responsibilities. We do not show the scheduler (whichis
part of the OS) although that also is a portion of the
design fragment. We show a component and connector
view of this fragment in Figure 1.

Figure 1. Design fragment

Obstacle detection
responsibilities
Ishig}‘ Other application
priority than | responsibilities
Key
Thread
Relation

In anidea world obstacle detection will take only as
long as it takes to execute the obstacle detection
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responsibilities plus a little overhead. However, the
possibility exists that properties of the Other
responsibilities, such as non-preemptability or execution
within an interrupt handler might not have been accounted
for. Therefore these potentially problematic properties
need to be discovered and/or ruled out. We expect that
rules in the time-based scheduling tactics would cause us
to look for and/or ensure against such properties

Observe the rel ationship between the design fragment
and the associated analysis model. The model states that
obstacle detection responsibilities must be scheduled with
apriority high than other responsibilities. The design
fragment captures this by placing these responsibilities
into separate threads and showing the priority
relationships of those threads.

7. Composition
We have shown how to use the tactics to link one
quality attribute performance requirement to a design
fragment with active assistance from an architect. The
gaping open issue is what happens with multiple scenarios
involving multiple quality requirements, especially for
other attributes. How to compose the design fragments
into a design is the fourth step of moving from quality
requirements to design and it must clearly be solved for
this approach to be successful.
Some of the problems that must be solved to achieve
the composition of design fragments into designs are:
e How to consider the impact of design
decisions already made.
* How to choose among the myriad of
possibilities of composing design fragments.
In [2] we identified a design fragment for
modifiability as well as one for performance
and there were multiple composition
possibilities
e How to maintain view consistency. Each
quality attribute framework has a vocabulary
that maps into one or more software
architecture views. Maintaining consistency
between fragments that come from one
reasoning framework with those that come
from another is a problem that must be
solved.

8. Other open issues and conclusions
In addition to the composition problems there are two
other problems that must be overcome.

1. What is the availability and utility of the various
reasoning frameworks for other quality
attributes? Involving the architect, as we did, in
the design process allows judgment to be used in
application of the reasoning frameworks. We can
predict that, over time, reasoning frameworks for
various quality attributes will improve.



How do the steps we have presented here become
embedded into a design method? Once quality
requirements become recognized as important to
design they will begin to be specified in the
1000s as are functiona requirements. This leads
to over specification of the requirements. A
design method must be senstive to this over
specification.

Regardless of the problems, focusing on quality
attribute requirements and using them to drive towards an
appropriate architectural design must be a useful
approach. The utilization of quality attribute models and
tactics in this process is our attempt to move design
toward amore scientific basis.
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Abstract

Certain classes of problems amenable to description
using Problem Frames, in particular ones intended to be
implemented using a distributed architecture, can benefit
by the addition of a cardinality specification on the
domain interfaces. This paper presents an example of
such a problem, demonstrates the need for relationship
cardinality, and proposes a notation to represent
cardinality on domain interfaces.

1. Introduction

In a Problem Frames analysis [3, 4], domains share
phenomena at their interfaces. One of the domains in the
analysis is the machine domain, which represents the
software to be constructed by the developer. Phenomena
are the externally visible characteristics of the domains.
The phenomena visible at the machine domain’s
interfaces drive much of the analysis process.

The existence of certain phenomena can be
predetermined by purchased products to be used in the
system [1] or by considering architectural implications
early in the requirements cycle [6, 7]. Hall et al [2] argued
for extending Problem Frames to take architectural
considerations within the machine domain into account,
thus incorporating domain knowledge into the analysis.
This paper takes the argument one step further, arguing
that there are architectural considerations that affect the
propagation of phenomena between domains, and that it is
helpful to explicitly note these considerations in the
diagrams.

In a ‘standard’ Problem Frames analysis, phenomena
are considered shared and instantaneous. All domains that
participate in a given interface share the phenomena;
participation is a relationship. The question of cardinality
of the relationship does not arise, because the phenomena
are always shared by all. However, a class of problems
exists wherein it is convenient to define more precisely
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how phenomena are shared over an interface. The case
comes up when the implementation of a system is to
contain redundancy or be partitioned into semi-
autonomous units, such as what occurs when using a
distributed architecture. The originating domains may
need to know about how phenomena are propagated,
either for correctness or for efficiency. Using explicit
connection domains can resolve the problem, but they
introduce complexity. The author argues that by noting
cardinality on the interfaces, appropriate information can
be included in the analysis without a significant increase
in complexity.

Section 2 of this paper describe a small lighting
control system using Problem Frames. Section 3 presents
one possible implementation, showing a case where the
current shared phenomena notions do not expose certain
difficulties. Section 4 proposes an extension to Problem
Frames notation to correct the problem, and Section 5
presents conclusions.

2. The Lighting System
2.1. The Problem Statement

A lighting control system is to be built that conforms
to the following problem statement, provided by the firm

constructing the building.
The architect wishes to have a lighting control system

for a building. From the user’s perspective, the system

consists of switches and lighting units (lights) associated
with a room. When a user actuates a switch, the
associated light or lights in the room are turned on or off.

The architect requires the use of up/down momentary
contact switches. A momentary contact switch must cause
its lighting units to change to the state indicated by the
switch’s motion, if needed: up turns the lights on if they
are not already on and down turns the lights off if they
are not already off.

The system is to be built using networked components
and to include redundancy where appropriate.



Discussions with the architect and the vendors of the
lighting equipment establish the following facts:
1. Switches and lighting units are connected by a
network. They are not able to converse directly with
each other.
A room is a logical concept, covering from part of a
‘real room’ to multiple floors of a building.

2.2. The Problem Diagrams
The following is the context diagram for the

environment. It appears to describe a straightforward
commanded behavior problem.

Lighting
Units

Machine Switches

The problem decomposes into two commanded
behavior subproblems'. The first maps switch events to
the rooms that they control, using a lexical domain as a
Switches 2 Rooms map. The second maps room events to
the lighting units in that room, using a Rooms = Lights
map.

The first subproblem, Control Room Lights, is:

\ then the state of E \
i all the lights in -
1 \ 1
! !
i

[ Eiipbairiet
- 1 satisfying the}

3 I
| requirement ,

- ~<

]
L - ~
. y ®" Control ™\
Switch ) \
) o R - Room s
Machine N Lich /
| L
Switches> || TNl
Rooms ' Switch S
C

r :
! and the switch
! is associated
i\ witharoom

' The simple workpiece problems
domains are not discussed in this paper.

needed to maintain the lexical
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The second subproblem, Control Lighting Units, is:
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I g ! satisfying the
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| b | requirement !
i roomare changed | Vo units 0 toSTRoTIL
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Looking at the diagrams, we see that lifting or
lowering a switch causes an event that is a phenomenon
shared with the Switch Machine. The machine determines
which logical room is to have its lights changed, and is
the source of a phenomenon shared with the Lights
Machine, as shown in the second diagram. The second
machine determines which lighting units are involved,
and then is the source of phenomena shared with the
appropriate lighting units.

3. A Possible Implementation

One can imagine constructing this system using a Jini-
like distributed architecture [5]. In a Jini-based system,
when a switch is actuated it uses a name service to find an
appropriate service to process the event. Maintaining
correspondence with the problem diagrams, the switch
will next find the switch machine. The switch machine
will use its map to determine which rooms need to know
about the switch actuation, and then use the name service
to find the lights machine to contact. A diagram of a
simple implementation would be:

| Network |
| | |
Switch Name Lights
Machine Service Machine

Switches '

Lights '

If we consider the name service to be part of the
network, then the above implementation corresponds very
closely to the subproblem diagrams.



However, one might choose a different implementation
for a larger building. If the building has multiple floors,
then for performance we might put switches and lights
machines on each floor. To improve reliability, we might
put multiple machines of the same type on each floor,
where any instance of a machine type can substitute for

any other (i.e. introduce redundancy). Such an
implementation might look like:
LIL Offices
L2nd floor -
vestibule
N[ sls Offices
1
I LIL Offices
Istfloor —— —— —— —— —— ——
vestibule -
) m_sm Offices
!
|L|L| Offices
I_ELOU& ——————————
floor
1 m Offices
| S: Switch Machine | | L: Lights Machine |
| N: Name Server | | = = Network |

To complicate things a bit more, assume the existence
of a logical room consisting of lights in all three of the
vestibules.

Assume that the architect specifies the following two
rules:

1. A switch on a given floor can select either of the
switch machines on its floor, choosing at random. If
that machine does not answer, another machine is
tried.

Either of the lights servers on a floor can control the
lights on that floor. The server to use is chosen at
random. If that machine does not answer, another
server is tried.

Therefore, when a user lifts a vestibule switch on the
ground floor, the switch chooses either of the switch
servers on the ground floor. That switch server
subsequently must contact either one of the two light
servers on each floor, requesting that the lights be turned
on.

The problem diagrams shown in Section 2.2 do not
express the added complexity of the multiple servers, and
thus it is difficult to reason about the system’s behavior
under certain conditions. For example, analyzing the
effects of particular concerns such as initialization, fault
recovery, and component maintenance pose problems.
Adding explicit connection domain subproblems to the
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problem can show the missing behavior, but the domains
also add significant additional complexity.

4. Extension of Problem Frames Notation

The deficiency in Problem Frames notation exposed by
the above example is the inability to accurately specify a
limited many relationship on an interface. In the example,
from the point of view of the switch there are many
candidates for the switch machine, but only one of them is
to be used. From the point of view of the switch machine,
there are many candidate lights machines, where
potentially many of them are to be used. These
relationships have a form of cardinality.

Relationships on an interface are directed. All
phenomena have a source domain and some number of
destination domains. From the point of view of a source
or a destination, there can be from one to N domains on
the other side of the relation. Thus, the cardinality of a
relationship can be described as follows:

N(b) > M(c): there are N sources of phenomena on
an interface where b sources are to be considered
interchangeable, and M destinations for the
phenomena where ¢ destinations participate.

