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CHAPTER 0

Introduction

The subject Best Approximation Theory in normed spaces has attracted the

attention of several mathematicians since its introduction in 1920’s by one of

the founders of Functional Analysis, S. Banach. With the advent of comput-

ers, the research in this area has become even more vigorous. By now, the

field has become so vast that it has significant intersection with every branch

of analysis. Moreover, it plays an increasingly important role in application

to many branches of applied sciences and engineering. The present work deals

with one of the central themes in best approximation theory in normed spaces,

namely the characterization of best approximations. Our endeavor here is the

characterization of best approximations in normed spaces in terms of semi-inner

products. The outcome of our attempt to characterize best approximations in

normed spaces from convex sets, in particular from convex cones, subspaces, and

their translates using the notion of semi-inner products is presented in the thesis.

The problem of best approximation in a normed space can be formulated as

follows. Let (X, ‖·‖) be a normed space over the real or complex number field

K, G a nonempty set in X, and x ∈ X. Then the distance of x from G, d(x, G),

is given by d(x, G) := inf {‖x− g‖ : g ∈ G} . The problem of best approximation

consists of finding an element g0 ∈ G such that ‖x− g0‖ = d(x, G). Every ele-

3



Introduction 4

ment g0 ∈ G satisfying this property is called a best approximation of x from G.

G is called the approximating set, and x the approximated point. If g0 ∈ G is

a best approximation of x from G, then the number d(x, G) is called the error

of approximation. The set of all best approximations of x from G is denoted by

PG(x). This defines a mapping PG : X → P(G), where P(G) is the power set

of G. The set valued mapping PG is called the metric projection onto G. The

set G is called proximinal (respectively semi Chebyshev, Chebyshev) if PG(x) is

nonempty (respectively PG(x) is either empty or a singleton, PG(x) is a single-

ton) for each x ∈ X.

The theory of best approximation in normed spaces is mainly concerned with

the following fundamental problems: existence of best approximations, unique-

ness of best approximations, characterization of best approximations, error of

approximation, computation of best approximations, and continuity of best ap-

proximations. Among these problems, the one which we consider here is the

problem of characterization of best approximation. We understand that the lit-

erature is rich with results characterizing best approximations, and that such

results are separately available for general normed spaces and inner product

spaces (e.g., H. N. Mhaskar and D. V. Pai [21], I. Singer [29, 30], H. Berens [4],

F. Deutsch [14] and so on). Generally, characterizations of best approximations

in a normed space are derived through the norm of the space, and those in

an inner product space, through the inner product of the space. Here we take a

different approach. Our endeavor is to characterize best approximations in a gen-

eral normed space, not through the norm of the space, but through a semi-inner

product that generates the norm of the space, a concept which was introduced

by G. Lumer [17] in 1961 and modified by J. R. Giles [25] in 1967.

While trying to carry over a Hilbert space type argument to a general Banach

space situation, G. Lumer [17] introduced the notion of a semi-inner product on

a linear space with a more general axiom system than that of an inner product,

and obtained some basic properties of this concept. The significance of this no-

tion also was established by Lumer. After Lumer, many mathematicians have

pursued the study of this concept. Among them, it was J. R. Giles [25] who put

forward some decisive structural modifications of this notion. By a semi-inner
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product we mean a semi-inner product as introduced by G. Lumer [17] and mod-

ified by J. R. Giles [25].

On a normed space, we define a semi-inner product as follows. Let (X, ‖·‖)
be a normed space over the real or complex number field K. A mapping [·|·] :

X×X → K is called a semi-inner product on X if the following properties hold

for all x, y, z ∈ X and all λ, µ ∈ K : [λx + µy|z] = λ [x|z] + µ [y|z] ; [x|λy] =

λ [x|y] ; [x|x] = ‖x‖2 ; and |[x|y]| ≤ ‖x‖ ‖y‖ .

In the setting of a normed space, a semi-inner product provides a sufficient

structure as well as new techniques for obtaining some nontrivial general results.

To us, this concept is important from the view point of best approximation the-

ory. It is in terms of this notion of semi-inner product which generates the norm

of the space that we characterize best approximations in normed spaces. Our

main concern here is to derive some results characterizing best approximations

in the framework of a general normed space through a semi-inner product that

generates the norm of the space. Some consequences of these characterizations

are also discussed in the thesis.

Our study is restricted to the setting of real normed spaces. If not mentioned

otherwise, throughout our discussion on best approximation, by a normed space

X we mean a real normed space (X, ‖·‖) together with a semi-inner product

[·|·] which generates the norm ‖·‖. Since the theory of best approximation is the

most well developed when the approximating set is a subspace, or more generally

a convex set, we confine ourselves to the characterization of best approximation

from convex sets. To make the thesis a self contained exposition, the definitions

and results employed in our discussion are provided as and when necessary.

Apart from the Introduction, the thesis contains five chapters followed by an

Epilogue, which are arranged as follows.

Chapter 1 is devoted for introducing the concept of a semi-inner product on

a normed space, the tool with which the characterization of best approxima-

tions is carried out in the thesis. The chapter mainly contains our discussions
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on some facts about the existence and uniqueness of semi-inner products on

normed spaces. As mentioned above, by a semi-inner product we mean a semi-

inner product as introduced by G. Lumer [17] (Definition 1.2.1) and modified by

J. R. Giles [25] (Definition 1.2.2). The significance of this concept is provided in

Theorem 1.2.3, which in particular asserts that a linear space endowed with a

semi-inner product is a normed space with the norm generated by the semi-inner

product. Some properties of the normalized duality mapping of a normed space

are discussed in Section 1.3. A natural connection between the normalized du-

ality mapping of a normed space and semi-inner products on it is furnished by

Theorem 1.4.1, which shows that on every normed space there always exists at

least one (and, in general, infinitely many) semi-inner product which is consistent

with the norm. The notion of a semi-inner product on a normed space is given

by Definition 1.4.3. It is followed by some examples for semi-inner products on

normed spaces. The fact that smoothness of the space is a condition which is

necessary and sufficient for the existence of a unique semi-inner product on a

normed space that generates the norm of the space is discussed in Section 1.5.

Our basic results on characterization of best approximations in normed spaces

from convex sets, and in particular from convex cones, subspaces and their trans-

lates are the subject matter of Chapter 2. The chapter begins with a brief account

on best approximation in normed spaces. In our attempt to characterize best ap-

proximations from convex sets, we first of all derive a sufficient condition for best

approximations from arbitrary sets in Theorem 2.3.1. When the approximating

set is in particular a convex set, a necessary condition for best approximations is

given by Theorem 2.3.2. As a consequence of these two results, we have Theorem

2.3.3 which characterizes best approximations from convex sets. The notion of

the dual cone of a set, which has been introduced in the framework of an inner

product space in terms of the inner product of the space [14], is extended in Def-

inition 2.3.4 to the setting of a normed space in terms of a semi-inner product

that generates the norm of the space. Theorem 2.3.5 provides a reformulated

version of Theorem 2.3.3 in terms of dual cones of sets. This result functions as

the basis for every characterization theorem that we provide. It indicates that

the characterization of best approximations requires, in essence, the determina-

tion of dual cones of sets.
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Section 2.4 focusses on orthogonality in a normed space in terms of a semi-

inner product that generates the norm of the space [15]. This notion is a general-

ization of the orthogonality concept in an inner product space. The orthogonality

that we consider here is not generally symmetric, since a semi-inner product lacks

the property of conjugate symmetry. The concepts of orthogonality of elements

and orthogonal complements of sets are introduced in Definition 2.4.1 and Defini-

tions 2.4.3 respectively, and some immediate consequences of these definitions are

noted. Theorem 2.4.4 provides the exact relationship between the dual cone and

the orthogonal complement of a given set. Some basic properties of dual cones

and orthogonal complements are derived and presented in Theorems 2.4.5, 2.4.6

and 2.4.7. These results enable us to strengthen the characterization Theorem

2.3.5 for convex sets to the cases of convex cones and subspaces. A characteri-

zation of best approximations from convex cones is given in Theorem 2.5.1, and

that from subspaces is provided in Theorem 2.5.3. Characterizing best approx-

imations from translates of convex cones and subspaces are also considered in

this chapter. We conclude this chapter with the Example 2.5.10 which illustrates

Theorem 2.5.3 characterizing best approximations from subspaces.

Chapter 3 deals with a few direct applications of the characterization results

which are already seen in the preceding chapter. In this chapter we first of all

provide some new characterizations of best approximations from convex cones,

subspaces and their translates in Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4. In these

results, best approximations are characterized in terms of errors of approxima-

tion. Following that, some properties of best approximations are presented.

These include results such as Theorem 3.3.14, Corollary 3.3.15, Corollary 3.3.16,

Theorem 3.3.17, Corollary 3.3.18 and Corollary 3.3.19, which assert that prox-

iminality, semi Chebyshevity and Chebyshevity of convex sets, and in particular

convex cones and subspaces, are invariant under translation as well as under

scalar multiplication.

In Section 3.4 we introduce the novel concept of an ordered orthogonal set in

the setting of a normed space in terms of a semi-inner product that generates

the norm of the space, a concept which generalizes the notion of an orthogonal



Introduction 8

set in the framework of an inner product space. Because of the fact that semi-

inner product orthogonality is not generally symmetric, we term the extended

notion as an ordered orthogonal set. A nonempty, nonsingleton finite subset of

a normed space is said to be ordered orthogonal, if its elements can be arranged

as a sequence in which each element except the first is orthogonal to every el-

ement preceding it (see Definition 3.4.1). An arbitrary nonempty subset of a

normed space is said to be ordered orthogonal if every nonempty nonsingleton

finite subset of it is ordered orthogonal (Definition 3.4.2). An ordered orthogonal

set whose every element is of norm 1 is called an ordered orthonormal set (Defini-

tion 3.4.3). Some examples of ordered orthogonal sets and ordered orthonormal

sets are provided in Example 3.4.4 and Example 3.4.5. The connection between

ordered orthogonality and linear independence of sets in a normed space is given

by Theorem 3.4.6, where we prove that an ordered orthogonal set of nonzero

elements in a normed space is linearly independent. This result, in particular,

shows that every ordered orthonormal set in a normed space is linearly indepen-

dent.

The converse of the above problem is considered in Section 3.5. Making use

of the fact that every finite dimensional subspace of a normed space is prox-

iminal [21], and our characterization Theorem 2.5.3, we arrive at an ordered

orthonormalization process in Theorem 3.5.2. This result shows that, given a

countable linearly independent set in a normed space, one can construct an or-

dered orthonormal set retaining the span of the elements at each step. The

ordered orthonormal set thus constructed need not be unique. However, if the

normed space is in particular strictly convex, employing the fact that every finite

dimensional subspace of a strictly convex normed space is Chebyshev [21], we

prove in Corollary 3.5.4 that the ordered orthonormalization process provided

by Theorem 3.5.2 yields a unique ordered orthonormal set. Theorem 3.5.2 and

Corollary 3.5.4 can be considered as analogues of the Gram-Schmidt orthonor-

malization process in a general normed space and in a strictly convex normed

space respectively.

The main purpose of Chapter 4 is the characterization of proximinality and

Chebyshevity of convex sets in normed spaces in terms of the decomposability of
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the space. Some consequences of this characterization are also considered here.

In a sense, this chapter is a continuation of the preceding one, since what we

present here are again consequences mainly of the characterization results of the

second chapter. Our discussion in this chapter begins with some results char-

acterizing proximinal, semi Chebyshev and Chebyshev convex sets, in particular

convex cones, subspaces and their translates, which are arrived at using the char-

acterization theorems of the second chapter. These results, which are provided

in Section 4.2, suggest that proximinality and Chebyshevity of subspaces of a

normed space can be characterized in terms of the decomposability of the space.

Section 4.3 concentrates on some decomposition theorems. In Corollary 4.3.3

we prove that a subspace of a normed space is proximinal (respectively Cheby-

shev) if and only if the normed space is the sum (respectively direct sum) of

the subspace and its orthogonal complement. Employing the facts that every

proximinal set in a normed space is closed, and every closed subspace of a re-

flexive normed space is proximinal [29], we deduce from Corollary 4.3.3 that a

subspace of a reflexive normed space is closed if and only if the normed space is

the sum of the subspace and its orthogonal complement. This result is presented

in Theorem 4.3.7. In particular, when the reflexive normed space is strictly con-

vex also, using the fact that every closed subspace of a strictly convex reflexive

normed space is Chebyshev [29], we prove in Theorem 4.3.8 that a subspace of a

strictly convex reflexive normed space is closed if and only if the normed space

is the direct sum of the subspace and its orthogonal complement. Theorem 4.3.7

and Theorem 4.3.8 furnish analogues of the Projection theorem in the setting

of a reflexive normed space and in the framework of a strictly convex reflexive

normed space respectively. We show in Example 4.3.10 that these results do not

hold for nonreflexive normed spaces.

Some consequences of the above decomposition results are provided in Sec-

tion 4.4. We prove in Theorem 4.4.1 that a proximinal subspace of a normed

space is dense in the normed space if and only if its orthogonal complement is

{0}. A similar result in the framework of a reflexive normed space is given by

Theorem 4.4.3 in which we show that a subspace of a reflexive normed space is

dense in the normed space if and only if its orthogonal complement is {0}. Some
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sufficient conditions for orthogonal complements of subspaces of normed spaces

to contain nonzero elements are presented in Theorem 4.4.4, Corollary 4.4.5 and

Theorem 4.4.7.

Section 4.5 focusses on continuous linear functionals on normed spaces. Using

Theorem 1.2.3 (b), we show in Theorem 4.5.1 that every element y belonging to

a normed space X determines a continuous linear functional fy on X defined

by fy(x) = [x|y] with ‖fy‖ = ‖y‖. We also prove in Theorem 4.5.3 that if the

normed space X is actually reflexive, then every continuous linear functional f

on X is given by f(x) = [x|yf ] for some suitable element yf belonging to X with

‖f‖ = ‖yf‖. This result is derived with the help of our decomposition Theorem

4.3.7 and Theorem 4.4.3. In the setting of a reflexive normed space, Theorem

4.5.3 can be treated as an analogue of the Riesz Representation theorem. Exam-

ple 4.5.5 shows that Theorem 4.5.3 does not hold for nonreflexive normed spaces.

In Chapter 5, using the concept of the orthogonality due to G. Birkhoff [5],

we make a revisit to the characterization of best approximations seen so far in

our discussion. First of all we provide a brief discussion on Birkhoff orthogonal-

ity (Definition 5.2.1). The notion of Birkhoff orthogonal complement of a set is

introduced in Definitions 5.2.4, and some direct consequences of this definition

are noted. The question of the equivalence of Birkhoff and semi-inner product

orthogonalities is considered in Section 5.3. In Example 5.3.2 we show that these

two orthogonalities are not generally equivalent. However, it has been shown

that [15] Birkhoff orthogonality is equivalent to semi-inner product orthogonal-

ity for some suitable semi-inner product on the normed space that generates the

norm of the space. This fact is discussed in Theorem 5.3.4. It enables us to re-

formulate our results characterizing best approximations in terms of semi-inner

products orthogonality into those in terms of Birkhoff orthogonality. Here we

concentrate on characterization results for subspaces and their translates only.

A well known characterization of best approximations from subspaces due to I.

Singer [29] is recaptured in Corollary 5.4.2 (see Remark 5.4.4).

Some decomposition theorems in terms of Birkhoff orthogonality are pre-

sented in Section 5.5. This includes results that characterize proximinality as well
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as Chebyshevity of translates of subspaces and subspaces in terms of Birkhoff

orthogonality, which are presented respectively in Theorem 5.5.1 and Corollary

5.5.2. In the setting of a reflexive normed space, an analogue of the Projection

theorem in terms of Birkhoff orthogonality is provided in Theorem 5.5.4. A sim-

ilar result in the framework of a strictly convex reflexive normed space is given

in Theorem 5.5.5. We note that these analogues do not hold for nonreflexive

normed spaces (see Example 4.3.10). This section contains some consequences

of these decomposition theorems too.

Some of the unexposed problems and possibilities that are closely related to

our work, where further research is possible are briefly outlined in the Epilogue.



CHAPTER 1

Semi-Inner Products on Normed Spaces

1.1 Introduction

A Hilbert space can be thought of either as a complete inner product space, or

as a Banach space whose norm satisfies the parallelogram law. In the theory of

operators on a Hilbert space, it actually does not function as a particular Banach

space, but rather as a particular inner product space. It is in terms of the inner

product structure that most of the terminologies and techniques are developed.

On the other hand, this type of Hilbert space considerations find no real parallel

in the general Banach space setting.

While trying to carry over a Hilbert space type argument to a general Banach

space situation, G. Lumer [17] was led to use a suitable mapping from a Banach

space into its dual space in order to make up for the lack of an inner product. His

procedure suggested the existence of a general theory which became very useful

in the study of operator normed algebras by providing better insight on known

facts, a more adequate language to classify special types of operators, as well

as new techniques. It was these ideas which evolved into a theory of semi-inner

products.

12
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The purpose of this chapter is to introduce the concept of semi-inner product

as defined by G. Lumer [17] and modified by J. R. Giles [25]. Our emphasis here

is on the existence and uniqueness of semi-inner products on normed spaces.

It has been shown that a linear space endowed with a semi-inner product is

a normed space with the norm generated by the semi-inner product. Making

use of some properties of the normalized duality mapping, it has been further

shown that for every normed space one can construct at lest one (and, in general,

infinitely many) semi-inner product which is consistent with the norm. Regard-

ing the uniqueness of semi-inner products on normed spaces, it was proved that

smoothness of the space is a condition which is necessary and sufficient for the

existence of a unique semi-inner product on a normed space that generates the

norm of the space. We mainly discuss these facts in this chapter.

Unless specified otherwise, all linear spaces, normed spaces and inner product

spaces appearing in this chapter are always over the real or complex number field

denoted by K.

1.2 Semi-Inner Products

G. Lumer [17] has constructed on a linear space a particular type of mapping,

which he called a semi-inner product, with a more general axiom system than

that of an inner product. According to him, a semi-inner product, which we call

a L-semi-inner product for the time being, is defined as follows.

Definition 1.2.1. Let X be a linear space. The mapping [· |· ] : X ×X → K is

called a L-semi-inner product (or semi-inner product in the sense of Lumer) on

X if the following properties are satisfied:

(L1) [x + y|z] = [x|z] + [y|z] for all x, y, z ∈ X;

(L2) [λx|y] = λ [x|y] for all x, y ∈ X and all λ ∈ K;

(L3) [x|x] ≥ 0 for all x ∈ X, and [x|x] = 0 ⇒ x = 0;

(L4) |[x|y]|2 ≤ [x|x] [y|y] for all x, y ∈ X.

The significance of this notion was also established by G. Lumer [17] by showing
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that a L-semi-inner product [·|·] on a linear space X always induces a norm on X

by setting ‖x‖ = [x|x]1/2, and for every normed space (X, ‖·‖) , one can construct

at least one (and, in general, infinitely many) L-semi-inner product consistent

with the norm in the sense [x|x] = ‖x‖2.

Though the notion of a L-semi-inner product on a linear space was first

introduced and systematically studied by G. Lumer [17] in 1961, its history

can be traced back to 1933 with the works of S. Mazur [19]. After G. Lumer,

many mathematicians including J. R. Giles [25], P. M. Milicic [22], I. Rosca [27],

B. Nath [23], R. Tapia [31], S. S. Dragomir [15] and J. Chmielinski [12] have

pursued the study of this concept. Among them, it was J. R. Giles [25] who put

forward some decisive structural modifications of this notion. In his attempt to

determine what further developments can be made, J. R. Giles [25] has shown

that a homogeneity property, [x|λy] = λ [x|y] for all λ ∈ K, where λ denotes the

complex conjugate of λ, can be imposed on a L-semi-inner product (Definition

1.2.1). The imposition of this property adds much convenience without causing

any significant restriction. Thus, according to J. R. Giles [25], a semi-inner

product can be defined on a linear space as follows.

Definition 1.2.2. Let X be a linear space. The mapping [·|·] : X ×X → K is

called a semi-inner product (or semi-inner product in the sense of Lumer-Giles)

on X if the following properties are satisfied:

(LG1) [x + y|z] = [x|z] + [y|z] for all x, y, z ∈ X;

(LG2) [λx|y] = λ [x|y] , and [x|λy] = λ [x|y] for all x, y ∈ X and all λ ∈ K;

(LG3) [x|x] ≥ 0 for all x ∈ X, and [x|x] = 0 ⇒ x = 0;

(LG4) |[x|y]|2 ≤ [x|x] [y|y] for all x, y ∈ X.

We notice that every inner product is a semi-inner product. However, the

converse need not hold, since a semi-inner product lacks conjugate symmetry, a

property which an inner product possesses. The examples given in Section 1.4

are all semi-inner products which are not inner products.

Now we aim at providing the concrete significance of the above concept of

semi-inner product. As a first step, we have the following the result [15]. R
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denotes the set of all real numbers.