For convenience, if the parenthesized portion is
omitted, it is assumed to be identical to the number that
would be in front of it. Thus 1 - N is the same as 1(1) 2>
N(N).

Referring to the more complicated example above, the
cardinality of the switch to switch machine interface is
N(1) = 2(1). The left side is N(1) because only one of the
N switches participates in a given switch actuation.
However, the example specifies that there are two
interchangeable switch machines available to the switch,
and the switch must choose which one to use. Thus, the
cardinality of the switch machine is 2(1).

Still referring to the example, the cardinality of the
switch machine to lights machine interface is 6(1) = 6(3).
There are six switch machines on three floors, but only
one of them can be the source of a phenomenon on the
interface. There are three groups of two identical light
machines, thus three of them participate as destinations of
a phenomenon.

Finishing the example, we see that the cardinality of
the lights machine to lighting units interface is 2(1) >
MM) (or 2(1) > M). Two lights machines can share
phenomena with any given lighting unit, but only one at a
time. Each lighting unit is an individual, meaning that all
M lighting units must share phenomena with the given
lights machine.

Clearly one would not use such specific notations on a
problem diagram unless the numbers are fixed in the
problem statement, which is not the case in this example.
The switches to switch machine cardinality is better



written as N(1) 2 M(1). The switch machine to lights
machine cardinality is N(1) > M(c s.t. c<M) and the
lights machine to lighting units is N(1) > M.

Applying these cardinality notes to the subproblem
diagrams, we arrive at:
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5. Conclusions

Adding cardinality notations to Problem Frames
diagrams conveys information about how phenomena are
to propagate. The engineers responsible for implementing
the system would use this information to ensure that the
system behaves as desired and to verify correctness in the
face of errors, such as partial loss of power and machine
failure. Using cardinality avoids the complexity of adding
connection domains to provide equivalent information.
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Abstract

This paper reports the results of exploratory research
to develop a pilot pattern language for systems
engineers at BAE SYSTEMS. The pattern language
was designed to encapsulate knowledge about possible
trade-offs made by systems engineers about
architecture designs that satisfied different system
requirements for submarine manoeuvring systems.
Our intention is that this knowledge can be reused in
future systems engineering processes using our ART-
SCENE environment. Knowledge about requirements,
design alternatives and the complex trade-off space
was elicited from systems engineers. To model this
knowledge we applied the i* formalism to represent
the design space and design trade-offs, and to
communicate the resulting patterns back to the
engineers for validation and improvement. The
research was a success, in that we produced a pattern
language of 4 key patterns and their interactions for a
submarine manoeuvring system, all using the i*
formalism. The paper ends with a review of this
research and how we plan to exploit the language to
inform scenario-driven trade-offs between
requirements satisfaction and architecture choice
using the ART-SCENE environment.

1. Patternsof Patterns—Linking
Requirements and Architectures

There is increasing recognition of the need for
systems engineers to link system requirements and
architecture designs. Considerable research is being
undertaken into a range of topics — from tracing
architectural decisions to requirements to relating
architectural patterns to requirements patterns (Jackson
1995) and forma foundations of the requirements-
architecture relationship (Hall et a. 2002). However
this research tends not to investigate the systems
engineering processes that its results are intended to
support. Rather we argue that requirements
architecture research must be based on sound process
models of concurrent  requirements-architecture
engineering. Using one such process model, this paper
presents a novel pattern-based approach for exploring
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reguirements-architecture trade-offs, and introduces an

innovative pattern language that underpins such trade-

offs.

Our ART-SCENE (Analysing Requirements Trade-
offs — Scenario Evaluations) approach advocates a
process in which systems engineers and stakeholders
concurrently:

1. Generate and walk through system-level scenarios
using our established CREWS-SAVRE process
and software tools (Sutcliffe et al. 1998);

2. Acquire stakeholder requirements using the ACRE
framework (Maiden & Rugg 1996) and model
them using the i* formalism (Chung et al. 2000)
with our REDEPEND tool (Maiden et al. 2002);

3. Model candidate system architectures using object-
oriented modelling techniques supported by the
AUTOFOCUS software tool (Huber et a. 1998);

4. Trade-off the satisfaction of different requirements
by different architecture designs using scenariosto
link requirements and architectures, then to
simulate system and agent behaviours to compute
their outcomes (Zhu et al. 2003).

A simple overview of the process is shown in
Figure 1. Systematic scenario walkthroughs lead to the
acquisition of more complete stakeholder requirements
(Maiden et a. 2003). Candidate system architectures
lead to the rejection of stakeholder requirements that
are not viable. Simulations of models of candidate
system architectures using the scenarios compute the
emergent properties of the system that can then be
tested for compliance with the measurable fit criteria
of stakeholder requirements (Robertson & Robertson
1999). Based on these processes we are developing a
suite of integrated software tools that, we hope, will
provide systems engineers with an effective plug-and-
play environment for exploring requirements-
architecture trade-offs in the presence of system
scenarios. The ART-SCENE software tools and
techniques developed to implement these processes are
described elsewhere (Zhu et a. 2003, Maiden et al.
2002).
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In this paper we report research that led to one of
ART-SCENE's features to support this process — the
use of systems engineering patterns to explore
requirement-architecture trade-offs in the presence of
scenarios. The paper describes how we overcame 3
challenges to produce a simple pattern language
produced in collaboration with system engineers at
BAE SYSTEMS as part of the UK EPSRC-funded
SIMP project:

1. How to €licit a pattern language that could be
applied to inform the essential task of making
requirement-architecture trade-offs;

2. How to model the patterns using a formalism that

was sufficiently expressive and computational;

3. How to implement the resulting pattern language
in the ART-SCENE environment to inform
requirement-architecture trade-offs.

The remainder of this paper isin 4 sections. Section
2 reports previous research in systems patterns
undertaken by the authors which shapes the direction
of the reported research. Section 3 describes how we
dicited the patterns and applied the i* formalism to
model them. Section 4 present a pattern in detail and
reviews the success of the elicitation exercise. The last
section reports planned future use of such pattern
languages in the ART-SCENE environment, as well as
implications for future such pattern modeling in
system and software engineering.

2. Researching Requirements
Engineering Patterns; L essons from
the Trenches

There has been considerable recent interest in
relating classes of problem domains (i.e. requirements)
to classes of software solutions (i.e. architectures and
designs). Jackson (1995), for example, advocates
problem frames, a generalisation of a class of problem
consisting of the principal problem parts and a solution
task. Hall et al. (2002) extend these problem frames by
linking them to simple system functions. Elsewhere
Konrad & Cheng (2002) present system specification
patterns using an object-oriented specification. Earlier
work on requirements clichés (Reubenstein & Waters
1991), patterns (Coad et al. 1995, Buschmann et a.
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1996) and generalised  application  frames
(Constantopoulos 1991) are al examples of the
research undertaken previoudly in this area. However,
our experience in research area suggests major pitfalls
await researchers who fail to learn from these past
experiences.

The ESPRIT 1l 6353 ‘NATURE' basic research
action, in which the authors were partners, undertook
between 1992 and 1995 one of most comprehensive
classifications of problem domains and software
architecture styles to date (Sutcliffe & Maiden 1998).
The NATURE approach argued that most
requirements engineering problem domains are
instances of a tractable set of object system models.
Each model contains general features shared by al
instances of that problem domain. For instance, one
model contains general features of all resource hiring
problem domains, examples of which are lending
libraries, car rental and video hiring. Another contains
general features of all object sensing problem
domains. NATURE produced the first extensive
categorisation of requirements engineering problem
domains and derived a set of over 200 object system
models (Sutcliffe & Maiden 1998) from domain
analysis, case studies and textbooks.

Object system models were defined in a hierarchical
class structure. The 13 highest-level object system
models define the fundamental state transitions,
sequences of transitions, states and objects in
categories of problem domains, and indicate the
breadth of the models specified. These models (with a
prototypical example of each) are resource returning
(eg. car rental), resource supplying (e.g. order
purchasing), resource usage (e.g. sales orders), item
composition (e.g. goods manufacturing), item
decomposition (e.g. unpacking deliveries), resource
allocation (e.g. production planning), logistics (e.g.
complex production scheduling), object sensing (e.g.
aircraft detection), object messaging (e.g. electronic
mail), agent-object control (e.g. air traffic control),
domain simulation (e.g. cockpit simulation), workpiece
manipulation (e.g. text processing) and object reading
(e.g. atown's computerised information point).

Specialisation of these high-level object system
models is achieved by adding different dimensions, in
the form of fact types, at different levels in the
hierarchies. For example, the specialisation of the
object system model for object sensing generates a
large number of lower-level, more detailed hierarchical
object system models. The top-level model, which
describes the sensing of an object by a sensor agent, is
specialised at level-1 according to whether the sensor
is sensing the physical location (e.g. position) or
internal state (e.g. temperature) of the object, and
whether there are one or numerous objects to sense.
NATURE specialises each level-1 model further using:

Different goal states (detect forbidden state, warn if

forbidden state arises, forbid state to arise, etc);



Different events and stative conditions on state

transitions (e.g. amonitoring agent blocks an

object from changing to aforbidden state);

Different object and agent types (e.g. physical,

conceptual and financial).

Such specidisation gave rise to over 30 level-4
models that are sub-classes of the original object
sensing model alone.

We validated NATURE's object system models
against natural mental categories elicited using card
sorts with experienced software engineers. Results of
this empirical validation led to some revision of the
structure and contents of several models and how these
models might be retrieved and used (Maiden & Hare
1998). Furthermore, to relate these classes of problem
domain to software solutions, we developed an
orthogonal classification of information system models
that we linked to object system models to represent
candidate information system solutions for different
problem domain classes (Sutcliffe & Maiden 1998).
To exploit the library of object system models we
developed computational models of analogical
reasoning (Maiden & Sutcliffe 1996a, 1996b) to
retrieve object and information system models that
matched a new application to enable reuse of
knowledge about the problem domain and possible
information system solutions to it. This reuse-driven
approach to requirements engineering and high-level
design was validated using several application case
studies .