Theorem 1.2.3. Let X be a linear space, and [·|·] a semi-inner product on X.

Then the following statements are true:

(a) The mapping ‖·‖ : X → R given by ‖x‖ = [x|x]1/2 defines a norm

on X;

(b) For every y ∈ X, the functional fy : X → K given by fy(x) = [x|y]

is a continuous linear functional on X endowed with the norm genera-

ted by the semi-inner product [·|·]. Moreover, ‖fy‖ = ‖y‖.

Proof. (a) Let x ∈ X. Then by (LG3) of Definition 1.2.2, we have ‖x‖ =

[x|x]1/2 ≥ 0, and if ‖x‖ = 0, then [x|x] = 0 so that x = 0. If x ∈ X and λ ∈
K, by (LG2) of the definition, we have

‖λx‖ = [λx|λx]1/2

= |λ| ‖x‖ .

Finally, for every x, y ∈ X, from (LG1) and (LG4) of the definition it follows that

‖x + y‖2 = [x + y|x + y]

= [x|x + y] + [y|x + y]

≤ ‖x‖ ‖x + y‖+ ‖y‖ ‖x + y‖ ,

and so ‖x + y‖ ≤ ‖x‖+ ‖y‖ .

(b) Let y ∈ X. If y=0, the result is trivial, since in this case fy is the zero

functional on X, by (LG2) of Definition 1.2.2. So suppose that y 6= 0. Then for

all x, z ∈ X, and all λ, µ ∈ K, by (LG1) and (LG2) of the definition, we have

fy(λx + µz) = [λx + µz|y]

= λ [x|y] + µ [z|y]

= λfy(x) + µfy(z),

so that fy is linear on X.
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Now, by (LG4) of the definition, for all x ∈ X, we have

|fy(x)| = |[x|y]|

≤ ‖x‖ ‖y‖ ,

which implies that fy is bounded and ‖fy‖ ≤ ‖y‖ .

On the other hand,

‖fy‖ ≥ |fy(y)|
‖y‖

=
[y|y]

‖y‖
= ‖y‖ ,

and thus actually ‖fy‖ = ‖y‖ . This completes the proof.

The above theorem shows, in particular, that a linear space endowed with a

semi-inner product is a normed space with the norm generated by the semi-inner

product. Later we will prove in Section 1.4 that for every normed space, one

can construct at least one (and, in general, infinitely many) semi-inner product

which is consistent with the norm. In this regard, we need some properties of

the normalized duality mapping.

1.3 Normalized Duality Mappings

The normalized duality mapping of a normed space is defined as follows [13]. X∗

denotes the dual space of a normed space X, and P(X∗), the power set of X∗.

Definition 1.3.1. Let (X, ‖·‖) be a normed space. The mapping J : X →
P(X∗) given by

J (x) := {f ∈ X∗ : f(x) = ‖x‖2 and ‖f‖ = ‖x‖}

is called the normalized duality mapping of X.

The next result contains some fundamental properties of the set valued map-

ping J [15]. We include the proof here, since it is an interesting application of

the Hahn-Banach extension theorem.
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Theorem 1.3.2. Let (X, ‖·‖) be a normed space. Then the following statements

are true:

(a) For each x ∈ X, the set J (x) is a nonempty convex subset of X∗;

(b) For all x ∈ X and every λ ∈ K, J (λx) = λJ (x).

Proof. (a) Let x ∈ X. By the very definition of the normalized duality mapping

(Definition 1.3.1), J (x) is a subset of X∗.

If x=0, then clearly J (0) = {0} . If x 6= 0, consider the subspace Sx :=

span{x} of X. Define the functional g : Sx → K by g(u) = λ ‖x‖2, where

u = λx ∈ Sx (λ ∈ K). Then for all u = λx, v = µx ∈ Sx (λ, µ ∈ K), and for all

α, β ∈ K, we have

g(αu + βv) = g((αλ + βµ)x)

= (αλ + βµ) ‖x‖2

= α g(u) + β g(v),

so that g is linear on Sx. Further, for all u = λx ∈ Sx (λ ∈ K), we have

|g(u)| =
∣∣λ ‖x‖2

∣∣
= ‖λx‖ ‖x‖

= ‖x‖ ‖u‖ ,

so that g is also bounded on Sx, and ‖g‖ = ‖x‖ . Therefore, by virtue of the Hahn-

Banach extension theorem, there exists a functional f ∈ X∗ which extends g to

the whole of X such that ‖f‖ = ‖g‖ = ‖x‖ . Also, since x ∈ Sx, we have

f(x) = g(x) = g(1.x) = ‖x‖2 .

It follows that f ∈ J (x) so that J (x) is nonempty.

Now we will show that J (x) is convex. To this end, suppose that x 6=
0, and let f1, f2 ∈ J (x). Then for every λ ∈ [0, 1], we have

λf1 + (1− λ) f2 ∈ X∗,
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and

(λf1 + (1− λ)f2)(x) = λf1(x) + (1− λ)f2(x)

= λ ‖x‖2 + (1− λ) ‖x‖
2

= ‖x‖2 .

Hence for every λ ∈ [0, 1], we have

0 < ‖x‖ =

∣∣∣∣(λf1 + (1− λ)f2)

(
x

‖x‖

)∣∣∣∣
≤ sup

0 6=y∈X

∣∣∣∣(λf1 + (1− λ) f2)

(
y

‖y‖

)∣∣∣∣
= ‖λf1 + (1− λ)f2‖ ,

which shows that ‖x‖ ≤ ‖λf1 + (1− λ)f2‖ . However, since f1, f2 ∈ J (x), we

have ‖f1‖ = ‖f2‖ = ‖x‖ so that

‖λf1 + (1− λ)f2‖ ≤ λ ‖f1‖+ (1− λ) ‖f2‖ = ‖x‖

for every λ ∈ [0, 1]. Hence for every λ ∈ [0, 1], ‖λf1 + (1− λ)f2‖ = ‖x‖ , and

this completes the proof of (a).

(b) Let x ∈ X and λ ∈ K. If λ = 0, the statement is trivially true. Suppose

λ 6= 0, and let f ∈ J (λx). Then f ∈ X∗, f(λx) = ‖λx‖2 so that f(x) =

λ ‖x‖2 , and ‖f‖ = ‖λx‖ . Hence

1

λ
f ∈ X∗,

(
1

λ
f

)
(x) =

1

λ
f (x) = ‖x‖2 ,

and ∥∥∥∥1

λ
f

∥∥∥∥ =
1∣∣λ∣∣ ‖f‖ =

1∣∣λ∣∣ ‖λx‖ = ‖x‖ .

This shows that
1

λ
f ∈ J (x) so that f ∈ λJ (x).
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Thus we have the inclusion J (λx) ⊆ λJ (x). A similar argument leads to the

the reverse inclusion. Hence holds (b) also.

Remark 1.3.3. Proof of Theorem 1.3.2 (a) conveys the idea that for x ∈ X, in

general, J (x) contains infinitely many different elements of X∗, since uniqueness

of Hahn-Banach extensions is not generally guaranteed in the case of normed

spaces, and there can even be infinitely many such extensions. For exam-

ple, consider the normed space X = (K2, ‖·‖1) , where ‖x‖1 =
2∑

k=1

|xk| for

x = (x1, x2) ∈ X, and the subspace

Y = {x = (x1, x2) ∈ X : x2 = 0}

of X. Let g : Y → K be defined by

g(x) = x1, x ∈ Y.

Then it is clear that g ∈ Y ∗and ‖g‖ = 1 = g(a), where a = (1, 0) . Since

Y = span {a} , we see that a function f on X is a Hahn-Banach extension of g

to X if and only if f is linear on X and ‖f‖ = 1 = f(a). Now, if f is linear on

X, then

f(x) = k1x1 + k2x2, x ∈ X,

for some fixed k1 and k2 in K. Then ‖f‖ = max {|k1| , |k2|} , and f(a) = 1 if and

only if k1 = 1. Thus, for each k2 ∈ K with |k2| ≤ 1, the function f : X → K
defined by

f(x) = x1 + k2x2, x ∈ X

is a Hahn-Banach extension of g to X. For each such f , we have

f ∈ X∗,

f(a) = 1 = ‖a‖2

and

‖f‖ = 1 = ‖a‖ ,

so that

f ∈ J (a).
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Hence J (a) contains infinitely many different elements of X∗.

A section of the normalized duality mapping is defined as follows [15].

Definition 1.3.4. Let J be the normalized duality mapping of a normed space

(X, ‖·‖) . A mapping J̃ :X → X∗ is called a section of J , if J̃ (x) ∈ J (x) for all

x ∈ X.

Remark 1.3.5. Sections of J do exist, since J (x) is nonempty for each x ∈ X

(by Theorem 1.3.2 (a)). Indeed, as J (x) is nonempty for each x ∈ X, {J (x)}x∈X

is a nonempty class of nonempty sets. Hence, by the axiom of choice, a set

can be formed which contains precisely one element, say fx, taken from each

set J (x). This determines a section J̃ :X → X∗ of J defined by J̃ (x) = fx

for all x ∈ X. The normalized duality mapping J of a normed space X can

have, in general, infinitely many distinct sections, since for x ∈ X, generally

J (x) contains infinitely many different elements of X∗. For example, consider

the normalized duality mapping J of the normed space X = (K2, ‖·‖1) , where

‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2) ∈ X. We have already seen (in Remark 1.3.3)

that for a = (1, 0) ∈ X, J (a) contains the infinitely many different elements of

X∗ given by

f(x) = x1 + k2x2, x ∈ X,

for each k2 ∈ K with |k2| ≤ 1. Since J (x) is nonempty for every x 6= a in

X, each one of the infinitely many different elements in J (a) gives rise (by the

axiom of choice) to a section J̃ of J . Hence the normalized duality mapping of

this normed space has infinitely many distinct sections. The normalized duality

mapping J of a normed space X has a unique section if and only if J (x) is a

singleton set for each x ∈ X.

1.4 Existence of Semi-Inner Products

In this section we consider the existence of semi-inner products on normed spaces.

The following theorem due to I. Rosca [27] is a land mark result, as it establishes

a natural connection between the normalized duality mapping of a normed space

and semi-inner products on it.
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Theorem 1.4.1. Let (X, ‖·‖) be a normed space. Then every semi-inner product

on X which generates the norm ‖·‖ is of the form

[x|y] = (J̃ (y))(x) for allx, y ∈ X,

where J̃ is a section of the normalized duality mapping J of X.

Proof. Let J̃ be a section of the normalized duality mapping J of X. Define

the functional

[·|·] : X ×X → K by [x|y] = (J̃ (y))(x).

Then for every x, y, z ∈ X and λ ∈ K, by properties of elements in X∗, we have

[x + y|z] = (J̃ (z))(x + y)

= [x|z] + [y|z] ,

[λx|y] = (J̃ (y))(λx)

= λ [x|y] ,

[x|λy] = (J̃ (λy))(x)

= (λJ̃ (y))(x), by Theorem 1.3.2(b)

= λ [x|y] ,

and

|[x|y]|2 =
∣∣∣J̃ (y)(x)

∣∣∣2
≤

∥∥∥J̃ (y)
∥∥∥2

‖x‖2

= ‖y‖2 ‖x‖2 , by definition of J̃ (y)

= (J̃ (y))(y) · (J̃ (x))(x)

= [x|x] [y|y] .

We also have, [x|x] = (J̃ (x))(x) = ‖x‖2 ≥ 0 for every x ∈ X, and [x|x] = 0, i.e.,

‖x‖ = 0 implies x = 0. Hence the mapping [·|·] is a semi-inner product on X

which generates the norm ‖·‖ of X.

On the other hand, let [·|·] be a semi-inner product on X which generates
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the norm ‖·‖ of X. Define the mapping J̃ :X → X∗ in such a way that, for each

y ∈ X, the functional J̃ (y):X → K is given by

(J̃ (y))(x) = [x|y] for all x ∈ X.

Then for every y ∈ X, (J̃ (y))(y) = [y|y] = ‖y‖2 . Also, by Theorem 1.2.3(b),

we have J̃ (y) ∈ X∗ and
∥∥∥J̃ (y)

∥∥∥ = ‖y‖ for all y ∈ X. Hence, for all y ∈ X,

J̃ (y) ∈ J (y), so that J̃ is a section of the normalized duality mapping J of

X.

Remark 1.4.2. Since sections of the normalized duality mapping J of a normed

space X do exist (see Remark 1.3.5), the above theorem asserts in particular that

on every normed space one can construct at least one semi-inner product which is

consistent with the norm. Since, in general, J can have infinitely many distinct

sections, there may exist infinitely many different semi-inner products on a given

normed space. For example, consider the normed space X = (K2, ‖·‖1) , where

‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2) ∈ X. As we have already seen (in Remark 1.3.5),

the normalized duality mapping of this normed space has infinitely many distinct

sections J̃ . By the above theorem, each such section J̃ determines a semi-inner

product on X defined by

[x|y] = (J̃ (y))(x), x, y ∈ X.

This shows the existence of infinitely many different semi-inner products on the

given normed space. A discussion on the uniqueness of semi-inner products will

be made in the next section.

It may be noticed that Theorem 1.4.1 actually has a four fold importance:

In the setting of a normed space, the theorem throws light on the existence,

uniqueness and characterization of semi-inner products that are consistent with

the norm, and suggests a procedure for obtaining all semi-inner products which

generate the norm in terms of the normalized duality mapping of the space. Here

we concentrate on the existence of semi-inner products on normed spaces.

Let (X, ‖·‖) be a normed space. The norm ‖·‖ on X need not come from

an inner product. However, the above considerations tell us that there always
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exists a semi-inner product [·|·] on X which generates the norm ‖·‖ . Thus, in the

framework of a normed space, a semi-inner product can be defined as follows.

Definition 1.4.3. Let (X, ‖·‖) be a normed space. A mapping [·|·] : X ×X →
K is called a semi-inner product on X if the following properties hold for all

x, y, z ∈ X and all λ, µ ∈ K :

(S1) [λx + µy|z] = λ [x|z] + µ [y|z] ;

(S2) [x|λy] = λ [x|y] ;

(S3) [x|x] = ‖x‖2 ;

(S4) |[x|y]| ≤ ‖x‖ ‖y‖ .

It is time for some examples. An exhaustive supply of semi-inner products on

a normed space is suggested by Theorem 1.4.1 : Let (X, ‖·‖) be a normed space.

For each section J̃ of the normalized duality mapping J of X, the functional

defined by

[x|y] = (J̃ (y))(x), x, y ∈ X

is a semi-inner product on X which generates the norm ‖·‖ . However, let us now

look at some concrete examples.

Example 1.4.4. Consider the real normed space (R3, ‖·‖1), where ‖x‖1 =
3∑

k=1

|xk|

for x = (x1, x2, x3) ∈ R3. The functional given by

[x|y] = ‖y‖1

3∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ R3

is a semi-inner product on R3 which generates the norm ‖·‖1 .

Example 1.4.5. Consider the complex normed space (`p, ‖·‖p) of all p-summable

sequences, with the norm

‖x‖p =

(
∞∑

k=1

|xk|p
)1/p

,

for x = (x1, x2, x3, ...) ∈ `p, where 1 ≤ p < ∞, p 6= 2. Then the functional given
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by

[x|y] = ‖y‖2−p
p

∞∑
k=1

xkyk |yk|p−2 , x, y ∈ `p,

where yk denotes the complex conjugate of yk, defines a semi-inner product on

`p that generates the norm ‖·‖p .

Example 1.4.6. If 1 < p < ∞, consider the real normed space Lp = Lp(X,A, µ)

of all p-integrable functions on the measure space (X,A, µ) with the norm

‖x‖p =

∫
X

|x|pdµ

 1
p

, x ∈ Lp.

The functional given by

[x|y] = ‖y‖2−p
p

∫
X

x |y|p−2 y dµ, x, y ∈ Lp

defines a semi-inner product on Lp which generates the ‖·‖p .

Example 1.4.7. Consider the complex normed space C [0, 1] of all continuous

complex valued functions on [0, 1] with the sup norm

‖f‖∞ = sup
t∈[0,1]

|f (t)| , f ∈ C [0, 1] .

If t ∈ [0, 1], by Urysohn’s lemma, there exists ft ∈ C [0, 1] such that ft (t) = 1

and ‖ft‖∞ = 1. For such an ft, we define [g|ft] = g(t) for all g ∈ C [0, 1]. Now

[ft|ft] = ft (t) = 1 = ‖ft‖2
∞. If f ∈ C [0, 1] \ ft, choose t ∈ [0, 1] such that

f(t) = ‖f‖∞ and define [g|f ] = f(t)g(t) for all g ∈ C [0, 1]. Then the functional

given by

[g|f ] =

{
g(t) if f = ft

f(t)g(t) if f ∈ C [0, 1] \ ft

for all g ∈ C [0, 1] is a semi-inner product on C [0, 1] consistent with the sup

norm ‖·‖∞.
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1.5 Uniqueness of Semi-Inner Products

Having seen, as guaranteed by Theorem 1.4.1 and Theorem 1.3.2(a), the exis-

tence of a semi-inner product on a normed space that generates the norm, let us

now turn to the question of its uniqueness.

Let (X, ‖·‖) be a normed space. From Theorem 1.4.1 it follows that the

functional [·|·] : X → K given by

[x|y] = (J̃ (y))(x) for all x, y ∈ X

defines a semi-inner product on X that generates the norm ‖·‖ of X if and only

if J̃ is a section of the normalized duality mapping J of X. Theorem 1.3.2 (a)

shows that for each x ∈ X, J (x) is a nonempty subset of X∗. As a consequence

of these facts, we notice that there is a one to one correspondence between the

set of all semi-inner products on X that generate the norm ‖·‖ of X, and the set

of all sections of the normalized duality mapping J of X. Hence the conditions

for the existence of a unique semi-inner product on a normed space X are exactly

the same as those required for making each J (x), x ∈ X a singleton set. One

such condition turns out [17] to be the smoothness of the space. Smoothness of a

normed space [20] is a condition which is necessary and sufficient for the existence

of a unique semi-inner product on the space that generates the norm of the space.

B(X) and S(X) denote respectively the closed unit ball {x ∈ X : ‖x‖ ≤ 1} and

unit sphere {x ∈ X : ‖x‖ = 1} in the normed space (X, ‖·‖).

Definition 1.5.1. Let (X, ‖·‖) be a normed space. An element x0 ∈ S(X) is

called a point of smoothness of B(X), if there is exactly one element f0 ∈ S(X∗)

satisfying f0(x0)=1. The space X is said to be smooth, if each point of S(X) is

a point of smoothness of B(X), i.e., if for each x ∈ S(X), there exists a unique

f ∈ S(X∗) such that f(x)=1.

The following result provides a characterization of points of smoothness in

terms of the normalized duality mapping. The proof we provide here is a modified

version of that given by S. S. Dragomir [15].

Theorem 1.5.2. Let (X, ‖·‖) be a normed space, and x0 ∈ S(X). Then the
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following are equivalent:

(a) x0 is a point of smoothness of B(X);

(b) J (x0) is a singleton set in X∗.

Proof. (a) ⇒ (b): For each x0 ∈ S(X), J (x0) is a nonempty subset of X∗, by

Theorem 1.3.2(a). Suppose that there exist distinct elements f, g in J (x0). Since

x0 ∈ S(X), we have

f(x0) = ‖x0‖2 = 1 and ‖f‖ = ‖x0‖ = 1,

and

g(x0) = ‖x0‖2 = 1 and ‖g‖ = ‖x0‖ = 1.

Consequently, f(x0) = 1 = g(x0), and f, g ∈ S(X∗), which contradicts (a).

(b) ⇒ (a): Conversely, assume that x0 is not a point of smoothness of B(X).

Then there exist distinct elements f, g ∈ S(X∗) such that f(x0)=1 and g(x0)=1.

Since x0 ∈ S(X), this yields that f(x0) = ‖x0‖ = g(x0). Put f1 = ‖x0‖ f and

g1 = ‖x0‖ g. Then f1, g1 ∈ X∗, f1 6= g1, f1(x0) = ‖x0‖ f(x0) = ‖x0‖2 , ‖f1‖ =

‖x0‖ , g1(x0) = ‖x0‖ g(x0) = ‖x0‖2 and ‖g1‖ = ‖x0‖ . Thus f1, g1 ∈ J (x0) with

f1 6= g1, which contradicts (b).

Hence (a) and (b) are equivalent.

As a direct consequence of the above theorem, we have the following corollary.

Corollary 1.5.3. Let (X, ‖·‖) be a normed space. Then the following are equiv-

alent:

(a) The space X is smooth;

(b) For each x ∈ S(X), J (x) is a singleton set in X∗.

Proof. The proof follows from Theorem 1.5.2 and Definition 1.5.1 of smoothness

of a normed space.