So, what conclusions did we draw from this
extensive 5-year programme of research? Although the
results of the basic research provides important
insights into the nature of abstraction and
classifications of problem domains, the more direct
benefits to systems engineering were limited. Lessons
learned included:

1. The object system models encapsulate problem
domain knowledge that is often already known
and accessible to systems engineers,

2. NATURE's classification of problem domains
was too fine-grain for cost-effective reuse — most
applications were an aggregation of instances of a
large number of object system model classes,
which made model retrieval and instantiation
difficult;

3. Systems engineers gained little from directly
reusing small fragments of knowledge from the
object and information system models — indeed the
emergence of large business reference models
implemented in successful ERP solutions such as
SAP R/3 (Curran & Ladd 1998) suggests that reuse
of large, domain-specific models tend to be more
effective;

4. Linking the object and information system models
did not provide systems engineers with useful
knowledge with which to make requirements-
driven architectural decisions. The information
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system models, by their definition, described
functions, classes and structures rather than the
non-functional requirements and quality attributes
essential to such decision-making (e.g. Franch &
Carvalo 2003). The models did not capture the
required richness and context or different design
alternatives and their comparison.

These experiences directed us to a different
approach to modeling patterns in systems engineering
— one that captures the essence of architecture design
aternatives in terms of how they satisfy a number of
related system requirements. As an input to the ART-
SCENE environment we sought to develop a pilot
pattern language to do just that to inform
requirements-architecture trade-offs. The remainder of
this paper reports the results of research motivated to
determine such patterns.

3. Eliciting Systems Engineering Patterns
in ART-SCENE

Our research uses Alexander's (1979) origina
definition of a pattern as a solution to a problem in a
context of use. Alexander defines a pattern as a three-
part construct:

1. Thecontext - conditions under which the pattern
holds;

2. A system of forces - the 'problem’ or 'goal’ that the
solution solves;

3. The solution — a configuration that balances the
system of forces and solves the problem.

This definition contrasts markedly with the nature
of most software and systems engineering patterns
reported earlier. The patterns, from requirements
cliches to problem frames, al use a weaker definition
of the problem or goal without an explicit description
of a system of forces that describes it. Likewise most
patterns describe a single reusable solution without
explaining how the configuration implemented in the
solution satisfies the goal or solves the problem. One
exception is reported in Gross & Yu (2001) who
highlighted the need for a modeling approach that
supports how business goals relate to the architectura
decision-making process, and how changing business
goals give rise to alternative architectural choices and
solution structures. They also showed how the need to
describe organisational stakeholders, their goals and
how these are affected by aternative choices during
the design process using agents and goals. Agents
were used to describe architectural distribution of
capabilities, while goals were used as a focal point for
expressing where within architectural  structures
further design choices needed to be made.

So how can we apply Alexander’s pattern definition
to a modern systems engineering process? First of all
we need to map Alexander’'s 3 parts of the pattern to
systems engineering models and artefacts. We assert
that:



The system of for ces represents a set of
interconnected system requirements that a designed
architecture configuration must satisfy:
The solution represents the architecture design and
to what degree that design alternative satisfies each
system requirement;
The context represents the conditions under which
the pattern holds — that is the project or problem
environment in which the solution applies. In
ART-SCENE we equate the problem environment
to one or more scenarios in which the architecture
design must satisfy the system requirements.
Therefore the systems engineering patterns in ART-
SCENE encapsulate knowledge about important
design decisions that sought to balance the satisfaction
of competing requirements in different scenarios for a
previous but relevant system. To elicit and model these
patterns we designed and applied a rigorous method
described in the next section.

3.1. Pattern Elicitation and Modeling M ethod

We developed the pilot pattern language with BAE
SYSTEMS, one of our partners in the EPSRC-funded
SIMP project. Our objectives were to model patterns
in a domain that was complex but could be understood
by the academic researchers, did not require high-level
security access, and could be scoped in order to
provide results within the time frame of the exercise.
The result was a decision to develop a pattern
language for submarine manoeuvring systems — that is
the systems that enable a naval submarine to steer
when under water.

We dicited pattern knowledge from BAE
SYSTEMS engineersin 3 phases:

1. Discover and elaborate key design decisions made
on previous projects;

2. Modd and validate the context, solution and
system of forces for each pattern;

3. Elicit, model and validate the key relationships
between the patterns established in the first 3
phases to produce the first-cut pattern language.

Each elicitation session took place with 2 systems
engineers with shared engineering experience of the
submarine manoeuvring system. Throughout each
session we encouraged the systems engineers to
converse with each other. This technique, known as
constructive interaction (Miyake 1986), overcomes the
unnatural aspects other elicitation techniques and
provided supplementary data about the patterns at each
phase.

In the first phase we combined brainstorming with
semi-structured interviews to discover and prioritise
previous design decisions made about manoeuvring
systems. We used the interview structure to elicit data
about different candidate architecture designs, why
each was chosen or rgjected, and conditions for its use.
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All data was recorded on flipchart sheets as informal

sketches and written notes.

In the second phase we used the data to describe
each pattern with the following attributes:

Name: A unique and meaningful pattern name;

Authors: The main contributors to the pattern;

Problem: The main trade-offs to be made and the
different forcesto be balanced to achieve an
acceptable solution;

Principle: The principle behind the pattern;

Context: The pre-conditions under which the problem
and its solution seem to recur, and for which the
solution is desirable;

Forces: A definition of the relevant forces;

Solution: Descriptions of architecture solution that can
be reused;

Rationale: A justification of the solution and the
pattern as awhole in terms of how it resolvesits
forcesto bein line with the desired outcome;

Known Uses: Known occurrences of the pattern and
its application within existing systems;

Models: Thei* models that describe the pattern;

Further questions: Questions that need answering in
order to further refine the pattern.

One innovation was to producei* models (Chung et
al. 2000) for each pattern. Inspired by the earlier use of
i* to model requirement-architecture patterns (Gross &
Yu 2001), we chose the i* formalism to model our
pattern language for 3 reasons:

1. i* SD (Strategic Dependency) models allowed us
to model each pattern as a network of dependency
relationships among actors characteristic of large
socio-technical systems — the types of system
found in submarine design;

2. i* SR (Strategic Rationale) models allowed usto
model how different candidate solutions,
represented astasksin i*, satisfied different actor
goals and soft goals using i* means-ends links —
Alexander’s systems of for ces;

3. i* contributes-to soft goal links in the SR models
allowed usto represent complex trade-offs
between requirements that occur when making
choices about one solution over another —the
systems of for ces again.

Our aim was to produce one SD model and one SR
model to represent each pattern. Other researchers
have recogised the potential benefits of providing
graphical representations of pattern solution spaces.
Thomas (2001) claims that “providing people with a
variety of potential representations and some process
to encourage the exploration of aternatives... could
probably improve performance significantly”. The use
of i* models in our pattern language enabled us to
explore whether such benefits accrue empirically.

In the third phase we combined semi-structured
interviews with direct SD and SR modeling to model
dependencies between actors identified in the 4
modeled patterns and contributes-to soft goal links



between important soft goals in these patterns. Such
modeling provided the associations between the
patterns to form afirst-cut pattern language.

4. The Submarine Manoeuvring Pattern
L anguage

The resulting submarine manoeuvring pattern
language was e€licited from 3 BAE SYSTEMS
engineers working as pairs during 5 sessions over a
two-and-a-half month period. Each session lasted
approximately 2 hours and took place a BAE
SYSTEMS premises.

The pattern language consisted of 4 principa
patterns linked using additional i* SD and SR models.
The patterns were;

1. The Manoeuvring-Noise-Accuracy (MNA) pattern,
describing trade-offs between accurate and quiet
steering of the submarine;

2. The Manoeuvring-Weight-Distribution (MWD)
pattern, describing, describing trade-offs between
accurate manoeuvring and maintaining the stability
of the submarine;

3. The Manoeuvring-Console-Manning (MCM)
pattern, describing trade-offs about the number of
operators who control the manoeuvring of the
submarine;

4. The Manouevring-Hydroplane-Configuration
(MHC) pattern, that describes trade-offs associated
with possible configurations of the hydroplanes
that steer the submarine.

The full pattern language is described in Maiden &
Pavan (2001). In this paper we describe one of these
patterns — the Manoeuvring-Noise-Accuracy (MNA)
pattern — and the models that link the individual
patterns to provide the pattern language. Each is
described using it important attributes.

4.1. The Manoeuvring-Noise-Accuracy
(MNA) Pattern

Problem: A submarine is required to be both quiet
and accurate when manoeuvring. However to be more
accurate it must activite the hydroplanes, which leads
to more noise.

Context: When manoeuvring, especialy in
advanced underwater warfare, the submarine needs to
avoid detection by alien systems and to navigate with a
high level of accuracy. It avoids detection by
controlling and regulating the radiated noise.
However, there is a trade off between the quietness
(low hydroplane activity) and accuracy (high
hydroplane activity). This trade off holds true for
accurate navigation as high hydroplane activity
implies more accurate navigation and low hydroplane
activity leads to less accurate navigation as the
hydroplane activity is necessary to change the
submarine’s direction. Similarly, high hydroplane
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activity implies a high level of accuracy as well as a
high level of noise.

Forces. Performance, quiethess,
reliability, safety, technologies and cost.

Solution: Designers are given noise, manoeuvring
and performance targets for the manoeuvring system
to attain. They do this by exploring dependencies
between the key agents involved in the noise-accuracy
domain in order to achieve acceptable trade-offs.
Historical data about the effectiveness of this design in
different scenariosis available for reuse.

SD Model: We modeled 3 actors that influence
manoeuvring — submarine, manoeuvring system and
hydropl anes. Modeled actor dependencies were:

The submarine depends on the manoeuvring

system for the soft goal of manoeuvre submarine

quietly;

The submarine depends on the manoeuvring

system for the soft goal of manoeuvre submarine

accurately,

The submarine depends on the manoeuvring

system for the task of manoeuvre submarine;

The submarine depends on the manoeuvring

system for the goal of navigate the submarine;

The manoeuvring system depends on the

hydroplanes for the soft goal of manoeuvre system
isquiet;

The manoeuvring system depends on the

hydroplanes for the soft goal of manoeuvre system
isaccurate.

The resulting SD model is shown in Figure 2.

accuracy,

1] 1
¢
1
B G-
N . il i)
§ Lk ._"'I" -
| i F Jpa— l._:l L=
o m— <L i W, oy
! i , '°_l-—.-|-|""
—_—
'II'HIFH-.I_
||I . I:‘
< =

Figure 2. The SD model for the MNA pattern

SR Model: The SR model models the goal structure
of each actor in the SD model. The submarine has two
high-level soft goals. The first is avoid detection by
alien systems, which is achieved by attaining the goal
of control radiated noise and undertaking the task
regulate radiated noise Successfully undertaking the
task of regulate radiated noise depends on
successfully achieving the soft goal manoeuvre system
isaccurate by the manoeuvring system actor. The SR
model is shown in Figure 3.
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Figure 3. The SD model for the MNA pattern

Another soft goal of the submarine is to navigate
successfully, achieved in part by achieving the goal
navigate submarine, which in turn also depends on the
soft goal manoeuvre system is accurate of the
manoeuvring system actor. The manoeuvring system
actor undertakes the task manoeuvre submarine. This
task is decomposed into the two soft goas of
manoeuvre system is accurate and manoeuvre system
isquiet. Satisfying the soft goal manoeuvring systemis
accurate contributes negatively to the satisfaction of
the soft goal of manoeuvre system is quiet. Likewise
satisfying the soft goa manoeuvre system quietly
contributes negatively to the soft goal manoeuvre
systemis accurate.

The third actor, hydroplanes undertakes the task
change hydroplane position which can be achieved by
either low frequency of hydroplane movement or high
frequency of hydroplane movement. Low frequency of
hydroplane movement contributes positively to the soft
goal of low surface noise while high frequency of
hydroplane movement contributes negatively to the
soft goal of low surface noise. In addition the soft goal
of low surface noise has a positive contribution on the
soft goal of manoeuvre system is accurate (in agent
manoeuvring system). Finaly, low frequency of
hydroplane movement has a negative contribution on
the soft goal of manoeuvre systemis accurate and high
frequency of hydroplane movement has a positive
contribution on the soft goal of manoeuvre system is
accurate of the manoeuvring system actor.

4.2. Additional M odels forming the L anguage

Tolink the 4 patternsin the Ianguage we elicited 2
addltlonal models from the systems engineers:

An agent model, showing the logical associations
between the principal actorsin the manoeuvring
domain;
A model that shows the important contributes-to
soft goals links that hold for all patternsin the
language.
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The models extend the i* semantics and syntax. The
agent model includes additional semantic associations
between agents to describe their logical structure
during manoeuvring. Each is described in turn.

The manoeuvring actor model is shown in Figure 4.
It describes the aggregation of strategic dependencies
between all of the actors from the 4 SD models of the
4 patterns. As such it summarises the dependencies in
the pattern language, and adds to them through the
definition of other semantic associations between
agents stating which actors interact with each other to
undertake tasks.
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Figure 4. The pattern language actor model

One of the most striking features of the model is the
existence of 2 key structures of manoeuvring. The first
feature is a structure that states that:

The manoeuvring system is part of the submarine;
The auto pilot, hydroplanes and rudders, and trim
and compensation tanks are part of the
manoeuvring system;

The console system controls the auto pilot,
hydroplanes and trim and compensation tanks.

The second structure is the command-and-control
structure within the submarine. The operator interacts
with the console system. The operator reports to the
supervisor who reports to the commander to
manoeuvre the submarine. This structure reveas that



failure of one actor to achieve a goa or undertake a
task can lead to serious difficulties to manoeuvre the
submarine. The model calls into question the
robustness of the design that this implies by this actor
structure.

The 4 patterns also identified recurring structures of
contributes-to soft goal links. A separate €licitation
session was undertaken to determine these structures
and to extract them from the specific patterns. The
resulting model is shown in Figure 5.
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Figure 5. Recurring contributes-to soft goal
links in the patterns

5. Conclusions and Future Work

This paper reports results from research to produce
a pilot pattern language in systems engineering. We
worked with BAE SYSTEMS engineers to dlicit,
model and validate a pattern language of issues to
consider when designing the manoeuvring systems of
naval submarines. We adopted a formal knowledge
licitation approach with the systems engineers. The
resulting knowledge was modelled using the i*
formalism to show the alocation of capabilities in
terms of goals, soft goals and tasks to different actors
in the architecture, and the dependencies between the
actors and the trade-offs to be made between the
satisfaction of competing soft goals. The pattern
language was accepted by the engineers as an accurate
and useful representation of design aternatives for
manoeuvring system. Although developed for a
systems engineering problem, the definition of a
pattern that we adopted for this research and the
dicitation and modelling approach that was
successfully applied has important consequences about
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linking  software and
architectures.

One important finding was the usefulness of the i*
formalism for representing patterns about complex
requirements and design decisions. The use of
contribute-to soft goal links in the SR model enabled
us to go beyond existing pattern-approaches in
software engineering and model not just one solution
to a pattern but al of the design aternatives. In our
language we chose to use the i* concept of a task to
model each candidate solution. Whilst an effective
representation of solutions in business and information
system applications, the use of tasks (e.g. steer with
low hydroplane movement) is not an ided
representation for complex system architectures, and
suggests the need to extend the i* semantics and
syntax in the future. Such an extension will need to
take into account the differences in discrete and
continuous solution spaces. Whereas some patterns,
such as the Manoeuvring-Console-Manning (MCM)
pattern had discrete solutions such as manoeuvre with
1 operator and manoeuvre with 2 operators, others
such the reported Manoeuvring-Noise-Accuracy
(MNA) pattern has a large space of possible solutions
that are modelled mathematically in BAE SYSTEMS.

During the sessions with BAE SY STEMS engineers
we found that the patterns provided the common
shared point of reference that was needed to address
the issues relating to requirements trade-offs. The text
attributes of each pattern provided the necessary
background and contextual information while the i*
models provided the engineers with powerful visual
depiction of the trade-off envelope. This representation
aso enabled the researchers and other BAE
SYSTEMS participants not as familiar with
manoeuvring systems dill to participate in the
sessions. We believe that this was in part because the
i* semantics provided homogeneity through its
powerful, but easy-to-understand processes, semantics
and syntax which participants used when referring to
the different attributes of the system. This went some
way towards creating a more egalitarian discussion
arena among the diverse participants.

Furthermore, in the latter sessions, the BAE
SYSTEMS engineers became sufficiently adept with
the i* formalism that they would arrive a the
elicitation or validation session with SD and SR model
sketches aready produced, thus saving time and
improving communication. This last result was a
surprise to us as we had anticipated a large learning
curve with the i* approach. This finding supports other
experiences with the i* approach that it can be learned
quickly and applied successfully with stakeholders
with some engineering experience. Our decision to use
i* models to express the pattern language itself, that is
the associations between individual patterns, also
enabled us to explore the claim that pattern languages
provide a lingua franca or common language that is

system  requirements



accessible to all the participants in a design process
(Erickson, 2000). One possible role for this and other
pattern languages in BAE SYSTEMS is to aid
collaboration  through  communication  between
different stakeholders in order to provide a coherent
but flexible framework for problem solving, rather
than forcing systems engineers to implement the
specified pattern solutions for future designs.

Another interesting side effect from developing the

pattern language was that it provided the systems
engineers with an opportunity to reflect on their
designs and design practice often denied them due to
project deadline pressures. Once reflection was
recognised as a characteristic of the sessions, engineers
were more motivated to participate and share their
knowledge with others.
The next stage of this research is to integrate this and
other pattern languages within the ART-SCENE
environment described at the beginning of this paper.
ART-SCENE is designed to trade-off satisfaction of
different requirements by different architecture designs
using scenarios to link requirements and architectures,
then to simulate system and agent behaviours to
compute their outcomes (Zhu et al. 2003). The
correctness of scenario outcomes upon which we
determine an architecture’s compliance with system
requirements depends upon the accuracy of the model
and the simulation. We seek to make ART-SCENE's
simulations more dependable by diversifying the
sources of information, and in particular by reusing
historical data about the performance of a design in
previous similar contexts based on pattern languages.
We will extend the pattern language to represent
architectural designs using object-oriented constructs.
We will then evolve NATURE's origina
computational analogical reasoning mechanisms
(Maiden & Sutcliffe 1996) to match candidate
patterns’ requirements and architecture models to the
models of the system under specification to retrieve
historical data about that design’s performance in
previous scenarios, and input this data into scenario
simulations within ART-SCENE. We look forward to
reporting this next challenge in the next future.
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Abstract

Deriving requirements and architecture in concert
implies the joint elicitation and specification of the
problem and the structure of the solution. In this paper
we argue that such an integrated process should be
Sfundamentally based on experience. We sketch an
approach developed in the context of the EMPRESS
project that shows how different kinds of experience-
based artifacts, such as questionnaires, checklists,
architectural patterns, and rationale, can beneficially be
applied.

1. Introduction

The last few years have seen a growing awareness of
the requirements engineering community for architectural
issues and vice versa. Several authors have argued
convincingly for the tight interdependencies between
functional requirements (FRs), non-functional
requirements (NFRs) and architectural options (40Os) that
need to be made explicit early, e.g., [1], [2].

The design of an architecture aims at creating a
software solution for the problem given in the
requirements  specification. In the requirements
specification, the problem is elicited and documented
using concepts from the problem domain. An architecture
sketches the solution at a high level of abstraction. This
means that the problem must be expressed in terms of
concepts from the solution domain (i.e., the programming
domain). This is a creative activity that is not well
supported by current software development approaches.

In this paper, we propose an approach that supports
the elicitation, specification and design activity by
providing experience in terms of questionnaires,
checklists, architectural patterns and rationale that have
been collected in earlier successful projects and that are
presented to developers to support them in their task.