The next result provides a necessary and sufficient condition for the existence

of a unique semi-inner product on a normed space that generates the norm. It

is derived from Theorem 1.4.1 and the above corollary.
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Theorem 1.5.4. Let (X, ‖·‖) be a normed space. Then the following statements

are equivalent:

(a) The space X is smooth;

(b) There exists a unique semi-inner product on X that generates the no-

rm ‖·‖ of X.

Proof. (a) ⇒ (b): Suppose that X is smooth. Then by Corollary 1.5.3, J (x)

is a singleton set in X∗ for each x ∈ S(X), and hence for each x ∈ X also.

This implies the existence of a unique section of J , and accordingly, by Theorem

1.4.1, there exists a unique semi-inner product on X that generates the norm ‖·‖.

(b) ⇒ (a): Conversely, assume that there is a unique semi-inner product on X

which generates the norm ‖·‖. Then, by Theorem 1.4.1, J has a unique section.

This shows that J (x) is a singleton set in X∗ for each x ∈ X, and in particular,

for each x ∈ S(X). Hence, by Corollary 1.5.3, the space X is smooth.

Now, for the sake of completeness, let us briefly mention some more condi-

tions which are necessary and sufficient for the existence of a unique semi-inner

product on a normed space that generates the norm.

Just as there is a connection between the smoothness of the graph of a real

valued function of a real variable and the differentiability of a function, so is

there a connection between the smoothness of a normed space and the Gateaux

differentiability of the norm [20].

Definition 1.5.5. Let (X, ‖·‖) be a normed space. The norm ‖·‖ of X is said

to be Gateaux differentiable, if

lim
t→0
t∈R

‖x + ty‖ − ‖x‖
t

exists for each x in the unit sphere S(X) of X and each y in X.

The following well known result [20] establishes the exact connection between

the smoothness of a normed space and the Gateaux differentiability of its norm.

Theorem 1.5.6. Let (X, ‖·‖) be a normed space. Then X is smooth if and only

if its norm ‖·‖ is Gateaux differentiable.
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J. R. Giles [25] has proposed the notion of a continuous semi-inner product

on a linear space by imposing a continuity property on the right hand member

of the semi-inner product, using which the Gateaux differentiability of the norm

can be characterized. Re [x|y] denotes the real part of [x|y] .

Definition 1.5.7. Let X be a linear space and [·|·] a semi-inner product on X.

The semi-inner product [·|·] is said to be continuous if

lim
t→0
t∈R

Re [x|y + tx] = Re [x|y]

for every x, y ∈ S(X).

In the setting of a normed space, S. S. Dragomir [15] has provided a charac-

terization of continuous semi-inner products in terms of Gateaux differentiability

of the norm as follows.

Theorem 1.5.8. Let (X, ‖·‖) be a normed space, and let [·|·] be a semi-inner

product on X which generates the norm ‖·‖ . Then the semi-inner product [·|·] is

continuous if and only if the norm ‖·‖ is Gateaux differentiable.

As a result of consolidating Theorems 1.5.4, 1.5.6 and 1.5.8, we have the

following characterization result on the uniqueness of semi-inner products on a

normed space that generate the norm.

Theorem 1.5.9. Let (X, ‖·‖) be a normed space, and let [·|·] be a semi-inner

product on X which generates the norm ‖·‖. Then the following statements are

equivalent:

(a) The semi-inner product [·|·] is unique;

(b) The semi-inner product [·|·] is continuous;

(c) The norm ‖·‖ is Gateaux differentiable;

(d) The space X is smooth.

Having seen above some conditions for the existence of a unique semi-inner

product on a normed space, let us now consider semi-inner products particularly

on inner product spaces. It is clear that every inner product is a semi-inner

product. G. Lumer [17] has shown that there exists a unique semi-inner product

on a Hilbert space, and a semi-inner product is an inner product if and only if
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the norm it induces verifies the parallelogram law.

As mentioned at the beginning of this chapter, the concept of semi-inner

product has made great progress since its introduction by G. Lumer [17]. In the

setting of a normed space, a semi-inner product provides a sufficient structure

as well as new techniques for obtaining some nontrivial general results. It plays

an important role in the theory of accretive operators and dissipative operators,

differential equations, linear and nonlinear semigroups in Banach spaces, and

Banach space geometry (e.g., V. Barbu [1], B. Beauzamy [2], G. Lumer and R.

S. Phillips [18] and so on). To us, this concept is important from the view point

of best approximation theory. We employ this concept in the characterization

of best approximations in normed spaces. Our main concern is to derive some

results characterizing best approximations in the framework of a general normed

space through a semi-inner product that generates the norm of the space. An

attempt to this effect is made in the following chapters.



CHAPTER 2

Characterization of Best Approximations

2.1 Introduction

This chapter is devoted to characterizing best approximations in normed spaces.

In a normed space, generally it is through the norm of the space that best ap-

proximations are characterized. Here we take a different approach. Instead of

the norm, it is a semi-inner product which generates the norm of the space, that

is employed in characterizing best approximations. This method enables us to

derive some characterizations of best approximations in normed spaces which are

entirely new.

We begin this chapter with a brief discussion on best approximation in normed

spaces. In our attempt to characterize best approximations, we first of all derive

a result characterizing best approximations from convex sets using the defining

properties of semi-inner products and convexity of sets. The notions of dual

cone and orthogonal complement of a set are then introduced, and some of their

basic properties are discussed. From a reformulated version of the character-

ization result for convex sets in terms of dual cones, characterizations of best

approximations from convex cones and subspaces are arrived at. Characteriz-

ing best approximations from translates of convex cones and subspaces are also

30
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considered in this chapter.

2.2 Best Approximation in Normed Spaces

It is well known that the problem of best approximation of a function consists

of the determination of a function belonging to a fixed family such that its devi-

ation from the given function is a minimum. This problem was first formulated

in 1853 by P. L. Chebyshev, who investigated the approximation of continuous

functions by algebraic polynomials of given degree. As a measure of the devia-

tion between two functions, he used the maximum of the absolute values of their

difference. Subsequently, a number of mathematicians have started studying

other specialized problems of best approximation. With the development of the

theory of normed spaces, it became clear that a wide range of problems of best

approximation can be put into a general formulation in terms of normed spaces,

if the norm of the space is taken as the measure of deviation. This formulation

made possible the application of the methods and ideas of functional analysis

and geometry to the problems of approximation theory.

The foundations of the theory of best approximation in normed spaces were

established in 1920’s by one of the founders of functional analysis, S. Banach.

During 1930-1950, the ideas of Banach were developed and systematized by the

mathematicians like S. M. Nicolescu, M. G. Krein, N. I. Achiezer, A. I. Marku-

shevich, J. L. Walsh and A. N. Kolmogorov.

The problem of best approximation in a normed space can be formulated as

follows: Let (X, ‖·‖) be a normed space over the real or complex number field

K, G a nonempty set in X, and x ∈ X. Then the distance of x from G, d(x, G),

is given by

d(x, G) := inf {‖x− g‖ : g ∈ G} .

The problem of best approximation consists of finding an element g0 ∈ G such

that

‖x− g0‖ = d(x, G).

Every element g0 ∈ G with this property is called a best approximation of x from
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G. G is called the approximating set, and x the approximated point.

Definitions 2.2.1. Let (X, ‖·‖) be a normed space over the real or complex

number field K, G a nonempty subset of X, and x ∈ X. An element g0 ∈ G is

called a best approximation (or element of best approximation or nearest point)

of x from G, if ‖x− g0‖ = d(x, G). In this case, the number d(x, G) is called the

error of approximation (or the error in approximating x by G).

An element g0 ∈ G is a best approximation of x from G if and only if

‖x− g0‖ ≤ ‖x− g‖ for every g ∈ G. The set of all best approximations of

x from G is denoted by PG(x) Thus

PG(x) := {g0 ∈ G : ‖x− g0‖ = d(x, G)} .

This defines a mapping PG : X → P(G), where P(G) is the power set of

G. The set valued mapping PG is called the metric projection (or nearest point

mapping or proximity map) onto G.

If each x ∈ X has at least (respectively at most) one best approximation

from G, then G is called a proximinal (respectively semi Chebyshev) set. If each

x ∈ X has exactly one best approximation from G, then G is called a Chebyshev

set. Thus, G is proximinal (respectively semi Chebyshev, Chebyshev) if PG(x) is

nonempty (respectively PG(x) is either empty or a singleton, PG(x) is a singleton)

for each x ∈ X. It is obvious that a Chebyshev set is proximinal as well as semi

Chebyshev. If G is a Chebyshev set in X, then the metric projection PG is a

single valued mapping of X onto G, and in this case, PG is called the Chebyshev

map (or best approximation operator) onto G.

The general theory of best approximation may be briefly outlined as follows:

It is the mathematical study that is motivated by the desire to seek answers to

the following basic questions, among others.

1. (Existence of best approximations) Which subsets are proximinal?

2. (Uniqueness of best approximations) Which subsets are Chebyshev?

3. (Characterization of best approximations) How does one recognize when a

given element g ∈ G is a best approximation of x from G?
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4. (Error of approximation) How does one compute the error of approximation

d(x, G), or at least get sharp upper or lower bounds for it?

5. (Computation of best approximations) Can one describe some useful algo-

rithms for actually computing best approximations?

6. (Continuity of best approximations) How does PG(x) vary as a function of

x (or G)?

Many mathematicians were attracted by these questions and have made their

contributions to the theory of best approximation. As a result, a pretty large

collection of materials including Textbooks, Treaties, Monographs and Papers is

there in the literature (e.g., A. L. Brown [6], P. L. Butzer and R. J. Nessel [7], W.

Cheney and W. Light [10], E. W. Cheney and K. H. Price [8, 9], E. W. Cheney

and P. D. Morris [11], F. Deutsch [14], R. A. DeVore [32], R. A. DeVore and G.

G. Lorentz [33], W. O. G. Lewicki [16], H. N. Mhaskar and D. V. Pai [21], M.

J. D. Powell [24], T. J. Rivlin [26], H. S. Shapiro [28], I. Singer [29, 30], G. A.

Watson [34], R. Zielke [35] and so on).

Among the six questions mentioned above, the question which is of particu-

lar interest to us is the third one, that is, the characterization of best approx-

imations. We understand that the literature is rich with results characterizing

best approximations, and that such results are separately available for general

normed spaces and inner product spaces (e.g., H. N. Mhaskar and D. V. Pai [21],

I. Singer [29,30], H. Berens [4], F. Deutsch [14] and so on). Generally, character-

izations of best approximations in a normed space are derived through the norm

of the space, and those in an inner product space, through the inner product of

the space. Here we take a different approach. Our endeavor is to characterize

best approximations in a general normed space, not through the norm of the

space, but through a semi-inner product that generates the norm of the space.

Our attention here is to derive some results characterizing best approximations

in the framework of a general normed space using some semi-inner product tech-

niques.

We recall from Chapter 1 that given a normed space (X, ‖·‖) over the real

or complex number field K, there always exists a semi-inner product (see Defi-
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nition 1.4.3) on it which generates the norm ‖·‖. This idea is employed here in

characterizing best approximations in normed spaces from convex sets, and in

particular, from convex cones and subspaces.

Since, for every nonempty subset G of a normed space X, we have

PG(x) =

{
x if x ∈ G

∅ if x ∈ G \G,

it is sufficient to characterize the best approximations of the elements x ∈ X\G.

In order to exclude the trivial case when such elements x do not exist, throughout

the discussion, our approximating sets G, whether convex sets, convex cones or

subspaces, as the case may be, are always assumed to be proper and nondense

in the normed space X. However, we will not be making any special mention to

these effects in the sequel.

Our further discussion is restricted to the setting of real normed spaces.

Henceforth in this chapter, by a normed space X we mean a real normed space

(X, ‖·‖) together with a semi-inner product [·|·] which generates the norm ‖·‖.

Since the theory of best approximation is the most well developed when the

approximating set is a subspace, or more generally a convex set, we begin our

study with the characterization of best approximations from convex sets.

2.3 Characterization from Convex Sets

The sole aim of this section is to present a characterization theorem for best

approximations from convex sets, and to reformulate it in terms of dual cones of

sets. This result will prove useful over and over again throughout our discussion.

Indeed, it will be the basis for every characterization theorem that we provide.

We begin our discussion with a sufficient condition for best approximations

from arbitrary sets. Recall that PG(x) denotes the set of all best approximations

of x from G.
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Theorem 2.3.1. Let X be a normed space, G a subset of X, x ∈ X, and y0 ∈ G.

If

[y − y0|x− y0] ≤ 0 for all y ∈ G,(2.1)

then y0 ∈ PG(x).

Proof. Suppose that (2.1) holds. Then for all y ∈ G, we have

‖x− y0‖2 = [x− y0|x− y0] , by (S3)

= [x− y|x− y0] + [y − y0|x− y0] , by (S1)

≤ [x− y|x− y0] , by (2.1)

≤ ‖x− y‖ ‖x− y0‖ , by (S4) .

Hence ‖x− y0‖ ≤ ‖x− y‖ for all y ∈ G, and so y0 ∈ PG(x).

When the approximating set is in particular a convex set, we have the fol-

lowing necessary condition for best approximations.

Theorem 2.3.2. Let X be a normed space, K a convex subset of X, x ∈ X,

and y0 ∈ K. If y0 ∈ PK(x), then

[y − y0|x− y0 − λ (y − y0)] ≤ 0 for all y ∈ K and all λ ∈ [0, 1].(2.2)

Proof. If (2.2) fails, then for some y ∈ K and some λ ∈ [0, 1], we have,

[y − y0|x− y0 − λ (y − y0)] > 0.(2.3)

(Here y 6= y0, since y = y0 implies [y − y0|x− y0 − λ (y − y0)] = 0.) For these

elements y ∈ K and λ ∈ [0, 1], the element yλ := λy + (1− λ) y0 ∈ K, by

convexity of K. We have then

‖x− yλ‖ = ‖x− λy − (1− λ) y0‖

=
[x− y0 − λ (y − y0) |x− y0 − λ (y − y0)]

‖x− y0 − λ (y − y0)‖
, by (S3)
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=
[x− y0|x− y0 − λ (y − y0)]− λ [(y − y0) |x− y0 − λ (y − y0)]

‖x− y0 − λ (y − y0)‖
, by (S1)

<
[x− y0|x− y0 − λ (y − y0)]

‖x− y0 − λ (y − y0)‖
, by (2.3)

≤ ‖x− y0‖ , by (S4).

This shows that there is a yλ ∈ K such that ‖x− yλ‖ < ‖x− y0‖ , and so

y0 /∈ PK(x). Hence (2.2) holds whenever y0 ∈ PK(x).

Combining Theorem 2.3.1 and Theorem 2.3.2, we have the following result

which characterizes best approximations from convex sets.

Theorem 2.3.3. Let X be a normed space, K a convex subset of X, x ∈ X,

and y0 ∈ K. Then the following statements are equivalent:

(a) y0 ∈ PK(x);

(b) [(y − y0) |x− y0 − λ (y − y0)] ≤ 0 for all y ∈ K and all λ ∈ [0, 1];

(c) [y − y0|x− y0] ≤ 0 for all y ∈ K.

Proof. (a) ⇒ (b) follows by Theorem 2.3.2, (b) ⇒ (c) follows by taking λ = 0

in (b), and (c) ⇒ (a) follows by Theorem 2.3.1.

There is yet another way of stating the above characterization result. It

involves the notion of the dual cone of a given set. This notion has been intro-

duced in the framework of an inner product space in terms of the inner product

of the space [14]. We extend this to the setting of a normed space in terms of a

semi-inner product that generates the norm of the space.

Definition 2.3.4. Let X be a normed space, and G a nonempty subset of X.

Then the set {x ∈ X : [y|x] ≤ 0 for all y ∈ G} is called the dual cone (or dual

cone relative to the semi-inner product [·|·], or negative polar relative to the semi-

inner product [·|·]) of G, denoted by G◦.

By the definition, for every nonempty subset G of X, 0 ∈ G◦ and G ∩ G◦ is

either empty or {0}.
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Theorem 2.3.3 characterizing best approximations from convex sets can now

be reformulated using dual cones as follows.

Theorem 2.3.5. Let X be a normed space, K a convex subset of X, x ∈ X,

and y0 ∈ K. Then the following statements are equivalent:

(i) y0 ∈ PK(x);

(ii) x− y0 − λ (y − y0) ∈ (K − y0)
◦ for all y ∈ K and all λ ∈ [0, 1];

(iii) x− y0 ∈ (K − y0)
◦ .

Proof. From the equivalence of statements (a) and (b) of Theorem 2.3.3 and by

the definition of dual cone of a set (Definition 2.3.4), we have

y0 ∈ PK(x) ⇔ [y − y0|x− y0 − λ (y − y0)] ≤ 0 for all y ∈ K and

all λ ∈ [0, 1]

⇔ x− y0 − λ (y − y0) ∈ {y − y0 : y ∈ K}◦ for all y ∈ K

and all λ ∈ [0, 1]

⇔ x− y0 − λ (y − y0) ∈ (K − y0)
◦ for all y ∈ K and

all λ ∈ [0, 1] .

Hence (i) ⇔ (ii).

Similarly, from the equivalence of statements (a) and (c) of Theorem 2.3.3,

and by the definition of dual cone of a set, we have

y0 ∈ PK(x) ⇔ [y − y0|x− y0] ≤ 0 for all y ∈ K

⇔ x− y0 ∈ {y − y0 : y ∈ K}◦

⇔ x− y0 ∈ (K − y0)
◦ .

Hence (i) ⇔ (iii), and this completes the proof.

The above theorem shows that the characterization of best approximations

requires, in essence, the determination of dual cones. For certain convex sets

(e.g., convex cones and subspaces), substantial improvements in Theorem 2.3.5

are possible.
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Definition 2.3.6. Let X be a normed space. A subset G of X is called a convex

cone if αx + βy ∈ G whenever x, y ∈ G and α, β ≥ 0.

We make the following observations:

1. If C is a convex cone, then 0 ∈ C and C ∩ C◦ ={0}.

2. Every subspace is a convex cone, but not conversely. Similarly, every convex

cone is a convex set, but not conversely. For instance, in the real normed

space X = (R2, ‖·‖2) , where ‖x‖2 =

(
2∑

k=1

|xk|2
)1/2

for x = (x1, x2) ∈ X,

the set {x = (x1, x2) ∈ X : x1 ≥ 0, x2 ≥ 0} is a convex cone which is not a

subspace, and the closed unit ball {x ∈ X : ‖x‖2 ≤ 1} is a convex set which

is not a convex cone.

3. Generally, the dual cone of a nonempty set is not a convex cone, and the

same is the case with that of a convex cone also. For example, consider the

real normed space X = (R2, ‖·‖1) , where ‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2) ∈

X, together with the semi-inner product

[x|y] = ‖y‖1

2∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X

that generates the norm ‖·‖1. The set

C = {x = (λ, λ) ∈ X : λ ≥ 0}

is a convex cone in X whose dual cone is given by

C◦ =

x = (x1, x2) ∈ X : λ ‖x‖1

2∑
k=1
xk 6=0

xk

|xk|
≤ 0 for all λ ≥ 0

 .

Then the elements x = (5,−4) and z = (−3, 5) are in C◦. But x + z =

(2, 1) /∈ C◦. This shows that C◦ is not a convex cone.
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2.4 Orthogonality relative to Semi-Inner

Products

In this section we introduce the notion of orthogonality in a normed space in

terms of a semi-inner product that generates the norm of the space [15]. This

will enable us to derive some basic properties of dual cones that are needed for

improving Theorem 2.3.5.

The notion of orthogonality in a normed space which we discuss here is a

generalization of the orthogonality concept in an inner product space. Recall that

two elements x, y in an inner product space (X, (·, ·)) are said to be orthogonal

if (x, y) = 0. Since a semi-inner product lacks conjugate symmetry, a property

which an inner product possesses, and since it is in terms of a semi-inner product

which generates the norm of the space that we introduce orthogonality here, this

notion of orthogonality in a normed space is not generally symmetric. Unless

specified otherwise, by orthogonality in a normed space we always mean this

orthogonality, as defined below.

Definition 2.4.1. Let X be a normed space, and x, y ∈ X. Then x is said to be

orthogonal (or orthogonal in the sense of Lumer-Giles relative to the semi-inner

product [·|·]) to y, denoted by x⊥y, if [y|x]=0.

We observe that, if x, y, z ∈ X, and α is any scalar, then

(i) 0⊥x and x⊥0,

(ii) x⊥x if and only if x = 0,

(iii) x⊥y and x⊥z imply that x⊥(y + z), and

(iv) x⊥y implies that (αx)⊥y and x⊥(αy).

However, as we have mentioned above, the main difference of this orthogo-

nality concept in normed spaces in comparison with the orthogonality con-

cept in inner product spaces is with regard to symmetry: If x, y ∈ X, then

x⊥y need not imply that y⊥x.