*The research for this paper has been partly funded
by the EUREKA-ITEA projects “EMPRESS”
(ITEA 01003) and “CAFE” (ITEA 00004)
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The approach uses a refinement graph, checklists and
questionnaires to capture important NFRs more precisely.
In addition, it uses architectural patterns for reusing AOs
and for evaluating them against a specific set of
requirements. Furthermore, it uses traceability and
rationale management to make explicit the decision
making involved in a joint specification and design of
FRs, NFRs and AOs.

The paper is structured as follows: First, we sketch the
fundamental issues to be solved in integrating RE and
architecture development, and how these are covered by
related work. Second, we discuss the foundation of our
approach in terms of a metamodel that describes the basic
concepts we are dealing with, such as quality attributes,
metrics, and NFRs. Third, the integrated process with
input and output documents is described. We conclude
with a discussion of how well our approach deals with the
fundamental issues identified.

Specification

Functional

Requirements
— Architecture
Non-Functional

Requirements
Implementation

Figure 1: General process of integrating architecture and
requirements

2. Fundamental Issues

Figure 1 shows the general process of integrating the
architectural decision process into the requirements
engineering process.

It comprises the relevant activities of the software
engineering process, namely an iteration of requirements
elicitation, specification, and design that produces FRs,
NFRs and AOs. These are subsequently implemented.



As exemplified by the approaches presented at
STRAW 2001, there are many different ways to support
these activities. They mainly solve the following
fundamental issues:

e Issue 1 — Views of different stakeholders in the
elicitation of NFRs, FRs, and AQOs: How to
identify the essential NFRs, FRs, and AOs and
different views of different stakeholders? How to
negotiate conflicts? What is a sufficient level of
abstraction for these discussions? One possible
support for negotiation is given by the WinWin
approach [2][3][4].

e Issue 2 — Identification of dependencies among
FRs, NFRs, and AOs: How to describe NFRs, FRs,
and AOs such that dependencies can easily be
identified? In several approaches, goal graphs are
used for specifying NFRs and FRs and their
dependencies. There is much less agreement on
describing AOs, e.g., Use Case Maps [5], agent-
oriented goal graphs [6], the CBSP approach [4], or
social organizations [7].

o Issue 3 — Assessment of how well different AOs
address a specific set of FRs and NFRs: How to
capture and support the decision making involved
in specifying FRs, NFRs and AOs? Typically,
concepts from rationale management [8] are used
to make explicit questions to be solved, options for
their solutions, criteria to evaluate the options and
assessments of the options against these criteria.
For example, goal graphs are used to capture
criteria  (business goals) and issues (NFRs and
FRs), AOs and their assessments [5]. Another
example is the Concordance Matrix to capture
assessments of the architectural relevance of FRs
and NFRs [4]. Also, SEIs Architecture Tradeoff
Analysis Method (ATAM) captures criteria (quality
attributes, business goals), issues (risks), options
(architectural views), and assessments (utility tree).
The Cost Benefit Analysis Method (CBAM) is used
to refine the ATAM results with cost, benefit
(criteria, options) [3].

As argued in the introduction, however, the design of
an architecture is a creative task. It involves much
judgment and heuristics on the importance of NFRs and
FRs and different AOs. Thus, it is error-prone (e.g.,
guesses about how well an architecture meets a set of
NFRs can be wrong) or expensive (e.g., when using a
prototype realization of the architecture to experimentally
assess the suitability of the architecture). Moreover, it can
only be learned through experience and apprenticeship.
Hence, leveraging off past experience can help these
challenges to be addressed. This raises another issue:

e Issue 4 — Representation of past experience to

facilitate issues 1-3: How can one capture and use
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experience on FR, NFRs, AOs, their dependencies
and their assessments? Such representations must
not only include the AOs under consideration, but
also sufficient knowledge for their selection and
application. This includes the context in which they
can be used and the trade-offs they entail.
Architectural styles, for example, are used to
capture typical AOs, a correlation catalogue to
capture typical assessments [7].

The last issue is rather implicitly treated in many
approaches. In contrast, we have put most emphasis on
identifying how experience can support the integrated
process.

3. Our Approach

In the following, we present our approach for
capturing experience to support the integrated elicitation,
specification of NFRs and FRs and design of architecture.
First, we explain the fundamental concepts in terms of a
metamodel. Second, we sketch the process and the
products. We illustrate the process and the products with
a case study dealing with a mobile, interactive application
to allow users monitor production activities, manage
physical resources and access information. This case
study is based on a real system and was provided by
Siemens in the context of the Empress project.

Requirement
«{ /achieved by
<« /refined into <« /influences
Quallty Attribute Non-functional Requirement
/has influence on p 1
1 < i *
1
1
Imeasured by W
N /expressed over
Means Mefric . Value
Idetermines P>
1.7
1
i 1
Idescribed by P 1 Scenario ’ 4 Stimulus
o
1
A /satisfies
» specializes « luses . Response
D Pattem ’j
P> /conflicts

Figure 2: The metamodel



3.1 Foundation

Our integrating approach is based on a metamodel that
describes the main concepts we are dealing with (see
Figure 2).

e quality attribute (QA) is a non-functional

characteristic of a software product or process. We
distinguish  between high-level QAs (i.e.,
efficiency, maintainability, reliability, usability,
and portability) and refining QAs of these
attributes. The high-level QA “efficiency” can, for
example, be refined into “time behavior” and
“resource utilization”, “time behavior” can be
refined into “workload” and “response time“. In
addition, QAs can have positive or negative
influences on each other, e.g., if the “workload” is
higher, the “response time” will increase (negative
influence).
To make explicit the distinction between
knowledge about QAs gained in experience and
the quality to be achieved in a specific project, we
use the term NFR to describe the latter. A NFR is
an instantiation of a QA that is created by
determining a value (range) for a metric associated
with the QA. For example, the NFR “The database
of our new system shall handle 1000 queries per
second.” instantiates the QA “workload of
database”. The value is determined based on an
associated metric “Number of jobs per time unit”.

The distinctive feature of this metamodel is that we
distinguish problem-oriented refinement from solution-
oriented refinement of QAs. The latter is made explicit in
terms of means which mediate between QAs and patterns.

e Means are principles, techniques, or mechanisms
that facilitate the achievement of certain qualities in
a software architecture. They are abstract patterns
that capture a way to achieve a certain quality
requirement, but are not concrete enough to be used
directly (i.e., they have to be instantiated as
patterns). Means are described by scenarios, which
consist of stimulus and response, and a metric. For
example, a scenario for the NFR mentioned above
is “object creation throughput must be fast”, where
the stimulus is “object creation”, the response is
“throughput” and the metric is “number of objects
created per second”.

A pattern is used to document Aos. Pattern help
designers in creating architectures by providing
solutions for recurring problems in the design of
software architectures. The pre-defined solutions
have proven to be beneficial in certain situations.
As they have been applied repeatedly, their impact
on a software architecture is known. Patterns are
chosen to satisfy the scenarios. They can be refined
through specializations. For example, the pattern

“layered architecture” can be specialized into
“strictly layered architecture” and “loosely layered
architecture”. Furthermore, if a pattern uses another
pattern, the used pattern is applied to create the
using pattern. With this mechanism, collaborating
patterns can be used to form higher-level patterns.
Two patterns can also be in conflict, e.g., the “client
server” and “layered architecture” patterns cannot
be applied at the same time.

The following sections describe how these concepts

are used within our approach.

3.2 Experience-Based Process
Figure 3 gives an overview on our experience-based
process of integrating architectural decision making into
the requirements engineering process.

In the following, the different activities of our process
are listed. The overall process is iterative, that means
within each activity and between the activities iterations
are probable and necessary. Products consumed and
produced by the activities of the process are explained in

more detail and illustrated with examples in the

following. sections.

Questionnaire

Refinement Graphs,|
Checklists

Patterns

Rationales

Specification

Functional
Requirements

. Architecture
Non-Functional
Requirements
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) Product
Experience

Capture

Figure 3: The experience-based process




o Elicitation: During the elicitation, the customer has
to prioritize the QAs at the highest level of
abstraction for the system to be developed. A
questionnaire is used for this purpose. Then, QAs
with the highest priorities are refined with the help
of checklists. Refinement graphs for the high level
QAs are the foundation of all checklists. We
distinguish different types of checklists. Each
checklist focuses on a certain refinement aspect
(e.g., problem-refinement, solution-refinement,
dependencies between QAs). The rationale for
specific estimates for the NFR (e.g. maximal load )
is captured.

o Specification: During the specification,

measurable NFRs will be documented in a
requirements document. Checklists guide this
activity. We use a requirements template that allows
different NFRs to be described at different places in
the document. NFRs, for example, that are
expressed over FRs are explicitly stated together
with the FR. We use Use Cases and Use Case
descriptions to describe FRs (our approach for
describing FRs for embedded systems has been
developed in the QUASAR project [9]). NFRs (e.g.,
response time requirements) are explicitly stated in
the Use Case descriptions.
Furthermore, concrete means to achieve the NFRs
are identified by using the assessments of their
suitability documented in a refinement graph. The
rationale for a chosen means is captured.

e Design: During the design, requirements that have
an effect on the architecture are selected. In
addition, the principal structure of the system is
refined based on the requirements and the means
and pattern catalogue. In the following, the existing
architecture is iteratively refined based on
requirements and the catalogue. After each
refinement step, the architecture is assessed
concerning their non-functional properties. The
rationale for chosen means and patterns is captured.

o Experience Capture: During the performance of a
project, experiences are collected and consolidated
to improve the questionnaire, refinement graphs and
checklists and the patterns and means catalogue.

3.3 Questionnaire for Prioritization

For the prioritization of QAs at the highest level of
abstraction, a standardized questionnaire is used. The
questionnaire elicits wishes and facts concerning the
development context of the customer and relates them to
a selection of the QAs defined by IS09126 [10]: we
selected maintainability, efficiency, usability, and
reliability in our case study.
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In the following, we describe at first how the
questionnaire was developed and then how it can be
applied.