For example, consider the real normed space X = (R3, ‖·‖1) , where ‖x‖1 =
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3∑
k=1

|xk| for x = (x1, x2, x3) ∈ X, equipped with the semi-inner product

[x|y] = ‖y‖1

3∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X

that generates the norm ‖·‖1. Consider the elements x = (−2, 1, 0) and y =

(1, 1, 0) in X. Then [y|x] = 0 so that x is orthogonal to y, whereas [x|y] = −2

so that y is not orthogonal to x.

Definition 2.4.2. Let X be a normed space, G a nonempty subset of X, and

x ∈ X. Then x is said to be orthogonal (or orthogonal in the sense of Lumer-

Giles relative to the semi-inner product [·|·]) to G, denoted by x⊥G, if x⊥y for

all y ∈ G.

For every nonempty subset G of X, by the definition, 0⊥G.

Definitions 2.4.3. let X be a normed space, and G a nonempty subset of X.

Then the set {x ∈ X : x⊥G} is called the orthogonal complement (or orthogonal

complement in the sense of Lumer-Giles relative to the semi-inner product [·|·])
of G, denoted by G⊥.

If y ∈ X, the orthogonal complement (or orthogonal complement in the sense

of Lumer-Giles relative to the semi-inner product [·|·]) of y, denoted by y⊥, is

the set {x ∈ X : x⊥y}.

We have

G⊥ = {x ∈ X : x⊥G}

= {x ∈ X : x⊥y for all y ∈ G }

= ∩
y∈G

{x ∈ X : x⊥y }

= ∩
y∈G

y⊥ .

The following are some easy consequences of these definitions:

1. 0⊥ = X, and X⊥ = {0} .
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2. If G is any nonempty subset of X, and α is any scalar, then,

(a) 0 ∈ G⊥,

(b) x ∈ G⊥ implies that αx ∈ G⊥,

(c) G⊥ ⊆ G◦, the dual cone of G, and

(d) G ∩G⊥ is either empty or {0} .

3. If C is a convex cone in X, we also have C ∩ C⊥={0}. In particular,

M ∩M⊥={0} for every subspace M of X.

4. More importantly, even if M is a subspace of X, M⊥ need not be a subspace

of X. M⊥ is not even a convex cone in X. For example, consider the real

normed space X = (R2, ‖·‖1) , where ‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2) ∈ X,

together with the semi-inner product

[x|y] = ‖y‖1

2∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X

that generates the norm ‖·‖1. Let M = span{(1, 1)}. The orthogonal

complement of this subspace is given by

M⊥ =

x = (x1, x2) ∈ X : λ ‖x‖1

2∑
k=1
xk 6=0

xk

|xk|
= 0 for all λ ∈ R

 .

Then the elements x = (−3, 5) and z = (4,−3) are in M⊥. But x + z =

(1, 2) /∈ M⊥. This shows that M⊥ is not a convex cone.

Among these observations, the one which is mentioned last is the crucial dif-

ference in comparison with the usual orthogonal complements in inner product

spaces.

The exact relationship between the dual cone and the orthogonal complement

of a given set is provided by the following result.

Theorem 2.4.4. Let X be a normed space, and G a nonempty subset of X.

Then G⊥ = G◦ ∩ (−G)◦ = G◦ ∩ (−G◦).
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Proof. We have

G⊥ = {x ∈ X : x⊥G}

= {x ∈ X : [y|x] = 0 for all y ∈ G }

= G◦ ∩ {x ∈ X : [y|x] ≥ 0 for all y ∈ G }

= G◦ ∩ {x ∈ X : [−y|x] ≥ 0 for all − y ∈ G }

= G◦ ∩ {x ∈ X : − [y|x] ≥ 0 for all y ∈ (−G) }

= G◦ ∩ {x ∈ X : [y|x] ≤ 0 for all y ∈ (−G) }

= G◦ ∩ (−G)◦ .

Further,

(−G)◦ = {x ∈ X : [y|x] ≤ 0 for all y ∈ (−G) }

= {x ∈ X : [y|x] ≤ 0 for all − y ∈ G }

= {x ∈ X : [−y|x] ≤ 0 for all y ∈ G }

= {x ∈ X : [y| − x] ≤ 0 for all y ∈ G }

= −{−x ∈ X : [y| − x] ≤ 0 for all y ∈ G }

= −G◦.

Hence G⊥ = G◦ ∩ (−G)◦ = G◦ ∩ (−G◦).

Next we consider some basic properties of dual cones and orthogonal comple-

ments. The following result will help us in improving Theorem 2.3.5.

Theorem 2.4.5. Let X be a normed space.

(a) If C is a convex cone in X, then (C − y)◦ = C◦ ∩ y⊥ for every y ∈ C.

(b) If M is a subspace of X, then M◦ = M⊥.

Proof. (a) Let y ∈ C be arbitrary. If x ∈ (C−y)◦, then [c− y|x] ≤ 0 for all c ∈ C.

This implies, on letting c = c + y that [c|x] = [c + y − y|x] ≤ 0 for all c ∈ C, so

that x ∈ C◦. Again, [c− y|x] ≤ 0 for all c ∈ C implies, on taking c = 2y and

c = 0, that [y|x] ≤ 0 and [y|x] ≥ 0 respectively. Thus [y|x] = 0, so that x ∈ y⊥.

Combining the above two conclusions we see that, x ∈ (C − y)◦ implies x ∈ C◦

and x ∈ y⊥, so that x ∈ C◦ ∩ y⊥.
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On the other hand, if x ∈ C◦ ∩ y⊥, then [c|x] ≤ 0 for all c ∈ C and [y|x] = 0.

Consequently, [c− y|x]=[c|x] − [y|x] ≤ 0 for all c ∈ C, so that x ∈ (C − y)◦.

Hence (C − y)◦ = C◦ ∩ y⊥ for every y ∈ C.

(b) If M is a subspace of X, then −M = M , and hence by Theorem 2.4.4,

M⊥ = M◦ ∩ (−M)◦ = M◦. This completes the proof.

Another result which we will make use of in our further discussion is given

below. By G we denote the closure of a set G under the norm.

Theorem 2.4.6. Let X be a normed space, and G a nonempty subset of X.

Then

(a) G◦ = (G)◦, and

(b) G⊥ = (G)⊥.

Proof. (a) Let x ∈ (G)◦. Then for all y ∈ G, we have [y|x] ≤ 0. This shows,

since G ⊆ G, that [y|x] ≤ 0 for all y ∈ G, so that x ∈ G◦. Thus (G)◦ ⊆ G◦. Now

let x ∈ G◦. If y ∈ G, choose a sequence (yn) in G such that yn → y. Then

|[yn|x]− [y|x]| = |[yn − y|x]| ≤ ‖yn − y‖ ‖x‖ → 0 as n →∞,

so that

[y|x] = lim
n→∞

[yn|x] ≤ 0.

Therefore [y|x] ≤ 0 for all y ∈ G, so that x ∈ (G)◦. Thus G◦ ⊆ (G)◦. Hence

G◦ = (G)◦.

(b) An argument similar to the above shows that G⊥ = (G)⊥.

The following result, which is of independent interest, contains some more

properties of dual cones and orthogonal complements. We recall that the sum of

a finite collection of nonempty sets {G1, G2, ..., Gn} in a normed space X, denoted

by G1+G2+...+Gn or
n∑

i=1

Gi, is defined as the set

{
n∑

i=1

xi : xi ∈ Gi for every i

}
.

Thus
n∑

i=1

Gi :=

{
n∑

i=1

xi : xi ∈ Gi for every i

}
.
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Theorem 2.4.7. Let X be a normed space, and {G1, G2, ..., Gn} a finite collec-

tion of nonempty sets in X. Then

(a)

(
n⋃

i=1

Gi

)◦

=
n⋂

i=1

G◦
i and

(
n⋃

i=1

Gi

)⊥

=
n⋂

i=1

G⊥
i .

(b) If, in addition 0 ∈
n⋂

i=1

Gi, then(
n⋃

i=1

Gi

)◦

=

(
n∑

i=1

Gi

)◦

and

(
n⋃

i=1

Gi

)⊥

=

(
n∑

i=1

Gi

)⊥

.

Proof. (a) We have

x ∈
n⋂

i=1

G◦
i ⇔ x ∈ G◦

i for each i

⇔ [y|x] ≤ 0 for each y ∈ Gi and all i

⇔ [y|x] ≤ 0 for all y ∈
n⋃

i=1

Gi

⇔ x ∈

(
n⋃

i=1

Gi

)◦

.

Hence

(
n⋃

i=1

Gi

)◦

=
n⋂

i=1

G◦
i .

Similarly,

(
n⋃

i=1

Gi

)⊥

=
n⋂

i=1

G⊥
i .

(b) We have

x ∈

(
n∑

i=1

Gi

)◦

⇔ [y|x] ≤ 0 for each y ∈
n∑

i=1

Gi

⇔

[
n∑

i=1

yi|x

]
≤ 0 whenever yi ∈ Gi

⇔ [yi|x] ≤ 0 for each yi ∈ Gi and all i, since 0 ∈
n⋂

i=1

Gi

⇔ x ∈ G◦
i for each i
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⇔ x ∈
n⋂

i=1

G◦
i

⇔ x ∈

(
n⋃

i=1

Gi

)◦

, by (a) above.

Hence

(
n⋃

i=1

Gi

)◦

=

(
n∑

i=1

Gi

)◦

.

Similarly,

(
n⋃

i=1

Gi

)⊥

=

(
n∑

i=1

Gi

)⊥

.

2.5 Characterization from Convex Cones and

Subspaces

Using the results of the above section, we now proceed to improve Theorem

2.3.5 characterizing best approximations from convex sets. In the particular case

when the convex set is a convex cone, this result can be strengthened by using

Theorem 2.4.5 (a) as follows.

Theorem 2.5.1. Let X be a normed space, C a convex cone in X, x ∈ X, and

y0 ∈ C. Then the following statements are equivalent:

(a) y0 ∈ PC(x);

(b) [y′|x− y0 − λ(y − y0)] ≤ 0 and [y0|x− y0 − λ(y − y0)] = 0

for all y′, y ∈ C and all λ ∈ [0, 1] ;

(c) [y|x− y0] ≤ 0 and [y0|x− y0] = 0 for all y ∈ C.

Proof. From the equivalence of statements (i) and (ii) of Theorem 2.3.5, we have

y0 ∈ PC(x) ⇔ x− y0 − λ(y − y0) ∈ (C − y◦)
◦ for all y ∈ C and

all λ ∈ [0, 1]

⇔ x− y0 − λ(y − y0) ∈ C◦ ∩ y⊥0 for all y ∈ C and all λ ∈ [0, 1] ,

by Theorem 2.4.5(a)

⇔ x− y0 − λ(y − y0) ∈ C◦ and x− y0 − λ(y − y0) ∈ y⊥0 for

all y ∈ C and all λ ∈ [0, 1]
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⇔ [y′|x− y0 − λ(y − y0)] ≤ 0 and [y0|x− y0 − λ(y − y0)] = 0

for all y′, y ∈ C and all λ ∈ [0, 1] .

Hence (a)⇔(b).

Similarly, from the equivalence of statements (i) and (iii) of Theorem 2.3.5,

it follows that (a)⇔(c). Hence the theorem.

Remark 2.5.2. The above theorem can be expressed in a purely set theoretic

manner as follows. Under the hypothesis of Theorem 2.5.1, the statements

(a) y0 ∈ PC(x),

(b) x− y0 − λ(y − y0) ∈ C◦ ∩ y⊥0 for all y ∈ C and all λ ∈ [0, 1] , and

(c) x− y0 ∈ C◦ ∩ y⊥0 .

are equivalent.

There is an even simpler characterization of best approximations when the

convex set is actually a subspace. It is derived again from Theorem 2.3.5 with

the aid of Theorem 2.4.5 (b).

Theorem 2.5.3. Let X be a normed space, M a subspace of X, x ∈ X, and

y0 ∈ M . Then the following statements are equivalent:

(a) y0 ∈ PM(x);

(b) [y′|x− y0 − λ(y − y0)] = 0 for all y′, y ∈ M and all λ ∈ [0, 1] ;

(c) [y|x− y0] = 0 for all y ∈ M.

Proof. From the equivalence (i)⇔(ii) of Theorem 2.3.5, we have

y0 ∈ PM(x) ⇔ x− y0 − λ(y − y0) ∈ (M − y0)
◦ for all y ∈ M and

all λ ∈ [0, 1]

⇔ x− y0 − λ(y − y0) ∈ M◦ for all y ∈ M and all λ ∈ [0, 1],

since y0 ∈ M

⇔ x− y0 − λ(y − y0) ∈ M⊥ for all y ∈ M and all λ ∈ [0, 1] ,

by Theorem 2.4.5(b)
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⇔ [y′|x− y0 − λ(y − y0)] = 0 for all y′, y ∈ M and

all λ ∈ [0, 1] .

Hence (a)⇔(b).

Similarly, from the equivalence of statements (i) and (iii) of Theorem 2.3.5,

it follows that (a)⇔(c), and this completes the proof.

Remark 2.5.4. The following is the restatement of the above theorem in terms of

orthogonal complements. Under the hypothesis of Theorem 2.5.3, the statements

(a) y0 ∈ PM(x),

(b) x− y0 − λ(y − y0) ∈ M⊥ for all y ∈ M and all λ ∈ [0, 1], and

(c) x− y0 ∈ M⊥

are equivalent.

Theorem 2.3.5 has some more consequences. It can be employed in deriving

results characterizing best approximations from translates of convex cones and

subspaces also.

The following result is for translates of convex cones.

Theorem 2.5.5. Let X be a normed space, C a convex cone in X, z ∈ X, and

K = z +C. Suppose also that x ∈ X and y0 ∈ K. Then the following statements

are equivalent:

(a) y0 ∈ PK(x);

(b) [y′|x− y0 − λ(z + y − y0)] ≤ 0 and [y0 − z|x− y0 − λ(z + y − y0)] = 0

for all y′, y ∈ C and all λ ∈ [0, 1] ;

(c) [y|x− y0] ≤ 0 and [y0 − z|x− y0] = 0 for all y ∈ C.

Proof. Being a translate of the convex cone C in X, K = z + C is a convex set

in X. In fact, if k1 = z + c1 and k2 = z + c2 are in K = z + C, where c1, c2 ∈ C,

then for every t ∈ [0, 1], we have

tk1 + (1− t)k2 = tz + (1− t)z + tc1 + (1− t)c2 ∈ z + C = K.
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Hence by the equivalence of statements (i) and (ii) of Theorem 2.3.5, we have

y0 ∈ PK(x) ⇔ x− y0 − λ(y′ − y0) ∈ (K − y0)
◦ for all y′ ∈ K and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ (z + C − y0)
◦ for all y ∈ C and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ (C − (y0 − z))◦ for all y ∈ C and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ C◦ ∩ (y0 − z)⊥ for all y ∈ C and

all λ ∈ [0, 1] , by Theorem 2.4.5(a), since y0 − z ∈ C

⇔ x− y0 − λ(z + y − y0) ∈ C◦ and

x− y0 − λ(z + y − y0) ∈ (y0 − z)⊥ for all y ∈ C and

all λ ∈ [0, 1]

⇔ [y′|x− y0 − λ(z + y − y0)] ≤ 0 and

[y0 − z|x− y0 − λ(z + y − y0)] = 0 for all y′, y ∈ C and

all λ ∈ [0, 1] .

Hence (a)⇔(b).

Similarly, by the equivalence of statements (i) and (iii) of Theorem 2.3.5, it

follows that (a)⇔(c). Hence a)⇔(b)⇔(c).

Remark 2.5.6. Purely set theoretically, the above theorem can be stated as

follows. Under the hypothesis of Theorem 2.5.5, the statements

(a) y0 ∈ PK(x),

(b) x− y0 − λ(z + y − y0) ∈ C◦ ∩ (y0 − z)⊥ for all y ∈ C and all λ ∈ [0, 1], and

(c) x− y0 ∈ C◦ ∩ (y0 − z)⊥

are equivalent.

The next result characterizes best approximations from translates of sub-

spaces.



2.5 Characterization from Convex Cones and Subspaces 49

Theorem 2.5.7. Let X be a normed space, M a subspace of X, z ∈ X, and

K = z+M . Suppose also that x ∈ X and y0 ∈ K. Then the following statements

are equivalent.

(a) y0 ∈ PK(x);

(b) [y′|x− y0 − λ(z + y − y0)] = 0 for all y′, y ∈ M and all λ ∈ [0, 1] ;

(c) [y|x− y0] = 0 for all y ∈ M.

Proof. K = z + M , being a translate of the subspace M of X, is a convex set in

X. Indeed, if k1 = z+m1 and k2 = z+m2 are in K = z+M , where m1, m2 ∈ M ,

then for every t ∈ [0, 1], we have

tk1 + (1− t)k2 = tz + (1− t)z + tm1 + (1− t)m2 ∈ z + M = K.

Hence by the equivalence of statements (i) and (ii) of Theorem 2.3.5, we have

y0 ∈ PK(x) ⇔ x− y0 − λ(y′ − y0) ∈ (K − y0)
◦ for all y′ ∈ K and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ (z + M − y0)
◦ for all y ∈ M and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ (M − (y0 − z))◦ for all y ∈ M and

all λ ∈ [0, 1]

⇔ x− y0 − λ(z + y − y0) ∈ M◦ for all y ∈ M and all λ ∈ [0, 1] ,

since y0 − z ∈ M

⇔ x− y0 − λ(z + y − y0) ∈ M⊥ for all y ∈ M and all λ ∈ [0, 1] ,

by theorem 2.4.5 (b)

⇔ [y′|x− y0 − λ(z + y − y0)] = 0 for all y′, y ∈ M and

all λ ∈ [0, 1] .

Hence (a)⇔(b).

Similarly, by the equivalence of statements (i) and (iii) of Theorem 2.3.5, it

follows that (a)⇔(c). Hence (a)⇔(b)⇔(c).
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Remark 2.5.8. A restatement of the above theorem in terms of orthogonal com-

plements is given below. Under the hypothesis of Theorem 2.5.7, the statements

(a) y0 ∈ PK(x),

(b) x− y0 − λ(z + y − y0) ∈ M⊥ for all y ∈ M and all λ ∈ [0, 1], and

(c) x− y0 ∈ M⊥

are equivalent.

Remark 2.5.9. Among the four results characterizing best approximations seen

so far in this section, namely Theorems 2.5.1, 2.5.3, 2.5.5 and 2.5.7, the one which

is in the most general setting is Theorem 2.5.5 characterizing best approximations

from translates K of convex cones C by z. We observe that, instead of proving

each of these results separately, all of these can be deduced directly from an

equivalent version of Theorem 2.5.5 in terms of dual cones, which is obtained

from Theorem 2.3.5.

We have already seen some results characterizing best approximations from

convex sets, in particular from convex cones, subspaces and their translates in

this chapter. We conclude our discussions in this chapter with an illustration

of one of those characterizations. As a typical case, we consider the illustra-

tion of Theorem 2.5.3 characterizing best approximations from subspaces in the

following example.

Example 2.5.10. Consider the real normed space X = (R3, ‖·‖1) , where

‖x‖1 =
3∑

k=1

|xk| for x = (x1, x2, x3) ∈ X,

equipped with the semi-inner product

[x|y] = ‖y‖1

3∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X

that generates the norm ‖·‖1. Consider the subspace

M = {x = (x1, 0, x2) ∈ X : x1, x2 ∈ R}
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of X. Let x = (1, 2, 3) ∈ X. Then

d (x, M) = inf {‖x−m‖1 : m ∈ M}

= inf {|1−m1|+ |2− 0|+ |3−m2| : m1, m2 ∈ R}

= 2 at (1, 0, 3) ∈ M.

Let y0 = (1, 0, 3). Then

‖x− y0‖1 = |1− 1|+ |2− 0|+ |3− 3| = 2.

Thus ‖x− y0‖1 = d (x, M), and hence y0 = (1, 0, 3) ∈ PM(x). Then for every

m = (m1, 0, m2) ∈ M , we have

[m|x− y0] = [(m1, 0, m2) | (0, 2, 0)] = ‖(0, 2, 0)‖1 · 0 = 0,

so that x− y0 ∈ M⊥. Now let y0 = (y1, 0, y2) ∈ M . Suppose that x− y0 ∈ M⊥.

Then

0 = [m|x− y0] for every m ∈ M.

= [(m1, 0, m2) | (1− y1, 2, 3− y2)] for every m1, m2 ∈ R

= ‖(1− y1, 2, 3− y2)‖1

[
m1 (1− y1)

|1− y1|
+

m2 (3− y2)

|3− y2|

]
for every m1, m2 ∈ R.

This implies that y1 = 1 and y2 = 3, so that y0 = (1, 0, 3). Hence y0 ∈ PM(x).



CHAPTER 3

Applications of the Characterization Results

3.1 Introduction

We have already seen some results characterizing best approximations in normed

spaces from convex sets, and in particular from convex cones, subspaces and their

translates, in the previous chapter. The present chapter deals with a few applica-

tions of those results. It illustrates how those results can be employed in deriving

new characterizations and properties of best approximations, and in novel situa-

tions like ordered orthonormalization, a terminology which we have introduced.