To develop the scales of the questionnaire, in a first
step, potential scale items were generated. For this
purpose, we phrased a set of 120 statements containing
wishes and facts, which a person involved in a system
development project would express. The statements
covered the complete set of second level QAs (ISO 9126)
of the high level QAs mentioned above.

Once the statements were generated, they were
presented to eight software quality experts. These experts
judged, whether a customer that needs a certain QA
would agree to each statement. A 1-5 rating scale was
used for the judgment. The experts were — as usual in
scale development [11] — asked not to rate their own
project context, but rather to judge based on their
personal experience, how favorable each item is with
respect to the QA of interest.

In a next step, items with the highest mean and lowest
variance (high interrater reliability) were selected and
assembled to a 30 items questionnaire. As response scale,
a 1-5 Likert scale was chosen, of which 17 statements
covered facts of the current project (strongly agree —
strongly disagree), and 13 statements covered wishes for
future conditions (very important — very unimportant).

The determination of the mean value of the statements
affecting one QA enables to build a rank order of these.
The one with the highest ranking is the most important
attribute for the current system development project and
should receive the greatest deal of attention. The
prioritization is of special interest in case of limited
requirements engineering resources and allows focusing
the requirements engineers’ energies on the most
important high-level QAs. This priorization questionnaire
was applied in the case study. It did not confirm the prior
expressed expectations of the customers. A closer
analysis showed, that the customers tended to rate such
quality aspects as most important, that were difficult for
them to handle, namely “efficiency”, instead of naming
the most important aspects for the success of the project
in scope. The results of the prioritization questionnaire
ranked “maintainability” as most important. The customer
confirmed the correctness of this result.

3.4 Refinement Graph

A refinement graph (also called quality model)
instantiates parts of our metamodel. It describes typical
refinements of high-level QAs into more detailed QAs,
metrics, and means. In addition, it describes relationships
between different QAs. Therefore, it captures experience
of previous projects. Our refinement graph is similar to
the goal graphs of e.g. [6], but emphasizes dependencies.
Figure 4 gives an example for such a refinement graph for
the QA “efficiency”. White rectangles represent QAs at



different levels of detail. Ovals represent metrics that
measure certain QAs. Grey rectangles represent means to
achieve certain QAs.

Four types of relationships can be found in such a
refinement graph. The metamodel in Figure 2 describes
the general types of relationships.

e A QA, such as “efficiency” is refined into more
detailed QAs, such as “time behaviour” and
“resource utilization”.

A means has influence on a QA, i.e., it is used to
achieve the QA, e.g., “load balancing” is used to
achieve “workload distribution”.

A QA is measured by a metric. For example the
“workload” can be measured by the metric
“number of jobs per time unit”.

A QA can be positively or negatively influenced
by another QA. If the “workload”, for example, is
higher, the “response time ” will increase (negative

influence).
. Efficiency Resource
Time Be Compliance Utilisation

haviour
[ 7 1

Localit
Y ‘ Type and position Workload
of devices Distribution

‘ Capacity ‘
\

T

‘ Parallelism ‘

Boot / Start Time

‘ Workload ‘

Response Time

#jobs
/ time unit

Figure 4: Refinement graph for efficiency

Throughput
(network)

Our approach provides a default refinement graph that
can be used without adaptations by a company. Reasons
for this can be a lack of time or money. We recommend
tailoring the refinement graph to the context of each
company and project. Alternatively, a company might
have an own refinement graph that shall be used. In this
case, it is very important to agree on the meaning of the
different QAs in this graph. Our recommendation is to
build a refinement graph together with the company in a
workshop. By doing so, the refinement graph benefits
from the already integrated experience of our default
refinement graph and it is tailored to the project and
company. So far, we defined default refinement graphs
for the QAs “efficiency”, “reliability”, and
“maintainability”. NFRs are elicited for each QA and
relationships between NFRs and FRs are established via
the checklists.

A mechanism to capture the experience of multiple
projects and store the various refinement graphs is also

% of resource Load Balancing
consumption
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developed as part of the ITEA EMPRESS project. This
so-called Prometheus approach (Probabilistic Method for
early evaluation of NFRs) is described in [12].

3.5 Checklists
Based on the information included in the refinement
graph, we developed checklists that focus on different
aspects of a high-level QA. We distinguish for each high-
level QA between: (1) initialization checklists, (2)
refinement checklists, and (3) dependency checklists. All
checklists are described in more detail in the following.
Again, in the other approaches for integrating RE and
architecture we have not found something similar to
checklists. They help to make the experience captured in
the refinement graph directly applicable in workshops.

Initialization checklists are defined that capture
everything that has to be decided before NFRs are
refined. There are two types of initialization checklists
that are used in our process: a general initialization
checklist and specific high-level QA checklists.

The general initialization checklist includes aspects of
the following categories:

e Organizational aspects (e.g., domain knowledge

required)
e Technical issues (e.g., notations required )

Figure 5 depicts an extract of such a general

initialization checklist.

1. Supplier (project issuss-=pracess siakehaldars)

e Do you expect a certain kind of orgamization?
{e.g., number of emplovees, size of company,
lifetime of company)
Do you expect a certain domain experience? If ves, specify
the level of experiencel {e. g, 2 years experience [ number
of developed systems in the domain)
Process and documents
Do you have certain constraints towards the system
development process?)

a. Conformance to standards (e g, ISC 9001, IEEE . )
(project issues-=process requiremenis ||
documentation requirements)

Special activities (e g, auditsfreviews)
(project issies-=process requirements
Documentation (e g, specification documents)
{(praject issuss-=documentalion requirements)
Motation (e. g, statecharts) (project issues-=
documentation requirements)

Figure 5: Extract of general initialization checklist

(e,

d.

Initialization checklists include a set of questions. To
support answering the questions, examples are given in
brackets. Italic formatted comments describe at which
place in the requirements document, the information
should be stated.  Examples for NFRs concering
organizational experience are:

“At least 3 years of experience in maintenance is
required (the longer the better).”



e “Project experience with wireless networks is

required.”

An excerpt of a specific initialization checklist for the
high level QA “efficiency” is given in Figure 6. This
structure of the checklist corresponds to the structure of
the other initialization checklist. In our case study, there
were no specific NFRs concerning the organizational
experience regarding efficiency.

1. Supplier (project issues-=pracess stakehalders)

® Do you expect a certain experience in building time
critical systems? If ves, specify the level of experience!
(e.g., had a similar project before, has special
qualification (training, certification)).

® Do youexpect a certain experience in building systems
with resource limitations? If ves, specify the level of
experience! (e g, had a similar project before, has
special qualification (raining, certification))

2. Process and documents (project issues-=process
requirements || documentation requirements)

& Arethere any laws or standards regarding efficiency your

system will have to adhere to? If yes, specify the requirement!

Figure 6: Excerpt of efficiency initialization checklist 1
NFRs, refinement checklists are used to elicit specific
measurable NFRs. Refinement checklists are specific for
high-level QAs (e.g., efficiency). In case of efficiency
and reliability requirements, we recommend creating Use
Cases to identify concrete NFRs. An excerpt for the
refinement checklist for throughput NFRs is given in
Figure 7. Again, text in italics indicates the place to
document the NFR in a given document structure.

6. Elicitation of Throughput WFRs (FRs-= UC dascription

-= NFRs -= throughput ff NFRs-=efficiency - =thraughput)

For each network element in the system architecture:

o  Gothrough each Use Case: Identify the TC-steps and
exceptions involving data transportation on this
component. Think of an average scenaric of the Use Case

o How much data has to be transported by this
component?
Specify the throughput INFEs on the network element
®  Gothrough each Use Caze: Identify the TC-steps and

exceptions involving data transpottation on this component.

Thitk of a maximum usage of the Tse Case
o How much data has to be transported by this
component?
Specify the throughput MFEs on the network element.
Figure 7: Excerpt of refinement checklist for throughput

Measurable efficiency NFRs that were elicited by
using the refinement checklists in the case study are for
example:

e In a maximum usage, 8 people must be able to
download a document (about 1 MB) within 10 sec. via the
WLAN (6.4 Mbit/s).

e The PDA must be able to handle 60 alarms (coming
from machines) at the same time.

e The memory of the database server must at least
have a capacity of 512 MB.
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While eliciting the NFRs, dependencies to other NFRs
and architectural decisions are checked by using a
dependency checklist. Figure 8 depicts an excerpt of the
efficiency dependency checklist.

After applying these checklists, conflicts between
NFRs and solution alternatives are documented. If
concrete solutions were specified, also the rationale for
the decision is documented. In our case study, a conflict
appeared between the following two NFRs:

¢ “In a maximum usage, 8 people must be able to download
a document (about 1 MB) within 10 sec. via the WLAN (6.4
Mbit/s).”

e “The WLAN supports 10 Mbit/sec.”

In this case, the net throughput of the WLAN might
be not sufficient for the first requirement. This conflict
was documented.

The NFEz have been exprezsed separately. IMow check
for the NFE s affecting the same architecture component
and instantiating dependent quality attributes:

o  Consider first dependencies between refinements
of efficiency: Is it possible to fulfill all NFE at the
same time (e g response time and workload)?

If not, high-light the conflict.

e Congider then all dependencies: Is it pozaible to
fulfill all NFE at the same time {e.g. response time
and maintainability)? If not, high-light the conflict.

Figure 8: Excerpt from efficiency dependency checklist

3.6 Means and Architectural Patterns

The general dependencies between means and patterns
are captured in a separate catalogue. This catalogue is
used as follows. A designer working on a certain
component or (sub-) system chooses the architectural
relevant FRs, as well as the NFRs. The NFRs are then
used to select appropriate means. This is done by
comparing the scenarios associated with the means with
the requirements. Once the means are selected, the
patterns that specialize the respective means are selected
from the catalogue. This is again is done by comparing
the scenarios related to the patterns with the requirements.
The selected patterns are instantiated to support the
design.