Our discussion begins with some new characterizations of best approxima-

tions from convex cones, subspaces and their translates in terms of errors of

approximation. These results also furnish methods for determining the error of

approximation. Following that, some properties of best approximations are pre-

sented. These include results asserting that proximinality, semi Chebyshevity

and Chebyshevity of convex sets, and in particular convex cones and subspaces,

are invariant under translation as well as under scalar multiplication. The con-

cepts of ordered orthogonal sets and ordered orthonormal sets are introduced in

the setting of a normed space. It is shown that ordered orthogonal sets of nonzero

elements are linearly independent. Some results on ordered orthonormalization

52
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are also provided in this chapter.

As in the previous chapter, here also our discussion is confined to the frame-

work of real normed spaces. Thus, in this chapter too, by a normed space X we

mean a real normed space (X, ‖·‖) together with a semi-inner product [·|·] which

generates the norm ‖·‖.

3.2 Characterizations in terms of Errors of

Approximation

This section contains some results characterizing best approximations from con-

vex cones, subspaces and their translates in terms of errors of approximation,

which we arrive at using the corresponding results of the previous chapter. We re-

call that, if G is a nonempty subset of a normed space X, x ∈ X and g0 ∈ PG(x),

then

‖x− g0‖ = inf {‖x− g‖ : g ∈ G} = d (x, G) ,

and in this case, the number d (x, G) is called the error of approximation (or the

error in approximating x by G). We denote (d (x, G))2 by d2 (x, G) .

We begin with the following result for convex cones. It is a consequence of

Theorem 2.5.1.

Theorem 3.2.1. Let X be a normed space, C a convex cone in X, x ∈ X, and

y0 ∈ C. Then the following statements are equivalent:

(i) y0 ∈ PC(x);

(ii) [y0|x− y0] = 0 and [x|x− y0] = d2(x, C).

Proof. (i) ⇒ (ii) : If y0 ∈ PC(x), then by the implication (a) ⇒ (c) of Theorem

2.5.1, we have in particular [y0|x− y0] = 0. Consequently,

[x|x− y0] = [x|x− y0]− [y0|x− y0]

= [x− y0|x− y0]

= ‖x− y0‖2 = d2(x, C).
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(ii) ⇒ (i) : Conversely, if [y0|x− y0] = 0 and [x|x− y0] = d2(x, C), then

d2(x, C) = [x|x− y0]

= [x|x− y0]− [y0|x− y0]

= [x− y0|x− y0]

= ‖x− y0‖2 .

This shows, since y ∈ C, that y0 ∈ PC(x).

When the convex cone is actually a subspace, our result is the following.

It turns out that the criterion for best approximations from subspaces coincides

with that for best approximations from convex cones. We derive it from Theorem

2.5.3.

Theorem 3.2.2. Let X be a normed space, M a subspace of X, x ∈ X, and

y0 ∈ M . Then the following statements are equivalent:

(i) y0 ∈ PM(x);

(ii) [y0|x− y0] = 0 and [x|x− y0] = d2(x, M).

Proof. The proof is analogous to that of Theorem 3.2.1 with the only difference

that instead of the implication (a) ⇒ (c) of Theorem 2.5.1, here we make use of

the implication (a) ⇒ (c) of Theorem 2.5.3.

The next result, which is a consequence of Theorem 2.5.5, is for translates of

convex cones.

Theorem 3.2.3. Let X be a normed space, C a convex cone in X, z ∈ X, and

K = z +C. Suppose also that x ∈ X and y0 ∈ K. Then the following statements

are equivalent:

(i) y0 ∈ PK(x);

(ii) [y0 − z|x− y0] = 0 and [x− z|x− y0] = d2(x, K).

Proof. (i) ⇒ (ii): If y0 ∈ PK(x), then by the implication (a) ⇒ (c) of Theorem

2.5.5, in particular we have

[y0 − z|x− y0] = 0.
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Consequently,

[x− z|x− y0] = [x− z|x− y0]− [y0 − z|x− y0]

= [x− z − y0 + z|x− y0]

= [x− y0|x− y0]

= ‖x− y0‖2

= d2(x, K).

(ii) ⇒ (i): Conversely, if [y0 − z|x− y0] = 0 and [x− z|x− y0] = d2(x, K),

then

d2(x, K) = [x− z|x− y0]

= [x− z|x− y0]− [y0 − z|x− y0]

= [x− z − y0 + z|x− y0]

= [x− y0|x− y0]

= ‖x− y0‖2 .

Since y0 ∈ K, this shows that y0 ∈ PK(x).

Our final result of this series is the following one for translates of subspaces.

We notice that the criterion for best approximations from translates of subspaces

coincides with that for best approximations from translates of convex cones. We

derive the result from Theorem 2.5.7.

Theorem 3.2.4. Let X be a normed space, M a subspace of X, z ∈ X, and

K = z+M . Suppose also that x ∈ X and y0 ∈ K. Then the following statements

are equivalent:

(i) y0 ∈ PK(x);

(ii) [y0 − z|x− y0] = 0 and [x− z|x− y0] = d2(x, K).

Proof. The proof is similar to that of Theorem 3.2.3 except that instead of using

the implication (a) ⇒ (c) of Theorem 2.5.5, here we employ the implication

(a) ⇒ (c) of Theorem 2.5.7.

Remark 3.2.5. (Error of Approximation) Apart from being characterizations



3.3 Some Properties of Best Approximations 56

of best approximations in their own right, Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4

have the added advantage that they provide methods for computing the errors

of approximation. Under the hypothesis of Theorem 3.2.3, we have y0 ∈ PK(x)

if and only if [y0 − z|x− y0] = 0 and [x− z|x− y0] = d2(x, K). This shows that

if y0 is a best approximation of x from the translate K of a convex cone C by z,

then the error of approximation, d(x, K) can be computed using

d(x, K) = [x− z|x− y0]
1/2 .

The same formula holds good for translates of subspaces also. The above formula

with z = 0 yields the error of approximation in the case of convex cones and

subspaces.

3.3 Some Properties of Best Approximations

This section deals with some properties of best approximations that are derived

from the characterization results of the previous chapter. We begin with some

elementary results. As an immediate consequence of Theorem 2.3.5, we have the

following result for convex sets.

Theorem 3.3.1. Let X be a normed space, K a convex set in X, x ∈ X, and

y0 ∈ K. Then y0 ∈ PK(x) if and only if y0 ∈ PK (λx + (1− λ) y0) for all λ ≥ 0.

Proof. Since λx + (1− λ) y0 ∈ X for all λ ≥ 0, by (i) ⇔ (iii) of Theorem 2.3.5,

we have

y0 ∈ PK (λx + (1− λ) y0) ⇔ λx + (1− λ) y0 − y0 ∈ (K − y0)
◦

⇔ λ(x− y0) ∈ (K − y0)
◦

⇔ [y − y0|λ(x− y0)] ≤ 0 for all y ∈ K

⇔ λ [y − y0|x− y0] ≤ 0 for all y ∈ K

⇔ [y − y0|x− y0] ≤ 0 for all y ∈ K, since λ ≥ 0

⇔ x− y0 ∈ (K − y0)
◦

⇔ y0 ∈ PK(x).

Hence the theorem.
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Since convex cones and their translates are convex sets, we have the following

two corollaries to the above theorem.

Corollary 3.3.2. Let X be a normed space, C a convex cone in X, x ∈ X, and

y0 ∈ C. Then y0 ∈ PC(x) if and only if y0 ∈ PC (λx + (1− λ) y0) for all λ ≥ 0.

Proof. Since the convex cone C is a convex set, the proof follows from Theorem

3.3.1 on replacing K by C.

Corollary 3.3.3. Let X be a normed space, C a convex cone in X, z ∈ X, and

C ′ = z + C. Suppose also that x ∈ X and y0 ∈ C ′. Then y0 ∈ PC′(x) if and only

if y0 ∈ PC′ (λx + (1− λ) y0) for all λ ≥ 0.

Proof. C ′ = z + C, being the translate of a convex cone, is a convex set. So the

proof follows from Theorem 3.3.1 on replacing K by C ′.

Similar results do hold for subspaces and their translates also, since they

too are convex sets basically. However, we notice that actually something more

happens in these cases. Here such results hold not merely for λ ≥ 0, but for

λ < 0 also. First we prove the result for translates of subspaces using Theorem

2.5.7, and then deduce the result for subspaces from it.

Theorem 3.3.4. Let X be a normed space, M a subspace of X, z ∈ X, and

M ′ = z + M . Suppose also that x ∈ X and y0 ∈ M ′. Then y0 ∈ PM ′(x) if and

only if y0 ∈ PM ′ (λx + (1− λ) y0) for all λ ∈ R.

Proof. Since λx + (1− λ) y0 ∈ X for all λ ∈ R, by (a) ⇔ (c) of Theorem 2.5.7,

we have

y0 ∈ PM ′ (λx + (1− λ) y0) ⇔ λx + (1− λ) y0 − y0 ∈ M⊥

⇔ λ(x− y0) ∈ M⊥

⇔ [m|λ(x− y0)] = 0 for all m ∈ M

⇔ λ [m|x− y0] = 0 for all m ∈ M

⇔ [m|x− y0] = 0 for all m ∈ M

⇔ x− y0 ∈ M⊥

⇔ y0 ∈ PM ′(x).

Hence the theorem.
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As an immediate consequence of the above theorem, we have the following

result for subspaces.

Corollary 3.3.5. Let X be a normed space, M a subspace of X, x ∈ X, and

y0 ∈ M . Then y0 ∈ PM(x) if and only if y0 ∈ PM (λx + (1− λ) y0) for all λ ∈ R.

Proof. The proof follows from Theorem 3.3.4 on letting z = 0.

Remark 3.3.6. We observe that the above corollary can also be proved directly

using Theorem 2.5.3 for subspaces.

The results which follow in this section allow us to replace the problems

of approximating from convex sets, and in particular from convex cones and

subspaces, with those of approximating from their translates as well as from

their scalar multiples. Moreover, they also enable us to deduce that translates

as well as scalar multiples of proximinal, semi Chebyshev and Chebyshev convex

sets, and in particular convex cones and subspaces, are again sets of the same

sort. Our discussion in this direction begins with the problem of approximating

from translates of convex sets. As a consequence of Theorem 2.3.5, we have the

following result for convex sets.

Theorem 3.3.7. Let X be a normed space, K a convex set in X, z ∈ X, and

K ′ = z + K. Then PK′(z + x) = z + PK(x) for every x ∈ X.

Proof. K ′ = z + K, being a translate of the convex set K, is a convex set in X.

Indeed, if k′1 = z + k1 and k′2 = z + k2 are in K ′ = z + K, where k1, k2 ∈ K, then

for every t ∈ [0, 1], by the convexity of K, we have

tk′1 + (1− t)k′2 = tz + (1− t)z + tk1 + (1− t)k2 ∈ z + K = K ′.

Now let y0 ∈ K ′ so that y0 − z ∈ K. Then for every x ∈ X, by (i)⇔(iii) of

Theorem 2.3.5, we have

y0 ∈ PK′(z + x) ⇔ z + x− y0 ∈ (K ′ − y0)
◦

⇔ x− (y0 − z) ∈ (z + K − y0)
◦ , since K ′ = z + K

⇔ x− (y0 − z) ∈ (K − (y0 − z))◦

⇔ y0 − z ∈ PK(x)

⇔ y0 ∈ z + PK(x).
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Hence PK′(z + x) = z + PK(x) for every x ∈ X.

We have the following corollary to the above theorem when the convex set is

actually a convex cone.

Corollary 3.3.8. Let X be a normed space, C a convex cone in X, z ∈ X, and

C ′ = z + C. Then PC′(z + x) = z + PC(x) for every x ∈ X.

Proof. Since a convex cone is a convex set, the proof is a consequence of replacing

K by C and K ′ by C ′ in Theorem 3.3.7.

Remark 3.3.9. We notice that the above corollary can also be derived directly

from Theorem 2.5.5 for translates of convex cones and Theorem 2.5.1 for convex

cones as follows. If y0 ∈ C ′ = z + C so that y0 − z ∈ C, then for every x ∈ X,

we have

y0 ∈ PC′(z + x) ⇔ z + x− y0 ∈ C◦ ∩ (y0 − z)⊥ , by (a) ⇔ (c) of

Theorem 2.5.5

⇔ x− (y0 − z) ∈ C◦ ∩ (y0 − z)⊥

⇔ y0 − z ∈ PC(x), by (a) ⇔ (c) of Theorem 2.5.1

⇔ y0 ∈ z + PC(x).

As another corollary to Theorem 3.3.7, we have the following result in the

particular case when the convex set is a subspace.

Corollary 3.3.10. Let X be a normed space, M a subspace of X, z ∈ X, and

M ′ = z + M . Then PM ′(z + x) = z + PM(x) for every x ∈ X. In particular, if

z ∈ M , then PM(z + x) = z + PM(x) for every x ∈ X.

Proof. Since a subspace is a convex set, Theorem 3.3.7 on replacing K by M

and K ′ by M ′ yields PM ′(z + x) = z + PM(x) for every x ∈ X. In particular, if

z ∈ M , then M ′ = z + M = M itself, and therefore PM(z + x) = z + PM(x) for

every x ∈ X.

Next we turn our attention to the problem of approximating from scalar mul-

tiples of convex sets. As a consequence of Theorem 2.3.5, we have the following

result for convex sets.
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Theorem 3.3.11. Let X be a normed space, K a convex set in X, α ∈ R, and

K ′ = αK. Then PK′(αx) = αPK(x) for every x ∈ X.

Proof. Being a scalar multiple of the convex set K, K ′ = αK is a convex set in

X. In fact, if k′1 = αk1 and k′2 = αk2 are in K ′ = αK, where k1, k2 ∈ K, then

for every t ∈ [0, 1], by the convexity of K, we have

tk′1 + (1− t)k′2 = α(tk1 + (1− t)k2) ∈ αK = K ′.

If α = 0, the result is trivially true. Indeed, in this case K ′ = {0} and then

PK′(0 · x) = P{0}(0) = {0} = 0 · PK(x) for every x ∈ X. So assume that α 6= 0.

Let y0 ∈ K ′ so that y0/α ∈ K. Then for every x ∈ X, by (i)⇔(iii) of Theorem

2.3.5, we have

y0 ∈ PK′(αx) ⇔ αx− y0 ∈ (K ′ − y0)
◦

⇔ [k′ − y0|αx− y0] ≤ 0 for all k′ ∈ K ′

⇔ α2
[
k − y0

α

∣∣∣ x− y0

α

]
≤ 0 for all k ∈ K

⇔
[
k − y0

α

∣∣∣ x− y0

α

]
≤ 0 for all k ∈ K

⇔ x− y0

α
∈
(
K − y0

α

)◦
⇔ y0

α
∈ PK(x)

⇔ y0 ∈ αPK(x).

Hence PK′(αx) = αPK(x) for every x ∈ X.

The following two results are corollaries to Theorem 3.3.11.

Corollary 3.3.12. Let X be a normed space, C a convex cone in X, α ∈ R,

and C ′ = αC. Then PC′(αx) = αPC(x) for every x ∈ X. In particular, if α ≥ 0,

then PC(αx) = αPC(x) for every x ∈ X.

Proof. Since a convex cone is a convex set, Theorem 3.3.11 on replacing K by C

and K ′ by C ′ yields PC′(αx) = αPC(x) for every x ∈ X. In particular, if α ≥ 0,

then C ′ = αC = C itself, and hence PC(αx) = αPC(x) for every x ∈ X.

Corollary 3.3.13. Let X be a normed space, M a subspace of X, and α ∈ R.

Then PM(αx) = αPM(x) for every x ∈ X.
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Proof. If α = 0, the result is trivial. In fact, in this case PM (0 · x) = PM (0) =

{0} = 0 ·PM (x) for every x ∈ X. So assume that α 6= 0. Then, since a subspace

is a convex set, and since αM = M for every α ∈ R \ {0}, the required result

follows from Theorem 3.3.11.

Making use of the above results on approximating from translates and scalar

multiples of convex sets, now we show that proximinality, semi Chebyshevity

and Chebyshevity of convex sets are invariant under translation as well as under

scalar multiplication. We recall (from Definitions 2.2.1) that a nonempty subset

G of a normed space X is said to be proximinal (respectively semi Chebyshev,

Chebyshev), if each x ∈ X has at least (respectively at most, exactly) one best

approximation from G. The following result, which is an easy consequence of

Theorem 3.3.7 shows that proximinality, semi Chebyshevity and Chebyshevity

of convex sets are invariant under translation.

Theorem 3.3.14. Let X be a normed space, and K a convex set in X. Then

K is proximinal (respectively semi Chebyshev, Chebyshev) if and only if z + K

is proximinal (respectively semi Chebyshev, Chebyshev) for any given z ∈ X.

Proof. Given z ∈ X. Let y0 ∈ K so that z + y0 ∈ z + K. Then for every x ∈ X,

y0 ∈ PK(x) if and only if z + y0 ∈ z + PK(x) = Pz+K(z + x), by Theorem 3.3.7.

Hence, for every x ∈ X, PK(x) contains at least (respectively at most, exactly)

one element of K if and only if Pz+K(z + x) contains at least (respectively at

most, exactly) one element of z + K. This completes the proof.

As consequences of Theorem 3.3.14, we have the following corollaries.

Corollary 3.3.15. Let X be a normed space, and C a convex cone in X. Then

C is proximinal (respectively semi Chebyshev, Chebyshev) if and only if z + C is

proximinal (respectively semi Chebyshev, Chebyshev) for any given z ∈ X.

Proof. Since a convex cone is a convex set, the proof follows from Theorem 3.3.14

on replacing K by C.

Corollary 3.3.16. Let X be a normed space, and M a subspace of X. Then M

is proximinal (respectively semi Chebyshev, Chebyshev) if and only if z + M is

proximinal (respectively semi Chebyshev, Chebyshev) for any given z ∈ X.
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Proof. The proof follows from Theorem 3.3.14 on replacing K by M , since every

subspace is a convex set.

The next result, which is a consequence of Theorem 3.3.11, shows that prox-

iminality, semi Chebyshevity and Chebyshevity of convex sets are invariant under

multiplication with nonzero real numbers.

Theorem 3.3.17. Let X be a normed space, and K a convex set in X. Then

K is proximinal (respectively semi Chebyshev, Chebyshev) if and only if αK is

proximinal (respectively semi Chebyshev, Chebyshev) for any given α ∈ R \ {0}.

Proof. Given α ∈ R \ {0}. Let y0 ∈ K so that αy0 ∈ αK. Then for every

x ∈ X, y0 ∈ PK(x) if and only if αy0 ∈ αPK(x) = PαK(αx), by Theorem 3.3.11.

Hence, for every x ∈ X, PK(x) contains at least (respectively at most, exactly)

one element of K if and only if PαK(αx) contains at least (respectively at most,

exactly) one element of αK. This completes the proof.

We have the following corollaries to Theorem 3.3.17.

Corollary 3.3.18. Let X be a normed space, and C a convex cone in X. Then

C is proximinal (respectively semi Chebyshev, Chebyshev) if and only if αC is

proximinal (respectively semi Chebyshev, Chebyshev) for any given α ∈ R \ {0}.

Proof. Since every convex cone is a convex set, the proof follows from Theorem

3.3.17 on replacing K by C.

Corollary 3.3.19. Let X be a normed space, and M a subspace of X. Then

M is proximinal (respectively semi Chebyshev, Chebyshev) if and only if αM is

proximinal (respectively semi Chebyshev, Chebyshev) for any given α ∈ R \ {0}.

Proof. The proof is obvious, since for any α ∈ R \ {0}, αM = M itself as M is

a subspace.

3.4 Ordered Orthogonal Sets

The main objective of this section is to introduce the concept of an ordered or-

thogonal set in the setting of a normed space, a concept which is a generalization

of an orthogonal set in the framework of an inner product space. We recall that a
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nonempty subset G of an inner product space (X, (·, ·)) is said to be orthogonal,

if any two distinct elements in G are orthogonal, i.e., if (x, y) = 0 for all x 6= y

in G. This notion is extended here to the setting of a general normed space

in terms of a semi-inner product that generates the norm of the space. The

fact that inner product orthogonality is symmetric whereas semi-inner product

orthogonality is not generally symmetric, suggests that certain ordering among

the elements of the set is to be imposed while extending the notion. Because of

the ordering involved, we term the resultant concept as an ordered orthogonal

set. The notion of an ordered orthonormal set is also introduced in this section.

We show that an ordered orthogonal set of nonzero elements in a normed space

is linearly independent.

Let X be a normed space, and x, y ∈ X. We recall (from Definition 2.4.1)

that x is orthogonal (or orthogonal in the sense of Lumer-Giles relative to the

semi-inner product [·|·]) to y, denoted by x⊥y, if [y|x] = 0, and x⊥y need not

imply that y⊥x. In terms of the orthogonality of elements, below we introduce

the totally new terminology of ordered orthogonal sets in a normed space.

Definition 3.4.1. Let X be a normed space, and G a nonempty nonsingleton

finite subset of X. Then G is said to be ordered orthogonal (or ordered orthogonal

in the sense of Lumer-Giles relative to the semi-inner product [·|·]), if elements

of G can be arranged as a sequence in which each element except the first is

orthogonal to every element preceding it, i.e., if elements of G can be arranged

as {x1, x2, ..., xn} , n > 1, where xj⊥xi for every i, j satisfying 1 ≤ i < j ≤ n.

Ordered orthogonality of an arbitrary subset is defined as follows.

Definition 3.4.2. Let X be a normed space. Then an arbitrary nonempty

subset G of X is called an ordered orthogonal set (or ordered orthogonal set in the

sense of Lumer-Giles relative to the semi-inner product [·|·]), if every nonempty

nonsingleton finite subset of G is ordered orthogonal.

The following is our definition of an ordered orthonormal set.

Definition 3.4.3. Let X be a normed space, and G a nonempty subset of X.

Then G is said to be ordered orthonormal (or ordered orthonormal in the sense

of Lumer-Giles relative to the semi-inner product [·|·]), if G is ordered orthogonal
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and every element of G has norm 1. Thus, if G is an ordered orthonormal set,

then every nonempty nonsingleton finite subset of G is ordered orthogonal and

‖x‖ = [x|x]1/2 = 1 for every x ∈ G.

Some examples of ordered orthogonal sets and ordered orthonormal sets are

given below.

Example 3.4.4. In an inner product space, any orthogonal set is ordered or-

thogonal, and any orthonormal set is ordered orthonormal.

Example 3.4.5. Consider the real normed space X = (R3, ‖·‖1), where ‖x‖1 =
3∑

k=1

|xk| for x = (x1, x2, x3) ∈ X, together with the semi-inner product

[x|y] = ‖y‖1

3∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X.

Then the set {(1, 1, 0) , (−1, 1, 2) , (2,−3, 1)} is an ordered orthogonal set, and

the set
{(

1/2,
1/2, 0

)
,
(
−1/4,

1/4,
1/2

)
,
(
1/3,

−1/2,
1/6

)}
is an ordered orthonor-

mal set.

We have the following result which provides the connection between ordered

orthogonality and linear independence of sets in a normed space.

Theorem 3.4.6. Let X be a normed space, and G an ordered orthogonal subset

of X such that 0 /∈ G. Then G is linearly independent.

Proof. Let Gn = {x1, x2, ..., xn} ⊆ G. Since G is ordered orthogonal, so is Gn

also. Hence Gn can be expressed as Gn = {y1, y2, ..., yn} , where each yi is a

unique xj for every i, j such that 1 ≤ i, j ≤ n, and [yi|yj] = 0 for every i, j

satisfying 1 ≤ i < j ≤ n. Since 0 /∈ G, yi 6= 0 for every i such that 1 ≤ i ≤ n.

Now suppose that
n∑

i=1

αiyi = 0, where αi ∈ R, 1 ≤ i ≤ n. Then for each

j = 1, 2, ..., n, we have

n∑
i=1

αi [yi|yj] =

[
n∑

i=1

αiyi

∣∣∣∣∣ yj

]
= 0.
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Putting j = n, n − 1, ..., 1 in succession, since [yi|yj] = 0 for 1 ≤ i < j ≤
n, and yi 6= 0 for 1 ≤ i ≤ n, it follows that αn = 0, αn−1 = 0,...,α1 =

0. This shows that {y1, y2, ..., yn} is linearly independent, and hence in turn

{x1, x2, ..., xn} also is linearly independent. Therefore G is linearly indepen-

dent.

Remark 3.4.7. The above theorem shows, in particular, that every ordered

orthonormal set in a normed space is linearly independent, since such sets are

ordered orthogonal sets not containing 0.

3.5 Ordered Orthonormalization

Theorem 3.4.6 asserts that every ordered orthonormal set in a normed space is

linearly independent. In this section, we consider the converse of the problem.

Given a countable linearly independent set in a normed space, we show here us-

ing Theorem 2.5.3 that one can construct an ordered orthonormal set, retaining

the span of the elements at each step.

We begin our discussion with an ordered orthonormalization result in the

setting of a general normed space. The following result [21] on the existence of

best approximations, the proof of which is omitted here, is made use of in our

construction.

Theorem 3.5.1. Let X be a normed space, and M a finite dimensional subspace

of X. Then M is proximinal.

Our ordered orthonormalization result in the framework of a general normed

space is given below. It is a consequence of Theorem 2.5.3 characterizing best

approximations from subspaces.

Theorem 3.5.2. Let X be a normed space, and {x1, x2, ...} a countable linearly

independent subset of X. Let M0 = {0} , Mn = span {x1, x2, ..., xn} and

yn ∈ PMn−1(xn) for each n ≥ 1. Define zn = xn − yn and un = zn/‖zn‖ for each

n ≥ 1. Then

(a) {z1, z2, ...} is an ordered orthogonal set,

(b) {u1, u2, ...} is an ordered orthonormal set, and

(c) span {z1, z2, ..., zn} = span {u1, u2, ..., un} = Mn for each n ≥ 1.
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Proof. Being a finite dimensional subspace of X, by Theorem 3.5.1, Mn is proxim-

inal for each n ≥ 0. So for each fixed yn ∈ PMn−1(xn), the element zn = xn − yn

is well defined for n = 1, 2, ... . Since {x1, x2, ..., xn} is linearly independent,

xn /∈ Mn−1. Hence zn 6= 0 so that the element un = zn/‖zn‖ is well defined for all

n ≥ 1. Since yj ∈ PMj−1
(xj), by the equivalence (a) ⇔ (c) of Theorem 2.5.3, we

get zj = xj − yj ∈ M⊥
j−1 for every j such that 1 < j ≤ n. Also, for any i such

that 1 ≤ i < j, we obtain

zi = xi − yi ∈ Mi −Mi−1 ⊆ Mi ⊆ Mj−1.

Hence for every i, j satisfying 1 ≤ i < j ≤ n, we have [zi|zj] = 0 so that zj⊥zi.

This shows that, for each n ≥ 1, {z1, z2, ..., zn} is an ordered orthogonal set.

Hence so is {z1, z2, ...}. Thus (a) holds.

Since un = zn/‖zn‖ for each n ≥ 1, and [zi|zj] = 0 for every i, j such that

1 ≤ i < j ≤ n, we have

[ui|uj] =
[
zi/‖zi‖

∣∣∣ zj/‖zj‖
]

=
(
1/(‖zi‖ ‖zj‖)

)
[zi|zj] = 0

for 1 ≤ i < j ≤ n. Hence for each n ≥ 1, {u1, u2, ..., un} is ordered orthogonal.

This together with the fact that ‖un‖ = 1 implies that {u1, u2, ...} is an ordered

orthonormal set. Hence holds (b) also.

Again, since un = zn/‖zn‖ for each n ≥ 1, we have span {z1, z2, ..., zn} =

span {u1, u2, ..., un} for all n ≥ 1. Further, since {u1, u2, ..., un} ⊆ Mn, Mn is n-

dimensional, and ordered orthonormal sets are linearly independent by Theorem

3.4.6, we obtain that, for each n ≥ 1, span {u1, u2, ..., un} = Mn. This completes

the proof.

We observe that the ordered orthogonal set {z1, z2, ...}, and hence in turn the

ordered orthonormal set {u1, u2, ...} also, constructed from the given countable

linearly independent set {x1, x2, ...} in the above theorem need not be unique.

For, since Mn−1 is proximinal, for each xn, PMn−1(xn) may contain more than

one element yn for n = 1, 2, ... . As a consequence, for each n ≥ 1, the element

zn = xn−yn, and hence the element un = zn/‖zn‖ also, may not be unique. This is
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the case of our ordered orthonormalization process (Theorem 3.5.2) in the setting

of a general normed space. However, if the normed space is in particular strictly

convex, then we do have uniqueness of such sets also. For showing this, we need

the following result [21] on the uniqueness of best approximations, the proof of

which we omit here. We recall that a normed space X is said to be strictly

convex, if for x, y ∈ X, ‖x‖ = 1 = ‖y‖ and x 6= y imply
∥∥∥(x + y)/2

∥∥∥ < 1.

Theorem 3.5.3. Let X be a strictly convex normed space, and M a finite di-

mensional subspace of X. Then M is Chebyshev.

If the normed space X in the hypothesis of Theorem 3.5.2 is strictly convex,

then in view of the above result (Theorem 3.5.3), the (n−1)-dimensional subspace

Mn−1 = span {x1, x2, ..., xn−1} of X is Chebyshev. Hence for each xn, the set

PMn−1(xn) contains exactly one element for n = 1, 2, ... . Denoting this unique

element in the set PMn−1(xn) as PMn−1(xn) itself, we see that for each n = 1, 2, ...,

the element zn = xn−PMn−1(xn), and hence in turn the element un = zn/‖zn‖ also,

are uniquely determined. Hence it follows from Theorem 3.5.2 that the ordered

orthogonal set {z1, z2, ...} as well as the ordered orthonormal set {u1, u2, ...} is

unique. Thus we have the following corollary to Theorem 3.5.2.

Corollary 3.5.4. Let X be a strictly convex normed space, and {x1, x2, ...}
a countable linearly independent subset of X. Let M0 = {0} and Mn=

span {x1, x2, ..., xn} for each n ≥ 1. Define zn = xn−PMn−1(xn) and un = zn/‖zn‖
for each n ≥ 1. Then

(a) {z1, z2, ...} is a unique ordered orthogonal set,

(b) {u1, u2, ...} is a unique ordered orthonormal set, and

(c) span {z1, z2, ..., zn} = span {u1, u2, ..., un} = Mn for each n ≥ 1.

Remark 3.5.5. We observe that Theorem 3.5.2 can be considered as an analogue

of the Gram-Schmidt orthonormalization process in a general normed space.

Similar is the case with Corollary 3.5.4 in the setting of a strictly convex normed

space.



CHAPTER 4

Characterizations of Proximinality and Chebyshevity, and

their Applications

4.1 Introduction

The main purpose of this chapter is the characterization of proximinality, semi

Chebyshevity and Chebyshevity of convex sets in normed spaces in terms of the

decomposability of the space. In doing so, we depend mainly on the results of the

second chapter. Some consequences of the characterization are also considered

in this chapter.

We begin this chapter with some results characterizing proximinal, semi

Chebyshev and Chebyshev convex sets, and in particular convex cones and sub-

spaces. These results enable us to derive some decomposition theorems which

characterize proximinality and Chebyshevity of subspaces of normed spaces,

closedness of subspaces of reflexive normed spaces, and that of strictly convex re-

flexive normed spaces. Following that, a few consequences of the decomposition

theorems are provided. Finally, we make an attempt to study the analogue of

Riesz Representation theorem for continuous linear functionals on normed spaces

in this context.

68
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As in the last two chapters, our discussion is restricted to the setting of real

normed spaces. Thus, in this chapter also, by a normed space X we mean a real

normed space (X, ‖·‖) endowed with a semi-inner product [·|·] that generates the

norm ‖·‖.

4.2 Characterizations of Proximinality and

Chebyshevity

In this section we present some results characterizing proximinal, semi Chebyshev

and Chebyshev convex sets, in particular, convex cones, subspaces and their

translates. These are derived from the characterization results of the second

chapter. Our discussion begins with the following result for convex sets, which

actually is a consequence of the characterization Theorem 2.3.5.

Theorem 4.2.1. Let X be a normed space, and K a convex set in X. Then

K is proximinal (respectively semi Chebyshev, Chebyshev) if and only if each

x ∈ X admits at least (respectively at most, exactly) one representation of the

form x = y + y′ with y ∈ K and y′ ∈ (K − y)◦.

Proof. From (i) ⇔ (iii) of Theorem 2.3.5, it follows that K is proximinal (respec-

tively semi Chebyshev, Chebyshev) if and only if for each x ∈ X, PK(x) contains

at least (respectively at most, exactly)one element of K. That is,

⇔ For each x ∈ X, there exists at least (respectively at most, exactly) one

element y ∈ K such that y ∈ PK(x)

⇔ For each x ∈ X, there exists at least (respectively at most, exactly)one

element y ∈ K such that x− y ∈ (K − y)◦

⇔ Each x ∈ X has at least (respectively atmost, exactly) one representation

of the form x = y + y′ where y ∈ K and y′ = x− y ∈ (K − y)◦.

Hence the result.

Similar characterization results hold for particular convex sets like convex

cones, subspaces and their translates also. Our result for translates of convex
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cones is given below. We derive it directly from Theorem 2.5.5 characterizing

best approximations from translates of convex cones.

Theorem 4.2.2. Let X be a normed space, C a convex cone in X, z ∈ X, and

C ′ = z + C. Then C ′ is proximinal (respectively semi Chebyshev, Chebyshev)

if and only if each x ∈ X admits at least (respectively at most, exactly) one

representation of the form x = y + y′ with y ∈ C ′ and y′ ∈ C◦ ∩ (y − z)⊥.

Proof. The proof is analogous to that of Theorem 4.2.1 with the only difference

that instead of using (i) ⇔ (iii) of Theorem 2.3.5, here we employ (a) ⇔ (c) of

Theorem 2.5.5.

As a consequence of the above theorem, we have the following characterization

result for convex cones.

Corollary 4.2.3. Let X be a normed space, and C a convex cone in X. Then

C is proximinal (respectively semi Chebyshev, Chebyshev) if and only if each

x ∈ X admits at least (respectively at most, exactly) one representation of the

form x = y + y′ with y ∈ C and y′ ∈ C◦ ∩ y⊥.

Proof. The proof follows from Theorem 4.2.2 on taking z=0.

The characterization result for translates of subspaces is given below. It is a

consequence of Theorem 2.5.7 characterizing best approximations from translates

of subspaces.

Theorem 4.2.4. Let X be a normed space, M a subspace of X, z ∈ X, and

M ′ = z + M. Then M ′ is proximinal (respectively semi Chebyshev, Chebyshev)

if and only if each x ∈ X admits at least (respectively at most, exactly) one

representation of the form x = y + y′ with y ∈ M ′ and y′ ∈ M⊥.

Proof. The proof is similar to that of Theorem 4.2.1 with the only difference

that instead of using (i) ⇔ (iii) of Theorem 2.3.5, here we employ (a) ⇔ (c) of

Theorem 2.5.7.

The following characterization result for subspaces is a corollary to Theorem

4.2.4.
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Corollary 4.2.5. Let X be a normed space, and M a subspace of X. Then

M is proximinal (respectively semi Chebyshev, Chebyshev) if and only if each

x ∈ X admits at least (respectively at most, exactly) one representation of the

form x = y + y′ with y ∈ M and y′ ∈ M⊥.

Proof. The proof follows from Theorem 4.2.4 on letting z=0.

4.3 Some Decomposition Theorems

Results of the last section suggest that proximinality and Chebyshevity of sub-

spaces of a normed space can be characterized in terms of the decomposability

of the space. We provide some decomposition theorems in this section. Our re-

sults characterize proximinal and Chebyshev subspaces of normed spaces, closed

subspaces of reflexive normed spaces, and closed subspaces of strictly convex

reflexive normed spaces. We begin this section with the following definitions.

Definitions 4.3.1. Let X be a normed space, and A, B be nonempty subsets of

X. Then X is said to be the sum of A and B, denoted by X = A + B, if each

x ∈ X has at least one representation of the form x = a + b, where a ∈ A and

b ∈ B. We say that X is the direct sum of A and B, denoted by X = A⊕ B, if

each x ∈ X has a unique representation of the form x = a + b, where a ∈ A and

b ∈ B.

If A and B are actually subspaces of a normed space X, then X = A⊕ B if

and only if X = A + B and A ∩B = {0}.

As an easy consequence of Theorem 4.2.4, we have the following decomposi-

tion result which characterizes proximinality as well as Chebyshevity of translates

of subspaces of normed spaces.

Theorem 4.3.2. Let X be a normed space, M a subspace of X, z ∈ X, and

M ′ = z + M . Then M ′ is proximinal (respectively Chebyshev) if and only if

X = M ′ + M⊥ (respectively X = M ′ ⊕M⊥).

Proof. The proof follows from Theorem 4.2.4 and Definitions 4.3.1.

The decomposition result given below is a corollary to Theorem 4.3.2, and it

characterizes proximinality as well as Chebyshevity of subspaces.
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Corollary 4.3.3. Let X be a normed space, and M a subspace of X. Then M

is proximinal (respectively Chebyshev) if and only if X = M + M⊥ (respectively

X = M ⊕M⊥).

Proof. The proof follows from Theorem 4.3.2 on letting z=0.

Remark 4.3.4. We observe that the above corollary can also be proved directly

using Corollary 4.2.5 and Definitions 4.3.1.

Our next result in this series is in the setting of a reflexive normed space. Let

X∗ and X∗∗ denote respectively the dual space and the bidual space of a normed

space X. We recall that a normed space X is said to be reflexive if the canonical

embedding J : X → X∗∗ defined by

(J(x)) (f) = f(x) for all x ∈ X and all f ∈ X∗

is surjective. We need the following results [29], the proofs of which are omitted

here, for proving our next decomposition theorem.

Theorem 4.3.5. Let X be a reflexive normed space, and M a closed subspace

of X. Then M is proximinal. If X is strictly convex also, then M is actually

Chebyshev.

Theorem 4.3.6. Let X be a normed space, and G a proximinal set in X. Then

G is closed. In particular, every Chebyshev set in a normed space is closed.

The decomposition result in the framework of a reflexive normed space is

given below. It provides a characterization of closed subspaces of reflexive normed

spaces. We derive the result from Corollary 4.3.3.

Theorem 4.3.7. Let X be a reflexive normed space, and M a subspace of X.

Then M is closed if and only if X = M + M⊥.

Proof. Since X is reflexive, it follows from Theorem 4.3.5 and Theorem 4.3.6 that

M is closed if and only if M is proximinal. By Corollary 4.3.3, M is proximinal

if and only if X = M + M⊥, and this completes the proof.

The above result can be modified to have a direct sum decomposition of the

reflexive normed space on imposing the additional condition of strict convexity
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on the space. The resultant decomposition result, which is given below, provides

a characterization of closed subspaces of strictly convex reflexive normed spaces.

We derive the result from Corollary 4.3.3 with the help of Theorem 4.3.5 and

Theorem 4.3.6.

Theorem 4.3.8. Let X be a strictly convex reflexive normed space, and M a

subspace of X. Then M is closed if and only if X = M ⊕M⊥.

Proof. Since X is strictly convex and reflexive, Theorem 4.3.5 and Theorem 4.3.6

imply that M is closed if and only if M is Chebyshev. Further, by Corollary

4.3.3, M is Chebyshev if and only if X = M⊕M⊥. This completes the proof.

Remark 4.3.9. In the framework of a reflexive normed space, Theorem 4.3.7

can be treated as an analogue of the Projection theorem. Same is the case with

Theorem 4.3.8 in the setting of a strictly convex reflexive normed space.

It may be noticed that Theorem 4.3.7 and Theorem 4.3.8 do not hold for

nonreflexive normed spaces. To this effect, we have the following example.

Example 4.3.10. Consider the real normed space X = (c00, ‖·‖1) of all real se-

quences having only a finite number of nonzero entries, where ‖x‖1 =
∞∑

k=1

|xk| for

x = (x1, x2, x3, ...) ∈ X, together with the semi-inner product

[x|y] = ‖y‖1

∞∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X.

Define f : X → R by

f(x) =
∞∑

k=1

xk

k
, x ∈ X.

Then f is linear. By Holder’s inequality, for every x ∈ X, we have

|f(x)|2 ≤

(
∞∑

k=1

1

k2

)(
∞∑

k=1

|xk|2
)

=
π2

6
‖x‖2 ,

so that f is continuous and ‖f‖ ≤ π
/√

6 . Hence f ∈ X∗. Let M = Zf , the

zero space of f . Since f 6= 0, M is a proper closed subspace of X. Let z ∈ M⊥.
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Assume that z 6= 0. Then, since z ∈ c00, we see that z = (z1, ..., zm, 0, 0, ...) for

some positive integer m. Consider x ∈ X given by

xk =


1 if k = 1,

−(m + 1) if k = m + 1,

0 otherwise.

Then

f(x) =
1

1
+
− (m + 1)

m + 1
= 0,

so that x ∈ M . Since z ∈ M⊥, we have

0 = [x|z] = ‖z‖1

∞∑
k=1
zk 6=0

xkzk

|zk|
= ±‖z‖1 ,

so that ‖z‖1 = 0, a contradiction. Thus M⊥ = {0}. This implies, since M 6= X,

that X 6= M + M⊥. This shows that Theorem 4.3.7 and Theorem 4.3.8 do not

hold for X.