3.7 Rationale

The refinement graph and the catalogue capture
general relationships between QAs, means and patterns.
The choice of a specific pattern requires detailed
evaluation of the means and the patterns against the
relevant requirements. We capture this evaluation in
terms of rationale that can then be used to refine the
refinement graphs and the catalogue.

The designer documents the selection of means with
an assessment matrix for each subsystem under
consideration (see Table 1). The rows of the matrix



represent the selected means. The columns of the matrix
represent the requirements that are relevant to the
subsystem under consideration. Each cell denotes whether
a specific means makes it easier or more difficult to
realize the corresponding requirement with the symbols
“+” and “-* and a reference to the scenario that was used
to generate the value. If the means has no impact on the
requirement, the cell is left empty. Once the matrix has
been filled out, the designer identifies potential conflicts
between selected means. While the designer can select
alternate means in order to reduce the number of
conflicts, in general, however, the potential conflicts
cannot be completely eliminated. The remaining conflicts
are documented by annotating the cells (i.e., means x
requirement x scenario) that are involved in the conflict

for further consideration during the next step.
FR1 | FRn | Efficiency Maintainability

Locality - +

Load + -

balancing

Caching + -

Concurreny + -

Sharing + -

Table 1. High-level assessment matrix for detecting conflicts
among means

The patterns are selected by comparing the scenarios
related to the patterns with the requirements. For each
means, the designer builds a new assessment matrix. The
rows represent the candidate patterns selected with the
scenarios. The columns include the requirements
addressed by the means. When the means under
consideration is involved in a conflict, the columns in the
higher-level matrix that are negatively affected by the
means are reported into the lower-level matrices. The
designer uses the scenarios that result in negative
assessments in the higher-level matrix to select a set of
architectural patterns, hence addressing the relevant
requirements and resolving the potential conflict.

This two-level approach for documenting trade-offs
between options is similar to the rationale capture of
designing services from user tasks described in [13]. The
use of an assessment matrix enables the designer to
summarize the rationale behind the selection of means
and patterns and their evaluation with scenarios. Using a
two level selection process reduces the size of the
matrices that the designer has to work with and the total
number of cells that need to be considered. By identifying
conflicts in the higher-level matrix and reporting
conflicting columns in the lower-level matrices, the
designers focuses only on the relevant interactions
between means and attempts to address those during the
pattern selection and instantiation. Thus, the distinctive

feature of our rationale capture is the detailed guidance
we give for decision making.

4. Conclusion
We have presented a comprehensive approach
covering the issues identified in section 2.

o Issue 1: The different views of the stakeholders are
elicited and negotiated through the prioritization
questionnaire, different view-oriented checklists
and the rationale-based discussion. The distinction
between QAs and means helps to keep the
discussion on an adequate level of abstraction. This
is achieved by separating problem refinement from
solution refinement.

e Issue 2: Typical dependencies between QAs are
captured in the refinement graphs. Concrete
dependencies are elicited with the help of checklists
and are captured in the rationale matrices. We use
patterns to document AOs and Use Cases to
document FRs. We use a requirements template that
allows different NFRs to be described at different
places in the document. NFRs, for example, that are
expressed over FRs are explicitly stated together
with the FRs. However, we have not yet worked on
an intuitive representation of the dependencies
between patterns and Use Cases.

e Issue 3: The relationships between AOs, FRs and
NFRs are covered by our rationale matrices.

o Issue 4: As described in detail, we capture and use
experience in terms of the questionnaire, the
refinement graphs, the checklists, the patterns, and
the rationale.

Of course, there are still many issues to be solved, in
particular a full-scale case study. So far, we have used
this approach together with our cooperation partners from
Siemens to elicit and specify the FRs, NFRs, means and
metrics. In a 2 day workshop its was possible to define a
measurable and a more complete set of NFRs in
comparison to ad-hoc approaches. In addition, the
relationships between FRs and NFRs were clear. The
choice of the patterns will be performed in the near
future.

Till the end of the year, we plan to address the following
questions:

e Package experience for different QAs from
literature, in particular the catalogues for means and
patterns.

o Find suitable architecture descriptions that facilitate
the assessment of the dependencies between
requirements and AOs.
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So far, we have not investigated the utilization of
problem frames (as a further instance of documented
experiences). That would correspond to capturing typical
FRs in the refinement graph. This would generalize our
work from the domain of embedded systems — which is
the focus of EMPRESS — to other domains.
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Abstract

Traceability helps stakeholders to understand the rela-
tionships that exist between software artifacts created dur-
ing a software development project. For example, the evolu-
tion of the relationships between requirements and the com-
ponents to which they are allocated can provide insight into
the maintainability of a system. Unfortunately, due to the
heterogeneous nature of these artifacts, creating, maintain-
ing, and viewing these relationships is extremely difficult.

We propose a new approach to traceability based on
techniques from open hypermedia and information integra-
tion. Open hypermedia and information integration provide
generic techniques for establishing, maintaining, and view-
ing relationships between software artifacts. Our approach
allows the automated creation, maintenance, and viewing of
traceability relationships in tools that software profession-
als are accustomed to using on a daily basis.

1. Introduction

Traceability can provide important insight into system
development and evolution. Antoniol ef al. maintain that
traceability assists in both top-down and bottom-up pro-
gram comprehension [4]. According to Jacobson, Booch,
and Rumbaugh, “[t]raceability facilitates understanding and
change [9, page 10].” Palmer asserts that “[t]raceability
gives essential assistance in understanding the relationships
that exist within and across software requirements, design,
and implementation [13, page 412].”

Even if we limit our discussion to relationships between
requirements and architectural artifacts, we are confronted
by a large number of potentially useful relationships. The
models of Ramesh and Jarke [16] and Pohl [14, 15] sug-
gest possible relationship types between various elements
and artifacts. Han [7] lists three categories of structural

relationships: coarse-grained inter-document, fine-grained
inter-document, and fine-grained intra-document. We di-
vide inter-document relationships into two subcategories:
relationships between different versions of the same arti-
fact and relationships between different artifacts. Further-
more, we consider relationships between both consecutive
and non-consecutive versions of the same artifact as well as
relationships between relationships. Figure 1 depicts these
five relationship types.

Relationships can exist between elements of a single ar-
tifact (relationship type 1 in Figure 1). For example, in
a requirements specification, one requirement might elab-
orate or depend_on another. In an architectural diagram,
a component might be part_of another component or de-
pend_on another component. Across versions of the same
artifact (relationship types 2 and 3) we may observe rela-
tionships such as refines, replaces, based_on, and formal-
izes. Between requirements and architectural components,
relationships such as satisfies and allocated_to might be use-
ful (relationship type 4). Furthermore, software engineers
may be interested in how a particular type of relationship
between artifacts evolves over time (relationship type 5).
For example, a number_of_instances relationship might pro-
vide insight into component cohesion. If the number of al-
located _to relationships between a requirements document
and a component diagram explodes after an iteration in the
design phase, this may indicate that one or more compo-
nents have lost cohesion.

All of these relationship types might be useful to one
or more stakeholders at some point in the software develop-
ment project; however, the vast number of possible relation-
ships makes the task of manually creating and maintaining
these relationships daunting. Furthermore, different stake-
holders have diverse information needs. Not all relation-
ships will be of interest to all stakeholders. For example,
a customer might only be interested in knowing that all re-
quirements have been allocated to components whereas a
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Figure 1. Implicit and Explicit Relationships in Software Artifacts.

software developer might need to understand the require-
ments in light of their allocated components and subcom-
ponents as well as the dependencies between these compo-
nents. Stakeholders need to be able to filter relationships
to provide a view of the information space that conforms to
their information needs.

Finally, users should not be required to use a specialized
tool to view traceability information. Different stakeholders
use different tools to produce requirements and architectural
artifacts. It is more likely that stakeholders will make use
of these relationships if they are able to view the relation-
ships in the tools that originally created the artifacts. How-
ever, these tools are often not designed to interact. Thus, we
must also overcome the problem of heterogeneous artifacts
produced by different tools [3].

These problems lead to three requirements for creating,
maintaining, and viewing traceability relationships:

e The creation and maintenance of traceability relation-
ships must be automated.

o Stakeholders must be able to create a view of traceabil-
ity relationships based on their information needs.

e Users should be able to create and view traceability
relationships within common, familiar software tools.

In addition, we suggest that a traceability tool should pro-
vide support for evaluating the evolution of relationships
between artifacts. This analysis can provide insight into the
entire project.

2. Approach

We hypothesize that open hypermedia [12] and informa-
tion integration [2] enable an approach to traceability that
allows:

1. automation of the discovery, creation, and mainte-
nance of traceability relationships.

2. customized views of these relationships based on the
information needs of the stakeholders.

3. creation and viewing of these relationships in the tools
that originally created the artifacts.

In this section, we provide a brief overview of open hy-
permedia and information integration and then present our
conceptual framework. Next, we offer a motivating scenario
and then describe our proposed prototype.
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2.1. Open Hypermedia

Open hypermedia systems [12] enable the creation and
viewing of relationships in heterogeneous applications as
well as the traversal of those relationships within and be-
tween applications. Open hypermedia services allow links
(relationships) to be stored separately from an artifact. The
open hypermedia data model supports complex relation-
ships such as bi-directional relationships, relationships with
multiple anchors (n-ary relationships), and relationships be-
tween relationships [3]. Open hypermedia systems also pro-
vide services to filter relationships based on type and to cre-
ate collections of relationships (hyperwebs or, more com-
monly, linkbases).