4.4 Consequences of the Decomposition Results

Let us now consider some consequences of the decomposition theorems which

we have seen in the above section. Corollary 4.3.3 provides the following char-

acterization of dense proximinal subspaces of a normed space in terms of the

orthogonality condition.

Theorem 4.4.1. Let X be a normed space, and M a proximinal subspace of X.

Then M is dense in X if and only if M⊥ = {0} .

Proof. Assume that M = X, and let x ∈ M⊥. Then [y|x] = 0 for every y ∈ M .

Since M is proximinal, M is closed by Theorem 4.3.6, and then M = M = X.

Consequently, [y|x] = 0 for every y ∈ X. Hence, as x ∈ X, we get ‖x‖2 = [x|x] =

0 so that x=0. Thus M⊥ = {0} . Conversely, assume that M⊥ = {0} . Then, as M

is proximinal and hence closed also, we have M = M = M+{0} = M+M⊥ = X,

by Corollary 4.3.3. This completes the proof.
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As an immediate consequence of the above result, we have the following

characterization of dense Chebyshev subspaces of a normed space.

Corollary 4.4.2. Let X be a normed space, and M a Chebyshev subspace of X.

Then M is dense in X if and only if M⊥ = {0} .

Proof. The proof follows from Theorem 4.4.1, since every Chebyshev subspace

is proximinal.

Remark 4.4.3. It may be noticed that the above corollary can also be proved

directly using Theorem 4.3.6 and Corollary 4.3.3.

Our next result provides a similar characterization of dense subspaces of a re-

flexive normed space in terms of the orthogonality condition. It is a consequence

of Theorem 4.3.7. We make use of Theorem 2.4.6 (b) in its proof.

Theorem 4.4.4. Let X be a reflexive normed space, and M a subspace of X.

Then M is dense in X if and only if M⊥ = {0} .

Proof. Assume that M = X, and let x ∈ M⊥. By Theorem 2.4.6 (b), we have(
M
)⊥

= M⊥. Hence x ∈
(
M
)⊥

so that [y|x] = 0 for every y ∈ M = X.

Consequently, ‖x‖2 = [x|x] = 0 and so x=0. Thus M⊥ = {0}. Conversely,

assume that M⊥ = {0}. Then, since
(
M
)⊥

= M⊥ by Theorem 2.4.6 (b), we

have M = M + {0} = M +
(
M
)⊥

= X, by Theorem 4.3.7 as M is a closed

subspace of X. This completes the proof.

Another consequence of Corollary 4.3.3 is given below.

Theorem 4.4.5. Let X be a normed space, and M a proper proximinal subspace

of X. Then M⊥ contains a nonzero element.

Proof. Suppose on the contrary that M⊥ = {0} , and let x ∈ X \M . Since M

is proximinal, by Corollary 4.3.3, we have x = y + 0 with y ∈ M and 0 ∈ M⊥,

which is a contradiction. Hence the theorem.

Theorem 4.4.5 has the following corollary.

Corollary 4.4.6. Let X be a normed space, and M a proper Chebyshev subspace

of X. Then M⊥ contains a nonzero element.
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Proof. Since every Chebyshev subspace is proximinal, the proof follows from

Theorem 4.4.5.

Remark 4.4.7. We observe that the above result can be derived directly from

Corollary 4.3.3 also

A result similar to the last two in the setting of a reflexive normed space is

given below. It is a consequence of Theorem 4.3.7.

Theorem 4.4.8. Let X be a reflexive normed space, and M a proper closed

subspace of X. Then M⊥ contains a nonzero element.

Proof. Suppose on the contrary that M⊥ = {0} , and let x ∈ X \M . Since M

is closed, by Theorem 4.3.7, we have x = y + 0 with y ∈ M and 0 ∈ M⊥, a

contradiction. Hence the theorem.

4.5 Continuous Linear Functionals on Normed

Spaces

Our attempt in this section is to study continuous linear functionals on normed

spaces. Using Theorem 1.2.3(b), we show here that every element y belonging to

a normed space X determines a continuous linear functional fy on X defined by

fy(x) = [x|y] with ‖fy‖ = ‖y‖ . Employing Theorem 4.3.7 and Theorem 4.4.4,

it is further shown that, if the normed space X is actually reflexive, then every

continuous linear functional f on X is given by f(x) = [x|yf ] for some suitable

yf ∈ X with ‖f‖ = ‖yf‖ .

We begin our discussion with the following result, which is a direct conse-

quence of Theorem 1.2.3(b).

Theorem 4.5.1. Let X be a normed space and y ∈ X. Then there exists an

element fy ∈ X∗ such that

fy(x) = [x|y] for all x ∈ X,

and ‖fy‖ = ‖y‖ .
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Proof. From Theorem 1.2.3(b), it follows that every y ∈ X defines a continuous

linear functional fy : X → R given by fy(x) = [x|y] such that ‖fy‖ = ‖y‖ .

Remark 4.5.2. In the above theorem we observe that the element fy ∈ X∗,

which exists corresponding to a given y ∈ X, is unique also. Indeed, if there

exists fy, f
′
y ∈ X∗ such that fy(x) = [x|y] = f ′y(x) for all x ∈ X, then fy = f ′y.

Let X be a normed space. Theorem 4.5.1 shows that each y ∈ X gives rise to

a continuous linear functional fy on X defined by fy(x) = [x|y] with ‖fy‖ = ‖y‖ .

We notice that the converse of this result is not true in general (see Example

4.5.5). However, as we shall see next, converse does hold for reflexive normed

spaces. We show below that, if the normed space X is actually reflexive, then

every continuous linear functional f on X is given by f(x) = [x|yf ] for some

suitable yf ∈ X, and ‖f‖ = ‖yf‖ . To establish this, we employ Theorem 4.3.7

and Theorem 4.4.4. Zf denotes the zero space of an element f ∈ X∗.

Theorem 4.5.3. Let X be a reflexive normed space, and f ∈ X∗. Then there

exists an element yf ∈ X such that

f(x) = [x|yf ] for all x ∈ X,

and ‖f‖ = ‖yf‖ . In fact, if z is a nonzero element of X such that z⊥Zf , then

yf =
f(z)z

[z|z]
.

Proof. If f = 0, then let yf = 0, so that for all x ∈ X, we have

f(x) = 0 = [x|0] = [x|yf ] ,

and ‖f‖ = 0 = ‖yf‖ .

Let f 6= 0. Then the zero space Zf = {x ∈ X : f(x) = 0} is a proper closed

subspace of X. Hence, by Theorem 4.3.7, X = Zf + Zf
⊥, where Zf

⊥ 6= {0} , by

Theorem 4.4.4. Consider a nonzero element z ∈ Zf
⊥. Let x ∈ X. Being the zero

space of a nonzero linear functional f on X, Zf is a hyperspace in X. Hence

x = w + αz,
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for some w ∈ Zf and α ∈ R. Then

[x|z] = [w + αz|z]

= [w|z] + α [z|z]

= α [z|z] ,

so that

α =
[x|z]

[z|z]
.

Therefore

f(x) = f (w + αz)

= f(w) + αf(z)

= αf(z)

=
[x|z]

[z|z]
f(z)

=

[
x

∣∣∣∣f(z)z

[z|z]

]
.

Thus we let

yf =
f(z)z

[z|z]
,

so that

f(x) = [x|yf ] for all x ∈ X.

Notice that, since f 6= 0 and 0 6= z ∈ Zf
⊥, yf 6= 0. Now, for all x ∈ X, we have

|f(x)| = |[x|yf ]| ≤ ‖x‖ ‖yf‖ ,

so that ‖f‖ ≤ ‖yf‖ . On the other hand,

‖f‖ ≥ |f (yf )|
‖yf‖

=
[yf |yf ]

‖yf‖
= ‖yf‖ ,

so that we actually have

‖f‖ = ‖yf‖ .

This completes the proof.
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Remark 4.5.4. In the setting of a reflexive normed space, Theorem 4.5.3 can be

considered as an analogue of the Riesz Representation theorem. Further, in view

of Corollary 4.3.3, the Riesz Representation theorem will be true in the case of

general normed spaces whenever the continuous linear functional f on X is such

that Zf is proximinal, and hence in particular if Zf is Chebyshev also.

We notice that Theorem 4.5.3 is not true in general. The following example

shows that this result does not hold for nonreflexive normed spaces.

Example 4.5.5. Consider the real normed space X = (c00, ‖·‖1) of all real se-

quences having only a finite number of nonzero entries, where ‖x‖1 =
∞∑

k=1

|xk| for

x = (x1, x2, x3, ...) ∈ X, together with the semi-inner product

[x|y] = ‖y‖1

∞∑
k=1
yk 6=0

xkyk

|yk|
, x, y ∈ X.

Define f : X → R by

f(x) =
∞∑

k=1

xk

k
, x ∈ X.

Then f is linear. By Holder’s inequality, for every x ∈ X, we have

|f(x)|2 ≤

(
∞∑

k=1

1

k2

)(
∞∑

k=1

|xk|2
)

=
π2

6
‖x‖2 ,

so that f is continuous and ‖f‖ ≤ π
/√

6 . Hence f ∈ X∗. Let y ∈ X.

Suppose that f(x) = [x|y] for all x ∈ X. Then as f 6= 0, y 6= 0. Let

en = (0, ..., 0, 1, 0, 0, ...), where 1 occurs only in the nth entry. Then en ∈ X,

and for all n = 1, 2, ..., we have

‖y‖1

yn

|yn|
= [en|y] = f(en) =

1

n
.

Thus ‖y‖1 = ±1/n for all n = 1, 2, ... , a contradiction. This shows that Theorem

4.5.3 does not hold for X.



CHAPTER 5

Birkhoff Orthogonality and a Revisit to the Characterization

of Best Approximations

5.1 Introduction

The notion of orthogonality in an arbitrary normed space, with the norm not

necessarily coming from an inner product, may be introduced in various ways as

suggested by the mathematicians like B. D. Roberts, G. Birkhoff, S. O. Carlsson,

C. R. Diminnie and R. C. James. Among these, the one which is frequently met

with in the literature is the orthogonality due to G. Birkhoff [5] in 1935 (e.g., I.

Singer [29], S. S. Dragomir [15], C. Benitez [3], J. Chmielinski [12] and so on).

In this chapter, using the concept of Birkhoff orthogonality, we make a revisit to

the characterization of best approximations seen so far in our discussion. Our

main objective here is to derive some results on characterization of best approx-

imations in normed spaces, especially from subspaces and their translates, in

terms of Birkhoff orthogonality. We achieve this through the results which we

have already seen in this regard in terms of semi-inner product orthogonality in

the previous chapters.

The chapter begins with a brief discussion on Birkhoff orthogonality. Then

80
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the question of the equivalence of Birkhoff and semi-inner product orthogonalities

is considered. It has been shown that [15] Birkhoff orthogonality is equivalent

to semi-inner product orthogonality for some suitable semi-inner product on the

normed space that generates the norm of the space. This enables us to re-

formulate our results characterizing best approximations in terms of semi-inner

product orthogonality into those in terms of Birkhoff orthogonality, and in the

process we recapture a well known characterization of best approximations due

to I. Singer [29]. Some decomposition theorems in terms of Birkhoff orthogonal-

ity, and their consequences are also studied in this chapter.

As in the previous chapters, here also our discussion is limited to the case of

real normed spaces.

5.2 Birkhoff Orthogonality

According to G. Birkhoff [5], the notion of orthogonality in an arbitrary normed

space can be defined as follows.

Definition 5.2.1. Let (X, ‖·‖) be a normed space, x, y be two given elements

in X. Then x is said to be Birkhoff orthogonal to y, denoted by x⊥y (B), if

‖x‖ ≤ ‖x + αy‖ for all α ∈ R.

It is clear that if (X, (·, ·)) is a real inner product space, then the usual or-

thogonality introduced by the inner product, i.e., x⊥y if (x, y) = 0, is equivalent

to Birkhoff orthogonality [29]. Indeed, if (x, y) 6= 0, then for

α = −(x, y)

(y, y)
,

we have

‖x + αy‖2 =

(
x− (x, y)

(y, y)
y, x− (x, y)

(y, y)
y

)
= (x, x)− 2

(x, y)2

(y, y)
+

(x, y)2

(y, y)2 (y, y)

= (x, x)− (x, y)2

(y, y)
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< (x, x)

= ‖x‖2 ,

so that x is not Birkhoff orthogonal to y. On the other hand, if (x, y) = 0, then

for every α ∈ R, we have

‖x + αy‖2 = (x + αy, x + αy)

= ‖x‖2 + |α|2 ‖y‖2

≥ ‖x‖2 ,

so that x is Birkhoff orthogonal to y.

Let (X, ‖·‖) be a normed space, x, y, z ∈ X and t ∈ R. The following are

some easy consequences of the above definition of Birkhoff orthogonality.

(i) 0⊥x (B) and x⊥0 (B),

(ii) x⊥x (B) if and only if x = 0, and

(iii) x⊥y (B) implies that x⊥(ty) (B).

However,

(iv) x⊥y (B) need not imply that y⊥x (B), and

(v) x⊥y (B) and x⊥z (B) need not imply that x⊥(y + z) (B).

For example, consider the real normed space X = (R2, ‖·‖1) , where ‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2) ∈ X. Let x = (−2, 1), y = (1, 1) ∈ X. Then for all

α ∈ R, we have

‖x + αy‖1 = |−2 + α|+ |1 + α| ≥ 3 = ‖x‖1 ,

so that x⊥y (B). But for α = 1
2
, we have

‖y + αx‖1 =

∥∥∥∥(0,
3

2

)∥∥∥∥
1

=
3

2
� 2 = ‖y‖1 ,

so that y is not Birkhoff orthogonal to x. Also, if x = (2, 2), y = (5,−4) and
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z = (−3, 5) are in X, then for all α ∈ R, we have

‖x + αy‖1 = |2 + 5α|+ |2− 4α| ≥ 4 = ‖x‖1 ,

and

‖x + αz‖1 = |2− 3α|+ |2 + 5α| ≥ 4 = ‖x‖1 .

Hence x⊥y (B) and x⊥z (B). However, for α = −1, we have

‖x + α(y + z)‖1 = ‖(0, 1)‖1 = 1 � 4 = ‖x‖1 ,

so that x is not Birkhoff orthogonal to y + z.

Another consequence of the above definition is given below [15]. For x ∈ X

and G ⊆ X, Sx denotes span {x}, and d(x, G), the distance of x from G.

Theorem 5.2.2. Let (X, ‖·‖) be a normed space, and x, y ∈ X. Then x⊥y (B)

if and only if ‖x‖ = d(x, Sy).

Proof. If x⊥y (B), then for every α ∈ R, we have

‖x‖ ≤ ‖x + αy‖ ≤ ‖x‖+ |α| ‖y‖ ,

so that

‖x‖ = inf {‖x + αy‖ : α ∈ R}

= inf {‖x− z‖ : z ∈ Sy}

= d(x, Sy).

Conversely, if ‖x‖ = d(x, Sy), then for every z ∈ Sy, we have

‖x‖ ≤ ‖x− z‖ ,

so that

‖x‖ ≤ ‖x + αy‖ for all α ∈ R.

Hence x⊥y (B), and this completes the proof.
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Definition 5.2.3. Let (X, ‖·‖) be a normed space, G a nonempty subset of X,

and x ∈ X. We say that x is Birkhoff orthogonal to G, denoted by x⊥G (B) if

x⊥y (B) for all y ∈ G.

By the definition, 0⊥G (B) for every nonempty subset G of X.

Definitions 5.2.4. Let (X, ‖·‖) be a normed space, and G a nonempty subset

of X. Then the set {x ∈ X : x⊥G (B)} is called the Birkhoff orthogonal comple-

ment of G, denoted by G⊥ (B).

If y ∈ X, the Birkhoff orthogonal complement of y, denoted by y⊥ (B), is the

set {x ∈ X : x⊥y (B)}.

We have G⊥ (B) =
⋂

y∈G

y⊥ (B), for

G⊥ (B) = {x ∈ X : x⊥G (B)}

= {x ∈ X : x⊥y (B) for all y ∈ G}

=
⋂
y∈G

{x ∈ X : x⊥y (B)}

=
⋂
y∈G

y⊥ (B).

Some direct consequences of the above definitions are given below.

(a) 0⊥ (B) = X, and X⊥(B) = {0} .

(b) If G is any nonempty subset of X, and t is any scalar, then,

(i) 0 ∈ G⊥(B),

(ii) x ∈ G⊥(B) implies that tx ∈ G⊥(B), and

(iii) generally, G ∩G⊥(B) is either empty or {0} .

(c) If C is a convex cone in X, we also have C ∩ C⊥(B)={0}. In particular,

M ∩M⊥(B)={0} for any subspace M of X.

(d) More importantly, even if M is a subspace of X, M⊥(B) need not be a sub-

space of X. M⊥(B) is not even a convex cone in X. For example, consider

the real normed space X = (R2, ‖·‖1), where ‖x‖1 =
2∑

k=1

|xk| for x = (x1, x2)
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∈ X, and the subspace M = span {(1, 1)} of X. Then M⊥(B) consists of all

points x = (x1, x2) ∈ X for which |x1|+ |x2| ≤ |x1 + λ|+ |x2 + λ| holds for

all λ ∈ R. Consider x = (−3, 5) and y = (4,−3) in X. Since for all λ ∈ R,

|−3|+ |5| = 8 ≤ |−3 + λ|+ |5 + λ| , and |4|+ |−3| = 7 ≤ |4 + λ|+ |−3 + λ|
hold, (−3, 5) and (4,−3) are in M⊥(B). However the element x + y = (1, 2)

/∈ M⊥(B), since if λ = −1, we have |(1 + λ)|+ |(2 + λ)| = 1 � 3 = |1|+ |2|.

Among these observations, the one which is mentioned last is the crucial

difference in comparison with the usual orthogonal complements in inner product

spaces.

5.3 Equivalence of Birkhoff and Semi-Inner

Product Orthogonalities

In this section we consider the equivalence of Birkhoff orthogonality and orthogo-

nality relative to semi-inner products. We recall from second chapter (Definition

2.4.1) that if (X ‖·‖) is a real normed space endowed with the semi-inner product

[·|·] which generates the norm ‖·‖, and if x, y ∈ X, then x is said to be orthogonal

in the sense of Lumer-Giles relative to the semi-inner product [·|·] to y, denoted

by x⊥y, if [y|x] = 0. We also recall from first chapter that, in general, there

may exist infinitely many distinct semi-inner products on a normed space which

generate the norm of the space. Each of these semi-inner products gives rise

to a semi-inner product orthogonality. Hence there may exist infinitely many

different semi-inner product orthogonalities on a normed space. Consequently,

in situations where semi-inner product orthogonalities are to be distinguished,

we have to mention specifically the semi-inner product with respect to which

each orthogonality is considered. Therefore we modify slightly our notations for

orthogonality and orthogonal complement in the sense of Lumer-Giles relative to

semi-inner products (see Definition 2.4.1, Definition 2.4.2 and Definitions 2.4.3)

as follows.

Let (X, ‖·‖) be a normed space, [·|·] a semi-inner product on X that generates

the norm ‖·‖, x, y ∈ X, and G a nonempty subset of X. The facts that x is

orthogonal to y, and x is orthogonal to G are denoted respectively by x⊥y ([·|·])



5.3 Equivalence of Birkhoff and Semi-Inner Product Orthogonalities 86

and x⊥G ([·|·]). Thus

x⊥y ([·|·]) if [y|x] = 0

and

x⊥G ([·|·]) if [y|x] = 0 for all y ∈ G.

The orthogonal complements of G and y are denoted by G⊥ ([·|·]) and y⊥ ([·|·])
respectively. Thus

G⊥ ([·|·]) := {x ∈ X : x⊥G ([·|·])} ,

and

y⊥ ([·|·]) := {x ∈ X : x⊥y ([·|·])} .

We have G⊥ ([·|·]) =
⋂

y∈G

y⊥ ([·|·]) .

The following result [15] shows that semi-inner product orthogonality always

implies Birkhoff orthogonality.

Theorem 5.3.1. Let (X, ‖·‖) be a normed space, [·|·] a semi-inner product on

X that generates the norm ‖·‖, and x, y ∈ X. If x⊥y ([·|·]), then x⊥y (B).

Proof. Assume that x⊥y ([·|·]). If x = 0, the result is trivial. If x 6= 0, then for

all α ∈ R, we have

‖x‖2 = [x|x]

= [x + αy|x] , since [y|x] = 0

≤ ‖x‖ ‖x + αy‖ ,

so that ‖x‖ ≤ ‖x + αy‖ .

Hence x⊥y (B).

We observe that the converse of the above result is not generally true, as is

illustrated by the following example.

Example 5.3.2. Consider the real normed space (R3, ‖·‖1) , where ‖x‖1 =



5.3 Equivalence of Birkhoff and Semi-Inner Product Orthogonalities 87

3∑
k=1

|xk| for x = (x1, x2, x3) ∈ R3. Then

[x|y] = ‖y‖1

3∑
k=1

yk 6=0

xkyk

|yk|
, x, y ∈ R3

is a semi-inner product on R3 which generates the norm ‖·‖1. Consider the

elements x = (1, 1, 0) and y = (1, 0, 0) in R3. We have ‖y‖1 = 1, and y + αx =

(1 + α, α, 0) so that ‖y + αx‖1 = |1 + α|+ |α|. Now

‖y‖1 = 1 ≤ |1 + α|+ |α| = ‖y + αx‖1 for all α ∈ R,

and hence y⊥x (B). However,

[x|y] = 1 6= 0,

which shows that y is not orthogonal to x in the sense of Lumer-Giles relative to

the semi-inner product considered above.

Theorem 5.3.1 and Example 5.3.2 show that, in general, Birkhoff and semi-

inner product orthogonalities are not equivalent on a normed space. However,

as is suggested by the following result, there does exist at least one semi-inner

product on a normed space which generates the norm, and for which the orthogo-

nality relative to it is equivalent to Birkhoff orthogonality. The proof we provide

here is a modified version of the one which is given by S. S. Dragomir [15].

Theorem 5.3.3. Let (X, ‖·‖) be a normed space, and x, y ∈ X. If x⊥y (B), then

there exists a semi-inner product [·|·] on X which generates the norm ‖·‖ such

that x⊥y ([·|·]).

Proof. Assume that x⊥y (B). If x=0, the result is true. If x 6= 0, consider the

subspace M := span {y} ⊕ span {x} , the direct sum of span {y} and span {x},
of X. Define the functional g : M → R by g(m) = λ ‖x‖2 , where m = z + λx

with z ∈ span {y} and λ ∈ R.

Let m = z + λx and m′ = z′ + λ′x be in M , where z, z′ ∈ span {y} and

λ, λ′ ∈ R. If m = m′, then we have z − z′ = (λ′ − λ)x for all nonzero x ∈ X,
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where z−z′ ∈ span {y} and (λ′ − λ) x ∈ span {x} . This implies, by the definition

of M as the direct sum of two subspaces, that in particular λ′ − λ = 0, so that

λ ‖x‖2 = λ′ ‖x‖2 . Hence g is well defined on M . Further, for all µ, µ′ ∈ R, we

have

g (µm + µ′m′) = g ((µz + µ′z′) + (µλ + µ′λ′) x)

= (µλ + µ′λ′) ‖x‖2 , since µz + µ′z′ ∈ span {y}

= µλ ‖x‖2 + µ′λ′ ‖x‖2

= µ g(m) + µ′ g(m′).

Hence g is also linear on M . Further, g(x) = g(0 + 1 · x) = ‖x‖2 , and g(y) =

g(y+0 ·x) = 0. Now for all m = z +λx ∈ M, where z ∈ span {y} and 0 6= λ ∈ R,

we have,

|g(m)|
‖m‖

=
|λ| ‖x‖2

‖z + λx‖

=
‖x‖2∥∥x + 1

λ
z
∥∥

=
‖x‖2∥∥x + µ

λ
y
∥∥ , for some µ ∈ R, since z ∈ span {y}

≤ ‖x‖2

‖x‖
, since x⊥y (B)

= ‖x‖ ,

so that |g(m)| ≤ ‖x‖ ‖m‖ . Hence g is bounded on M and ‖g‖ ≤ ‖x‖. On the

other hand,

‖g‖ ≥ |g(x)|
‖x‖

=
‖x‖2

‖x‖
= ‖x‖ ,

and thus actually ‖g‖ = ‖x‖ . Consequently, by virtue of the Hahn-Banach ex-

tension theorem, there exists a functional f ∈ X∗ which extends g to the whole

of X such that ‖f‖ = ‖g‖ = ‖x‖ . Then, since x, y ∈ M , f(x) = g(x) = ‖x‖2 and

f(y) = g(y) = 0. Hence f ∈ J (x), where J is the normalized duality mapping

of X. This shows, since J (0) = {0}, that J (x) is a nonempty subset of X∗ for

every x ∈ X, so that {J (x)}x∈X is a nonempty class of nonempty sets. Hence,

by the axiom of choice, a set can be formed which contains precisely one element,
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say fx, taken from each set J (x). This determines a section J̃ :X → X∗ of J de-

fined by J̃ (x) = fx for all x ∈ X. Since fx is a Hahn-Banach extension of g ∈ M∗

to X, and since x, y ∈ M , we have fx(x) = g(x) = ‖x‖2 and fx(y) = g(y) = 0.

Then, by Theorem 1.4.1,

[u|v] := (J̃ (v))(u), u, v ∈ X

is a semi-inner product on X that generates the norm ‖·‖. Consequently,

[y|x] = (J̃ (x))(y) = fx(y) = 0,

so that x⊥y ([·|·]) , and this completes the proof.

Combining Theorem 5.3.1 and Theorem 5.3.3, we can formulate the exact

connection between Birkhoff orthogonality and orthogonality relative to semi-

inner products as given below.

Theorem 5.3.4. Let (X, ‖·‖) be a normed space, and x, y ∈ X. Then the

following statements are equivalent:

(a) x⊥y (B);

(b) There exists a semi-inner product [·|·] on X which generates the norm ‖·‖
such that x⊥y ([·|·]).

Proof. (a) ⇒ (b) follows by Theorem 5.3.3, and (b) ⇒ (a) follows by Theorem

5.3.1.

Remark 5.3.5. The above theorem shows that on any normed space (X, ‖·‖),
there always exist at least one semi-inner product that generates the norm ‖·‖ ,

and for which Birkhoff orthogonality is equivalent to semi-inner product orthog-

onality. However, such semi-inner products need not be unique (see proof of

Theorem 5.3.3), since uniqueness of Hahn-Banach extensions is not generally

guaranteed in the case of normed spaces. In the case of normed spaces on which

the existence of a unique semi-inner product is assured (e.g., smooth normed

spaces), Birkhoff orthogonality is nothing other than semi-inner product orthog-

onality.

Theorem 5.3.4 has the following corollary. J (X) denotes the class of all

semi-inner products on a normed space X that generate the norm of X.
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Corollary 5.3.6. Let (X, ‖·‖) be a normed space, and [·|·] a semi-inner product

on X that generates the norm ‖·‖ . Then the following statements are true:

(a) If y ∈ X, then y⊥(B) =
⋃

[·|·]∈J (X)

y⊥ ([.|.]) ;

(b) If G is a nonempty subset of X, then G⊥(B) =
⋃

[·|·]∈J (X)

G⊥ ([.|.]) .

Proof. (a) It follows from Theorem 5.3.4 that

x ∈ y⊥ (B) ⇔ x⊥y (B)

⇔ x⊥y ([·|·]) for some [·|·] ∈ J (X)

⇔ x ∈ y⊥ ([·|·]) for some [·|·] ∈ J (X)

⇔ x ∈
⋃

[·|·]∈J (X)

y⊥ ([·|·]).

Hence (a) holds.

(b) We have

G⊥ (B) =
⋂
y∈G

y⊥ (B)

=
⋂
y∈G

⋃
[·|·]∈J (X)

y⊥ ([·|·]), by (a) above

=
⋃

[·|·]∈J (X)

⋂
y∈G

y⊥ ([·|·])

=
⋃

[·|·]∈J (X)

G⊥ ([·|·]).

Hence holds (b) also.

Remark 5.3.7. Let (X, ‖·‖) be a normed space. If Birkhoff orthogonality on X

is equivalent to the orthogonality relative to some semi-inner product [·|·] on X

that generates the norm ‖·‖, then

(i) y⊥ (B) = y⊥ ([·|·]) for every y ∈ X, and

(ii) G⊥ (B) = G⊥ ([·|·]) for every nonempty subset G of X.
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5.4 Characterizations in terms of Birkhoff

Orthogonality

Our intention in this section is to derive a few results characterizing best ap-

proximations in normed spaces in terms of Birkhoff orthogonality. Here we make

a revisit to the characterizations of best approximations which we have already

seen in our discussion, and reformulate some of them in terms of Birkhoff orthog-

onality using Theorem 5.3.4. One of the main benefits in doing so is that we can

actually recapture a well known characterization result of best approximation

due to I. Singer [29].

Observe that all the results characterizing best approximations in normed

spaces which we have come across so far in our discussion are in terms of some,

in fact any, semi-inner product on the normed space that generates the norm of

the space. Hence Theorem 5.3.4 enables us to treat all those results actually in

terms of any one of those particular semi-inner products on the normed space

which generate the norm of the space and for which Birkhoff orthogonality and

semi-inner product orthogonality are equivalent. When these two orthogonalities

are equivalent, their orthogonal complements coincide. This shows that we can

very well replace all the orthogonal complements relative to semi-inner product

in the characterization results seen so far by Birkhoff orthogonal complement

without causing any other modification. We employ this procedure in arriving

at some results characterizing best approximations in normed spaces in terms of

Birkhoff orthogonality. Though almost all the characterization results seen so

far can be reformulated using this procedure, here we concentrate only on results

for subspaces and their translates.

Our result which characterizes best approximations from translates of sub-

spaces in terms of Birkhoff orthogonality is given below. It is deduced from

Theorem 2.5.7.

Theorem 5.4.1. Let (X, ‖·‖) be a normed space, M a subspace of X, z ∈ X,

and K = z + M . Suppose also that x ∈ X and y0 ∈ K. Then the following
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statements are equivalent:

(a) y0 ∈ PK(x);

(b) x− y0 − λ (z + y − y0) ∈ M⊥(B) for all y ∈ M and all λ ∈ [0, 1] ;

(c) x− y0 ∈ M⊥(B).

Proof. By virtue of Theorem 5.3.4, the proof follows from Theorem 2.5.7 on

replacing M⊥ by M⊥(B).

As a corollary to the above theorem, we have the following result for sub-

spaces.

Corollary 5.4.2. Let (X, ‖·‖) be a normed space, M a subspace of X, x ∈ X,

and y0 ∈ M . Then the following statements are equivalent:

(a) y0 ∈ PM(x);

(b) x− y0 − λ (y − y0) ∈ M⊥(B) for all y ∈ M and all λ ∈ [0, 1] ;

(c) x− y0 ∈ M⊥(B).

Proof. The proof is a consequence of letting z = 0 in Theorem 5.4.1.

Remark 5.4.3. The above corollary can also be deduced directly from Theorem

2.5.3 for subspaces using Theorem 5.3.4.

Remark 5.4.4. At this juncture we notice that the following characterization

of best approximations in normed spaces in terms of Birkhoff orthogonality due

to I. Singer [29] is there in the literature.

Let (X, ‖·‖) be a normed space, M a subspace of X, x ∈ X, and y0 ∈ M .

Then y0 ∈ PM(x) if and only if x− y0⊥M(B).

By our characterization result ((a) ⇔ (c) of Corollary 5.4.2), we have

y0 ∈ PM(x) ⇔ x− y0 ∈ M⊥(B).

However,

x− y0 ∈ M⊥(B) ⇔ x− y0⊥y(B) for all y ∈ M ⇔ x− y0⊥M(B).
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This shows that through our characterization result, namely Corollary 5.4.2, we

have actually recaptured the above mentioned result characterizing best approx-

imations due to I. Singer [29].

5.5 Decomposition Theorems in terms of

Birkhoff Orthogonality

In the above section we have seen how to reformulate results in terms of semi-

inner product orthogonality into those in terms of Birkoff orthogonality using

Theorem 5.3.4, and a few results thus obtained. The present section contains

some more results in terms of Birkoff orthogonality which are arrived at through

the corresponding results in terms of semi-inner product orthogonality using

again Theorem 5.3.4. Our emphasis here is on decomposition theorems and their

consequences.

Our discussion begins with some decomposition results which characterize

proximinality as well as Chebyshevity of subspaces and their translates in terms

of Birkoff orthogonality. The result below for translates of subspaces is a conse-

quence of Theorem 4.3.2.

Theorem 5.5.1. Let (X, ‖·‖) be a normed space, M a subspace of X, z ∈ X,

and M ′ = z + M . Then M ′ is proximinal (respectively Chebyshev) if and only if

X = M ′ + M⊥ (B) (respectively X = M ′ ⊕M⊥ (B)).

Proof. Because of Theorem 5.3.4, the proof follows from Theorem 4.3.2 on re-

placing M⊥ by M⊥ (B).

We have the following result for subspaces as a corollary to the above theorem.

Corollary 5.5.2. Let (X, ‖·‖) be a normed space, and M a subspace of X.

Then M is proximinal (respectively Chebyshev) if and only if X = M + M⊥ (B)

(respectively X = M ⊕M⊥ (B)).

Proof. The proof follows from Theorem 5.5.1 on letting z = 0.

Remark 5.5.3. The above corollary can also be arrived at directly from Corol-

lary 4.3.3 for subspaces using Theorem 5.3.4.
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Our next result is in the setting of a reflexive normed space. It provides

a characterization of closed subspaces of reflexive normed spaces in terms of

Birkhoff orthogonality. We deduce the result from Theorem 4.3.7.

Theorem 5.5.4. Let (X, ‖·‖) be a reflexive normed space, and M a subspace of

X. Then M is closed if and only if X = M + M⊥ (B).

Proof. By virtue of Theorem 5.3.4, the proof follows from Theorem 4.3.7 on

replacing M⊥ by M⊥(B).

If the reflexive normed space in the above theorem is strictly convex also,

then the decomposition of the space as a sum becomes actually a direct sum de-

composition. The resultant decomposition result, which is given below, provides

a characterization of closed subspaces of strictly convex reflexive normed spaces

in terms of Birkhoff orthogonality. We derive the result from Theorem 4.3.8.

Theorem 5.5.5. Let (X, ‖·‖) be a strictly convex reflexive normed space, and

M a subspace of X. Then M is closed if and only if X = M ⊕M⊥ (B).

Proof. Because of Theorem 5.3.4, the proof follows from Theorem 4.3.8 on re-

placing M⊥ by M⊥ (B).

Remark 5.5.6. In the framework of a reflexive normed space, Theorem 5.5.4

can be treated as an analogue of the Projection theorem in terms of Birkhoff

orthogonality. Same is the case with Theorem 5.5.5 in the setting of a strictly

convex reflexive normed space.

It may be noticed that Theorem 5.5.4 and Theorem 5.5.5 do not hold for

nonreflexive normed spaces (see Example 4.3.10).

Now let us consider some consequences of our present decomposition theo-

rems in terms of Birkhoff orthogonality. As above, the results we present here

also are deduced from the corresponding results in terms of semi-inner product

orthogonality with the help of Theorem 5.3.4. Thus, the results that follow in

this section, namely Theorem 5.5.7, Corollary 5.5.8, Theorem 5.5.9, Theorem

5.5.10, Corollary 5.5.11 and Theorem 5.5.12, are actually reformulated versions

in terms of Birkhoff orthogonality of Theorem 4.4.1, Corollary 4.4.2, Theorem
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4.4.4, Theorem 4.4.5, Corollary 4.4.6 and Theorem 4.4.8 respectively using The-

orem 5.3.4. Hence no separate proof is given here for any of these results.

As a consequence of Corollary 5.5.2, we have the following characterization of

dense proximinal subspaces of a normed space in terms of Birkhoff orthogonality

condition.

Theorem 5.5.7. Let (X, ‖·‖) be a normed space, and M a proximinal subspace

of X. Then M is dense in X if and only if M⊥ (B) = {0} .

The following result which characterizes denseness of Chebyshev subspaces of

normed spaces in terms of Birkhoff orthogonality condition is also a consequence

of Corollary 5.5.2. It actually becomes a corollary to the above theorem.

Corollary 5.5.8. Let (X, ‖·‖) be a normed space, and M a Chebyshev subspace

of X. Then M is dense in X if and only if M⊥ (B) = {0} .

Our next result provides a similar characterization of dense subspaces of

a reflexive normed space in terms of Birkhoff orthogonality condition. It is a

consequence of Theorem 5.5.4.

Theorem 5.5.9. Let (X, ‖·‖) be a reflexive normed space, and M a subspace of

X. Then M is dense in X if and only if M⊥ (B) = {0} .

Another consequence of Corollary 5.5.2 is given below.

Theorem 5.5.10. Let (X, ‖·‖) be a normed space, and M a proper proximinal

subspace of X. Then M⊥ (B) contains a nonzero element.

Yet another consequence of Corollary 5.5.2 is given below. It becomes actually

a corollary to the above theorem.

Corollary 5.5.11. Let (X, ‖·‖) be a normed space, and M a proper Chebyshev

subspace of X. Then M⊥ (B) contains a nonzero element.

A result similar to the last two in the setting of a reflexive normed space is

given below. It is a consequence of Theorem 5.5.4.

Theorem 5.5.12. Let (X, ‖·‖) be a reflexive normed space, and M a proper

closed subspace of X. Then M⊥ (B) contains a nonzero element.



Epilogue

Some of the problems and possibilities that were thought about, and where

further research work is possible, are discussed below briefly. The problems that

we mention here are closely related in one way or another to the work which we

have carried out in the thesis.

In Section 3.4 we have introduced the concepts of ordered orthogonal sets and

ordered orthonormal sets in the setting of a normed space. It is shown in Theo-

rem 3.4.6 that an ordered orthogonal set of nonzero elements in a normed space

is linearly independent, and hence in particular, an ordered orthonormal set also

is linearly independent. Regarding the converse of the problem, we have the

ordered orthonormalization results in Theorem 3.5.2 for general normed spaces,

and Corollary 3.5.4 for strictly convex normed spaces. In those results, we have

constructed ordered orthonormal sets from given countable linearly independent

sets. However, no algorithm for the actual construction of ordered orthonormal

sets is provided there. Formulating an algorithm to this effect demands further

research.

As a generalization of the notion of orthonormal basis for inner product

spaces, one can think of introducing the concept of an ‘ordered orthonormal

basis’ for normed spaces in terms of semi-inner products that generate the norm

of the space. Once it is done, one can very well attempt to find out some nec-

essary and sufficient conditions under which an ordered orthonormal set is, in
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fact, an ordered orthonormal basis. This may allow us to speak of ‘Fourier ex-

pansion’ in the setting of general normed spaces. This actually will result in the

emergence of a vast and prolific area of research. This may even help us in the

formulation of the algorithm mentioned above.

We have established the analogues of the Projection theorem for reflexive

normed spaces and strictly convex reflexive normed spaces in Theorem 4.3.7 and

Theorem 4.3.8 respectively. Explorations may be made to see whether one can

introduce the concept of an ‘ordered orthogonal projection’ in the setting of a

general normed space as a generalization of the notion of orthogonal projection

for inner product spaces, and if possible to proceed with further research in this

area.

We have obtained an analogue of the Riesz Representation theorem in the

setting of a reflexive normed space in Theorem 4.5.3. We noticed that (Remark

4.5.4) the Riesz Representation theorem holds in the case of general normed

spaces whenever the continuous linear functional f on X is such that Zf is prox-

iminal, and hence in particular if Zf is Chebyshev. It will be interesting to

investigate those continuous linear functionals f on a general normed space X

for which Zf is proximinal, and in particular Zf is Chebyshev.

By Theorem 5.3.4, we have seen that on any normed space, there always exists

at least one semi-inner product that generates the norm of the space such that

the orthogonality relative to this semi-inner product is equivalent to Birkhoff or-

thogonality. In general, infinitely many such semi-inner products are there on a

general normed space, since uniqueness of Hahn-Banach extensions is not guaran-

teed generally. Investigations can be made to identify those semi-inner products

on a normed space for which the two orthogonalities coincide. Attempts can

also be made to characterize those normed spaces on which there exists a unique

semi-inner product that generates the norm of the space such that the orthog-

onality relative to this semi-inner product is equivalent to Birkhoff orthogonality.
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One important and interesting area which we have not dared to touch at all

in this context is the study of linear transformations.

S. S. Dragomir has introduced the concept of a smooth normed space of (N)-

type [15] as follows. Let (X, ‖·‖) be a smooth normed space, and [·|·] a semi-inner

product on X that generates the norm ‖·‖ of X. Then X is said to be of (N)-type,

if the semi-inner product [·|·] satisfies the condition,

|[x|y + z]| ≤ |[x|y]|+ |[x|z]|

for all x, y, z ∈ X. It is obvious that any inner product space is a smooth normed

space of (N)-type. It is an open problem whether the property (N) is character-

istic for inner product spaces.

One can attempt a study on characterization of best approximations in smooth

normed spaces of (N)-type in terms of semi-inner products. Analyzing the simi-

larities and differences of the studies on characterization of best approximations

in inner product spaces, smooth normed spaces of (N)-type in terms of semi-

inner products, and normed spaces in terms of semi-inner products will be quite

interesting.

These are just a few of the many problems that can be addressed in connec-

tion with our present work. Investigations of these problems itself will generate

multitudes of problems and possibilities that demand further research.
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