2.2. Information Integration

Information integration [2] provides services to automate
the discovery, creation, maintenance, and evolution of re-
lationships between heterogeneous artifacts. Information
integration uses the concept of a data source to model in-
formation outside the information integration environment.
Translators are responsible for importing information from
data sources into the information integration environment as
well as exporting information from the information integra-
tion environment to data sources. Integrators work within
the environment to automate the discovery and creation of
relationships. Specific integrators can be developed to find
different relationships within the environment. These rela-
tionships can be between artifacts, other relationships, or
collections of artifacts and relationships. In addition, infor-
mation integration uses contexts to model different views
of the information space. A conceptual model of the In-
finiTe information integration environment [2] is shown in
Figure 2.
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2.3. Conceptual Framework

Our conceptual framework builds on techniques from
open hypermedia and information integration. The main
elements in our framework are tool, artifact, relationship,
and metadata. These concepts are illustrated in Figure 3. A
tool is something that a stakeholder uses to perform a task.
Examples of tools include word processors, UML diagram-
ming tools, integrated development environments (IDEs),
mail programs, version control systems, and issue tracking
systems. An artifact is produced by a tool. A relationship
is a semantic association between artifacts, portions of arti-
facts, or relationships. Metadata allows a method engineer
(or someone familiar with the software project) to describe
the artifacts and relationships that are created and used dur-
ing the project.

As can be seen in Figure 3, stakeholders are able to use
their original tools. These tools produce heterogeneous arti-
facts. Artifact and relationship metadata provides informa-
tion about artifact and relationship types. The metadata in-
cludes information such as which translators can be applied
to specific artifact types or which integrators can be used to
find particular relationship types. The artifacts are trans-
lated into the information integration environment where
traceability relationships can be automatically discovered
and created by appropriate integrators as determined from
the metadata. These relationships are forwarded to the open
hypermedia system, which provides services to display the
relationships in the tools that originally created the artifacts.
The traceability system provides services to schedule inte-
grators and translators, to “chain” relationships together to
form new relationships, to register new artifact and relation-
ship types, to create customized views by filtering both ar-
tifacts and relationships, and to provide insight into system
evolution based on the traceability relationships that the sys-
tem has discovered.
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2.4. Motivating Scenario

This section provides an example of the use of relation-
ships to provide insight into the evolution of requirements
and a system architecture. The hypothetical product is an
income tax program. An initial analysis determined that
much of the functionality of the system would remain sta-
ble (e.g, user interface, data import and export). However,
the tax calculation component of the software would need to
be frequently updated to reflect current state and federal tax
laws. Thus, maintainability has been identified as one of the
important quality requirements of the software architecture.

In the initial architecture, the system architect chose to
allocate all requirements related to the calculation of taxes
to one component. The product is now in its fifth release and
the project manager has observed that it is taking software
developers more time to update the software to reflect the
current tax laws. In addition, these changes are adversely
affecting other functionality in the system.

The system architect is called in to review the evolution
of the architecture. To analyze the problem, he requests
that he be given a summary of all allocated_to relationships
between tax computation requirements and the components
that satisfy those requirements. From this information, he is
able to discern that in the first three product releases, all tax
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computation requirements were indeed satisfied by the tax
component. However, in the fourth and fifth releases, the
relationships show that some of the tax requirements are be-
ing satisfied by a component that also satisfies data import
requirements. For more details, the architect opens the re-
quirements specification associated with the fourth product
release. He requests that the system display all allocated_to
relationships. By traversing these relationships, he is able to
view the component that currently satisfies the requirement.
Thus, the system architect is able to identify the point at
which the architecture began to lose its conceptual integrity
[5] and to suggest changes to restore the cohesion of the tax
component.

This scenario shows the need to be able to create and
view relationships between different versions of different
artifacts in a customized context. In addition, it suggests
that the evolution of relationships over various versions and
product releases can provide valuable insight into system
evolution.

2.5. Prototype

To evaluate the feasibility of our approach, we plan to
build a traceability system that implements the concep-
tual framework described in Section 2.3. The traceability
system will provide an infrastructure for the automated



discovery, creation, and maintenance of traceability rela-
tionships between heterogeneous artifacts. The system will
be built using services from both open hypermedia and
information integration as well as our own traceability-
specific services. To provide open hypermedia services, we
have chosen the Chimera open hypermedia system [3]. We
will use the InfiniTe information integration environment
[2] for information integration services.

InfiniTe will provide services for the automated creation
of typed traceability relationships. As described in Section
2.2, translators will be used to import information to and
export information from InfiniTe; integrators will be used
to discover and create relationships. Chimera will provide
services for viewing and traversing relationships created by
InfiniTe in the tools that originally created the artifacts. To
utilize all open hypermedia services, a tool will need to be
integrated with Chimera (a Chimera “client”).! If a tool
is not integrated with Chimera, the user will be able to re-
quest an HTML summary of the artifact’s relationships. The
relationships created by InfiniTe will be typed to facilitate
filtering these relationships to create customized contexts.
Chimera allows the selective viewing of relationships based
on type.

Our customized traceability services will be based on in-
formation provided in the artifact and relationship metadata.
A metadata definition tool will allow a method engineer to
define the artifacts and relationships that are required for an
organization’s software development process. Medvidovic
et al. [10] describe strategies for modeling architectures
in UML. Assuming that a project creates its requirements
specification in Microsoft Word [11] and creates architec-
ture diagrams in a UML diagramming tool, we can create
specific translators to translate these artifacts into InfiniTe.
We can then write one or more integrators to find relation-
ships of interest, for example the allocated_to relationship
between requirements in the requirements specification and
components in the architecture diagram. In addition, we can
create one or more integrators to analyze the evolution of
the relationships between these artifacts. These translators
and integrators can be invoked automatically or as needed,
depending on the definitions in the metadata.

Since it is impossible to anticipate the needs of every
software development team, we do not propose to build a
comprehensive set of translators and integrators for every
artifact and relationship type. We do, however, propose to
implement a system that will manage artifact and relation-
ship metadata, inform users of available options for integra-
tors and translators, and invoke translators and integrators
when appropriate. The system will also provide informa-
tion about explicit and implicit relationships in the system
as well as provide filtering based on both artifact and rela-

!Fortunately, the open hypermedia community has developed tech-
niques to facilitate application integration [6, 17, 18].
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tionship types. Users of the traceability system will be able
to customize the system to their traceability needs by defin-
ing artifact and relationship metadata; they then can create
and register translators and integrators that translate the de-
fined artifacts and create the required relationships.

To evaluate the utility of our approach, we plan to apply
it to artifacts from an existing research project. We will de-
velop translators and integrators and then use the traceabil-
ity system to automatically generate traceability links be-
tween representative artifacts. Whenever possible, we will
make use of techniques described in the literature to find
these relationships.

The prototype will also allow us to perform a prelim-
inary evaluation of the user interface. We will engage 2-5
computer science graduate students to perform several tasks
(e.g., invoking a translator and an integrator, displaying dif-
ferent types of relationships). This preliminary evaluation
will help us to detect useability problems so that they will
not influence later evaluation.

In the next phase of our evaluation, a developer familiar
with the research project will manually create traceability
links in a commercial tool. We will record and compare the
time involved in creating these relationships in the commer-
cial tool and in our tool; we will also compare the number
and types of links created by each of these approaches.

For the final phase of our evaluation, we will seed the
research system with several defects. We will engage 5-
10 software developers of similar programming experience
who have no experience with the research project. The test
subjects will receive training on our traceability system and
the commercial tool as well as an overview of the research
project and development environment. We will then ask
them to locate and correct defects using three different sets
of information:

1. No explicit traceability links represented—developers
are free to use any tools with which they are familiar
(e.g., grep and find).

Traceability links created and represented in the com-
mercial tool.

. Traceability links generated by our traceability system
and represented in the tools that originally created the
artifacts.

We will collect data on the number of defects found us-
ing each approach, the time required to find and fix each
defect, and the ability to correct a defect without introduc-
ing new problems. We will use post-evaluation surveys to
record the programmers’ experiences in using the different
tools and to solicit their opinions on the various approaches.
We will then analyze this data to determine the utility of our
system in locating and fixing defects as compared with the
other two approaches.



3. Related Work

Han [8] describes an information model for requirements
and architecture management. The model provides the
structure for two templates, a System Requirements Doc-
ument and a System Architecture Document; a tool, TRAM,
facilitates the creation of documents based on these two
templates. TRAM’s use of templates differs from our ap-
proach in that with a template approach the data must con-
form to a prescribed format. Our approach allows a user to
create custom translators and integrators to handle different
artifact formats and relationship types.

The Unified Software Development Process [9] defines
trace dependencies between elements of its various mod-
els. For example, “[a] use-case realization [in the analy-
sis model] ... provides a straightforward trace to a specific
use case in the use-case model [9, page 186].” The Unified
Software Development Process differs from our approach
in that it prescribes specific artifacts and relationships. In
our approach, we allow users to create and maintain arti-
facts and relationships of interest to the project (by locating
or creating appropriate translators and integrators). Thus,
with appropriate metadata definitions, our approach can be
adapted to various software development processes.

Pohl et al. [15] describe six meta-models for require-
ments and architectural artifacts. They then define depen-
dencies between the meta-models. The introduction of ex-
plicit dependencies between use case and architecture sce-
narios allows dependencies between other requirements and
architectural models to be “derived”. The derivation of de-
pendencies is the same as “chaining” of relationships in our
system. Thus, these meta-models can be realized in our
system. A user would need to create or locate appropriate
translators for the requirements and architectural artifacts.
Integrators to create the explicit relationships would need
to be developed as well. Our system could then manage the
automatic generation and representation of Pohl’s derived
relationships.

4. Conclusion

We believe that the services of open hypermedia and in-
formation integration can be leveraged to provide an ap-
proach to traceability that facilitates the automated discov-
ery, creation, maintenance, and viewing of relationships in
tools that originally created the artifacts. Furthermore, these
services can provide a customized view of the information
space.

This research is still in its early stages. To evaluate our
hypothesis, we plan to build a prototype traceability system
along with representative translators and integrators to find
relationships between requirements and architectural arti-
facts. We have demonstrated the feasibility of the cycle

represented in Figure 3 [1] and have already built several
translators and integrators for text, HTML, and source code
artifacts [2].

Although we believe that our approach can be success-
fully applied to requirements and architectural artifacts and
relationships, our approach is not limited to these artifacts
and relationships. We envision that, by developing an ap-
propriate set of translators and integrators, the approach can
address traceability concerns throughout a software devel-
opment project.
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